Iowa Science Teachers Journal

Volume 17 | Number 3

Article 5

1980

Chemiluminescence

Erwin Richter University of Northern Iowa

Follow this and additional works at: https://scholarworks.uni.edu/istj

Part of the Science and Mathematics Education Commons

Let us know how access to this document benefits you

Copyright © Copyright 1980 by the Iowa Academy of Science

Recommended Citation

Richter, Erwin (1980) "Chemiluminescence," *Iowa Science Teachers Journal*: Vol. 17: No. 3, Article 5. Available at: https://scholarworks.uni.edu/istj/vol17/iss3/5

This Article is brought to you for free and open access by the IAS Journals & Newsletters at UNI ScholarWorks. It has been accepted for inclusion in Iowa Science Teachers Journal by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.

CHEMILUMINESCENCE

Erwin Richter Dept. of Chemistry University of Northern Iowa Cedar Falls, Iowa 50614

A dramatic chemiluminescence is described by Huntress, *et al.*,¹ which is based on the basic oxidation of luminol.² Luminol is 3-amino-phthalhydrazide or more correctly 5-amino-2,3-dihydro-1,4-phthala-zinedione. Its structure is

The materials necessary for performance of the demonstration are:

0.1% luminol (w/v)

5% NaOH (w/v)

2.5% potassium ferricyanide (w/v)

 $3\% H_2O_2$

From the above the following reacting solutions are prepared.

Solution 1

100 ml of 0.1% luminol plus 5 ml of 5% NaOH with enough water to make 1 liter total volume.

Solution 2

10 ml of 3% H_2O_2 plus 10 ml of 2.5% potassium ferricyanide with enough water to make 1 liter total volume.

The demonstration is most effective when performed in a darkened room. Pour solutions 1 and 2 simultaneously through a funnel into a third vessel. Color brilliance can be enhanced by adding some potassium ferricyanide crystals to the mixture.

To show that the light is cold light, solutions 1 and 2 can be poured over a block of ice. Sufficient light results in the reaction so that one may read a newspaper by it.

References:

¹Huntress, E.H., et al., J. Chem Ed, 11, 143 (1934). ²Luminol may be purchased from Eastman.