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ABSTRACT 

Hibernation is a process that occurs in nature where organisms undergo dormancy 

for long periods of time in order to improve their survival during extreme environmental 

conditions. During this time, organisms undergo physiological changes such as reduction 

in core body temperature and metabolic rate, as well as cells being impeded from going 

into mitosis. Alvarado et al. (2015) discovered that genomic DNA methylation is 

dynamic across torpor-arousal bouts during winter hibernation in thirteen lined ground 

squirrels (Ictidomys tridecemlineatus), indicating that physiological changes during 

hibernation are the results of more than simply cold temperatures slowing down 

metabolism and that there are cellular mechanisms that are responsible for such 

physiological changes. A study by Robbins (2017) found that THP-1 cells incubated in 

hibernating bullfrog plasma (Lithobates catesbeianus) stop undergoing cellular division, 

with THP-1 cells being restricted to the G2 stage of the cell cycle. This suggests that 

there may be one or more substances in hibernating bullfrog plasma that prevent THP-1 

cells from progressing in cell division. In this study, I explored the effects of cyclin B 

levels on cellular division and its potential impact on confining THP-1 cells in the G2 

phase, while maintained in hibernating bullfrog plasma. My results indicate that the 

levels of cyclin B in hibernating and non-hibernating bullfrog plasma do not vary, 

suggesting that the expression of cyclin B may not be responsible for confining THP-1 

cells to the G2 stage of the cell cycle. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Some animals undergo hibernation to survive long-term stressful environmental 

conditions allowing them to live through periods of extreme cold and scarce availability 

of food. These animals are capable of undergoing physiological changes such as 

adjusting their body temperature to the ambient temperature and thereby dropping their 

metabolic rate during these periods of dormancy (Melvin & Andrews, 2009). Regulation 

of the cell cycle during these periods is extremely important, as carrying out certain 

processes might not be necessary for survival during these times, and provides for 

conserving energy allowing these organisms to return out of dormancy successfully 

(Carey et al., 2003). 

The cell cycle, as shown in Figure 1, is the series of growth and development cells 

undergo from their formation by the division of a parent cell to create two new daughter 

cells.  There are four stages of the cycle, Gap 1 (G1), Synthesis (S), Gap 2 (G2) and 

Mitosis, which is the process of cell division. The G1, S, and G2 stages together are 

known as Interphase as it takes place between one mitosis stage and the next. During the 

G1 stage, cells increase in size, cellular organelles are being duplicated and the cell 

makes the molecular building blocks it will need in the later stages. During the S stage, 

the cell synthesizes a complete copy of the DNA in its nucleus. The cell also duplicates 

the centrosome, a microtubule-organizing structure that helps separate chromosomes 

during the M stage. During the G2 stage, the cell increases more in size and makes 
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proteins and cellular organelles, and begins to reorganize its contents and prepares for 

mitosis.  

 

Figure 1: The different phases of the cell cycle. Gap 1 (G1), 

Synthesis (S), Gap 2 (G2) and Mitosis (M). 

 

During the M stage, two events take place, mitosis and cytokinesis. In mitosis, the 

nuclear DNA within the cell condenses into visible structures known as chromosomes 

and is pulled apart by a specialized structure made out of microtubules, known as the 

mitotic spindle. Mitosis takes place in four stages: prophase (which can be further divided 

into early prophase and prometaphase), metaphase, anaphase, and telophase.  

During cytokinesis, the parent cell’s cytoplasm divides into two, making two new 

daughter cells. Cytokinesis generally takes place towards the end of mitosis. Once the 
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cell cycle is complete, the cell can take one of two possible paths: it can repeat the cell 

cycle, starting from G1, or exit the cell cycle through G0. G0 exists outside the cell cycle, 

where cells can undergo terminal differentiation, based on the characteristics of that cell's 

final function and destination. 

Cyclins are vital core regulators of the cell cycle, consisting of a group of 

regulatory proteins. In most eukaryotes, four basic types of cyclins are found: cyclin A, 

cyclin B, cyclin D and cyclin E. Each of these cyclins plays an important role with the 

progression from various stages, or set of stages in the cell cycle, and helps move the cell 

through these stages. 

 Levels of each of these cyclins vary considerably across the cell cycle, as shown in 

Figure 2 below. Typically, a cyclin is kept at low levels for most of the cycle, but as the 

cell approaches the stage where cyclins are needed, the levels of specific cyclins increase. 

For example, levels of cyclin B increase dramatically at the progression from the G2 

stage to the M stage. 
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Figure 2: Change in levels of cyclin in relation to the various stages of the cell cycle.  

There is a sharp decrease in levels of cyclins following each transition (the transition between 

stages of the cell cycle), as cyclins are degraded by cytoplasmic enzymes (adapted from College 

of the Redwoods, & Northern Virginia Community College, n.d.). 

 

Cyclin Dependent Kinases (CDKs) are enzymes that phosphorylate (attach 

phosphate groups to) a specific target once a particular CDK is activated. CDKs are 

responsible for the progression from G1 to S stage and from G2 to M stage, by 

phosphorylating specific substrates. Attachment of phosphate groups acts like a switch, 

which increases or decreases the activity of a target protein. Cyclins attach themselves to 

CDKs at various stages of the cell cycle which plays two important roles. First, it 

activates the ability for a CDK to act as a kinase, and second it directs the CDK to 

phosphorylate target proteins. These proteins are ones that are appropriate to that stage of 

the cell cycle which is controlled by the cyclin. For example, the binding of cyclin B to 
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its CDK sends CDK1 to M phase targets (e.g., proteins that are responsible for breaking 

down the nuclear membrane).  

In mammalian cells, the progression from G1 to S stage is specifically guided by 

the activity of two CDKs, which are comprised of the complexes between cyclin D and 

either CDK4 or CDK6 and between cyclin E (and possibly cyclin A) and CDK2.  The 

progression from G1 to S stage is regulated by a variety of internal and external signals, 

including the availability of stage specific cyclin, the levels of CDK inhibitory (CDKI) 

proteins and the phosphorylation status of CDKs. Many of the components of the cell 

cycle regulatory machinery, including CDKs, CDKIs and CDK substrates, are important 

targets of mutations that lead to human cancer (Reed, 1997). 

 CDK1 and CDK2 both can bind with their choice of cyclin partners and can bind 

to cyclins A, B, D and E, whereas CDK4 and CDK6 only partner with cyclin D. Cyclin D 

and CDK4 or CDK6 regulate events during the early G1 phase, CDK2-cyclin E complex 

allows progression into the S stage, CDK2-cyclin A complex and CDK1-cyclin A 

complex regulate the completion of S stage, and CDK1–cyclin B complex is responsible 

for mitosis. Based on the results of the cyclin and CDK-knockout studies, a minimal 

threshold model of the cell cycle control has emerged, suggesting that either CDK1-

cyclin A or CDK2-cyclin A is sufficient to control interphase, whereas CDK1-cyclin B is 

essential to take cells into mitosis (Reed, 1997).  

 Activation of the CDK1-cyclin B complex initiates the onset of mitosis and is 

tightly regulated. CDK1-cyclin B complex is a serine/threonine protein kinase composed 

of the catalytic subunit CDK1 and its positive regulatory subunit cyclin B (Hochegger et 
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al., 2008). Binding of CDK1 to cyclin B is essential for activating CDK1. 

Phosphorylation at Threonine 161 (T161) positive regulatory site, is required for 

activation of the CDK1-cyclin B complex and is mediated by the CDK activating kinase 

(CAK) (Hochegger et al., 2008).  

During the early G2 phase, as shown in Figure 3 below, the CDK1-cyclin B 

complex is held in an inactive state by phosphorylation of CDK1 at the two negative 

regulatory sites, Threonine 14 and Tyrosine 15 (T14 and Y15), by CDK1 protein kinases 

Myt1 and Wee1, respectively (Hochegger et al., 2008; Squire et al., 2005). Removing 

these phosphate groups from T14 and Y15 by cell division cycle (CDC25) protein 

phosphatase (a protein that removes phosphate groups) in the late G2 phase activates the 

CDK1-cyclin B complex and triggers the initiation of mitosis.  

 

 

Figure 3: The different phases that CDK1 undergoes throughout the different stages of the cell 

cycle from late S stage to mid M stage (Adapted from Pollard et al., 2017). 

 

Zhang and Storey (2012), studied the effects of cell cycle arrest in the ability of 

wood frogs (Rana sylvatica) to survive freezing. Freezing is multi-component stress that 

includes ischemia due to decreased blood flow and dehydration that cells undergo due to 
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the accumulation of ice in extracellular spaces. To endure these stresses, cells need to 

reprioritize energy expenditure for cellular function. Expression of CDK2, CDK4, CDK6, 

cyclin A, cyclin B, cyclin D, and cyclin E and the phosphorylation states of CDKs (T14 

and Y15), the phosphatase CDC25 and the CDKI p21 in the livers of these wood frogs 

were studied using immunoblotting techniques. Responses of these wood frogs to 24 

hours of freezing and anoxia, along with 40% dehydration and recovery from these 

stresses were evaluated. Their results showed reduced levels of CDK2, 4 CDK6, and 

cyclins A and B in the liver cells of wood frogs after 24 hours of exposure to freezing. 

This supports the idea that the cell cycle is suppressed under these stresses and this 

suppression is reversed during recovery, finding substantially lower expression of cyclin 

B in frogs exposed to these stresses as compared to the levels in the wood frogs not 

exposed to stress.  

Wu and Storey (2012) analyzed the cell cycle in the liver cells of thirteen-lined 

ground squirrels (Ictidomys tridecemlineatus) during hibernation. They examined the 

different expression levels of regulators of the cell cycle over six stages of a cycle of 

torpor-arousal, again using immunoblotting techniques. They found that expression levels 

of cyclin D and cyclin E were reduced in the liver cells of hibernating ground squirrels. 

Using PCR analysis, they showed upregulation of cyclin D, cyclin A and cyclin B levels 

by about 1.5-fold, 1.57-fold, and 2.44-fold, respectively, during arousal. Also observed 

was suppression of cyclin B levels during entry into torpor; however, levels did not differ 

during long-term torpor and early torpor, but during early arousal, cyclin B increased 

greatly. Overall, this study suggested a pattern of how cyclins are expressed, with 
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expression of cyclin D and cyclin E inducing G1 to S stage arrest during torpor; and 

cyclin B and cyclin A expression upregulated during arousal. Similarly, previous research 

on sea cucumbers, Apostichopus japonicus, found methylation levels of cyclin B genes, 

and resulting suppression of gene expression, during aestivation, compared to non-

aestivation (Zhu et al., 2016). Expression of cyclin B transcripts was significantly down 

regulated during deep aestivation. 

Harley et al. (2010) found that the levels of the human anti‐apoptotic (anti-cell 

death) protein Mcl‐1 are regulated during the cell cycle and its levels increase at mitosis. 

The Mcl‐1 protein is phosphorylated at two sites during mitosis, Serine64 and 

Threonine92 (S64 and T92). Phosphorylation of T92 by CDK1–cyclin B complex 

initiates the breakdown of Mcl‐1 in cells that cannot perform mitosis due to damage by 

microtubule poisons resulting in apoptosis of these cells. Proteasome activity is required 

for the breakdown of the Mcl‐1protein when mitosis cannot be performed and this is 

dependent on CDC20. CDC20 regulates the identification of mitotic substrates by the 

anaphase‐promoting complex/cyclostome (APC/C) E3 ubiquitin ligase. This suggests that 

the regulation of apoptosis is highly connected to transition through mitosis and is 

regulated by timed mechanisms that distinguish between normal mitosis and prolong 

arrested mitosis. Addition of a phosphate group to the Mcl‐1protein by CDK1–cyclin B 

complex and its APC/CCdc20‐mediated destruction initiates apoptosis if a cell fails to 

transition into mitosis.  This study shows that a lack of CDK1-cyclin B, or its activity, 

would prevent apoptosis in cells that have arrested in mitosis (Harley et al., 2010). This 

may be important in maintaining cells confined in the G2 phase in hibernating organisms. 
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Kruman et al. (1988) studied mitotic activity in the ground squirrel Citellus 

undulatus to determine if their intestinal epithelial cells progress through the cell cycle 

during hibernation and if the cell cycle gets blocked during the G2/M stage during 

hibernation. The intestinal epithelial cells were blocked at the G2 phase of the cell cycle 

during hibernation and the number of cells confined in the G2 phase in these ground 

squirrels slowly increased throughout their hibernation (Kruman et al., 1988). Rieder and 

Cole (2002) summarized previous findings that also showed cells were confined in the 

G2-M stage of mitosis in animals that undergo hibernation and torpor and exposure to 

cold temperatures. Robbins (2017) found that THP-1 cells (a leukemia cancer cell line) 

incubated in hibernating American bullfrog plasma, Lithobates catesbeianus, also 

stopped in the G2 phase and did not proceed to the M phase, while THP-1 cells incubated 

in non-hibernating plasma were unaffected. This suggests that there are one or more 

compounds in hibernating bullfrog plasma that prevent THP-1 cells progressing from the 

G2 to M stage of the cell cycle. My research focus was on potential mechanisms that 

would prevent progress from the G2 to M phase, specifically investigating levels of 

cyclin B in THP-1 cells cultured in hibernating and non-hibernating American bullfrog 

plasma.   

The aforementioned studies suggest a potentially important role of cyclin B in the 

arresting of THP-1 cells during incubation in hibernating bullfrog plasma. Robbins 

(2017) found that a vast majority of THP-1 cells grown in hibernating bullfrog plasma 

had decreased/inhibited cell division as compared to cells grown in plasma from bullfrogs 

maintained at room temperature. These cells grown in hibernating bullfrog plasma appear 
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to be confined to the G2 stage, and unable to progress further in the cell cycle. I suspect 

that, unlike plasma from bullfrogs kept at room temperature, there is a compound in 

hibernating bullfrog plasma that is preventing THP-1 cancer cells from dividing. My 

hypothesis is that the levels of cyclin B in THP-1 cells cultured in hibernating bullfrog 

plasma are significantly lower than those cultured in the plasma of bullfrogs kept at room 

temperature, and this is responsible for the lack of movement from the G2 stage to 

mitosis. If no significant difference in the levels of cyclin B in THP-1 cells cultured in 

hibernating and non-hibernating bullfrog plasma is found, I will accept the null 

hypothesis that levels of cyclin B have no effect on inhibiting/decreasing cell division of 

THP-1 cells in hibernating bullfrog plasma. This would suggest mechanisms other than 

the levels of cyclin B are involved in the stalling of THP-1 cells in the G2 phase while 

incubated in plasma from hibernating bullfrogs.  
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CHAPTER 2 

MATERIALS AND METHODS 

The following protocol was designed to minimize discomfort and pain. Twenty-

two of the American bullfrogs used in this study, Lithobates catesbeianus, were purchased 

from Kons Direct (Germantown, WI 53022). The frogs were separated into four twenty-

gallon transparent plastic storage containers with ventilated lids and placed in a 

temperature-controlled environmental chamber held at 28°C. Each container was filled to 

a level of 4cm of tap water. Four bullfrogs were randomly selected and placed in a separate 

container that was kept in the laboratory at room temperature. These bullfrogs were 

classified as active non-hibernating bullfrogs. The remaining bullfrogs were randomly 

placed in three containers and kept in the environmental chambers. These bullfrogs were 

classified as the hibernating bullfrogs. The temperature of the cold room was lowered to 

24°C for one week, and subsequently every four days, the temperature of the chamber was 

lowered by 4°C until the final temperature reached 4°C.This temperature was maintained 

for a period of 3 months, and these frogs were used to extract hibernating bullfrog plasma 

for this study. Bullfrogs were not fed during hibernation.  

Collecting Blood Plasma 

The following experiment was conducted according to the protocol described in the 

“AVMA Guidelines for the Euthanasia of Animals: 2013 edition,” American Veterinary 

Medical Association, 2013(Underwood et al., 2013). Non-hibernating bullfrogs were kept 

in the laboratory for 3weeks at room temperature. Blood was drawn from two frogs at a 

time. Frogs were anesthetized using 2.5g/L solution of tricaine methanesulfonate (MS-
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222). Sodium bicarbonate was added to the solution to raise the pH to approximately 7-7.5 

since MS-222 is acidic with an approximate pH 5. Frogs were immersed in the solution 

until they were unable to move, which took 8-12 minutes after immersion. 

Once anesthetized, frogs were placed on their dorsal side and blood was drawn 

through a cardiac puncture. The heart was exposed, using a vertical incision on the ventral 

side, to the right of the sternum. To prevent coagulation of blood entering the syringe a 

3.5% sodium citrate flushed sterile syringe with a 21G x 1 ½ inch needle was used to draw 

blood from the ventricle. Blood drawn in these syringes was placed into a tube containing 

3.5% sodium citrate. Blood was separated into centrifuge tubes with 1.5ml of blood per 

tube, followed by centrifugation for 5minutes at 2500xg to separate the plasma from blood.  

Each sample of plasma was then pipetted into separate centrifuge tubes with 1mL of plasma 

per tube, labeled, and was stored at -80°C. This procedure was used for each bullfrog in 

the study. Blood from the other two non-hibernating bullfrogs was drawn within nine days 

of the first two.  

Blood was drawn from the hibernating bullfrogs after one week of exposure to 4°C. 

Blood was drawn from frogs maintained at this temperature every 3 weeks between the 

first and sixth week that these animals were exposed to 4°C. The procedure for drawing 

blood from hibernating bullfrogs was the same as that from non-hibernating animals. 

Immersion time in MS-222 was longer in hibernating frogs, 10-15 minutes, compared to 

that of room temperature frogs.  
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Experimental Design 

Cell Culture Media 

THP-1 cells, a human monocyte cell lineage derived from a 1-year old human male 

with leukemia, were used in this study. Media for culturing THP-1 cells was prepared by 

combining 180mL Roswell Park Memorial Institute (RPMI) media, 20mL Fetal Bovine 

Serum (FBS) and 0.78µL 2-Mercaptoethanol. 9mL of media was pipetted into a 50ml 

conical tube and combined with 1mL of THP-1 cells and centrifuged for 5 min at 1325xg. 

After centrifugation, the media was decanted and 10mL of new media was added to the 

cells remaining in the conical tube. This mixture was placed in a T25 flask then incubated 

at 370C under 5% CO2. Cell cultures were maintained by removing 5mL of old media and 

adding 5mL of fresh media, 2 times per week. Cells were counted by staining 10uL of the 

culture mixture with 10uL Trypan blue and running the cell suspension through a TC10TM 

Automated Cell Counter, to ensure that more than 500 000 cells were present to perform 

the antibody assay and flow cytometry.  

Culturing Cells in Plasma for Flow Cytometry  

A volume of 1mL of the cultured cells was added to a 5ml Falcon tube and spun 

for 5 min at 1325xg. The fluid was decanted without removing the pellet. The pellet was 

washed in 1mL of phosphate-buffered saline (PBS) and vortexed for approximately 10 

seconds. The cells were spun again for 5min and the fluid was decanted again without 

removing the pellet. 100uL PBS was added to the cells and vortexed for approximately 10 

seconds. From the suspension, 30µL was added to 300µL of each of the following: 

hibernating plasma, non-hibernating plasma, and in the culture media, which served as the 
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control. All cultures were incubated for 72 hours in an incubator maintained at 37°C with 

5 % CO2. 

Antibody Staining  

At the end of the 72-hour incubation period, from each of the three suspensions 

(hibernating plasma, non-hibernating plasma, and culture media), a volume of 2mL was 

spun down for 5 min at 1325xg and the fluid was decanted without removing the pellet. 

The cells were then re-suspended in 1mL PBS and vortexed gently for approximately 10 

seconds. The cells were spun down again for 5min at 1325xg, followed by decanting of the 

fluid. The cells were again re-suspended in 1mL PBS and vortexed gently for 

approximately 10 seconds. A volume of 100µL of 4% paraformaldehyde was then added 

to the cells and left to sit for 15min. This was followed by the addition of 100µL of 0.1% 

Triton X-100 and the mixture allowed to sit for 15min, after which, 2mL of PBS was added 

to the cells. The cells were spun down for 5 min at 1325xg and the fluid was decanted, and 

the cells were re-suspended in 1mL of PBS and vortexed gently for approximately 10 

seconds, followed by the addition of 1µL of cyclin B antibody (Cyclin B1 Rabbit anti-

Human, FITC, Clone: 2061A, Novus Biologicals™). Immediately afterward the cells were 

incubated on ice for 30 minutes, vortexing gently for approximately 10 seconds every 10 

minutes. Following the incubation period, 2mL of PBS was added to the cells, and left to 

sit for 5min. Cells were then spun down for 5 min at 1325xg and the fluid decanted.  The 

remaining pellet was re-suspended in 1mL of PBS and vortexed gently for approximately 

10 seconds. 
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Flow Cytometry 

An Applied Biosystems Attune Flow Cytometer (Life Technologies) was used to 

detect the levels of cyclin B in the THP-1 cells that were incubated in hibernating 

bullfrog plasma, non-hibernating bullfrog plasma, and culture media. The flow cytometer 

measured the intensity of fluorescence of the fluorescent cyclin B antibody that was used 

to stain the THP-1 cells. Adjusting the forward scatter (FSC), green fluorescent channel 

(BL1), and side scatter (SSC) voltages allowed for the appropriate collection of events 

with the flow cytometer software, so that the appropriate THP-1 cells would be 

measured. The cell population was dispalyed in a dot diagram. The flow cytometer was 

set to analyze a maximum of 10,000 events, or 750µL of the sample, for each sample. 

Each sample was vortexed for approximately 10 seconds prior to running through the 

flow cytometer. A histogram was set up for comparison between BL1 and the event count 

for each sample after its flow run and a gate was set during flow cytometry to separate 

any debris from the cells of interest.  

Statistical Analysis 

The BL1 median values for the amounts of fluorescence detected from the flow 

cytometer assay were analyzed using the statistical software R Studio. An ANOVA test 

was used for comparison between the data for cells incubated in hibernating bullfrog 

plasma, non-hibernating bull frog plasma, and culture media to determine if any 

significant differences between the three groups existed. A statistical significance was 

recognized with a p value less than 0.05. 
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CHAPTER 3 

RESULTS 

Flow Cytometry Results  

The data obtained through flow cytometry are displayed in Appendix 1, with the 

results displayed in the order of cells cultured in room temperature bullfrog plasma (RT), 

hibernating bullfrog plasma (H), and culture media (M), for each group. The fluorescent 

intensity of the cells represents the relative levels of cyclin B in that particular cell 

populations. By using the median value, the effects of outliers on both sides of the peak 

are minimized.  

As seen from Figure 4, THP-1 cells grown in hibernating plasma had the lowest 

fold change for cyclin B relative to RT and M. The cells grown in RT plasma had a 

higher fold change for cyclin B than cells grown in H (14.6%), but a lower fold change 

for cyclin B relative to cells grown in M (19.7%). Cells grown in M had the highest fold 

change for cyclin B relative to RT (19.7%) and H (21%).  
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Figure 4: Average fold change in cyclin B for THP-1 cells incubated in hibernating 

bullfrog plasma (H), room temperature bullfrog plasma (RT), and culture media (M).  

 

 

 



18 

M-H M-RT RT-H

F
o

ld
 C

h
a

n
g

e

0

200

400

600

 

Figure 5: The difference in average fold change in THP-1 cell cyclin levels between those 

cultured in media and hibernating plasma (M-H), media and room temperature plasma 

(M-RT), and room temperature and hibernating plasma(RT-H). 

 

The differences in fold change shown in Figure 5 indicates that there is a trend in 

cyclin B levels, with the highest fold difference occurring between THP-1 cells grown in 

media relative to those grown in hibernating frog plasma. This difference was 40.4% 

greater than the difference of THP-1 cells grown in media and room temperature plasma.  

The higher levels of cyclin B in media, shown by its greater fold change, was expected as 

FBS media is known to contain a large number of nutritional and macromolecular factors 

that are vital for cell growth. The positive difference in fold change between cells grown 
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in hibernating and room temperature frog plasma also indicates greater cyclin B levels in 

THP-1 cells cultured in room temperature plasma. However, as indicated by the error 

bars, there is no significant difference between these values.  

ANOVA Results 

A statistical analysis of the data obtained from the flow cytometry was conducted using 

an ANOVA set at p value less than 0.05 to indicate significant differences between the 

levels of cyclin B in the hibernating and room temperature plasma. A p value of 0.259 

showed no significant difference in fold change for levels of cyclin B between THP-1 

cells cultured in plasma from hibernating and non-hibernating bullfrogs. No significant 

differences were found between cells cultured in either hibernating or non-hibernating 

frog plasma compared to cells grown in culture media. 
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CHAPTER 4 

DISCUSSION 

Decreasing the core body temperature during hibernation may lead to decreased 

enzymatic activity to a level in which cells are unable to carry out mitosis. Studies on the 

metabolic rate of hibernating mammalian models have concluded that the level of 

metabolic suppression cannot be explained by decrease in temperature alone, and there 

must be a physiological inhibition (Geiser, 2004). Carey et al. (2003) and Heldmaier et al. 

(2004) showed that physiological changes during hibernation are not just due to 

decreased temperature and metabolism, but there are cellular and molecular responses in 

play, including suppression of the cell cycle. Thus, there are several mechanisms that 

could be leading to suppression of cellular proliferation.  Previous research by Kruman et 

al. (1988) found that intestinal epithelial cells of ground squirrels, Citellus undulates, are 

blocked at the G2 phase of the cell cycle during hibernation and the number of cells 

confined in the G2 phase slowly increases throughout their hibernation.  Robbins (2017) 

found similar results in THP-1 cells incubated in hibernating bullfrog plasma in which a 

vast majority of cells had gone through the G1 and S stages but were held in the G2 

stage, after DNA duplication has occurred. This suggest that one or more compounds in 

hibernating bullfrog plasma plays a role in controlling the cell cycle. 

 The CDK1-cyclin B complex regulates the progress of the G2 to M stage 

(Hochegger et al., 2008). My research found that the mechanism of cell cycle control in 

THP-1 cells incubated in hibernating bullfrog plasma is not due to the control of the 

levels of cyclin B although my results do show that there is a trend in fold change in 
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levels of cyclin B between THP-1 cells incubated in hibernating and non-hibernating 

bullfrog plasma, with a difference of 14.3% between the two groups. However this is not 

a significant difference as shown in Figure 4 with a p value of 0.259 from the ANOVA. If 

the levels of cyclin B were not altered in THP-1 cell grown in hibernating bullfrog 

plasma, other mechanisms must be involved.  

Decreased levels of CDK1 may also be a potential reason as to why there is an 

inhibition in the G2 to M stage. If the levels of CDK1 are lower in THP-1 cells incubated 

in hibernating bullfrog plasma, it may cause inhibition of the cell cycle progression from 

the G2 stage. In order for progress from the G2 to M stage, cyclin B binding to CDK-1 is 

an essential part of activating the CDK1 kinase. Therefore even if the levels of cyclin B 

don’t decrease, lower levels of CDK1 may prevent the formation of sufficient CDK1-

cyclin B complexes that results in lower levels of kinase activity. Onufriev et al., (2016) 

found an increased expression of CDK1 levels in the hippocampus towards the end of 

winter hibernation in long tailed ground squirrel (Spermophilus undulates). This suggests 

that expression of CDK1 might be downregulated during hibernation and alternatively 

the active status of CDK1 might be altered without a change in expression.  

The CDK1-cyclin B complex has been shown to partially phosphorylate Bcl-xL 

(an anti-apoptotic protein that plays an important role in the development, differentiation 

and clonal selection of B cells) during normal mitosis, causing its activation (Terrano et 

al., 2010). Terrano also showed that Bcl-xL is highly phosphorylated when mitosis 

occurs for a long period of time, suggesting that there is a change in the time period that 

CDK1 is activated, from being active for a short period of time during mitosis to 
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becoming highly active over a long period of time during mitotic arrest, which 

dramatically increases the amount of phosphorylation of Bcl-xL, deactivating its anti-

apoptotic function. Detecting levels of phosphorylation of Bcl-xL could be an indication 

of how long CDK1 has been active or inactive in B cells.  If a similar anti-apoptotic 

protein could be detected in THP-1 cells, its level of phosphorylation could potentially be 

used as an indication of CDK1 activity in THP-1 cells as the phosphorylation status of 

the CDK1-cyclin B complex also plays a crucial part in progression through the G2 to M 

stage of the cell cycle. Conducting further research on levels and activity of CDK1 may 

provide an explanation for this suppression in cellular proliferation.  

The levels of cyclin activating kinase (CAK), Myt1, Wee1, and cell division cycle 

phosphatase (CDC25) also play significant roles in the control of the cell cycle. CAK is 

responsible for regulating phosphorylation of Threonine161 (Lolli & Johnson, 2005), 

which is required for activation of the CDK1-cyclin B complex. Lower levels of CAK in 

THP-1 cells cultured in hibernating bullfrog plasma might imply that the CDK1-cyclin B 

complex cannot be activated. This may stop further progression of the cell cycle after the 

G2 phase.  Higher levels of Myt1 and Wee 1 in THP-1 cells cultured in hibernating 

bullfrog plasma might imply that a majority of the CDK1-cyclin B complexes are held 

inactive. Myt 1 and Wee1, two inhibitory protein kinases, are responsible for 

phosphorylating the CDK1-cyclin B complex at T14 and Y15, two negative regulatory 

sites on the CDK1-cyclin B complex (Squire et al., 2005; Hochegger et al., 2008; Fattaey 

& Booher, 1997). This may cause most of the CDK1-cyclin B complexes to stay 
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phosphorylated at the negative regulatory sites and stop further progress of the cell cycle 

after the G2 stage of the cell division.  

CDC 25 is a protein phosphatase that is responsible for removing the phosphate 

groups of T14 and Y15 during the later stage of the G2 stage (Donzelli & Draetta, 2003). 

This activates the CDK1-cyclin B complex and triggers the initiation of mitosis. If the 

levels of CDC 25 are lower in THP-1 cells cultured in hibernating bullfrog plasma, it may 

inhibit dephosphorylation of the negative regulatory sites of the CDK1-cyclin B complex 

that results in a vast majority of the CDK1-cyclin B complexes remaining inactive, as 

they remain phosphorylated at their negative regulatory sites, preventing progress into 

mitosis (Hochegger et al., 2008). 

Rieder and Cole (2002) suggests low temperatures, as low as 4o C, cause shock to 

cells and cellular programs. This can possibly trigger pathways, such as protein cascades, 

that can slow down and arrest cells from progressing through G2 stage. They suggest that 

the p53/p21 pathway (a pathway that is typically activated due to DNA damage, and 

causes the cell cycle to arrest) is active and is inhibiting CDC by p21 which is known to 

slow down the progression from the G2 to M stage. Rieder and Cole (2002) also suggest 

the presence of other pathways that are activated due to stress experienced during 

hibernation, and that can act as brakes to slow down progression of mitosis. MacDonald 

and Storey (2005) analyzed responses of mitogen-activated protein kinase (MAPK) 

family members (a type of protein kinase that is specific to the amino acids serine and 

threonine) during mammalian hibernation in five organs of Richardson's ground 

squirrels, Spermophilus richardsonii. They observed changes in extracellular signal-
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regulated protein kinases (ERK), and c-jun NH2-terminal kinases (JNK), all belonging to 

the family MAPK. These play an important role in cellular processes during hibernation 

such as regulating apoptosis. Their findings suggest that the signal transduction pathways 

of these MAPKs may cause transcription of genes that are associated with hibernation. 

MacDonald and Storey further infer that these kinase cascade pathways may execute 

specialized programs to survive conditions associated with hibernation. The THP-1 cells 

confined to the G2 stage when incubated in hibernating bullfrog plasma may be a result 

of such a program. However the initiation of such pathways in THP-1 cells in my study 

would be regulated, not by temperature, but by one or more compounds in hibernating 

plasma. Those possible compounds may have been a product of environmental stress.  

A review study by Carey et al. (2003) suggests that for hibernating animals, 

seasonal changes are likely achieved by changing steady-state levels of proteins that 

serve a specific task by altering the abundance of the corresponding mRNA and protein. 

Changes in transcription, translation, and stability of both DNA and proteins may be 

brought about by rapidly reversible molecular switches, such as phosphorylation, and 

these changes regulate protein activity during hibernation. McMullen and Hallenbeck 

(2010) found phosphorylation levels of protein kinase B (a serine/threonine kinase that 

plays an important role in cellular processes) in 13-lined ground squirrels, Ictidomys 

tridecemlineatus, at two regulatory sites, threonine 308 and serine 473 to be about 2.0-

fold and 3.2-fold higher, at the beginning of torpor and during arousal than when exposed 

to cold temperatures. This resulted in overall reduction in phosphorylation during the 

middle of the torpor.  
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The phosphorylation status of the CDK1-cyclin B complex may also result in its 

ability to phosphorylate Mcl1, an anti-apoptotic protein, which is degraded by 

phosphorylation in cells that cannot further progress in the cell cycle (Harley et al., 

2010). This mechanism may prevent THP-1 cells that cannot further progress from G2 to 

M phase from undergoing apoptosis and to remain in the hibernating frog plasma even 

though they cannot progress further in the cell cycle. Thus, changes in kinase activity on 

proteins during hibernation may play an important role in the G2 stage for regulating the 

activity of essential proteins such as CDK1 which allows for progression into mitosis 

(MacDonald & Storey, 2005; McMullen & Hallenbeck, 2010).  

Yan et al. (2008) studied differences in gene expression in seasonal and torpor-

arousal cycles in the arctic ground squirrel Spermophilus parryii. Among their findings 

were differences in gene expression that are linked to apoptosis and protein protection. 

Using techniques of real time PCR, they found overexpression of genes involved in cell 

growth and apoptosis in non-hibernating arctic ground squirrels as compared to the arctic 

ground squirrels during torpor. They also observed a significant overexpression of genes 

involved in cell growth and apoptosis of arctic ground squirrels in arousal as compared 

with arctic ground squirrels in torpor. Their findings suggest a decrease in mRNA levels 

of genes involved in cell growth and apoptosis during torpor as compared to periods of 

non-hibernation and arousal. 

Previous research on sea cucumbers, Apostichopus japonicus, suggests epigenetic 

changes during hibernation (Zhu et al., 2016). They found methylation levels of cyclin B 

genes to be significantly different during aestivation, compared to non-aestivation. 
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Methylation of DNA suppresses gene expression and they found expression of cyclin B 

transcripts to be down regulated during deep aestivation. Alvarado et al., 2015) also 

found DNA methylation to be altered during hibernation in liver and skeletal muscle cells 

of thirteen lined ground squirrels, Ictidomys tridecemlineatus. They observed hypo-

methylation of DNA in skeletal muscles in these animals during deep torpor, and global 

changes in methylation levels of DNA in liver cells. Yan et al. (2008) also discovered 

overexpression of genes responsible for molecular transport in arctic ground squirrels 

during torpor and arousal as compared to periods of non-hibernation that might result in 

an increase in cellular transportation of various substances, specific to hibernation. 

For most mammals, lack of muscle use for long periods of time results in muscle 

atrophy. Previous research on green-striped burrowing frogs, Cyclorana alboguttata, 

found these animals suffer only minimal muscle damage after remaining dormant for 

several months (Society for Experimental Biology, 2014). Survivin is one of the genes 

identified in these burrowing frogs. The survivin protein appears to protect cells from 

apoptosis which normally removes damaged or diseased cells. Interestingly, this gene has 

also been shown to be highly active in human cancer cells. Tanaka et al., (2000) 

discovered the expression of survivin to inhibit apoptosis in cancer cells such as breast 

carcinomas. Immuno-histochemical analysis showed that survivin expression was 

positive in 118 of 167 (70.7%) cases of breast carcinomas of histological stages I to III. 

Under normal circumstances, cells impeded in mitosis undergo apoptosis (Harley et al., 

2010), however in the presence of survivin apoptosis is inhibited. If survivin is expressed 

in THP-1 cells grown in hibernating bullfrog plasma, it has the potential to prevent 
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apoptosis in those cells that are held in the G2 stage. Positive cases of survivin were 

strongly associated with bcl-2 expression, a gene that encodes for proteins such as Bcl-xL 

that prevent apoptosis in cancer cells (Terrano et al., 2010). Their results suggest that 

inhibition of apoptosis by survivin, alone or in cooperation with bcl-2, is a significant 

prognostic parameter of worse outcomes in breast carcinomas. Cancer cells undergo 

uncontrolled mitosis, however, THP-1 cells in hibernating bullfrog plasma are confined 

in the G2 stage, and undergo controlled mitosis. As such, survivin may potentially be 

playing a similar mechanism in THP-1cells as it does in cancer cells. 

Testing for levels of survivin in hibernating bullfrog plasma may allow us to see if 

there is a positive correlation between survivin and inhibition of the cell cycle 

progression from the G2 phase. If hibernating bullfrogs use survivin in order to prevent 

atrophy of their muscle, it may also be present in their plasma and prevent apoptosis of 

THP-1 cells. This could be supported by looking for levels of survivin in the plasma of 

hibernating bullfrogs 

Further research in gaining a deeper understanding of how this mechanism that 

hibernating bullfrogs use to suppress progression of the cell cycle is very important and 

has significant applications in a wide array of fields. These underlying mechanisms can 

help make organ donations more viable. Extracting the substance responsible for the 

mitotic inhibition and decreasing the metabolic rate could increase the viability of a 

donated organ, and prevent it from undergoing damage, thereby increasing the success 

rate of organ transplantations. Further research on finding the underlying causes of this 

mechanism can also help find better treatments for cancer patients. If this substance that 
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is suppressing mitosis can be identified and extracted from hibernating bullfrog plasma, it 

has the potential to slow cancer cells from proliferating, and increase a patient’s chances 

of survival by providing more time as better cancer treatments become available.  

A potential weakness of my study was the use of human THP-1 cells rather than 

an ectothermic cell line. I used THP-1 cells (human cancer cells) in my study, and not 

frog cells, incubated in bullfrog plasma, since THP-1 cells are easier to manipulate and 

work with. The conditions of the incubator used in this study were 37°C and 5% carbon 

dioxide for all my experiments, including incubation of THP-1 cells in hibernating 

bullfrog plasma (plasma taken from bullfrogs exposed to 4°C). Previous studies have 

found that mammalian immortal cell lines, such as HeLa cells, incubated at 4°C for an 

hour and returned to 37°C, have mitotic activity that was reduced for approximately 17 

hours, after which it increases for two hours, with 60-80% cells resuming mitosis 

(Manabe, 1969; Newton & Wildy, 1959). This study provides evidence that HeLa cells 

behaved similarly to frog cells under the same environmental conditions, which further 

supports using THP-1 cells in my study. I believe similar results of this study would have 

occurred had I used a frog cell line to study the levels of cyclin B in frog cell incubated in 

hibernating bullfrog plasma, compared to non-hibernating. 

Previous research by Robbins (2017) found THP-1 cells incubated in hibernating 

bullfrog plasma, Lithobates catesbeianus, to be confined to the G2 stage of the cell cycle, 

unable to progress into mitosis, unlike the THP-1 cells cultured in non-hibernating 

bullfrog plasma. I tested for the levels of Cyclin B in THP-1 cells incubated in 

hibernating and non-hibernating bullfrog plasma, as it is essential for progression into 



29 

mitosis from the G2 stage, and previous studies have indicated that cyclin B expression 

may actually be decreased during hibernation (Zhu et al., 2016; Onufriev et al., 2016). 

My results show that there is no significant difference in cyclin B levels between THP-1 

cells cultured in hibernating and non-hibernating bullfrog plasma (Figure 4).   

Studying the activity of CDK1 can indicate if it is responsible for preventing 

THP-1 cells from undergoing mitosis, when cultured in hibernating bullfrog plasma, 

since activation of CDK1-cyclin B complex is essential for the progression of THP-1 

cells from the G2 to M stage. Studying the activity of other proteins such as CAK and 

CDC25, which are responsible for phosphorylating CDK1-cyclin B complex at its 

stimulatory regulatory site and dephosphorylating its negative regulatory site 

respectively, can also show if there is a change in activity of CDK1-cyclin B complex 

due to phosphorylation status. Further, this could determine if they play a role in 

preventing cells from progressing into mitosis from the G2 stage.  Looking for epigenetic 

changes, such as down regulation of genes that express proteins involved in the G2-M 

stage of mitosis and upregulation of genes expressing proteins that suppress the cell cycle 

would provide information regarding regulation of the cell cycle at the level of gene 

expression. Expression and activity of survivin in hibernating and non-hibernating 

bullfrog plasma might indicate a possible mechanism in which survivin is involved in 

preventing THP-1 cells from undergoing mitosis when cultured in hibernating bullfrog 

plasma. 

  



30 

REFERENCES  

Alvarado, S., Mak, T., Liu, S., Storey, K. B., & Szyf, M. (2015). Dynamic changes in 

global and gene-specific DNA methylation during hibernation in adult thirteen-

lined ground squirrels, Ictidomys tridecemlineatus. Journal of Experimental 

Biology, 218(11), 1787-1795. 

Carey, H. V., Andrews, M. T., & Martin, S. L. (2003). Mammalian hibernation: Cellular 

and molecular responses to depressed metabolism and low temperature. 

Physiological Reviews, 83(4), 1153-1181. 

College of the Redwoods, & Northern Virginia Community College. (n.d.). Control of 

the cell cycle. In Biology I. Retrieved from https://courses.lumenlearning.com/ 

biology1/chapter/control-of-the-cell-cycle/ 

Donzelli, M., & Draetta, G. F. (2003). Regulating mammalian checkpoints through 

Cdc25 inactivation. EMBO Reports, 4(7), 671-677. 

Fattaey, A., & Booher, R. N. (1997). Myt1: a Wee1-type kinase that phosphorylates Cdc2 

on residue Thr14. In Progress in cell cycle research (pp. 233-240). Boston, MA: 

Springer.  

Geiser, F. (2004). Metabolic rate and body temperature reduction during hibernation and 

daily torpor. Annu. Rev. Physiol., 66, 239-274. 

Harley, M. E., Allan, L. A., Sanderson, H. S., & Clarke, P. R. (2010). Phosphorylation of 

Mcl‐1 by CDK1–cyclin B1 initiates its Cdc20‐dependent destruction during 

mitotic arrest. The EMBO Journal, 29(14), 2407-2420. 

Heldmaier, G., Ortmann, S., & Elvert, R. (2004). Natural hypometabolism during 

hibernation and daily torpor in mammals. Respiratory Physiology & 

Neurobiology, 141(3), 317-329. 

Hochegger, H., Takeda, S., & Hunt, T. (2008). Cyclin-dependent kinases and cell-cycle 

transitions: Does one fit all? Nature Reviews Molecular Cell Biology, 9(11), 910-

916. 

Kruman, I. I., Ilyasova, E. N., Rudchenko, S. A., & Khurkhulu, Z. S. (1988). The 

intestinal epithelial cells of ground squirrel (Citellus undulatus) accumulate at G2 

phase of the cell cycle throughout a bout of hibernation. Comparative 

Biochemistry and Physiology Part A: Physiology, 90(2), 233-236 

Lolli, G., & Johnson, L. N. (2005). CAK—cyclin-dependent activating kinase: a key 

kinase in cell cycle control and a target for drugs? Cell Cycle, 4(4), 565-570. 

https://courses.lumenlearning.com/biology1/chapter/control-of-the-cell-cycle/
https://courses.lumenlearning.com/biology1/chapter/control-of-the-cell-cycle/


31 

MacDonald, J. A., & Storey, K. B. (2005). Mitogen-activated protein kinases and 

selected downstream targets display organ-specific responses in the hibernating 

ground squirrel. The International Journal of Biochemistry & Cell Biology, 37(3), 

679-691. 

Manabe, S. (1969). Parasynchronous Division of Strain L mouse Fibroblasts Cells 

Induced by Cooling. Arch Jap Chir, 38, 155-170.   

McMullen, D. C., & Hallenbeck, J. M. (2010). Regulation of Akt during torpor in the 

hibernating ground squirrel, Ictidomys tridecemlineatus. Journal of Comparative 

Physiology B, 180(6), 927-934. 

Melvin, R. G., & Andrews, M. T. (2009). Torpor induction in mammals: recent 

discoveries fueling new ideas. Trends in Endocrinology & Metabolism, 20(10), 

490-498.  

Newton, A. A., & Wildy, P. (1959). Parasynchronous division of HeLa cells. 

Experimental Cell Research, 16(3), 624-635. https://doi.org/10.1016/0014-

4827(59)90130-2 

Onufriev, M. V., Semenova, T. P., Volkova, E. P., Sergun’kina, M. A., Yakovlev, A. A., 

Zakharova, N. M., & Gulyaeva, N. V. (2016). The characteristics of the 

expression of the Cdk1 and Cyclin B1 Proteins in the brain of the Yakut ground 

squirrel (Spermophilus undulatus) at different stages of the hibernation 

cycle. Neurochemical Journal, 10(2), 106-114. 

Pollard, T. D., Earnshaw, W. C., Lippincott-Schwartz, J., & Johnson, G. T. (Eds.) (2017). 

G2 phase, responses to DNA damage, and control of entry into mitosis. In Cell 

biology (3rd ed.). Elsevier. https://doi.org/10.1016/B978-0-323-34126-4.00068-2 

Reed, S. I. (1997). Control of the G1/S transition. Cancer Surveys, 29, 7-23. 

Rieder, C. L., & Cole, R. W. (2002). Cold-shock and the Mammalian cell cycle. Cell 

cycle, 1(3), 168-174. 

Robbins, S. L. (2017). Anti-proliferative effect of hibernating American bullfrog, 

Lithobates catesbeianus, blood plasma on the THP-1 cells [Master’s thesis, 

University of Northern Iowa]. ScholarWorks. 

https://scholarworks.uni.edu/etd/436/ 

Society for Experimental Biology. (2014, June 30). "Hibernating frogs give clues to 

halting muscle wastage." ScienceDaily. Retrieved from 

www.sciencedaily.com/releases/2014/06/140630193413.htm 

  

https://doi.org/10.1016/0014-4827(59)90130-2
https://doi.org/10.1016/0014-4827(59)90130-2
https://doi.org/10.1016/B978-0-323-34126-4.00068-2
https://scholarworks.uni.edu/etd/436/


32 

Squire, C. J., Dickson, J. M., Ivanovic, I., & Baker, E. N. (2005). Structure and Inhibition 

of the Human Cell Cycle Checkpoint Kinase, Wee1A Kinase: An 

AtypicalTyrosine Kinase with a Key Role in CDK1 Regulation. Structure, 13(4), 

541-550. 

Tanaka, K., Iwamoto, S., Gon, G., Nohara, T., Iwamoto, M., & Tanigawa, N. (2000). 

Expression of survivin and its relationship to loss of apoptosis in breast 

carcinomas. Clinical Cancer Research, 6(1), 127-134. 

Terrano, D. T., Upreti, M., & Chambers, T. C. (2010). Cyclin-dependent kinase 1-

mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic 

arrest and apoptosis. Molecular and Cellular Biology, 30(3), 640-656.  

Underwood, W., Anthony, R., Cartner, S., Corey, D., Grandin, T., Greenacre, C., ... & 

Miller, D. (2013). AVMA guidelines for the euthanasia of animals: 2013 edition. 

Schaumburg, IL: American Veterinary Medical Association. 

Wu, C. W., & Storey, K. B. (2012). Pattern of cellular quiescence over the hibernation 

cycle in liver of thirteen-lined ground squirrels. Cell Cycle, 11(9), 1714-1726. 

Yan, J., Barnes, B. M., Kohl, F., & Marr, T. G. (2008). Modulation of gene expression in 

hibernating arctic ground squirrels. Physiological Genomics, 32(2), 170-181. 

Zhang, J., & Storey, K. B. (2012). Cell cycle regulation in the freeze tolerant wood frog, 

Rana sylvatica. Cell Cycle, 11(9), 1727-1742. 

Zhu, A., Chen, M., Zhang, X., & Storey, K. B. (2016). Gene structure, expression, and 

DNA methylation characteristics of sea cucumber cyclin B gene during 

aestivation. Gene, 594(1), 82-88. 

 

   



33 

APPENDIX 

 

 



34 

 

 

 



35 

 

 

 



36 

 

 

 



37 

 

 

 



38 

 

 

 



39 

 

 



40 

 

 

 



41 

 

 

 



42 

 

 

 



43 

 

 

 



44 

 

 

 


	Levels of cyclin B in THP-1 cells incubated in hibernating and non-hibernating bullfrog plasma, Lithobates catesbeianus
	Recommended Citation

	tmp.1587486867.pdf.lX74C

