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ABSTRACT

In this paper, we first derived the Ihara zeta function, complexity and zeta

Kirchhoff index of the k-th semitotal point graph (of regular graphs), a construction by

Cui and Hou [5], where we create triangles for every edge in the original graph. Then, we

extend the construction to the creation of equilaterals and polygons.

We also derived the zeta Kirchhoff indices for numerous graph transformations on

regular graphs, and some selected families of graphs.

At the end, a data summary is provided for enumeration computed on simple

connected md2 graphs up to degree 10.
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CHAPTER 1

INTRODUCTION

Let G = (VG, EG) be a graph, where VG is the set of vertices in G and EG is the set

of edges in E. The elements in VG consist of ‘points’ in the graph G, whereas the elements

in EG consist of ‘connections’ that join pairs of vertices in VG. For example, the graph G1

below has VG1 = {a, b, c, d} and EG1 = {ab, ac, ad, bc, cd}. The graphs in this paper will

have edges that are free of weight and direction, in other words, ab = ba for each ab ∈ EG.

Such graphs are called undirected graphs. A subgraph H = (VH , EH) of G is a graph where

VH ⊂ VG and EH ⊂ EG such that for each v = ab ∈ EH , a ∈ VH and b ∈ VH .

a b

cd

G1

Figure 1.1: Example of a simple graph

We define the order and size of G to be the number of vertices and edges in G,

correspondingly. We also define the degree of any vertex v ∈ VG to be the number of edges

e ∈ EG such that e = va for some a ∈ VG. The order of the graph G1 above is 4 and its

size is 5. The degree of a, b, c and d are 3, 2, 3 and 2.

A graph with all vertices of degree 2 or higher is called a minimal degree 2 graph,

or md2 graph. Note that it is possible to have an edge that connects the same vertex on

both ends; such an edge is called a loop. It is also possible for EG to have multiple edges

connecting the same vertices. We define a simple graph to be a graph free of loops and

multiple edges, and a multigraph to be a graph that contains loops and/or multiple edges.

Examples of multigraphs are given below as G2 and G3. We shall assume all graphs in
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this paper are simple and undirected beyond this point.

G2 G3

Figure 1.2: Examples of multigraphs

Given v1, vn ∈ VG, a walk from v1 to vn in G is a sequence of edges in the form of

(v1v2, v2v3, . . . , vn−1vn) where v1v2, . . . , vn−1vn ∈ EG. A trail is a walk without repeated

edges, and a cycle is a walk where v1 = vn. For example, (ab, bc, cd) in G1 is a walk but

not a cycle, and (ab, bc, ca) in G1 is a cycle.

A cycle (v1v2, . . . , vn−1vn) has backtracking if vi+1vi+2 = vi+1vi for some i. If

vn−1vn = v2v1 then we say the cycle has a tail. If a cycle cannot be represented as a power

of another cycle (repeating the walk), then we say the cycle is primitive. A primitive cycle

that has no backtracks or tails is called a prime cycle.

Two cycles (v1v2, . . . , vn−1vn) and (w1w2, . . . , wn−1wn) are equivalent if v1v2 . . . vn

is a cyclic permutation of w1w2 . . . wn. This defines an equivalence relation on the set of

all cycles of G. Let [C] be the equivalence class of all cycles that are equivalent to a prime

cycle C. Then, the Ihara zeta function of a graph G is a function of complex argument u

defined, for sufficiently small values of u, by

ZG(u) =
∏
[C]

(1− uv[C])−1,

where v[C] is the number of edges of a representative C of class [C].

For each pair of vertices vi, vj ∈ VG of a graph G, we call G a connected graph if

there exist a walk from vi to vj . Otherwise, G is called a disconnected graph. The number

of components of a graph is defined as the minimum number of partitions of VG such that
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each subgraph in a partition is connected. For example, G1 above is a connected graph

and G4 below is a disconnected graph with 2 components.

a b

cd

G4

Figure 1.3: Example of a disconnected graph

In this paper, we are mainly working with connected regular graphs, that is,

connected graphs with vertices of equal degree. We call a graph G an r-regular graph (or

graph of regularity r) if, for each v ∈ VG, |v| = r. Note that, for a connected r-regular

graph G, where r ≥ 2 and n ≥ 3, G is an md2 graph.

For instance, as shown below, G5 is a 2-regular graph and G6 is a 3-regular graph.

Note that, if G is an r-regular graph with order n and size m, then m = nr
2 .

a b

cd

G5

a b

cd

G6

Figure 1.4: Examples of regular graphs

Two graphs G and H are isomorphic, if they have the same number of vertices,

and there exists a permutation ρ such that for each ij ∈ E(G), ρ(i)ρ(j) ∈ E(H).

Note that two graphs of equal regularity r are not necessarily isomorphic. For

instance, as shown below, both G7 and G8 are 3-regular graphs, but they are not

isomorphic.
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a b

c

de

f

G7

a b

c

de

f

G8

Figure 1.5: Examples of non-isomorphic 3-regular graphs

Since G8 contains prime cycles of length 3 while G7 does not, G7 and G8 are not

isomorphic to one another.

An alternative way of representing a graph is to utilize matrices. If G = (VG, EG)

where |VG| = n, and let f : [n]→ VG be any bijective map. Then G can be represented by

an adjacency matrix AG, where aij is the count of f(i)f(j) ∈ EG. For example, the

adjacency matrices for G3, G5 and G6 above can be represented as

AG3 =



0 1 3 1

1 0 1 0

3 1 0 1

1 0 1 0


, AG5 =



0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


, AG6 =



0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0


.

It should be noted that there are n! ways to enumerate such a bijective map f , hence for

n > 1 the adjacency matrix is not unique. From now on, we will fix a bijective map f

(which means we will label the vertices v1, v2, . . . , vn, in some order and edges of G as

e1, e2, . . . , em). For undirected simple graphs, all adjacency matrices are (i) symmetric, (ii)

aii = 0 for each i ∈ [n], and (iii) all entries must be either 0 or 1. Observe that two graphs

G and H are isomorphic if and only if there exists some permutation matrix P such that

AG = PAHP
T .

Throughout this paper, we shall refer to the i-row, j-column entry of a matrix A,

as (A)ij .
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An n× n degree matrix DG of a graph G is defined as dii =
∑n

k=1 aik =
∑n

k=1 aki

and dij = 0 whenever i 6= j. A Laplacian matrix LG of a graph G is defined as

LG = DG −AG. We now give an important theorem proven by Bass.

Theorem 1.1 ([2]). The Ihara zeta function of graph G with order n and size m, satisfies

ZG(u)−1 = (1− u2)m−n det
(
In − uAG + u2(DG − In)

)
,

where In is the identity matrix of dimension n.

An undirected simple graph G = (VG, EG) where |VG| = n and |EG| = m, can also

be represented as an n×m incidence matrix BG, where the rows and columns correspond

to the vertices and edges of G. We let bij = 1 if i is one of the vertices of edge j. For

instance, the incidence matrix for G6 above can be represented as

BG6 =



1 0 0 1 1 0

1 1 0 0 0 1

0 1 1 0 1 0

0 0 1 1 0 1


.

(It should be made aware, that some authors define the incidence matrix BG of any given

graph G differently.)

We define the adjacency spectrum of graph G, denoted Spec(AG), to be the set of

eigenvalues of AG. Similarly, we define the Laplacian spectrum of G, denoted Spec(LG), to

be the set of eigenvalues of LG. The spectral radius of a matrix A is defined as

sup
{
|λ1|, . . . , |λn|

}
, where {λ1, . . . , λn} is the set of eigenvalues of A. Now, we present a

couple of propositions.

Proposition 1.2 (Perron–Frobenius). Let G be a connected graph. Then the spectral

radius of AG is bounded above by the greatest degree of its vertices.

Proposition 1.3 ([6]). Let G be an r-regular graph of order n, then the spectral radius of
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AG is r. Furthermore, r is the greatest eigenvalue of AG, with multiplicity equal to the

number of components in G.

Notice that if Spec(AG) = {λ1, . . . , λn} and G is r-regular, then the

Spec(LG) = {r − λ1, . . . , r − λn}. Hence we have the following corollary.

Corollary 1.4. Let G be r-regular of order n. Then the smallest eigenvalue of LG is 0, of

multiplicity equal to the number of components in G. Furthermore, the spectral radius of

LG is bounded above by 2r.

If G is connected and contains no cycles, then G is called a tree. For a connected

graph G, a minimal spanning tree is a subgraph that is a tree and contains the minimal

possible number of edges that connects all vertices in G. The total number of such

minimal spanning trees of G is called the complexity of G, denoted τ(G) throughout this

paper. For example, τ(G5) = 4.

Theorem 1.5 (Kirchhoff’s/Matrix-Tree). If G is a connected graph of order n, then the

complexity of G is given by

τ(G) =
1

n

n∏
i=2

µi,

where Spec(LG) = {µ1 = 0, µ2, . . . , µn}.

The resistance distance between two vertices vi and vj is defined as

rij =
detLijG
τ(G)

,

where LijG is the matrix obtained from Laplacian matrix of G by removing the i-th, j-th

columns and rows. Also, let rii = 0, ∀i.

The Kirchhoff index of G is defined as

Kf(G) =
∑

1≤i<j≤n
rij .
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By Chen and Gutman,

Theorem 1.6 ([4, 7]). If G is a graph of order n, then

Kf(G) = n
n∑
i=2

1

µi
,

where Spec(LG) = {µ1 = 0, µ2, . . . , µn}.

Three other graph invariants were introduced recently, that are also based on

resistance distances: (i) the zeta Kirchhoff index [14], given by (for md2 graphs)

Kfz(G) =
∑

1≤i<j≤n
(dii − 2)(djj − 2)rij ;

(ii) the additive Kirchhoff index [7], given by

Kf+(G) =
∑

1≤i<j≤n
(dii + djj)rij ;

and (iii) the multiplicative Kirchhoff index [4], given by

Kf×(G) =
∑

1≤i<j≤n
diidjjrij .

In this paper, formulas for the zeta Kirchhoff index of various graphs and graph

transformations will be derived. Therefore, we will assume from here on that all graphs are

md2. It should be noted that, for r-regular graphs, Kfz(G) = (r − 2)2Kf(G) for r ≥ 2.

Recall the formula for the Ihara zeta function proven by Bass. By Northshield, the

determinant part of that formula satisfies the following.

Theorem 1.7 ([12]). Let G be a graph of order n, size m and

f(u) = det
(
In − uAG + u2(DG − In)

)
. Then,

f ′(1) = 2(m− n)τ(G),



8

where τ(G) is the complexity of G.

The zeta Kirchhoff index can be derived by taking this formula a step further:

Theorem 1.8 ([14]). Let G be a graph of order n, size m and

f(u) = det
(
In − uAG + u2(DG − In)

)
. Then,

f ′′(1) = 2
(
Kfz(G) + 2mn− 2n2 + n

)
τ(G),

where τ(G) is the complexity of G.
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CHAPTER 2

MAIN RESULTS

2.1 k-th semitotal point graph of regular graphs

The k-th semitotal point graph (also called triangulation of a graph) is a graph

transformation that generates a new graph Rk(G) by adding k vertices for every edge in

G, such that the vertices are adjacent to both of the vertices incident to that edge in G.

G R1(G) R2(G)

Figure 2.1: Example of k-th semitotal point graph Rk(G) of cycle graph C4, where k = 1, 2

We shall look at the Ihara zeta function, complexity and zeta Kirchhoff index of

this graph transformation on a regular graph G.

Theorem 2.1. If G is an r-regular graph of order n, then the Ihara zeta function of the

k-th semitotal point graph Rk(G) satisfies

ZRk(G)(u)−1 = (1− u2)
n(kr+r−2)

2 (1 + u2)
n(kr−2)

2 ·

·
n∏
i=1

(
1 + ru2 + kru4 + ru4 − u4 − λiu

(
1 + ku+ u2)

)
,

where Spec(AG) = {λ1 = r, , λ2, . . . , λn}.

Proof. Note that nRk(G) = n(2+kr)
2 and mRk(G) = nr(1+2k)

2 since G is a r-regular graph. By
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Theorem 1.1, the Ihara zeta function of Rk(G) satisfies

ZRk(G)(u)−1 = (1− u)
m

Rk(G)
−n

Rk(G) · det
[
In

Rk(G)
− uARk(G) + u2(DRk(G) − InRk(G)

)
]

=

= (1− u)n(kr+r−2)/2 · det
[
In+km − uARk(G) + u2(DRk(G) − In+km)

]
. (2.1)

Let us denote M = In+km − uARk(G) + u2(DRk(G) − In+km). We proceed similar to

the approach used in [5], and write

ARk(G) =

0km ΓT

Γ AG

 , DRk(G) =

2Ikm 0

0 (k + 1)DG

 ,

where Γ = (BG, BG, . . . , BG), BG being the n×m incidence matrix of G defined in the

previous chapter. Note that Γ is a n× km matrix, ΓT is a km× n matrix and

ΓΓT = k(DG +AG).

Hence, we have

M =

Ikm 0

0 In

− u
0 ΓT

Γ AG

+ u2

Ikm 0

0 (k + 1)DG − In

 =

=

(1 + u2)Ikm −uΓT

−uΓ In − uAG + u2
[
(k + 1)DG − In

]
 .

The Schur complement of (1 + u2)Ikm is

In − uAG + u2
[
(k + 1)DG − In

]
− (−uΓ)

(
1

1 + u2
Ikm

)
(−uΓT ) =

= (1− u2)In +

(
u2(k + 1)− ku2

1 + u2

)
DG −

(
u+

ku2

1 + u2

)
AG =

= (1− u2)In + r ·
(
u2 + ku4 + u4

1 + u2

)
In −

(
u+ ku2 + u3

1 + u2

)
AG =

=
1

1 + u2

(
(1 + ru2 + kru4 + ru4 − u4)In − (u+ ku2 + u3)AG

)
.
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Now we can calculate det(M) by using the Schur complement:

det(M) = det[(1 + u2)Ikm]·

· det
[ 1

1 + u2

(
(1 + ru2 + kru4 + ru4 − u4)In − (u+ ku2 + u3)AG

)]
=

= (1 + u2)km−n det
[
(1 + ru2 + kru4 + ru4 − u4)In − (u+ ku2 + u3)AG

]
. (2.2)

Note that if Spec(A) = {λ1, . . . , λn}, then det(In + cA) =
∏n
i=1(1 + cλi) for some

nonzero real number c.

Therefore, (2.2) is equal to

= (1 + u2)km−n
n∏
i=1

[
1 + ru2 + kru4 + ru4 − u4 − λiu(1 + ku+ u2)

]
, (2.3)

where Spec(AG) = {λ1 = r, λ2, . . . , λn}.

Therefore, by substituting (2.3) into (2.1), we obtain

ZRk(G)(u)−1 = (1− u2)
n(kr+r−2)

2 (1 + u2)
n(kr−2)

2 ·

·
n∏
i=1

(
1 + ru2 + kru4 + ru4 − u4 − λiu

(
1 + ku+ u2)

)
.

�

Theorem 2.2. Let G be an r-regular graph of order n. Then the complexity of its k-th

semitotal point graph Rk(G) satisfies

τ
(
Rk(G)

)
= 2n(kr−2)/2+1(2 + k)n−1 · τ(G),

where τ(G) is the complexity of G.

Proof. By Theorem 1.7, f(u) = det
[
In+km − uARk(G) + u2(DRk(G) − In+km)

]
satisfies

f ′(1) = 2(mRk(G) − nRk(G))τ
(
Rk(G)

)
=
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= n(kr + r − 2)τ
(
Rk(G)

)
, (2.4)

where τ
(
Rk(G)

)
is the complexity of Rk(G).

Let a(u) = (1 + u2)n(kr−2)/2 and p(u) =
∏n
i=1 pi(u) where

pi(u) = 1 + ru2 + kru4 + ru4 − u4 − λiu(1 + ku+ u2). Thus, by Theorem 2.1

f(u) = a(u)
n∏
i=1

pi(u).

By differentiating f(u) in respect to u and substituting u = 1, we obtain

f ′(1) = a′(1)p(1) + a(1)p′(1) =

= a′(1)p1(1)p2(1) . . . pn(1) + a(1)
[
p′1(1)p2(1) . . . pn(1)+

+ p1(1)p′2(1)p3(1) . . . pn(1) + · · ·+ p1(1) . . . pn−1(1)p′n(1)
]
. (2.5)

Note that p1(u) = (u− 1)
[
(kr + r − 1)u3 + (kr − 1)u2 + (r − 1)u− 1

]
, so p1(1) = 0

(where λi = r). Also, pi(1) = (2 + k)(r − λi). Hence (2.5) can be reduced to

f ′(1) = a(1)p′1(1)p2(1) . . . pn(1) =

= 2n(kr−2)/2 ·
[
2(kr + r − 2)

]
·
n∏
i=2

[
(2 + k)(r − λi)] =

= 2n(kr−2)/2+1(kr + r − 2)(2 + k)n−1
n∏
i=2

(
r − λi

)
. (2.6)

Finally we substitute (2.6) into f ′(1) in (2.4) and solve for τ
(
Rk(G)

)
, in which we

obtain

τ
(
Rk(G)

)
= 2n(kr−2)/2+1 (2 + k)n−1

n

n∏
i=2

(
r − λi

)
=

= 2n(kr−2)/2+1(2 + k)n−1 · τ(G),
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by Theorem 1.5, as desired. �

Theorem 2.3. Let G be an r-regular graph of order n and let Kf(G) be the Kirchhoff

index of G. Then the zeta Kirchhoff index of its k-th semitotal point graph Rk(G) satisfies

Kfz
(
Rk(G)

)
=

2(kr + r − 2)2

(2 + k)
Kf(G).

Proof. By Theorem 1.8, f(u) = det
[
In+km − uARk(G) + u2(DRk(G) − In+km)

]
, (2.3)

satisfies

f ′′(1) = 2
(
Kfz

(
Rk(G)

)
+ 2mRk(G)nRk(G) − 2n2Rk(G) + nRk(G)

)
τ
(
Rk(G)

)
=

= 2
(
Kfz

(
Rk(G)

)
+
n(2 + kr)(1 + knr + nr − 2n)

2

)
τ
(
Rk(G)

)
. (2.7)

Let f(u) = a(u)p(u) = a(u)p1(u) . . . pn(u) where a(u) = (1 + u2)n(kr−2)/2 and

pi(u) = 1 + ru2 + kru4 + ru4 − u4 − λiu(1 + ku+ u2). By differentiating f(u) twice with

respect to u and substitute u = 1, we have

f ′′(1) = a′′(1)p(1) + a(1)p′′(1) + 2a′(1)p′(1) =

= 2a′(1)p′(1) + a(1)p′′(1)+

+ 2a(1)p′1(1)
(
p′2(1)p3(1) . . . pn(1) + · · ·+ p2(1) . . . pn−1(1)p′n(1)

)
=

=

(
n∏
i=2

pi

)(
2a′(1)p′1(1) + a(1)p′′1(1) + 2a(1)p′1(1)

n∑
i=2

p′i(1)

pi(1)

)
=

= (2 + k)n−1

(
n∏
i=2

µi

)
2n(kr−2)/2+1

[
(−6 + 4n+ 4r + 5kr − 2nr − 4knr+

+ knr2 + k2nr2) + 4

(
kr + r − 2

2 + k

) n∑
i=2

−2 + 2µi + kµi + r + kr

µi

]
, (2.8)

where Spec(LG) = {µ1 = 0, µ2, . . . , µn}.
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By substituting (2.8) into (2.7) and solving for Kfz
(
Rk(G)

)
, we have

Kfz
(
Rk(G)

)
= 2n(1− n)(kr + r − 2) +

2n(kr + r − 2)

2 + k

n∑
i=2

−2 + 2µi + kµi + r + kr

µi
=

= 2(kr + r − 2)

(
n(kr + r − 2)

2 + k

n∑
i=2

1

µi

)
=

=
2Kf(G)(kr + r − 2)2

2 + k
,

by Theorem 1.6, where Kf(G) is the Kirchhoff index of G.

�

2.2 k-th semitotal 2-point graph of regular graphs

It is only natural to wonder how the Ihara zeta function will change if we are to

add two vertices instead of one vertex for every edge in G.

Let us define the k-th semitotal 2-point graph to be a graph transformation that

takes graph G and generates a new graph Rk2(G) by adding two vertices for every edge in

G such that each of the vertices incident to that edge in G is adjacent to exactly one of

the new vertices, where the new vertices are adjacent to each other. Repeat this process

until 2k vertices are added for each edge in G.

G R1
2(G) R2

2(G)

Figure 2.2: Example of k-th semitotal 2-point graph Rk2(G) of cycle graph C4, where k = 1, 2
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Theorem 2.4. Let G be an r-regular graph of order n, then the Ihara zeta function of its

k-th semitotal 2-point graph Rk2(G) satisfies

ZRk
2(G)(u)−1 = (1− u)

knr+nr−2n
2 (1 + u2 + u4)

knr−2n
2 ·

·
n∏
i=1

(
1 + ru2 + ru4 + kru6 + ru6 − u6 − λi(ku3 + u+ u3 + u5)

)
,

where Spec(AG) = {λ1 = r, . . . , λn}.

Proof. We first note that in Rk2(G), there are n+ 2mk vertices and m+ 3mk edges where

n and m are the order and size of the original graph G.

By Theorem 1.1, the Ihara zeta function of Rk2(G) satisfies

ZRk
2(G)(u)−1 = (1− u2)

m
Rk
2(G)
−n

Rk
2(G) det

(
In

Rk
2(G)
− uARk

2(G) + u2
(
DRk

2(G) − InRk
2(G)

))
=

= (1− u2)
knr+nr−2n

2 det
(
In+2km − uARk

2(G) + u2
(
DRk

2(G) − In+2km

))
. (2.9)

Let BG be the n×m incidence matrix of G, and define CG to be the n× 2m

‘stretched incidence matrix’ of BG, where we take BG, duplicate each column (placing

each duplicate immediately after the original column), then remove the second non-zero

entry in the original columns and the first non-zero entry in the duplicated columns. For

example, let AG be a complete graph of order 4, then

BG =



1 0 0 1 1 0

1 1 0 0 0 1

0 1 1 0 1 0

0 0 1 1 0 1


and CG =



1 0 0 0 0 0 1 0 1 0 0 0

0 1 1 0 0 0 0 0 0 0 1 0

0 0 0 1 1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 1 0 0 0 1


.

Now we can setup the adjacency and degree matrices of Rk2(G) as follows

ARk
2(G) =

 AG Γ

ΓT Φ

 ,
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where Γ = (CG| · · · |CG) is a n× 2mk matrix containing k copies of CG, and Φ is a

2mk × 2mk square matrix such that

Φ =



0 1

1 0

0 1

1 0

. . .

0 1

1 0



.

Hence, continuing from (2.9)

det
[
In+2km − uARk

2(G) + u2
(
DRk

2(G) − In+2km

)]
=

= det


 In 0

0 I2km

− u
 AG Γ

ΓT Φ

+ u2

 (kr + r − 1)In 0

0 I2km


 =

= det



[
1 + u2(kr + r − 1)

]
In − uAG −uΓ

−uΓT (1 + u2)I2km − uΦ


 . (2.10)

Let Ω =
(

(1 + u2)I2km − uΦ
)

from the above matrix (2.10). Note that

(1 + u2)
(

1+u2

1+u2+u4

)
− u

(
u

1+u2+u4

)
= 1 and that u

(
1+u2

1+u2+u4

)
− u

(
1+u2

1+u2+u4

)
= 0, hence Ω
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is invertible and

Ω−1 =



1 + u2 −u

−u 1 + u2

1 + u2 −u

−u 1 + u2

. . .

1 + u2 −u

−u 1 + u2



−1

=

=



1+u2

1+u2+u4
u

1+u2+u4

u
1+u2+u4

1+u2

1+u2+u4

1+u2

1+u2+u4
u

1+u2+u4

u
1+u2+u4

1+u2

1+u2+u4

. . .

1+u2

1+u2+u4
u

1+u2+u4

u
1+u2+u4

1+u2

1+u2+u4



,

and its determinant is

det(Ω) =

det

1 + u2 −u

−u 1 + u2



km

=

= (1 + u2 + u4)km.

Therefore, continuing from (2.10), we can calculate the determinant by using the

Schur complement of
(

(1 + u2)I2km − uΦ
)

, where

det



[
1 + u2(kr + r − 1)

]
In − uAG −uΓ

−uΓT Ω


 =

= det(Ω) · det
[(

1 + u2(kr + r − 1)
)
In − uAG − u2ΓΩ−1ΓT

]
=
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= (1 + u2 + u4)km det

[(
1 + u2(kr + r − 1)

)
In − uAG−

−
(
kru2(1 + u2)

1 + u2 + u4
In +

ku3

1 + u2 + u4
AG

)]
=

= (1 + u2 + u4)km det

[(
1 + r(u2 + u4 + u6 + ku6)− u6

1 + u2 + u4

)
In −AG

(
u+ ku3 + u3 + u5

1 + u2 + u4

)]
=

= (1 + u2 + u4)km−n ·
n∏
i=1

(
1 + r(u2 + u4 + u6 + ku6)− λi(u+ u3 + u5 + ku3)− u6

)
.

(2.11)

Now combine (2.9) with (2.11), we have

ZRk
2(G)(u)−1 = (1− u)

knr+nr−2n
2 (1 + u2 + u4)

knr−2n
2 ·

·
n∏
i=1

(
1 + ru2 + ru4 + kru6 + ru6 − u6 − λi(ku3 + u+ u3 + u5)

)
.

�

Theorem 2.5. Let G be an r-regular graph of order n, then the complexity of its k-th

semitotal 2-point graph Rk2(G) satisfies

τ
(
Rk2(G)

)
= 3

knr−2n
2

+1(3 + k)n−1τ(G),

where τ(G) is the complexity of G.

Proof. By Theorem 1.7, we have

f ′(1) = 2(mRk
2(G) − nRk

2(G))τ
(
Rk2(G)

)
, (2.12)

where f(u) = det
(
In

Rk
2(G)
− uARk

2(G) + u2
(
DRk

2(G) − InRk
2(G)

))
.

By (2.4), f(u) = a(u)p1(u)p2(u) . . . pn(u) where a(u) = (1 + u2 + u4)
knr−2n

2 ,

pi(u) = 1 + ru2 + ru4 + kru6 + ru6 − u6 − λi(ku3 + u+ u3 + u5), and

Spec(AG) = {λ1 = r, λ2, . . . , λn}. Note that p1(1) = 0, p′1(1) = 3(kr + r − 2) and
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pi(1) = (3 + k)(r − λi). Hence we have

f ′(1) = a(1)p′1(1)p2(1) · · · pn(1) =

= 3(knr−2n)/2
(

3(kr + r − 2)
) n∏
i=2

[
(3 + k)(r − λi)

]
=

= 3(knr−2n)/2+1(kr + r − 2)(3 + k)n−1
n∏
i=2

(r − λi). (2.13)

Now by substituting (2.13) into (2.12) and solving for τ
(
Rk2(G)

)
, we have

τ
(
Rk2(G)

)
= 3(knr−2n)/2+1(3 + k)n−1

1

n

n∏
i=2

(r − λi) = 3(knr−2n)/2+1(3 + k)n−1τ(G),

by Theorem 1.5. �

Theorem 2.6. Let G be an r-regular graph of order n and let Kf(G) be the Kirchhoff

index of G. Then the zeta Kirchhoff index of its k-th semitotal 2-point graph Rk2(G)

satisfies

Kfz
(
Rk2(G)

)
=

3Kf(G)(kr + r − 2)2

3 + k
.

Proof. By Theorem 1.8, we have

f ′′(1) = 2
(
Kfz

(
Rk2(G)

)
+ 2mRk

2(G)nRk
2(G) − 2n2

Rk
2(G)

+ nRk
2(G)

)
τ
(
Rk2(G)

)
, (2.14)

where f(u) = a(u)p1(u)p2(u) . . . pn(u) and a(u) = (1 + u2 + u4)
knr−2n

2 and

pi(u) = 1 + ru2 + ru4 + kru6 + ru6 − u6 − λi(ku3 + u+ u3 + u5) as the previous theorem.

Since p1(1) = 0, we have

f ′′(1) = 2a′(1)p′1(1)p2(1) . . . pn(1) + a(1)p′′1(1)p2(1) . . . pn(1)+

+ 2a(1)p′1(1) ·
n∑
j=2

p′j(1)

pj(1)

n∏
i=2

pi(1). (2.15)
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Note that p′1(1) = 3(kr + r − 2), p′′1(1) = 6
(
r(4k + 3)− 5

)
, pi(1) = (3 + k)(r − λi)

and p′i(1) = −6− 3λi(3 + k) + 6(2 + k)r, so

f ′′(1) = 3
knr−2n

2
+1

(
n∏
i=2

pi(1)

)
·

[
2(−5 + 4n+ 3r + 4kr − 2nr − 4knr + knr2 + k2nr2)+

+ (kr + r − 2)
n∑
j=2

6 + 9λj + 3kλj − 12r − 6kr

(3 + k)(λj − r)

]
. (2.16)

By substituting (2.16) into (2.14) and solving for Kfz
(
Rk2(G)

)
, we get

Kfz
(
Rk2(G)

)
= 3n(1− n)(kr + r − 2)+

+
knr + nr − 2n

3 + k

n∑
j=2

6 + 9λj + 3kλj − 12r − 6kr

λj − r
=

= 3n(1− n)(kr + r − 2)+

+
knr + nr − 2n

3 + k

n∑
j=2

[
9(λj − r)
λj − r

+
3k(λj − r)
λj − r

+
6− 3kr − 3r

λj − r

]
=

= 3n(1− n)(kr + r − 2) +
n(n− 1)(kr + r − 2)(9 + 3k)

3 + k
+

+
n(kr + r − 2)(3kr + 3r − 6)

3 + k

n∑
j=2

1

r − λj
=

=
3Kf(G)(kr + r − 2)2

3 + k
,

by Theorem 1.6.

�

2.3 k-th semitotal multipoint graph of regular graphs

We will now generalize the semitotal point graph to cases beyond two vertices.

Define the k-th semitotal s-point graph to be a graph transformation that takes graph G

and generates a new graph Rks (G) by adding exactly s vertices and s+ 1 edges for every

edge in G, such that all the new vertices has a degree of 2. One can think of it as adding a
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path graph of order s for each edge in G, and connect the endpoints of the path graph to

the two vertices adjacent to that edge. Repeat this process until ks vertices are added for

each edge.

G R1
3(G) R2

3(G)

Figure 2.3: Example of k-th semitotal 3-point graph Rk3(G) of cycle graph C4, where k = 1, 2

Theorem 2.7. If G is an r-regular graph of order n, then the Ihara zeta function of its

k-th semitotal s-point graph Rks (G), where s ≥ 3, satisfies

ZRk
s (G)(u)−1 = (1− u2)

nr+knr−2n
2 ·

(
u2+2s − 1

u2 − 1

) knr
2
(

1

u2+2s − 1

)n
·

·
n∏
i=1

[
− 1 + u2 − ru2 + u2+2s − kru2+2s − u4+2s + ru4+2s + kru4+2s+

+ λi(u+ ku1+s − ku3+s − u3+2s)
]
,

where Spec(AG) = {λ1 = r, λ2, . . . , λn}.

Proof. We first make the observation that there are n+ kms vertices and m+ km(s+ 1)

edges in the graph Rks (G). Hence by Theorem 1.1, the Ihara zeta function of Rks (G)

satisfies

ZRk
s (G)(u)−1 = (1− u2)

nr+knr−2n
2 det

[
In+kms − uARk

s (G) + u2
(
DRk

s (G) + In+kms
)]
. (2.17)

Let BG be the n×m incidence matrix of G, and defined CsG to be the n×ms
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‘stretched incidence matrix’ of BG, similar to the construction in our previous

construction for Rk2(G). We take BG, duplicate each column, remove the lower entry in

the first column and the upper entry in the second duplicated column, then insert s− 2

empty columns in between them. For example, let AG be the adjacency matrix of the

complete graph of order 3, then

BG =


1 0 1

1 1 0

0 1 1

 and CG =


1 0 · · · 0 0 0 0 · · · 0 0 1 0 · · · 0 0

0 0 · · · 0 1 1 0 · · · 0 0 0 0 · · · 0 0

0 0 · · · 0︸ ︷︷ ︸
s−2 zeros

0 0 0 · · · 0︸ ︷︷ ︸
s−2 zeros

1 0 0 · · · 0︸ ︷︷ ︸
s−2 zeros

1

 .

Thus, we have our adjacency matrix

ARk
s (G) =

 AG Γ

ΓT Ψ

 ,

where Γ =
(
CG| . . . |CG

)
is a n× kms matrix containing exactly k copies of CG and Ψ is a

kms× kms block diagonal matrix such that

Ψ =



ψs

ψs
. . .

ψs

ψs


︸ ︷︷ ︸

km copies of ψs

, where ψs =



0 1 0

1 0 1

0 1 0
. . .

. . . 0 1 0

1 0 1

0 1 0


.

︸ ︷︷ ︸
s columns

More precisely, ψs is an s× s matrix where (ψs)ij = 1 for j = i± 1, and (ψs)ij = 0

otherwise.
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Let M = In+kms − uARk
s (G) + u2

(
DRk

s (G) − In+kms
)

in (2.17), then

M =

 In 0

0 Ikms

− u
 AG Γ

ΓT Ψ

+ u2

 (k + 1)DG − In 0

0 Ikms

 =

=

 [
1 + (kr + r − 1)u2

]
In − uAG −uΓ

−uΓT Ω

 ,

where Ω = (1 + u2)Ikms − uΨ.

Note that Ω is a diagonal block matrix where

Ω =


ωs

. . .

ωs


︸ ︷︷ ︸
km copies of ωs

, where ωs =



1 + u2 −u 0

−u 1 + u2 −u

0 −u 1 + u2
. . .

. . . 1 + u2 −u 0

−u 1 + u2 −u

0 −u 1 + u2


︸ ︷︷ ︸

s columns

,

hence

Ω−1 =


ω−1s

. . .

ω−1s


︸ ︷︷ ︸

km copies of ω−1
s

.

More precisely, ωs is an s× s matrix such that

(ωs)ij =


1 + u2 , for i = j;

−u , for j = i± 1;

0 , elsewhere.
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By [17], since ωs is a tridiagonal matrix, we have

(
ω−1s

)
ij

=



(−1)i+j(−u)j−iθi−1φj+1

θs
if i < j,

θi−1φj+1

θs
if i = j,

(−1)i+j(−u)i−jθj−1φi+1

θs
if i > j,

where (θi)
s
i=0 = θ0, θ1, . . . , θs and (φi)

s+1
i=1 = φ1, φ2, . . . , φs+1 are sequences defined as

(θi)
s
i=0 = 1, 1 + u2, 1 + u2 + u4, . . . ,

s∑
k=0

u2k, and

(φi)
s+1
i=1 =

s∑
k=0

u2k,
s−1∑
k=0

u2k, . . . , 1 + u2, 1.

Hence
(
ω−1s

)
ij

can be written as

(
ω−1s

)
ij

=



uj−i
(∑i−1

k=0 u
2k
)(∑s−j

k=0 u
2k
)

(
∑s

k=0 u
2k)

if i < j,(∑i−1
k=0 u

2k
)(∑s−j

k=0 u
2k
)

(
∑s

k=0 u
2k)

if i = j,

ui−j
(∑j−1

k=0 u
2k
)(∑s−i

k=0 u
2k
)

(
∑s

k=0 u
2k)

if i > j,

(2.18)

and the Schur’s complement of Ω is

[
1 + (kr + r − 1)u2

]
In − uAG − (−uΓ)Ω−1(−uΓT ) = (2.19)

=
[
1 + (kr + r − 1)u2

]
In − uAG − u2

(
ΓΩ−1ΓT

)
=

=
[
1 + (kr + r − 1)u2

]
In − uAG − u2

(
CG
∣∣ · · · ∣∣CG︸ ︷︷ ︸
k copies

)

ω−1s

. . .

ω−1s


︸ ︷︷ ︸

km copies


CTG

...

CTG


k copies =
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=
[
1 + (kr + r − 1)u2

]
In − uAG − ku2 · CG


ω−1s

. . .

ω−1s


︸ ︷︷ ︸

m copies

CTG. (2.20)

Now, let ρ1, . . . , ρm be n× s matrices such that CG =
(
ρ1| · · · |ρm

)
, where each ρ`

has only two nonzero entries of value 1, located on the first and last column on rows

corresponding to the incident vertices α` and β`. Hence, we have

CG


ω−1s

. . .

ω−1s


︸ ︷︷ ︸

m copies

CTG =

m∑
`=1

ρ`ω
−1
s ρT` =

=
m∑
`=1



... 0 · · · 0
...

ρα`1 = 1
... 0

...
...

0
... ρβ`s = 1

... 0 · · · 0︸ ︷︷ ︸
s−2 zeros

...


ω−1s



· · · ρT1α`
= 1 · · · 0 · · ·

0 0

...
...

0 0

· · · 0 · · · ρTsβ` = 1 · · ·


=

=

m∑
`=1



0 · · · 0

(ρ`ω
−1
s )α`1 = (ω−1s )11 · · · (ρ`ω

−1
s )α`s = (ω−1s )1s

0 · · · 0

(ρ`ω
−1
s )β`1 = (ω−1s )s1 · · · (ρ`ω

−1
s )β`s = (ω−1s )ss

0 · · · 0


·

·



· · · ρT1α`
= 1 · · · 0 · · ·

0 0

...
...

0 0

· · · 0 · · · ρTsβ` = 1 · · ·


=
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=

m∑
`=1



0 · · · 0

...
(
ρ`ω
−1
s ρT`

)
α`α`

= (ω−1s )11 0
(
ρ`ω
−1
s ρT`

)
α`β`

= (ω−1s )1s
...

0
... 0

...
(
ρ`ω
−1
s ρT`

)
β`α`

= (ω−1s )s1 0
(
ρ`ω
−1
s ρT`

)
β`β`

= (ω−1s )ss
...

0 · · · 0


, and by (2.18),

=
m∑
`=1



0 · · · 0

...
(
ρ`ω
−1
s ρT`

)
α`α`

=
∑s−1

k=0 u
2k∑s

k=0 u
2k 0

(
ρ`ω
−1
s ρT`

)
α`β`

= u2(s−1)∑s
k=0 u

2k

...

0
... 0

...
(
ρ`ω
−1
s ρT`

)
β`α`

= u2(s−1)∑s
k=0 u

2k 0
(
ρ`ω
−1
s ρT`

)
β`β`

=
∑s−1

k=0 u
2k∑s

k=0 u
2k

...

0 · · · 0


=

=

(∑s−1
k=0 u

2k∑s
k=0 u

2k

)
DG +

(
u2(s−1)∑s
k=0 u

2k

)
AG,

therefore (2.20) becomes

[
1 + (kr + r − 1)u2

]
In − uAG −

[
ku2

(∑s−1
k=0 u

2k∑s
k=0 u

2k

)
DG + ku2

(
us−1∑s
k=0 u

2k

)
AG

]
=

=
[
1 + (kr + r − 1)u2

]
In − uAG −

(
ku2(u2s − 1)

u2+2s − 1

)
DG −

(
ku2(u2 − 1)us−1

u2+2s − 1

)
AG =

=

(
−1 + u2 − ru2 + u2+2s − kru2+2s − u4+2s + ru4+2s + kru4+2s

u2+2s − 1

)
In+

+

(
u+ ku1+s − ku3+s − u3+2s

u2+2s − 1

)
AG.

Now to find det(Ω), we should take advantage of it being a block diagonal matrix,

where

det(Ω) = det


ωs

. . .

ωs


︸ ︷︷ ︸

km copies

= det(ωs)
km =
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= det



1 + u2 −u 0

−u 1 + u2 −u

0 −u 1 + u2
. . .

. . . 1 + u2 −u 0

−u 1 + u2 −u

0 −u 1 + u2



km

︸ ︷︷ ︸
s columns

=

=

(
u2+2s − 1

u2 − 1

)km
,

which allows us to proceed and calculate det(M),

det(M) = det(Ω) det
[(

1 + (kr + r − 1)u2
)
In − uAG − (−uΓ)Ω−1(−uΓT )

]
=

=

(
u2+2s − 1

u2 − 1

) knr
2
(

1

u2+2s − 1

)n
·

· det

[ (
−1 + u2 − ru2 + u2+2s − kru2+2s − u4+2s + ru4+2s + kru4+2s

)
In+

+
(
u+ ku1+s − ku3+s − u3+2s

)
AG

]
=

=

(
u2+2s − 1

u2 − 1

) knr
2
(

1

u2+2s − 1

)n
·

·
n∏
i=1

[
− 1 + u2 − ru2 + u2+2s − kru2+2s − u4+2s + ru4+2s + kru4+2s+

+ λi
(
u+ ku1+s − ku3+s − u3+2s

) ]
. (2.21)

Therefore, by substituting (2.21) back into (2.17) we obtain the Ihara zeta function

ZRk
s (G)(u)−1 = (1− u2)

nr+knr−2n
2 ·

(
u2+2s − 1

u2 − 1

) knr
2
(

1

u2+2s − 1

)n
·

·
n∏
i=1

[
− 1 + u2 − ru2 + u2+2s − kru2+2s − u4+2s + ru4+2s + kru4+2s+

+ λi(u+ ku1+s − ku3+s − u3+2s)
]
,
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where Spec(AG) = {λ1 = r, , λ2, . . . , λn}. �

We will now find the complexity of Rks (G) combinatorically from any graph G, for

s ≥ 1.

Theorem 2.8. Let G be an graph of order n, size m and complexity of τ(G). Then the

complexity of its k-th semitotal s-point graph Rks (G) where s ≥ 1 satisfies

τ
(
Rks (G)

)
= (1 + k + s)n−1(1 + s)km−n+1τ(G).

Proof. Let complexity of G be τ(G), and let the order and size of G be n and m.

We will count the number of spanning trees of Rks (G) in two disjoint sets A,B,

where the spanning trees in A contains some spanning tree of G as a subgraph while B do

not. Recall that in Rks (G), we create k unique trails between vi and vj for every edge vivj

in G. Each trail consist of s vertices and s+ 1 edges excluding vi and vj . Note that there

are 1 + s ways to disconnect each of these trails.

We know that every element in set A contains some spanning tree of G as a

subgraph, therefore all of the k extra trails created must be disconnected. Hence, there

are (1 + s)km ways to disconnect the trails and τ(G) ways to pick a spanning trees of G.

Thus, |A| = τ(G)(1 + s)km.

For each element in set B, it can only contain a proper subgraph of any spanning

tree of G. Since there are τ(G) spanning trees of G and each spanning tree contains n− 1

edges, there are
∑n−1

i=1

(
n−1
i

)
proper subgraphs for each spanning tree of G. Note that i

counts the number of edges that was removed from spanning trees of G, hence we must

reconnect the two vertices incident to the edges taken out for each of these proper

subgraphs. There are ki ways to pick the paths for the removed edges and (1 + s)(k−1)i

ways to generate the remaining ‘disconnected trails.’ And for the remaining m− i edges,

there are (1 + s)(m−i)k ways to generate such ‘disconnected trails.”
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Hence

|B| = τ(G)
n−1∑
i=1

(
n− 1

i

)
ki(1 + s)(k−1)i(1 + s)k(m−i) =

= τ(G)

n−1∑
i=1

(
n− 1

i

)
ki(1 + s)km−i =

= τ(G)(1 + s)km
n−1∑
i=1

(
n− 1

i

)(
k

1 + s

)i
=

= τ(G)(1 + s)km

[(
1 +

k

1 + s

)n−1
−
(
n− 1

0

)(
1 +

k

1 + s

)0
]

=

= τ(G)(1 + s)km
[

(1 + k + s)n−1

(1 + s)n−1
− 1

]
,

and therefore by adding cardinality of the two sets we have

|A|+ |B| = τ(G)(1 + s)km + τ(G)(1 + s)km
[

(1 + k + s)n−1

(1 + s)n−1
− 1

]
=

= τ(G)(1 + s)km−n+1(1 + k + s)n−1.

�

We also provide an alternative proof that derives the complexity of Rks (G) from

the Ihara zeta function of r-regular graphs. Note that this corollary follows immediately

from the preceding theorem but is restricted to r-regular graphs.

Corollary 2.9. Let G be an r-regular graph of order n, then the complexity of its k-th

semitotal s-point graph Rks (G) where s ≥ 3 satisfies

τ
(
Rks (G)

)
= (1 + k + s)n−1(1 + s)

knr
2
−n+1τ(G),

where τ(G) is the complexity of G.
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Proof. By [8, Thm 7.7] and Theorem 1.7, the Ihara zeta function of Rks (G) satisfies

lim
u→1−

(1− u)
m

Rk
s (G)
−n

Rk
s (G)

+1

ZRk
s (G)(u)−1

= − 1

2
m

Rk
s (G)
−n

Rk
s (G)

+1
(mRk

s (G) − nRk
s (G))τ

(
Rks (G)

) , (2.22)

where τ(G) is the complexity of G.

Recall that mRk
s (G) − nRk

s (G) = knr+nr−2
2 , hence the right hand side of (2.22) is

equal to

− 1

2
knr+nr−2

2
+1(knr − nr − 2)τ

(
Rks (G)

) . (2.23)

As for the left hand side of (2.22), we have

lim
u→1−

(1− u)
m

Rk
s (G)
−n

Rk
s (G)

+1

ZRk
s (G)(u)−1

=

= lim
u→1−

(1− u)
knr+nr−2

2
+1

(1− u2)
knr+nr−2

2

(
u2+2s−1
u2−1

) knr
2

n∏
i=1

ρi

=

= lim
u→1−

1− u

(1 + u)
knr+nr−2

2

(
u2+2s−1
u2−1

) knr
2

n∏
i=1

ρi

, (2.24)

where

ρi =

[
−1 + u2 − ru2 + u2+2s − kru2+2s − u4+2s + ru4+2s + kru4+2s

u2+2s − 1
+

+
λi(u+ ku1+s − ku3+s − u3+2s)

u2+2s − 1

]
.

Note that

ρ1 =

[
−1 + u2 − ru2 + u2+2s − kru2+2s − u4+2s + ru4+2s + kru4+2s

u2+2s − 1
+

+
r(u+ ku1+s − ku3+s − u3+2s)

u2+2s − 1

]
=
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=
(u− 1)(u1+s − 1)

(
− 1− u+ ru− u1+s + kru1+s − u2+s + ru2+s + kru2+s

)
u2+2s − 1

,

and

lim
u→1−

(u1+s − 1)
(
− 1− u+ ru− u1+s + kru1+s − u2+s + ru2+s + kru2+s

)
u2+2s − 1

= kr + r − 2.

Hence, (2.24) is reduced to

lim
u→1−

−1

(1 + u)
knr+nr−2

2

(
u2+2s−1
u2−1

) knr
2

(kr + r − 2)
n∏
i=2

ρi

. (2.25)

Then, we find the limit of each of the remaining factors in the denominator of

(2.25), where

lim
u→1−

(1 + u)
knr+nr−2

2 = 2
knr+nr−2

2 ;

lim
u→1−

(
u2+2s − 1

u2 − 1

) knr
2

= (1 + s)
knr
2 , and ;

lim
u→1−

pi =
(r − λi)(1 + k + s)

1 + s
.

Therefore, (2.25) becomes

−1

2
knr+nr−2

2 (1 + s)
knr
2 (kr + r − 2)

n∏
i=2

(
(r − λi)(1 + k + s)

1 + s

) =

=
−1

2
knr+nr−2

2 (1 + s)
knr
2
−n+1(kr + r − 2)(1 + k + s)n−1 · nτ(G)

, (2.26)

by Theorem 1.5.

Finally we set (2.26) equal to (2.23) and solve for τ
(
Rks (G)

)
, we have

τ
(
Rks (G)

)
=

2
knr+nr−2

2 (1 + s)
knr
2
−n+1(kr + r − 2)(1 + k + s)n−1 · nτ(G)

2
knr+nr−2

2
+1(knr − nr − 2)

=
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= (1 + k + s)n−1(1 + s)
knr
2
−n+1τ(G),

as desired. �

We will now derive a generalized formula for the zeta Kirchhoff index of Rks (G) of

a regular graph G.

Theorem 2.10. Let G be an r-regular graph, then the zeta Kirchhoff index of its k-th

semitotal s-point graph Rks (G) satisfies

Kfz
(
Rks (G)

)
=
Kf(G)(kr + r − 2)2(s+ 1)

k + s+ 1
,

where Kf(G) is the Kirchhoff index of G.

Proof. We partition the set of vertices of Rks (G) into two sets A and B, where A consists

of vertices created from the graph transform, and B consists of vertices from the base

graph G.

Let nR = n+ knrs
2 be the degree of Rks (G) and let rij be the resistance distance

between vertices i and j in Rk(s). Then, we have

Kfz
(
Rks (G)

)
=

∑
1≤i<j≤nR

(dii − 2)(djj − 2)rij =

=
∑

1≤i<j≤nR
i∈B,j∈B

(dii − 2)(djj − 2)rij +
∑

1≤i<j≤nR
i∈A

(dii − 2)(djj − 2)rij . (2.27)

Note that if i ∈ A, then dii = 2; and if i ∈ B, then dii = kr + r. Hence (2.27) is

reduced to

Kfz
(
Rks (G)

)
=

∑
1≤i<j≤nR
i∈B,j∈B

(kr + r − 2)2rij . (2.28)
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If i, j ∈ B and are incident in Rks (G), then

rij =
1

1 + k
s+1

· rij =
s+ 1

k + s+ 1
· rij ,

by the law of resistance of circuits in parallel and series, where rij is the resistance

between vertices i, j in G.

Therefore, (2.28) becomes

Kfz
(
Rks (G)

)
=

∑
1≤i<j≤nR
i∈B,j∈B

(kr + r − 2)2
(

s+ 1

k + s+ 1
· rij

)
=

=
(kr + r − 2)2(s+ 1)

k + s+ 1
·

∑
1≤i<j≤nR
i∈B,j∈B

rij =

=
Kf(G)(kr + r − 2)2(s+ 1)

k + s+ 1
,

where Kf(G) is the Kirchhoff index of G. �

2.4 Middle graph of regular graphs

The middle graph of a graph G is the graph M(G), where the vertices correspond

to the edges and vertices of G; two vertices in M(G) are adjacent if the corresponding

vertices or edges are incident in G.

G M(G)

Figure 2.4: Example of the middle graph of cycle graph C4

The Ihara zeta function and complexity of the middle graph of a regular graph are
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given as follows by Kwak and Sato:

Theorem 2.11 ([10]). Let G be an r-regular graph. Then the Ihara zeta function of its

middle graph M(G) satisfies

ZM(G)(u)−1 = (1− u2)
n
2
(r2−2)a(u)

n∏
i=1

pi(u),

where a(u) =
(

1 + 2u+ (2r − 1)u2
)m−n

and

pi(u) =
(

1−(r−2)u+(2r−2)u2−(r−1)(r−2)u3−u(1+u+(r−1)u2)λi+(r−1)(2r−1)u4
)

.

Theorem 2.12 ([10]). Let G be an r-regular graph. Then the complexity of its middle

graph M(G) satisfies

τ
(
M(G)

)
=

1

n
2m−n+1(r + 1)m−1

n∏
i=2

(r − λi),

where Spec(AG) = {λ1 = r, λ2, . . . , λn}.

We can now prove:

Theorem 2.13. Let G be an r-regular graph of order n with Kirchhoff index Kf(G).

Then the zeta Kirchhoff index of its middle graph M(G) satisfies

Kfz
(
M(G)

)
=

4Kf(G)(r2 − 2)2 + n(r − 2)
(

2 + n(r2 − 2)(r + 1)
)

2(1 + r)
=

=
2(r2 − 2)2

r + 1
Kf(G) +

2(m− n)

r + 1
+ (m− n)n(r2 − 2).

Proof. Let f(u) = det
(
In+m − uAM(G) + u2

(
DM(G) − In+m

))
. Note that the order of

M(G) is n+m and the size of M(G) is 2m+ 2m(r − 1). By Theorems 1.8 and 2.12, we

have

f ′′(1) = 2
(
Kfz

(
M(G)

)
+ 2mM(G)nM(G) − 2n2M(G) + nM(G)

)
τ
(
M(G)

)
=
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=
2m−n+2(1 + r)m−1

n

(
n∏
i=2

(r − λi)

)(
Kfz

(
M(G)

)
+ (m+ n)(2mr − 2n+ 1)

)
,

(2.29)

where Spec(AG) = {λ1 = r, λ2, . . . , λn}.

By Theorem 2.11,

f(u) = a(u)
n∏
i=1

pi(u). (2.30)

Note that we have a(1) = (2 + 2r)m−n, a′(1) = 2r(m−n)(2+2r)m−n

1+r , p1(1) = 0,

p′1(1) = 2r2 − 4, p′′1(1) = 2(6r2 − 5r− 2), pi(1) = (1 + r)(r− λi) and p′i(1) = 5r2 − 3rλi − 4.

Therefore by differentiating (2.30) twice we obtain,

f ′′(1) = a′(1)p′1(1)p2(1) . . . pn(1) +
(
a′(1)p′1(1)p2(1) . . . pn(1) + a(1)p′′1(1)p2(1) . . . pn(1)+

+ 2a(1)p′(1)
(
p′2(1)p3(1) . . . pn(1) + · · ·+ p2(1) . . . pn−1(1)p′n(1)

)
=

= 2

(
2r(m− n)(2 + 2r)m−n

1 + r

)
(2r2 − 4)

n∏
i=2

(
(1 + r)(r − λi)

)
+

+ 2(2 + 2r)m−n(6r2 − 5r − 2)
n∏
i=2

(
(1 + r)(r − λi)

)
+

+ 2(2 + 2r)m−n(2r2 − 4)
n∑
j=2

(
5r2 − 3λjr − 4

(1 + r)(r − λj)

n∏
i=2

(
(1 + r)(r − λi)

))
=

= 2m−n+1(1 + r)m−n
n∏
i=2

(
(1 + r)(r − λi)

)[2r(2r2 − 4)(m− n)

1 + r
+ (6r2 − 5r − 2)+

+
2r2 − 4

1 + r

n∑
j=1

5r2 − 3λjr − 4

(1 + r)(r − λj)

]
=

= 2m−n+1(1 + r)m−1
n∏
i=2

µi

[
2r(2r2 − 4)(m− n)

1 + r
+ (6r2 − 5r − 2)+

+
2r2 − 4

1 + r

n∑
j=2

3rµj + 2r2 − 4

µj

]
=

= 2m−n+1(1 + r)m−1
n∏
i=2

µi

[
2r(2r2 − 4)(m− n)

1 + r
+ (6r2 − 5r − 2)+
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+
2r2 − 4

1 + r

(
3r(n− 1) + (2r2 − 4)

n∑
j=2

1

µj

)]
=

= 2m−n+1(1 + r)m−1
n∏
i=2

µi

[
2r3(2m+ n) + r2 + r(5− 4n− 8m)− 2

1 + r
+

+
(2r2 − 4)2

1 + r

n∑
j=2

1

µj

]
, (2.31)

where Spec(LG) = {µ1 = 0, µ2, . . . , µn}.

By substituting (2.31) into (2.29) and solving for Kfz
(
M(G)

)
, we obtain

Kfz
(
M(G)

)
=
n

2

[
2r3(2m+ n) + r2 + r(5− 4n− 8m)− 2

1 + r
+

(2r2 − 4)2

1 + r

n∑
j=2

1

µj

]
−

− (m+ n)(2mr − 2n+ 1) =

=
n
[
2r3(2m+ n) + r2 + r(5− 4n− 8m)− 2

]
+Kf(G)(2r2 − 4)2

2(1 + r)
−

− (m+ n)(2mr − 2n+ 1) =

=
4Kf(G)(r2 − 2)2 + n(r − 2)

(
2 + n(r3 + r2 − 2r − 2)

)
2(1 + r)

,

by Theorem 1.6.

�

2.5 Quasitotal graph of regular graphs

The quasitotal graph of a graph G is the graph QT (G), where the vertices

correspond to the edges and vertices of G; two vertices in QT (G) are adjacent if (i) the

corresponding vertices or edges are incident in G, or (ii) the corresponding vertices are not

adjacent in G.
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G QT (G)

Figure 2.5: Example of the quasitotal graph of cycle graph C4

The Ihara zeta function and complexity of the quasitotal graph of a regular graph

are given as follows:

Theorem 2.14 ([16]). Let G be an r-regular graph with Spec(AG) = {λ1 = r, λ2, . . . , λn}.

Then the Ihara zeta function of its quasitotal graph QT (G) satisfies

ZQT (G)(u)−1 = (1− u2)
n
2
(r2+n−r−3)a(u)b(u)p(u)

where

a(u) =
(

1 + 2u+ u2(2r − 1)
)m−n

,

b(u) = (u− 1)
(
− 1 + (−4 + n+ r)u+ (−3 + 2n+ r − 2nr + 2r2)u2+

+ (2− n− 4r + 2nr)u3
)
,

p(u) =

n∏
i=2

[
1 + (3− r)u+ (−1 + n− λir − λ2i )u2+

+ (−5 + 2n− nr + 4r + λi − λin+ +2λir)u
3 + (n− 2)(2r − 1)u4

]
.

We shall denote each factor in the product p(u) as pi(u). So,

p(u) =

n∏
i=2

pi(u), where

pi(u) =
[
1 + (3− r)u+ (−1 + n− λir − λ2i )u2+
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+ (−5 + 2n− nr + 4r + λi − λin+ +2λir)u
3 + (n− 2)(2r − 1)u4

]
.

Theorem 2.15 ([16]). Let G be an r-regular graph. Then the complexity of its quasitotal

graph QT (G) satisfies

τ
(
QT (G)

)
=

2

n
(2 + 2r)

n
2
(r−2)

(
n∏
i=2

[λi − λ2i + 2n− λin− r + λir + nr]

)
,

where Spec(AG) = {λ1 = r, λ2, . . . , λn}.

We can now prove:

Theorem 2.16. Let G be an r-regular graph of order n with

Spec(AG) = {λ1 = r, λ2, . . . , λn}. Then the zeta Kirchhoff index of its quasitotal graph

QT (G) satisfies

Kfz
(
QT (G)

)
=
n(1− r)(6− 8n+ 2n2 + 6r − nr − n2r + 3nr2 − nr3)

2(1 + r)
+

+ n(r2 − r + n− 3)

[
n∑
i=2

−6 + λi − λin− 3r + 2λir + 3nr

λi − λ2i + 2n− λin− r + λir + nr

]
.

Proof. Let f(u) = det
(
In+m − uAQT (G) + u2

(
DQT (G) − In+m

))
.

By Theorems 1.8, we have

f ′′(1) =
(
Kfz

(
QT (G)

)
+ (m+ n)(1− 2m− 3n+ n2 + nr2)

)
τ
(
QT (G)

)
. (2.32)

By Theorem 2.14,

f(u) = a(u)b(u)
n∏
i=2

pi(u). (2.33)

Note that a(1) = (2 + 2r)m−n, a′(1) = 2r(m−n)(2+2r)m−n

1+r , b(1) = 0,

b′(1) = 2(r2 − r + n− 3), b′′(1) = 2(4r2 + 2nr − 9r + 2n− 4),

pi(1) = λi − λ2i + 2n− λin− r + λir + nr and
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p′i(1) = 3λi − 2λ2i + 4n− 3λin− 5r + 4λir + 5nr − 6.

Therefore, by differentiating (2.33) twice, we got

f ′′(1) = a(1)b′′(1)p(1) + 2a′(1)b′(1)p(1) + 2a(1)b′(1)p′(1) =

= 8p(1)
r(m− n)(2 + 2r)m−n(r2 − r + n− 3)

1 + r
+ 2p(1)(2 + 2r)m−n·

· (4r2 + 2nr − 9r + 2n− 4) + 4(2 + 2r)m−n(r2 − r + n− 3)p′(1) =

= 2

(
n∏
j=2

[λj − λ2j + 2n− λjn− r + λjr + nr]

)
(2 + 2r)

nr
2
−n·

·

[
4r(m− n)(r2 − r + n− 3)

1 + r
+ 4r2 + 2nr − 9r + 2n− 4+

+ 2(r2 − r + n− 3) ·

(
n∑
i=2

p′i(1)

pi(1)

)]
. (2.34)

Now, by setting (2.34) equal to (2.32), we obtain

Kfz
(
QT (G)

)
=

=
6n− 12n2 + 2n3 + n2r − 3n3r − 6nr2 + 2n2r2 + n3r2 − 4n2r3 + n2r4

2(1 + r)
+

+ n(r2 − r + n− 3)

(
n∑
i=2

p′i(1)

pi(1)

)
=

=
6n− 12n2 + 2n3 + n2r − 3n3r − 6nr2 + 2n2r2 + n3r2 − 4n2r3 + n2r4

2(1 + r)
+

+ n(r2 − r + n− 3)

(
n∑
i=2

−6 + 3λi − 2λ2i + 4n− 3λin− 5r + 4λir + 5nr

λi − λ2i + 2n− λin− r + λir + nr

)
=

=
n(1− r)(6− 8n+ 2n2 + 6r − nr − n2r + 3nr2 − nr3)

2(1 + r)
+

+ n(r2 − r + n− 3)

(
n∑
i=2

−6 + λi − λin− 3r + 2λir + 3nr

λi − λ2i + 2n− λin− r + λir + nr

)
.

�

Corollary 2.17. Let G be an r-regular graph of order n with

Spec(LG) = {µ1 = r, µ2, . . . , µn}. Then the zeta Kirchhoff index of its quasitotal graph
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QT (G) satisfies

Kfz
(
QT (G)

)
=
n(1− r)(6− 8n+ 2n2 + 6r − nr − n2r + 3nr2 − nr3)

2(1 + r)
+

+ n(r2 − r + n− 3)

[
n∑
i=2

(n− 2r − 1)µi + 2r2 + 2nr − 2r − 6

µi(n+ r − 1− µi) + 2n

]
.

2.6 Corona of two regular graphs

A corona G ◦H of two graphs G (order n) and H (order k) is constructed by

taking G, making a copy of H for each vertex of G, and connecting each vertex in G to all

vertices of the corresponding copy of H.

G H G ◦H

Figure 2.6: Example of the corona G ◦H of G = C4, H = C3

The Ihara zeta function and complexity of G ◦H are given as follows:

Theorem 2.18 ([15]). Let G be an r-regular graph of order n and let H be an s-regular

graph of order k. Then the Ihara zeta function of the corona G ◦H satisfies

ZG◦H(u)−1 = (1− u2)
n
2
(ks+r−2)a(u)

(
n∏
i=2

pi(u)

)(
k∏
j=2

qj(u)

)
,
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where a(u) = (1− u)
(
1− (r + s− 1)u+ rsu2 − s(k + r − 1)u3

)
,

pi(u) = 1− (s+ λi)u+ (s+ r + sλi − 1)u2 − s(λi + k + r − 1)u3 + s(k + r − 1)u4,

qj(u) = (1− θju+ su2)n,

and Spec(AG) = {λ1 = r, λ2, . . . , λn}, Spec(AH) = {θ1 = s, θ2, . . . , θk}.

Theorem 2.19 ([15]). Let G be an r-regular graph of order n and let H be an s-regular

graph of order k. Then the complexity of the corona G ◦H satisfies

τ(G ◦H) = τ(G)
k∏
j=2

(1 + γj)
n,

where Spec(LH) = {γ1 = 0, γ2, . . . , γk}.

Theorem 2.20. Let G be an r-regular graph of order n and let H be an s-regular graph of

order k. Then the zeta Kirchhoff index of the corona G ◦H satisfies

Kfz
(
G ◦H

)
= n(s− 1)(k + kns− ks+ nr − 2n) +Kf(G)(ks+ r − 2)2+

+n2(ks+ r − 2)(s− 1)
k∑
j=2

1

1 + γj
,

where Kf(G) is the Kirchhoff index of G and Spec(LH) = {γ1 = 0, γ2, . . . , γk}.

Proof. Let f(u) = det
(
InG◦H − uAG◦H + u2(DG◦H − InG◦H )

)
. By Theorem 1.8, we have

f ′′(1) = 2
(
Kfz(G ◦H) + n(1 + k)

(
1 + n(2ks+ r − 2)

))
τ
(
G ◦H

)
, (2.35)

and by Theorem 2.18,

f(u) = a(u)

(
n∏
i=2

pi(u)

)(
k∏
j=2

qj(u)

)
. (2.36)

Note that a(1) = 0, a′(1) = −2 + r + ks, a′′(1) = 2(−1 + r − 2s+ 3ks+ rs),
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pi(1) = r − λi, p′i(1) = −2− λi + 2r + ks− λis+ rs, qj(1) = (1 + s− θj)n and

q′j(1) = n(2s− θj)(1 + s− θj)n−1.

Therefore, from (2.36) we have

f ′′(1) =

= a′′(1)

(
n∏
i=2

pi(1)

)(
k∏
j=2

qj(1)

)
+

+2a′(1)

(
n∏
i=2

pi(1)

)(
p′2(1)p3(1) . . . pn(1) + · · ·+ p2(1) . . . pn−1(1)p′n(1)

)
+

+2a′(1)

(
k∏
j=2

qj(1)

)(
q′2(1)q3(1) . . . qk(1) + · · ·+ q2(1) . . . qk−1(1)q′k(1)

)
=

=

(
n∏
i=2

pi(1)

)(
k∏
j=2

qj(1)

)(
a′′(1) + 2a′(1)

n∑
i=2

p′i(1)

pi(1)
+ 2a′(1)

k∑
j=2

q′j(1)

qj(1)

)
=

= 2

(
n∏
i=2

(r − λi)

)(
k∏
j=2

(1 + s− θj)n
)[

3ks+ rs+ r − 2s− 1+

+(ks+ r − 2)

n∑
i=2

2− 2r − ks− rs+ λi + λis

λi − r
+ (ks+ r − 2)

k∑
j=2

n(2s− θj)
1 + s− θj

]
=

= 2

(
n∏
i=2

(r − λi)

)(
k∏
j=2

(1 + s− θj)n
)[

1− 2kn+ knr + 2ks− 2ns+ k2ns+

+nrs− ks2 + kns2 + (ks+ r − 2)2
n∑
i=2

1

r − λi
+ (ks+ r − 2)

k∑
j=2

ns− n
1 + s− θj

]
. (2.37)

Now we substitute (2.37) and τ(G ◦H) (by applying Theorem 2.19) into (2.35).

Then by solving for Kfz(G ◦H), we obtain

Kfz(G ◦H) = n(s− 1)(k + kns− ks+ nr − 2n) + n(ks+ r − 2)2
n∑
i=2

1

r − λi
+

+n(ks+ r − 2)

k∑
j=2

ns− n
1 + s− θj

=

= n(s− 1)(k + kns− ks+ nr − 2n) +Kf(G)(ks+ r − 2)2+
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+n2(ks+ r − 2)(s− 1)
k∑
j=2

1

1 + γj
,

by Theorem 1.6. �

2.7 Edge corona of two regular graphs

An edge corona G �H of two graphs G (order n) and H (order k) is constructed

by taking G, making n copies of H, then for each edge in G connects both incident

vertices of that edge to all vertices in each copy of H.

G H G �H

Figure 2.7: Example of the edge corona G �H of G = C4, H = C3

The Ihara zeta function and complexity of G �H are given as follows:

Theorem 2.21 ([15]). Let G be an r-regular graph of order n and size m. Let H be an

s-regular graph of order k. Then the Ihara zeta function of the edge corona G �H satisfies

ZG�H(u)−1 = (1− u2)
n(2kr+krs+2r−4)

4 a(u)

(
n∏
i=2

pi(u)

)(
k∏
j=2

qj(u)

)
,

where a(u) = (1− u)
[
1− (r + s− 1)u+ (rs− kr + 1)u2 − (s+ 1)(kr + r − 1)u3

]
,
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pi(u) = 1− (s+ λi)u+ (r + s− kλi + sλi)u
2 − (krs+ rs− s+ sλi + λi)u

3+

+ (s+ 1)(kr + r − 1)u4,

qj(u) =
(

1− θju+ (s+ 1)u2
)m

,

where Spec(AG) = {λ1 = r, λ2, . . . , λn} and Spec(AH) = {θ1 = s, θ2, . . . , θk}.

Theorem 2.22 ([15]). Let G be an r-regular graph of order n and size m. Let H be an

s-regular graph of order k. Then the complexity of the edge corona G �H satisfies

τ(G �H) = 2m−n+1(k + 2)n−1
k∏
i=2

(γi + 2)mτ(G),

where Spec(LH) = {γ1 = 0, γ2, . . . , γk}.

Now we derive the zeta Kirchhoff index:

Theorem 2.23. Let G be an r-regular graph of order n and size m. Let H be an s-regular

graph of order k. Then the zeta Kirchhoff index of the edge corona G �H satisfies

Kfz
(
G �H

)
=

1

(2 + k)2(4−2n+nr)/2

[
(2kr + krs+ 2r − 4)

(
n2r(k − 1)(2 + k)+

+ 2n(n− 1)(4 + 2k + s) + 2Kf(G)(2kr + krs+ 2r − 4)+

+ n2sr(2 + k)
k∑
j=2

1

2 + γj

)
+ 2n(2 + k)(3krs+ 5kr + 4r − 2s+ rs− 6)

]
−

− n(2 + kr)(2− 4n+ 2nr + 2knr + knrs)

4
,

where Kf(G) is the Kirchhoff index of G and Spec(LH) = {γ1 = 0, γ2, . . . , γk}.

Proof. Let f(u) = det
(
InG�H − uAG�H + u2(DG�H − InG�H )

)
. By Theorem 1.8,

f ′′(1) = 2
(
Kfz(G �H) +

1

4
n(2 + kr)(2− 4n+ 2nr + 2knr + knrs)

)
τ(G �H). (2.38)
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By Theorem 2.21, we have

f(u) = a(u)

(
n∏
i=2

pi(u)

)(
k∏
j=2

qj(u)

)
, (2.39)

Note that a(1) = 0, a′(1) = −4 + 2r + 2kr + krs,

a′′(1) = 2(−6 + 4r + 5kr − 2s+ rs+ 3krs), pi(1) = (2 + k)(r − λi),

p′i(1) = −4− 4λi − 2kλi + 6r + 4kr − λis+ rs+ krs, qj(1) = (2 + s− θj)m and

q′j(1) = m(2 + 2s− θj)(2 + s− θj)m−1.

By differentiating (2.38) twice with respect to u and substituting u = 1, we have

f ′′(1) =

= a′′(1)

(
n∏
i=2

pi(1)

)(
k∏
j=2

qj(1)

)
+

+2a′(1)

(
n∏
i=2

pi(1)

)(
p′2(1)p3(1) . . . pn(1) + · · ·+ p2(1) . . . pn−1(1)p′n(1)

)
+

+2a′(1)

(
k∏
j=2

qj(1)

)(
q′2(1)q3(1) . . . qk(1) + · · ·+ q2(1) . . . qk−1(1)q′k(1)

)
=

=

(
n∏
i=2

pi(1)

)(
k∏
j=2

qj(1)

)(
a′′(1) + 2a′(1)

n∑
i=2

p′i(1)

pi(1)
+ 2a′(1)

k∑
j=2

q′j(1)

qj(1)

)
=

= 2

(
n∏
i=2

(k + 2)(r − λi)

)(
k∏
j=2

(2 + s− θj)m
)
·

[
− 6 + 4r + 5kr − 2s+ rs+ 3krs−

− (2kr + krs+ 2r − 4)

n∑
i=2

4 + 4λi + 2kλi − 6r − 4kr + λis− rs− krs
(2 + k)(r − λi)

+

+ (2kr + krs+ 2r − 4)
k∑
j=2

m(2 + 2s− θj)
2 + s− θj

]
. (2.40)

Now we substitute (2.40), τ(G �H) (by applying Theorem 2.22) into (2.38) and

solve for the zeta Kirchhoff index. We obtain

Kfz(G �H) =
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=
2n(−6 + 4r + 5kr − 2s+ rs+ 3krs)

2(4−2n+nr)/2
−

− 2n(2kr + krs+ 2r − 4)

2(4−2n+nr)/2(2 + k)

n∑
i=2

4 + 4λi + 2kλi − 6r − 4kr + λis− rs− krs
r − λi

+

+
2kr + krs+ 2r − 4

2(4−2n+nr)/2

k∑
j=2

m(2 + 2s− θj)
2 + s− θj

−

− n(2 + kr)(2− 4n+ 2nr + 2knr + knrs)

4
=

=
1

(2 + k)2(4−2n+nr)/2

[
(2kr + krs+ 2r − 4)

(
n2r(k − 1)(2 + k)+

+ 2n(n− 1)(4 + 2k + s) + 2Kf(G)(2kr + krs+ 2r − 4) + n2sr(2 + k)
k∑
j=2

1

2 + γj

)
+

+ 2n(2 + k)(3krs+ 5kr + 4r − 2s+ rs− 6)

]
−

− n(2 + kr)(2− 4n+ 2nr + 2knr + knrs)

4
,

by Theorem 1.6. �

2.8 Join of two regular graphs

The join G+H of two graphs G (order n) and H (order k) is constructed by

connecting every vertex in G to each vertex in H with t edges.

G H G+H

Figure 2.8: Example of the join G+H of G = C4, H = C3

The Ihara zeta function of G+H is given as follows:
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Theorem 2.24 ([3]). Let G be an r-regular graph of order n and let H be an s-regular

graph of order k where Spec(AG) = {λ1 = r, λ2, . . . , λn} and

Spec(AH) = {θ1 = s, θ2, . . . , θk}. Then the Ihara zeta function of the join G+H satisfies

ZG+H(u)−1 = (1− u2)
1
2
(−2k−2n+2kn+nr+ks)a(u)

(
n∏
i=2

pi(u)

) k∏
j=2

qj(u)


where a(u) = (1− u)

[
1− (r+ s− 1)u+

(
rs− (n− 1)(k− 1)

)
u2− (n+ s− 1)(k+ r− 1)u3

]
,

pi(u) = 1− λiu+ (r − 1 + k)u2 and qj(u) = 1− θju+ (s− 1 + n)u2.

Theorem 2.25. Let G be an r-regular graph of order n and let H be an s-regular graph of

order k. Then the complexity of the join G+H satisfies

τG+H =

(
n∏
i=2

r + k − λi

) k∏
j=2

s+ n− θj

 ,

where Spec(AG) = {λ1 = r, λ2, . . . , λn} and Spec(AH) = {θ1 = s, θ2, . . . , θk}.

Proof. Let f(u) = det
(
InG+H − uAG+H + u2

(
DG+H − InG+H

))
. By Theorem 1.7, we have

f ′(1) = 2(mG+H − nG+H)τ
(
G+H

)
, (2.41)

and by [3],

f(u) = a(u)

(
n∏
i=2

pi(u)

) k∏
j=2

qj(u)

 . (2.42)

Observe that a(1) = 0, a′(1) = −2k − 2n+ nr + ks+ 2kn, pi(1) = r − λi + k and

qj(1) = s+ n− θj . Therefore, by differentiating (2.42) once and set u = 1, we have

f ′(1) = a′(1)

(
n∏
i=2

pi(1)

) k∏
j=2

qj(1)

 =
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= a′(1)

(
n∏
i=2

r + k − λi

) k∏
j=2

s+ n− θj

 . (2.43)

Finally, we substitute (2.43) into (2.41) and solve for τ
(
G+H

)
. Note that

nG+H = n+ k and mG+H = nr
2 + ks

2 + kn. We obtain

τ
(
G+H

)
=
a′(1)

∏n
i=2 pi(1)

∏k
j=2 qj(1)

2(mG+H − nG+H)
=

=

(
n∏
i=2

r + k − λi

) k∏
j=2

s+ n− θj

 .

�

With both the Ihara zeta function and the complexity of G+H, we are ready to

derive the zeta Kirchhoff index:

Theorem 2.26. Let G be a r-regular graph of order n and let H be a s-regular graph of

order k. Then the zeta Kirchhoff index of the join G+H satisfies

Kfz
(
G+H

)
= (k + r − 2)(n+ s− 2) + (−2k − 2n+ nr + ks+ 2kn)·

·

[
n∑
i=2

r + k − 2

r − λi + k
+

k∑
j=2

s+ n− 2

s− θj + n

]
,

where Spec(AG) = {λ1 = r, λ2, . . . , λn} and Spec(AH) = {θ1 = s, θ2, . . . , θk}.

Proof. Again let f(u) = det
(
InG+H − uAG+H + u2

(
DG+H − InG+H

))
. By Theorem 1.8,

we have

f ′′(1) = 2
(
Kfz

(
G+H

)
+ 2mG+HnG+H − 2n2G+H + nG+H

)
τ
(
G+H

)
. (2.44)

We now take the second derivative of f(u) from (2.42) and substitute u = 1. Note

that a(1) = 0, a′(1) = −2k − 2n+ nr + ks+ 2kn,

a′′(1) = 2(4− 2r − 2s+ rs− 5k − 5n+ 3nr + 3ks+ 5kn2), pi(1) = r − λi + k,

p′i(1) = −2− λi + 2r + 2k, qj(1) = s+ n− θj and q′j(1) = −2 + 2s+ 2n− θj .
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Therefore, we have

f ′′(1) =

= a′′(1)

(
n∏
i=2

pi(1)

)(
k∏
j=2

qj(1)

)
+

+2a′(1)

(
n∏
i=2

pi(1)

)(
p′2(1)p3(1) . . . pn(1) + · · ·+ p2(1) . . . pn−1(1)p′n(1)

)
+

+2a′(1)

(
k∏
j=2

qj(1)

)(
q′2(1)q3(1) . . . qk(1) + · · ·+ q2(1) . . . qk−1(1)q′k(1)

)
=

=

(
n∏
i=2

pi(1)

)(
k∏
j=2

qj(1)

)(
a′′(1) + 2a′(1)

n∑
i=2

p′i(1)

pi(1)
+ 2a′(1)

k∑
j=2

q′j(1)

qj(1)

)
=

= 2

(
n∏
i=2

(r + k − λi)

)(
k∏
j=2

(s+ n− θj)

)[
4− 2r − 2s+ rs− 5k − 5n+ 3nr + 3ks+

+ 5kn+ (−2k − 2n+ nr + ks+ 2kn)
n∑
i=2

2r + 2k − λi − 2

r − λi + k
+

+ (−2k − 2n+ nr + ks+ 2kn)
k∑
j=2

2s+ 2n− θj − 2

s− θj + n

]
. (2.45)

Now we substitute (2.45) into (2.44), applying Theorem (2.25) and solve for

Kfz(G+H):

Kfz(G+H) =
1

t

[
4− 2r − 2s+ rs− 6k − 6n+ 2(k + n)2 + 3nr + 3ks+ 5kn−

− (k + n)
(
ks+ n(r + 2k)

)]
+ (−2k − 2n+ nr + ks+ 2kn)·

·

[
n∑
i=2

2r + 2k − λi − 2

r − λi + k
+

k∑
j=2

2s+ 2n− θj − 2

s− θj + n

]
=

= (k + r − 2)(n+ s− 2) + (−2k − 2n+ nr + ks+ 2kn)·

·

[
n∑
i=2

r + k − 2

r − λi + k
+

k∑
j=2

s+ n− 2

s− θj + n

]
.

�

Consider the case where H = K1. Then the resulting graph is a ‘cone’ with G as a
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base. We have the following corollary.

Corollary 2.27. Let G be an r-regular graph of order n. Then the zeta Kirchhoff index of

the cone on G satisfies

Kfz
(
G+K

)
= (r − 1)

[
n− 2 + (nr − 2)

n∑
i=2

1

γi + 1

]
,

where Spec(LG) = {γ1 = r, γ2, . . . , γn}.

Proof. It follows immediately from (2.25) by letting k = 1 and s = 0. �

2.9 Line graph of biregular graphs

In Sato’s paper [13], the Ihara zeta function and complexity of the line graph of a

biregular graph were derived as follows:

Theorem 2.28 ([13]). Let G = (V1, V2) be an (r, s)-biregular bipartite graph of order n,

size m where |V1| = a, |V2| = b and a < b. Let Spec(AG) = {λ1 =
√
rs, λ2, λa, 0, . . . , 0}.

The Ihara zeta function of the line graph L(G) of G satisfies

ZL(G)(u)−1 = (1− u2)ar·(r+s−4)/2g(u)

a∏
i=1

p(u),

g(u) =
(

1 + 2u+ (r + s− 3)u2
)m−n(

1 + (2− s)u+ (r + s− 3)u2
)b−a

,

pi(u) = 1 + (4− r − s)u+
(

(r − 1)(s− 1) + r + s− 3− λ2i
)
u2+

+ (r + s− 3)(4− r − s)u3 + (r + s− 3)2u4.

Theorem 2.29 ([13]). Let G = (V1, V2) be an (r, s)-biregular bipartite graph of order n,

size m where |V1| = a, |V2| = b and a < b. Let Spec(AG) = {λ1 =
√
rs, λ2, λa, 0, . . . , 0}.
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Then the complexity of the line graph L(G) of G satisfies

τ
(
L(G)

)
=

1

a
rb−a−1(r + s)m−n+1 ·

(
a∏
i=2

(rs− λ2i )

)
.

We now derive the zeta Kirchhoff index of such a graph:

Theorem 2.30. Let G = (V1, V2) be a (r, s)-biregular graph of order n, size m where

|V1| = a, |V2| = b and a < b. Then the zeta Kirchhoff index of the line graph L(G) of G

satisfies

Kfz
(
L(G)

)
=
a(r + s− 4)2(r − ar + ar2 − as)

r + s
+

+ ar(r + s− 4)(r2 + s2 + 2rs− 4r − 4s)

a∑
i=2

1

rs− λ2i
,

where Spec(AG) = {λ1 =
√
rs, λ2, λa, 0, . . . , 0}.

Proof. Let f(u) = det
(
InL(G)

− uAL(G) + u2
(
DL(G) − InL(G)

))
. By Theorem 1.8, we have

f ′′(1) = 2
(
Kfz

(
L(G)

)
+ 2mL(G)mL(G) − 2n2L(G) + nL(G)

)
τ
(
L(G)

)
=

= 2
(
Kfz

(
L(G)

)
+m+ amr(r + s− 4)

)
τ
(
L(G)

)
. (2.46)

From Theorem 2.28, we know that

f(u) = g(u)
a∏
i=1

p(u). (2.47)

We want to differentiate f(u) twice and substitute u = 1. Note that

g(1) = rb−a(r + s)m−n,

g′(1) = rb−a(r + s)m−n
(

2(m− n)(r + s− 2)

r + s
− (a− b)(2r + s− 4)

r

)
,

p1(1) = 0,

p′1(1) = (r + s)(r + s− 4),
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p′′1(1) = 2(16− 15r + 3r2 − 15s+ 6rs+ 3s2),

pi(1) = rs− λ2i , and

p′i(1) = −2λ2i − 4r + r2 − 4s+ 4rs+ s2.

Hence (2.48) becomes

f ′′(1) = 2g′(1)p′1(1)

a∏
i=2

pi(1) + g(1)p′′1(1)

a∏
i=2

pi(1)+

+ 2g(1)p′1(1)
(
p′2(1)p3(1) . . . pa(1) + · · ·+ p2(1) . . . pa−1(1)p′a(1)

)
=

= p′1(1)

(
a∏
i=2

pi(1)

)[
2g′(1) + g(1)

p′′1(1)

p′1(1)
+ 2g(1)

a∑
i=2

p′i(1)

pi(1)

]
=

= (r + s− 4)(r + s)

(
a∏
i=2

rs− λ2i

)[
2rb−a(r + s)m−n

(
2(m− n)(r + s− 2)

r + s
+

+
(b− a)(2r + s− 4)

r

)
+ rb−a(r + s)m−n

32 + 6r2 − 30s+ 6s2 + 6r(2s− 5)

(r + s− 4)(r + s)
+

+ 2rb−a(r + s)m−n
a∑
i=2

s2 − 2λ2i − 4r + r2 − 4s+ 4rs

rs− λ2i

]
=

= 2(r + s− 4)rb−a(r + s)m−n+1

(
a∏
i=2

rs− λ2i

)[(
2(m− n)(r + s− 2)

r + s
+

+
(b− a)(2r + s− 4)

r

)
+

16 + 3r2 − 15s+ 3s2 + 3r(2s− 5)

(r + s− 4)(r + s)
+

+

a∑
i=2

s2 − 2λ2i − 4r + r2 − 4s+ 4rs

rs− λ2i

]
. (2.48)

Now, by we substitute (2.48) into (2.46) and apply Theorem 2.29. Then we solve

for Kfz
(
L(G)

)
, and get

Kfz
(
L(G)

)
= ar(r + s− 4)

[
2(m− n)(r + s− 2)

r + s
+

(b− a)(2r + s− 4)

r
+

+
16 + 3r2 − 15s+ 3s2 + 3r(2s− 5)

(r + s− 4)(r + s)
+

a∑
i=2

s2 − 2λ2i − 4r + r2 − 4s+ 4rs

rs− λ2i

]
−

−
(
m+ amr(r + s− 4)

)
=
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=
a(r + s− 4)2(r − ar + ar2 − as)

r + s
+

+ ar(r + s− 4)(r2 + s2 + 2rs− 4r − 4s)

a∑
i=2

1

rs− λ2i
.

�

Observe that the resulting line graph L(G) is a regular graph of regularity

(r + s− 2), hence we can derive the Kirchhoff index of L(G).

Corollary 2.31. Let G = (V1, V2) be an (r, s)-biregular bipartite graph of order n, size m

where |V1| = a, |V2| = b and a < b. Then the Kirchhoff index of the line graph L(G) of G

satisfies

Kf
(
L(G)

)
=
a(r − ar + ar2 − as)

r + s
+
ar(r2 + s2 + 2rs− 4r − 4s)

r + s− 4

a∑
i=2

1

rs− λ2i
,

where Spec(AG) = {λ1 =
√
rs, λ2, λa, 0, . . . , 0}.
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CHAPTER 3

ZETA KIRCHHOFF INDEX OF SELECTED FAMILIES OF GRAPHS

3.1 Cycle graphs

A cycle graph Cn where n ≥ 3, is a connected 2-regular graph. By [1, 9], the

Kirchhoff index of Cn is given as

Kf(Cn) =
n(n− 1)(n+ 1)

12
,

hence by Theorems 2.3 and 2.13, we can derive the following corollaries.

Corollary 3.1. For n ≥ 3, the zeta Kirchhoff index of cycle graph Cn is 0.

Proof. Since Cn is 2-regular, Kfz(Cn) = 02Kf(Cn) = 0. �

Corollary 3.2. Let Cn be a cycle graph with n ≥ 3. Then the zeta Kirchhoff index of its

k-th semitotal point graph Rk(Cn) satisfies

Kfz
(
Rk(Cn)

)
=

2k2n(n− 1)(n+ 1)

3(2 + k)
.

Corollary 3.3. Let Cn be a cycle graph with n ≥ 3. Then the zeta Kirchhoff index of its

middle graph M(Cn) satisfies

Kfz
(
M(Cn)

)
=

2n(n− 1)(n+ 1)

9
.

3.2 Complete graphs

A complete graph Kn is a connected (n− 1)-regular graph such that every vertex
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is adjacent to all the other (n− 1) vertices. By [11], the Kirchhoff index of Kn is given as

Kf(Kn) = n− 1,

therefore we can easily derive the following corollaries by Theorems 2.3 and 2.13,

Corollary 3.4. Let Kn be a complete graph. Then the zeta Kirchhoff index of Kn satisfies

Kfz(Kn) = (n− 1)(n− 3)2.

Corollary 3.5. Let Kn be a complete graph. Then the zeta Kirchhoff index of its k-th

semitotal point graph Rk(Kn) satisfies

Kfz
(
Rk(Kn)

)
=

2(n− 1)
(
k(n− 1) + n− 3

)2
2 + k

.

Note that for a complete graph Kn, its quasitotal graph QT (Kn) is equivalent to

its middle graph M(Kn), hence

Corollary 3.6. Let Kn be a complete graph. Then the zeta Kirchhoff indices of its middle

graph M(Kn) and quasitotal graph QT (Kn) are equal and satisfy

Kfz
(
M(Kn)

)
= Kfz

(
QT (Kn)

)
=
n6 − n5 − 15n4 + 27n3 + 10n2 − 18n− 4

2n
.

3.3 Biregular graphs

A semiregular bipartite graph, or biregular graph G = (V1 ∪ V2, EG) = (V1, V2) of

order n, size m is a graph such that there is a partition of sets of vertices V1 and V2 that

satisfies: (i) |V1| = a, |V2| = b where a < b; (ii) ∀vi ∈ V1, deg vi = r and ∀vj ∈ V2,

deg vj = s; (iii) all vertices in V1 are not incident to each other, similarly for all vertices in

V2.
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Figure 3.1: Example of the bi-regular graph G = (V1, V2) where |V1| = 3, |V2| = 6, r = 4,
s = 2

Hashimoto derived the Ihara zeta function of a biregular bipartite graph is as

follows:

Theorem 3.7 ([8]). Let G = (V1, V2) be an (r, s)-biregular bipartite graph of order n, size

m where |V1| = a, |V2| = b, a < b and Spec(AG) = {±λ1 =
√
rs,±λ2, . . . ,±λa, 0, . . . , 0}.

The Ihara zeta function of G satisfies

ZG(u)−1 = (1− u2)m−nh(u) ·
a∏
i=1

pi(u),

where h(u) =
(
1 + (s− 1)u2

)b−a
, pi(u) = 1−

(
λ2i − (r− 1)− (s− 1)

)
u2 + (r− 1)(s− 1)u4.

The complexity of a biregular bipartite graph is given as follows:

Theorem 3.8 ([13]). Let G = (V1, V2) be an (r, s)-biregular bipartite graph of order n,

size m where |V1| = a, |V2| = b, a < b and

Spec(AG) = {±λ1 =
√
rs,±λ2, . . . ,±λa, 0, . . . , 0}. The complexity of G satisfies

τ(G) =
sb−a

2
(
a(r − 1)− b

)(2rs− 2r − 2s)

(
a∏
i=2

rs− λ2i

)
.

Next, we derive the zeta Kirchhoff index of a biregular bipartite graph:

Theorem 3.9. Let G = (V1, V2) be an (r, s)-biregular graph of order n, size m where

|V1| = a, |V2| = b, a < b and Spec(AG) = {±λ1 =
√
rs,±λ2, . . . ,±λa, 0, . . . , 0}. Then the
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zeta Kirchhoff index of G satisfies

Kfz(G) = (a+ b)(2a+ 2b− ar − bs− 1)+

+
(
a(r − 1)− b

)(4(b− a)(s− 1)

s
+ 4a+ 1 +

4

rs− r − s

)
+

+ 4(a(r − 1)− b)(r + s− rs)

(
a∑
i=2

1

λ2i − rs

)
.

Proof. Let f(u) = det
(
InG − uAG + u2

(
DG − InG

))
. By Theorem 1.8, we have

f ′′(1) = 2
(
Kfz(G) + 2mn− 2n2 + n

)
τ(G), (3.1)

and by Theorem 3.7,

f(1) = h(u) ·
a∏
i=1

pi(u). (3.2)

Note that h(1) = sb−a, h′(1) = 2(b− a)(s− 1)sb−a−1, p1(1) = 0,

p′1(1) = 2(−r − s+ rs), p′′1(1) = 2(4− 5r − 5s+ 5rs), pi(1) = rs− λ2i and

p′i(1) = −2(λ2i + r + s− 2rs).

Hence by differentiating (3.2) twice and substituting u = 1, we obtain

f ′′(1) = h′(1)p′1(1)p2(1) · · · pa(1) +
(
h′(1)p′1(1)p2(1) . . . pa(1) + h(1)p′′1(1)p2(1) . . . pa(1)+

+ h(1)p′1(1)p′2(1)p3(1) . . . pa(1) + · · ·+ h(1)p′1(1)p2(1) . . . pa−1(1)p′a(1)
)

+

+ h(1)p′1(1)p′2(1)p3(1) . . . pa(1) + · · ·+ h(1)p′1(1)p2(1) . . . pa−1(1)p′a(1) =

= 2h′(1)p′1(1)

(
a∏
i=2

pi(1)

)
+ h(1)

(
p′′1(1)

p′1(1)

)
p′1(1)

(
a∏
i=2

pi(1)

)
+

+ 2h(1)p′1(1)

(
a∏
i=2

pi(1)

)
a∑
i=2

p′i(1)

pi(1)

= p′1(1)

(
a∏
i=2

pi(1)

)(
2h′(1) + h(1)

p′′1(1)

p′1(1)
+ 2h(1)

a∑
i=2

p′i(1)

pi(1)

)
=
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= p′1(1)

(
a∏
i=2

(rs− λ2i )

)(
4(b− a)(s− 1)sb−a−1 + sb−a

(
5 +

4

rs− r − s

)
+

+ 2sb−a
a∑
i=2

(
2 +

2(r + s− rs)
λ2i − rs

))
=

= sb−a(2rs− 2r − 2s)

(
a∏
i=2

(rs− λ2i )

)(
4(b− a)(s− 1)

s
+

(
5 +

4

rs− r − s

)
+

+ 2
a∑
i=2

(
2 +

2(r + s− rs)
λ2i − rs

))
. (3.3)

Finally, we substitute (3.3) and complexity (by applying Theorem 3.8) into (3.1)

and solve for Kfz(G). We obtain:

Kfz(G) = (a+ b)(2a+ 2b− ar − bs− 1)+

+
(
a(r − 1)− b

)(4(b− a)(s− 1)

s
+ 5 +

4

rs− r − s

)
+

+ 2
(
a(r − 1)− b

)( a∑
i=2

(
2 +

2(r + s− rs)
λ2i − rs

))
=

= (a+ b)(2a+ 2b− ar − bs− 1)+

+
(
a(r − 1)− b

)(4(b− a)(s− 1)

s
+ 4a+ 1 +

4

rs− r − s

)
+

+ 4(a(r − 1)− b)(r + s− rs)

(
a∑
i=2

1

λ2i − rs

)
,

as desired. �

3.4 Complete bipartite graphs

A complete bipartite graph Kn1,n2 is a graph of order n1 + n2 where vertices can

be divided in two groups: one with n1 vertices and the other with n2, such that all

vertices in the same group are not adjacent to one another but is adjacent to all vertices
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in the other group. By [18], the Kirchhoff index of Kn1,n2 satisfies

Kf(Kn1,n2) =
(n1 + n2 − 1)(n21 + n22)− n1n2

n1n2
.

Hence, if n1 = n2 = n, then

Kf(Kn,n) = 4n− 3,

and again by Theorems 2.3 and 2.13 we have the following corollaries.

Corollary 3.10. Let Kn,n be a complete bipartite graph of order 2n. Then the zeta

Kirchhoff index of its k-th semitotal point graph Rk(Kn,n) satisfies

Kfz
(
Rk(Kn,n)

)
=

2(4n− 3)(kn+ n− 2)2

2 + k
.

Corollary 3.11. Let Kn,n be a complete bipartite graph of order 2n. Then the zeta

Kirchhoff index of its middle graph M(Kn,n) satisfies

Kfz
(
M(Kn,n)

)
=

2(n6 + 3n5 − 7n4 − 14n3 + 17n2 + 14n− 12)

1 + n
.
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CHAPTER 4

ENUMERATION

For simple connected md2 (minimal degree 2) graphs of degree at most 10, we have

computed the Ihara zeta function, Kirchhoff indices, and the characteristic polynomials

for their adjacency, Laplacian and normalized Laplacian matrices up to degree 10 by using

Wolfram Mathematica. We provide a data summary as shown below.

Order (number of vertices) 4 5 6 7 8 9 10

Count of non-isomorphic

simple connected graphs
6 21 112 853 11,117 261,080 11,716,571

Count of non-isomorphic

simple connected md2 graphs
3 11 61 507 7,442 197,772 9,808,209

Count of distinct

Ihara zeta functions
3 11 61 507 7,441 197,769 9,803,142

Count of distinct and unique

Ihara zeta functions
3 11 61 507 7,440 197,766 9,798,079

Count of distinct and nonunique

Ihara zeta functions
0 0 0 0 1 3 5,063

Count of distinct

Kfz (zeta Kirchhoff index)
3 10 58 486 7,157 193,411 9,691,697

Count of distinct

and unique Kfz
3 9 55 470 6,959 190,542 9,614,302

Count of distinct

and nonunique Kfz
0 1 3 16 198 2,869 77,395
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Order 4 5 6 7 8 9 10

Count of distinct

Kf (Kirchhoff index)
3 11 55 457 6,501 176,093 9,021,467

Count of distinct

and unique Kf
3 11 50 412 5,816 159,619 8,414,619

Count of distinct

and nonunique Kf
0 0 5 45 685 16,474 606,848

Count of distinct

Kf+ (additive Kirchhoff index)
3 11 58 496 7,052 194,135 9,589,128

Count of distinct

and unique Kf+
3 11 55 485 6,757 191,491 9,418,001

Count of distinct

and nonunique Kf+
0 0 3 11 295 2,644 171,127

Count of distinct Kf×

(multiplicative Kirchhoff index)
3 11 59 483 7,174 193,680 9,701,729

Count of distinct

and unique Kf×
3 11 57 465 6,985 191,031 9,632,048

Count of distinct

and nonunique Kf×
0 0 2 18 189 2,649 69,681

Pairs of graphs with identical

Kfz,Kf,Kf+,Kf× and

Ihara zeta function

0 0 0 0 0 1 4,958

Triplets of graphs with identical

Kfz,Kf,Kf+,Kf× and

Ihara zeta function

0 0 0 0 0 0 4
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Order 4 5 6 7 8 9 10

Pairs of graphs with identical

Kfz,Kf,Kf+,Kf×,

Ihara zeta function, characteristic polynomials of

adjacency, Laplacian and

normalized Laplacian matrices

0 0 0 0 0 1 4,311

Triplets of graphs with identical

Kfz,Kf,Kf+,Kf×,

Ihara zeta function, characteristic polynomials of

adjacency, Laplacian and

normalized Laplacian matrices

0 0 0 0 0 0 4

We have found a pair of non-isomorphic simple connected md2 graphs of order 9

(see Figure 4.1) where the two graphs have equal Ihara zeta function, all Kirchhoff indices

as well as identical characteristic polynomials of the adjacency, Laplacian and normalized

Laplacian matrices. We have

ZA1(u)−1 = ZA2(u)−1 = (1− u2)9
(
1 + 9u2 − 14u3 + 15u4 − 184u5 − 146u6 − 1098u7

− 957u8 − 3870u9 − 2482u10 − 8666u11 − 2055u12 − 11744u13

+ 5595u14 − 7560u15 + 17604u16 + 15552u18
)
, τA1 = τA2 = 9840,

ρAA1
(x) = ρAA2

(x) = −8− 12x+ 46x2 + 62x3 − 60x4 − 67x5 + 14x6 + 18x7 − x9,

ρLA1
(x) = ρLA2

(x) = −88560x+ 187812x2 − 168450x3 + 83826x4 − 25393x5

+ 4806x6 − 556x7 + 36x8 − x9,

where ρAA1
(x), ρAA2

(x), ρLA1
(x), ρLA2

(x) are the characteristic polynomials of the

adjacency and Laplacian matrices of A1 and A2 in terms of x. For the Kirchhoff indices,
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we have

Kfz(A1) = Kfz(A2) =
28813

410
, Kf(A1) = Kf(A2) =

15651

820
,

Kf+(A1) = Kf+(A2) =
246217

1640
, Kf×(A1) = Kf×(A2) =

241239

820
.

To see that A1 and A2 in Figure 4.1 are non-isomorphic, we pick out the two

vertices in each graph with degree 3 and name them a1 and a2. Since they have degree 3,

they are adjacent to exactly 3 vertices; we name the 3 vertices that are adjacent to a1 as

b1, c1, d1, where the degree of b1 is 5. Similarly, we name the 3 vertices adjacent to a2 as

b2, c2, d2, where the degree of b2 is 5. Note that in graph A1, c1 and d1 are non-adjacent as

well as c2 and d2 (in another words, a1, c1, d1 and a2, c2, d2 are not). However, in graph

A2, c1 and d1 are adjacent as well as c2 and d2. A further evidence to see that A1 and A2

are non-isomorphic is to observe that in graph A1, b1, b2 are adjacent to c1, d1 and c2, d2,

while in A2 this does not hold.

b2

c1

d1

a2

a1

c2

d2b1

A1

d1

b1

a2

c1

a1

d2

c2b2

A2

Figure 4.1: Non-isomorphic graphs A1 and A2 of degree 9 with identical Ihara zeta function,
adjacency/Laplacian spectrum and Kirchhoff indices.
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For graphs of order 10, we have found 4311 pairs and 4 triplets (see Figures 4.2,

4.3, 4.4, 4.5) that have the same Ihara zeta function, all Kirchhoff indices as well as

identical characteristic polynomials of the adjacency, Laplacian and normalized Laplacian

matrices.

For B1, B2, B3 in Figure 4.2, we have

ZB1(u)−1 = ZB2(u)−1 = ZB3(u)−1 = (1− u2)15
(
1 + 15u2 − 28u3 + 38u4 − 660u5

− 874u6 − 7000u7 − 10291u8 − 43472u9 − 54345u10 − 171072u11

− 156328u12 − 427520u13 − 194704u14 − 629760u15 + 184576u16

− 421888u17 + 950272u18 + 983040u20
)
,

ρAB1
(x) = ρAB2

(x) = ρAB3
(x) = 128x2 − 112x3 − 204x4 + 118x5 + 117x6

− 28x7 − 25x8 + x10,

ρLB1
(x) = ρLB2

(x) = ρLB3
(x) = −3328200x+ 5927305x2 − 4631838x3 + 2085186x4

− 596152x5 + 112279x6 − 13934x7 + 1099x8 − 50x9 + x10,

and for the Kirchhoff indices, we have

Kfz(B1) = Kfz(B2) = Kfz(B3) =
291034

1849
,

Kf(B1) = Kf(B2) = Kf(B3) =
1185461

66564
,

Kf+(B1) = Kf+(B2) = Kf+(B3) =
5899615

33282
,

Kf×(B1) = Kf×(B2) = Kf×(B3) =
7333460

16641
.

To see that B1, B2 and B3 are non-isomorphic, we first label the only vertices of

degree 4 and 6 as a and b. There is exactly one vertex that is adjacent to both a and b; we

label this vertex c. Now, besides vertices a and b, there is one vertex that is adjacent to c

and not adjacent to either a or c; we label this vertex d. Finally, among the vertices

adjacent to d besides c, there is exactly one vertex that is not adjacent to b; we label this
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vertex e.

Note that in graph B2, c and e are adjacent but they are not adjacent in B1 and

B3. Hence B2 is not isomorphic to B1 and B3. There are exactly 3 vertices that are

adjacenct to both c and e in B3 but there are 4 such vertices in B1. Hence B1 and B3 are

not isomorphic.
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e

c

a

db

B1

e

a

c

db

B2

c

a

e

d

b

B3

Figure 4.2: First triplet of non-isomorphic graphs B1, B2 and B3 of degree 10 with identical
Ihara zeta function, adjacency/Laplacian spectrum and Kirchhoff indices.
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C1 C2 C3

Figure 4.3: Second triplet of non-isomorphic graphs C1, C2 and C3 of degree 10 with
identical Ihara zeta function, adjacency/Laplacian spectrum and Kirchhoff indices.

D1 D2 D3

Figure 4.4: Second triplet of non-isomorphic graphs D1, D2 and D3 of degree 10 with
identical Ihara zeta function, adjacency/Laplacian spectrum and Kirchhoff indices.
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E1 E2 E3

Figure 4.5: Fourth triplet of non-isomorphic graphs E1, E2 and E3 of degree 10 with
identical Ihara zeta function, adjacency/Laplacian spectrum and Kirchhoff indices.
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APPENDIX A

SELECTED MATHEMATICA CODE

(***** MD2 DATA GENERATOR *****)

(* This program imports .g6 file of degree %n, and exports matrices \

that are md2, in parts of every %partsize matrices, in the form of a \

list .mx, starting from part 0*)

(* MODIFY DEGREE n *)

n = 4;

(* MODIFY PART SIZE HERE *)

(* Too allow more efficient processing, lists are processed in parts.*)

partsize =

1000; (* DEFAULT IS 1000, DO NOT MODIFY UNLESS ABSOLUTELY \

NECESSARY, MANY OTHER PROGRAMS DEPENDS ON THIS *)

(* MODIFY FILE LOCATION HERE *)

data = Import[

"D:\\Google Drive\\Maff Programs\\data\\graph" <> ToString[n] <>

"c\\graph" <> ToString[n] <> "c.g6", "AdjacencyMatrix"];

(***** NO MORE MODIFIERS BELOW *****)

Print["Data Imported"];

iilimit = Length[data];

alist = {};

klist = {};

kalist = {};
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kmlist = {};

kzlist = {};

data2 = {};

count = 0;

partcount = 0;

ilimit = Length[data];

For[i = 1, i <= ilimit, i++, {

current = data[[i]];

For[j = 1, j <= n, j++, {

md2check = True;

If[Total[current[[j]]] < 2, {

md2check = False;

j = n;

}];

}];

If[md2check, {

data2 = Append[data2, current];

count++;

If[count == partsize, {

PrintTemporary["Part ", partcount, " created."];

Export[

"graph" <> ToString[n] <> "c_md2_part" <>

ToString[partcount] <> ".mx", data2];

data2 = {};

count = 0;

partcount = partcount + 1;

}];
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}];

}];

Export["graph" <> ToString[n] <> "c_md2_part" <> ToString[partcount] <>

".mx", data2];

(*For[i=1,i<partcount,i++,{

data=Import["graph"<>ToString[n]<>"c_md2_part"<>ToString[i]<>".mx"];

DeleteFile["graph"<>ToString[n]<>"c_md2_part"<>ToString[i]<>".mx"];

data2=Join[data2,data];

}];

Export["graph"<>ToString[n]<>"c_md2.mx",data2];

*)

Print["There are ", partcount*1000 + count,

" MD2 non-isomorphic graphs of degree ", n, "."];

Print["Data have been separated into ", partcount + 1,

" part of maximum size ", partsize, "."];

Print["Data Exported."];

(*** Kirchhoff Index Generator ***)

(* This program imports md2 graphs in part of %partsize, expected in \

the format .mx as a list, calculate its kirchhoff index and outputs a \

list (.mx) of the same partsize, where the indices’ index and part \

number is the same as the original md2 graphs file *)

(* MODIFY DEGREE n HERE *)

n = 8;

partsize = 1000;



72

(* MODIFY IMPORT DIRECTORY HERE *)

directory =

"C:\\Users\\jedi\\Desktop\\math research\\graph" <> ToString[n] <>

"c_md2\\";

directory =

"D:\\Google Drive\\Maff Programs\\data\\graph" <> ToString[n] <>

"c_md2\\";

(* This the directory of the data location *)

(***** NO MORE MODIFIERS BELOW *****)

(*ParallelNeeds["ComputerArithmetic‘"];*) (*To be added if necessary *)

partcount = 0;

total = 0;

While[FileExistsQ[

directory <> "graph" <> ToString[n] <> "c_md2_part" <>

ToString[partcount] <> ".mx"], {

data =

Import[directory <> "graph" <> ToString[n] <> "c_md2_part" <>

ToString[partcount] <> ".mx"];

hlimit = Length[data];

data2 = {};

For[h = 1, h <= hlimit, h++, {

a = data[[h]];

dl = {}; (* dl, a list/array of degrees corresponding to the row/



73

column of matrix a *)

l = -a; (* l, Laplacian Matrix *)

For[i = 1, i <= n, i++, {

k = Total[a[[i]]];

dl = Append[dl, k];

l[[i]][[i]] = k;

}];

(*** Upper Triangular Resistance Matrix ***)

r = IdentityMatrix[n] - IdentityMatrix[n]; (* r,

resistance matrix *)

For[i = 1, i <= n, i++, {

For[j = i + 1, j <= n, j++, {

tau = l;

ll = l;

For[k = 1, k <= n, k++, {

tau[[k]] = Delete[tau[[k]], i];

ll[[k]] = Delete[ll[[k]], j];

ll[[k]] = Delete[ll[[k]], i];

}];

tau = Delete[tau, i];

ll = Delete[ll, j];

ll = Delete[ll, i];

r[[i]][[j]] = Det[ll]/Det[tau];

}];

}];
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ki = 0;

For[i = 1, i <= n, i++, {

For[j = i + 1, j <= n, j++, {

ki += r[[i]][[j]];

}];

}];

data2 = Append[data2, ki];

}];

Export[

"graph" <> ToString[n] <> "c_md2_ki_part" <> ToString[partcount] <>

".mx", data2];

PrintTemporary["Part " <> ToString[partcount] <> " processed."];

partcount += 1;

total += hlimit;

}];

Print["Kirchhoff Indices of degree ", n, " for a total of ", total,

" graphs processed."];

(*** Duplicate Kirchhoff indices finder ***)

(* MODIFY DEGREE n HERE *)

n = 10;

partsize = 1000;

(* MODIFY IMPORT DIRECTORY HERE *)

directory = "D:\\Google Drive\\Maff Programs\\data\\";

(* MAKE SURE TO INCLUDE \\ AT THE END *)

(***** NO MORE MODIFIERS BELOW *****)

partcount = 0;
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count = 0;

kilist = {};

While[FileExistsQ[

directory <> "graph" <> ToString[n] <> "c_md2_ki\\graph" <>

ToString[n] <> "c_md2_ki_part" <> ToString[partcount] <> ".mx"], {

data =

Import[directory <> "graph" <> ToString[n] <> "c_md2_ki\\graph" <>

ToString[n] <> "c_md2_ki_part" <> ToString[partcount] <> ".mx"];

kilist = Join[kilist, data];

partcount++;

count += Length[data];

}];

Print["Imported ", count, " kirchhoff indices of degree ", n];

PrintTemporary["Now generating the list of duplicates."];

(* This is the finding duplicate function *)

positionDuplicates[list_] := GatherBy[Range@Length[list], list[[#]] &];

positionlist = positionDuplicates[kilist];

positionlist = Select[positionlist, Length@# != 1 &];

paircount = 0;

PrintTemporary[

"Duplicate list generated. Now generating pairs of matrices with \

same kirchhoff (this will take a while ...)"];

While[positionlist != {},

templist = positionlist[[-1]];
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positionlist = Delete[positionlist, -1];

ilimit = Length[templist];

If[ilimit > 1, {

alist = {};

paircount++;

For[i = 1, i <= ilimit, i++, {

alist =

Append[alist,

Import[directory <> "graph" <> ToString[n] <>

"c_md2\\graph" <> ToString[n] <> "c_md2_part" <>

ToString[Floor[(templist[[i]] - 1)/partsize]] <> ".mx"][[

Mod[templist[[i]] - 1, partsize] + 1]]];

}];

Export[

"graph" <> ToString[n] <> "c_md2_matching_ki_pair" <>

ToString[paircount] <> ".mx", alist];

}];

];

Print["There are ", paircount,

" distinct kirchhoff indices that appears on more than 1 graph."];

(*** Uniqueness Kirchhoff Index calculator ***)

(* MODIFY DEGREE n HERE *)

n = 10;

partsize = 1000;

(* MODIFY IMPORT DIRECTORY HERE *)

directory = "D:\\Google Drive\\Maff Programs\\data\\";
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(* MAKE SURE TO INCLUDE \\ AT THE END *)

(***** NO MORE MODIFIERS BELOW *****)

partcount = 0;

count = 0;

kilist = {};

While[FileExistsQ[

directory <> "graph" <> ToString[n] <> "c_md2_ki\\graph" <>

ToString[n] <> "c_md2_ki_part" <> ToString[partcount] <> ".mx"], {

data =

Import[directory <> "graph" <> ToString[n] <> "c_md2_ki\\graph" <>

ToString[n] <> "c_md2_ki_part" <> ToString[partcount] <> ".mx"];

kilist = Join[kilist, data];

partcount++;

count += Length[data];

}];

Print["Imported ", count, " kirchhoff indices of degree ", n];

PrintTemporary["Now generating the list of duplicates."];

(* This is the finding duplicate function *)

positionDuplicates[list_] := GatherBy[Range@Length[list], list[[#]] &];

positionlist = positionDuplicates[kilist];

Print["Total # of unique kirchhoff indices of degree " <>

ToString[n] <> ": ", Length[Select[positionlist, Length@# == 1 &]]];

Print["Total # of nonunique kirchhoff indices (distinct indices that \

appears on more than 1 graph) of degree " <> ToString[n] <> ": ",
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Length[Select[positionlist, Length@# > 1 &]]];

(*** Ihara Zeta Function Generator ***)

(* This program imports md2 graphs in part of %partsize, expected in \

the format .mx as a list, calculate its ihara zeta function and \

outputs a list (.mx) of the same partsize, where the indices’ index \

and part number is the same as the original md2 graphs file *)

(* MODIFY DEGREE n HERE *)

n = 10;

partsize = 1000;

(* MODIFY IMPORT DIRECTORY HERE *)

directory =

"D:\\Google Drive\\Maff Programs\\data\\graph" <> ToString[n] <>

"c_md2\\";

(***** NO MORE MODIFIERS BELOW *****)

(*ParallelNeeds["ComputerArithmetic‘"];*) (*To be added if necessary *)

partcount = 0;

total = 0;

While[FileExistsQ[

directory <> "graph" <> ToString[n] <> "c_md2_part" <>

ToString[partcount] <> ".mx"], {

data =

Import[directory <> "graph" <> ToString[n] <> "c_md2_part" <>

ToString[partcount] <> ".mx"];
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hlimit = Length[data];

data2 = {};

For[h = 1, h <= hlimit, h++, {

a = data[[h]];

dl = {}; (* dl, a list/array of degrees corresponding to the row/

column of matrix a *)

l = -a; (* l, Laplacian Matrix *)

For[i = 1, i <= n, i++, {

k = Total[a[[i]]];

dl = Append[dl, k];

l[[i]][[i]] = k;

}];

edges = Total[dl]/2;

d = IdentityMatrix[n];

For[i = 1, i <= n, i++, {

d[[i]][[i]] = dl[[i]];

}];

zf = ((1 - u^2)^(n - edges))/(Det[

IdentityMatrix[n] - a*u + (d - IdentityMatrix[n])*u^2]);

data2 = Append[data2, zf];

}];

Export[

"graph" <> ToString[n] <> "c_md2_zf_part" <> ToString[partcount] <>
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".mx", data2];

PrintTemporary["Part " <> ToString[partcount] <> " processed."];

partcount += 1;

total += hlimit;

}];

Print["Ihara Zeta Functions of degree ", n, " for a total of ", total,

" graphs processed."];

(*** Perfect Matching Sets Finder ***)

(* MODIFY DEGREE n HERE *)

n = 9;

(* MODIFY IMPORT DIRECTORY HERE *)

directory =

"D:\\Google Drive\\Maff Programs\\data\\graph" <> ToString[n] <>

"c_md2_matching_sets\\";

positionDuplicates[list_] := GatherBy[Range@Length[list], list[[#]] &];

k = 0;

PrintTemporary["Counting number of pairs ..."];

While[FileExistsQ[

FileNameJoin[{directory,

"graph" <> ToString[n] <> "c_md2_matching_set" <>

ToString[k + 1] <> ".mx"}]],

k++];

iilimit = k;

PrintTemporary["A total of ", k, " pairs/triplets/etc found"];
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spcount = 0;

pcount = 0;

For[ii = 1, ii <= iilimit, ii++, {

If[Mod[ii, 100] == 0, Print["Completed ", ii, " of ", iilimit]];

templist =

Import[

directory <> "graph" <> ToString[n] <> "c_md2_matching_set" <>

ToString[ii] <> ".mx"];

charadjlist = {};

charlaplist = {};

charnormlaplist = {};

For[jj = 1, jj <= Length[templist], jj++, {

a = templist[[jj]];

n = Length[a];(* n, degree of the graph i.e. number of vertices *)

dl = {}; (* dl, a list/array of degrees corresponding to the row/

column of matrix a *)

l = -a; (* l, Laplacian Matrix *)

(* OPTION: Normalized Laplacian ONLY >>>>> *)

dd = IdentityMatrix[n]; (* dd, degree matrix raised to -1/

2 power *)

(* <<<<< Normalized Laplacian ONLY *)

For[i = 1, i <= n, i++, {
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k = Total[a[[i]]];

dl = Append[dl, k];

l[[i]][[i]] = k;

(* OPTION: Normalized Laplacian ONLY >>>>> *)

dd[[i]][[i]] *= k;

dd[[i]][[i]] = 1/dd[[i]][[i]]^(1/2);

(* <<<<< Normalized Laplacian ONLY *)

}];

charadjlist = Append[charadjlist, CharacteristicPolynomial[a, u]];

charlaplist = Append[charlaplist, CharacteristicPolynomial[l, u]];

charnormlaplist =

Append[charnormlaplist,

CharacteristicPolynomial[IdentityMatrix[n] - dd.a.dd, u]];

}];

charadjpositions = positionDuplicates[charadjlist];

charlappositions = positionDuplicates[charlaplist];

charnormlappositions = positionDuplicates[charnormlaplist];

charadjpositions = Select[charadjpositions, Length@# != 1 &];

charlappositions = Select[charlappositions, Length@# != 1 &];

charnormlappositions =

Select[charnormlappositions, Length@# != 1 &];

If[charadjpositions != {} && charlappositions != {} &&

charnormlappositions != {} &&
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charadjpositions == charlappositions == charnormlappositions, {

pcount++;

Export[

"graph" <> ToString[n] <> "c_md2_perfect_matching_set" <>

ToString[pcount] <> ".mx", templist];

}, {

spcount++;

Export[

"graph" <> ToString[n] <> "c_md2_semiperfect_matching_set" <>

ToString[spcount] <> ".mx", templist];

}];

}];

Print["Complete! Found ", pcount, " perfectly matching set(s) and ",

spcount, " semi-perfect matching set(s)."];
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