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BEYOND THE METRE (Part III ) 

Richard S. Tompkins 
Metric Education Consultant 
Mississippi Bend Area Education Agency 
2604 West Locust Street 
Davenport, Iowa 52804 

Introduction 

This article is the third in a series discussing the wide spectrum of 
metric units. The first dealt with some general aspects of the Interna­
tional System of Units (SI) and then went on to consider the metre, 
square metre, cubic metre and second. The second article described the 
kilogram and the metric units of velocity and acceleration. This article 
deals with metric units of density, force and pressure. 

The Kilogram Per Cubic Metre (kg/m3) 

The concept of density originated in the Middle Ages. (1) By itself, the 
term refers to the mass contained in a single volume unit of the material 
under consideration. We calculate density by measuring the mass of a 
chunk of the substance and dividing the result by the volume it occupies. 
This may be expressed 

mass of sample of substance 
den sity = volume of sample of substance 

One cubic metre of water, for example, has a mass of one tonne or 100 
kg. Using SI units, its density would be 

1000 kg 
density of water = ~ 

As shown in the previous article of this series, the expression above may 
be broken into numerical and label parts. Performing the arithmetic 
indicated yields 

kg 
density of water = 1000 m 3 = 1000 kg/m3 

Recalling the coherence of SI units, we can see that the SI unit of 
density is the kilogram per cubic metre. 

The density of gold is more than 19,000 kg/m3 • Gases at atmospheric 
pressure and common temperatures typically have densities of a few 
kilograms per cubic metre, somewhat larger than one might guess. 

Density may also be described by comparing the mass of the material 
under discussion to the mass of an equal volume of some standard 
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substance, such as water. This sort of ratio is called specific gravity, a 
term which may be familiar to persons who test automobile batteries or 
brew their own beer. The specific gravity of gold, for example, is 

specific gravity of gold = 
mass of 1 m3 of gold 

mass of 1 m3 of water 

19,000 kg/m3 

1,000 kg/m3 

kg/m3 

19 kg/m3 

specific gravity of gold 19 

When SI labels appear in both sides of a fraction, they may be 
removed. In this case, the operation eliminates all the units present. 
Specific gravity is a pure number with no associated units. Its value for a 
particular substance is the same in any measurement system, which can 
be a handy advantage. Furthermore, the specific gravities of common 
materials with reference to water are usually convenient numbers 
around unity. 

Measurement systems may be designed so that the specific gravity 
equals the numerical value of the density of any substance in the system. 
Expressing metric densities in terms of litres instead of cubic metres 
results in this convenience. In SI, however, the litre is not to be used in 
compounding units, and so specific gravity values differ from densities. 

The widest range of densities occurs in astronomy. A gas of density 
10- 1s kg/m3 fills the space between the stars. Neutron star densities, on 
the other hand, are roughly 1018 kg/m3 . 

Many college students have no adequate conception of density. Many 
merely memorize the incantation "mass per unit volume." Some of the 
difficulty even at this late age is in cognitive development, muddled 
further by a language which describes a pound of gold as "heavier" than 
a pound of lead. The 1979 World Almanac contains a table entitled 
"Density of Gases (kilograms per cubic metre)" which lists the values 
under a column headed "Wgt." 

The Newton (N) 

Friction rubs up against our lives in so many ways that everyday 
objects would seem to behave strangely without it. Via television, space 
exploration has pulled the frictionless environment of orbit into the 
living room. Let us imagine ourselves in space with a 2 lb can of coffee, 
far from the sun or any other powerful gravitational source. How will 
the can behave? 

Place the can at rest and watch it. It sits without moving. If there are 
no stars or planets or anything else in the vicinity, how can the observer 
be sure the can is really at rest? The easiest solution is to say that the can 
is not moving with respect to the observer. Jet plane passengers do this 
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whenever they calmly pour themselves a drink of soda pop while cruis­
ing at 1000 km/h. This journal may seem to be at rest to you, but it's 
actually zipping around the sun at nearly 30 km/s. 

The observer gives the can of coffee a brief push. It moves away. 
There is no friction in space to slow it down. Unless the observer catches 
it, the can will keep on moving slowly away forever. Nothing is making 
the can pick up speed either, once the observer stops pushing it. It 
moves away at constant velocity. 

The Renaissance physicist Galileo first recognized this situation, but 
today's student usually learns these results in the form Isaac Newton 
recounted them: 

A body at rest will remain at rest, and a body in motion in the same state of motion 
unless acted upon by an outside force. 

Imagine a can sailing by our space observer. Suddenly, it slows down. 
It has not remained in the same state of motion. According to Newton, a 
force of some kind must be acting on the can. In this sense, Newton's 
statement, which is called his "first law," defines force. We know a force 
is present when an object changes its velocity. 

A change in velocity is an acceleration, which SI measures in metres 
per second per second. Is there any way to predict how big a velocity 
change will occur when our observer pushes the coffee can? 

Newton answered this question in his second law, expressed in mod­
ern terms as "A given force accelerates an object in inverse proportion 
to its mass." This may be written symbolically as 

force = (mass of object)(acceleration produced by force) 

or simply 

F = ma 

All a physics student needs to do is plug in the values and then grind out 
the calculation. 

For a given object under normal circumstances (such as the coffee 
can) the mass is constant. If we double the force on it by pushing it twice 
as hard, the can will pick up speed twice as fast while being pushed. 
Applying the same force to objects of different mass accelerates them 
differently. 

Suppose a 2 lb object is accelerated 2 ft . per second per second. The 
formula gives 

force = (2 lbs.)(2 ft. per second per second) 

Arithmetic reveals that the force is "4", but four what? Suppose the 
mass were 2 g and the acceleration 2 miles per hour each minute. The 
answer is "4" again, but it is not likely to be the same "4". In order for the 
result to mean anything, its units must be clear. 
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One big advantage of SI is that it is coherent. Its units work together 
when used in a formula. If we measure the mass and acceleration in SI 
units, the force will be calculated in SI units as well. 

Our coffee can has a mass of about a kilogram. If we push it just hard 
enough to get it traveling one metre per second faster each second, after 
one second it has a speed of 1 mis. After another second it is moving 2 
mis. At the end of the third it is moving 3 mis. Ifwe plug this accelera­
tion and the kilogram mass into the formula , we have 

F ma 

force on can (mass of can)(rate can gains speed) 

(1 kg)(l m/s2) 

The numbers are easy enough to multiply, and we have shown that the 
labels can be treated just like numbers, in this case analagous to multi­
plying a fraction (mls2 ) times a whole number (kg). So we obtain 

force on can = 1 kg m/s2 

The SI unit of force is presumably the kilogram-metre per second 
squared. This string of syllables is inconvenient to pronounce and does 
not accept metric prefixes elegantly. The General Conference of 
Weights and Measures has therefore given the unit a name all its own. 
(2) In honor of the man who first worked out the relation between force 
and acceleration and mass, the unit is called the newton. 

Units which, as the newton has done, emerge from applying formulae 
are called derived units. (2) They may not have special names. The cubic 
metre and the kilogram per cubic metre are derived units. 

The name of the newton is written out in lower case to distinguish it 
from Newton's name, but its symbol is an upper case N. All but one of 
the SI units named in honor of individuals follow the same pattern. So 
many SI units are named for British scientists that the casual observer 
might expect SI to be an English system. 

Spring scales respond to the force that pulls their springs. They 
should be calibrated in newtons, not in kilograms. 

Since Galileo's time it has been known that all objects fall due to the 
pull of gravity on them with the same acceleration near the earth's 
surface. By Newton's law, the force of gravity which produces this 
motion must be given by the product of the object's mass and this 
gravitational acceleration, which is about 9.8 mls2• The force of gravity 
on a kilogram of matter is then given by 

F = m a = (1 kg)(9.8 m/s2 ) = (9.8 kg m/s2 ) = 9.8 N 

The pull of gravity on a 1 kg mass is about 10 newtons. 
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If you hold a 100 g object such as a flashlight battery, you are exerting 
a force of 1 newton on that object. The force of gravity on a falling apple 
is about a newton, appropriately enough. 

One "metric" unit that should never be used is the "kilogram-force", 
based on the pull of gravity upon a one-kilogram mass. The kilogram­
force makes the kilogram seem like a force unit. It is not coherent with 
other SI units. It varies from place to place like the pull of gravity. 
Trying to puzzle out the meaning of the term has been known to confuse 
students and college professors alike. The only solution is to never bring 
it up. Throw away spring scales calibrated in "kilograms." Using such 
misleading instruments in a classroom is like maintaining a dictionary in 
which the definitions have been mismatched to the words. 

The Pascal (Pa) 

The concept of pressure is related closely to force, and it turns up 
often in everyday life. Neglecting to check automobile tire pressures 
can result in needless wear and low gasoline mileage. Neglecting to 
check one's blood pressure can result in needless wear and low longev­
ity. Television weather reporters carefully inform viewers of the 
barometric pressure. 

It is not clear from everyday experience exactly what pressure is. 
Even commonly encountered units of pressure seem to be measuring 
different quantities. Tire pressures are monitored in "pounds per 
square inch," blood pressures in "millimetres of mercury," and 
barometric pressures in "inches of mercury" or perhaps "millibars." 
European tire gauges are labeled in "kilograms per square centimetre" 
and other units of pressure include the torr, the atmosphere and the inch 
of water. 

Imagine spreading 20 layers of aluminum foil on a tabletop one metre 
square. The foil will exert some pressure at each point on the table. Now 
fold the layers of foil in half. This doubles the foil's pressure on one half of 
the table (while the pressure due to the foil drops to zero on the other 
half). 

The pull of gravity on the foil is exerting a force on the table. Instead 
of being applied at just one point, the force of gravity is spread across 
the tabletop under the foil. Folding the foil doesn't change the force of 
gravity, it is just concentrating it more on one part of the table. 

Now add more foil to make the layer twice as thick. This will clearly 
double the pressure of the foil on the table. There is more foil for gravity 
to pull and so the force on the table top is also twice as great. 

These mental experiments suggest that pressure involves a force and 
an area to which it is applied. Increasing the force increases the pres­
sure. Increasing the area decreases the pressure proportionately. This 
situation may be described mathematically as 

force applied 

pressure = area force applied to 
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And this definition is born out by the name of a common customary unit 
of pressure, the pound per square inch. 

What is the metric unit of pressure? The millimetre of mercury may 
sound metric, but it does not have the form indicated above. Force is 
measured in newtons in SI, and area in square metres. The appropriate 
SI unit of pressure would then be the newton per square metre (N/m2). 

This is a small unit. Imagine dropping the one-newton apple men­
tioned in the last section into a food processor and spreading the 
applesauce which results evenly across the tabletop. The pressure at 
each point under the sauce would be one newton per square metre. 

Writing out "newton per square metre" becomes so tedious that the 
GCPM has given the unit its own name, the pascal; in honor of the 
tormented French genius Blaise Pascal (both scientist and literary 
giant) who invented the barometer. The pascal's symbol Pa consists of 
two letters. Although less elegant than a single letter, it combines in the 
same way with the prefix symbols. It must be capitalized. 

Instead of spreading out the applesauce, we might keep it in a smaller 
area and increase the pressure beneath it. Contained in a light alumi­
num can with an end of area 10 cm2 , the pressure underneath the sauce 
would now be 

1 newton IN 
pressure of sauce 

10 square centimetres 
1000 Pa 

0.001 m2 

The force on the applesauce has not changed at all. This major increase 
in pressure has come solely from confining the force into a smaller area. 

As pressures go, a kilopascal still is not very great. A toy balloon may 
hold air at a pressure 10 kPa higher than its surroundings. An au­
tomobile tire regularly needs 200 kPa of pressure. Scientists studying 
materials under very high pressure conditions commonly work in the 
gigapascal range. 

We breathe air at a pressure of about 100 kPa. Air pressure is 
important in accurate weather prediction. We can calculate the total 
force that air exerts on the side of a house. If the wall measures 10 m by 
20 m, its area is 200 m2 • On each square metre, air at 100 kPa exerts 
100,000 N of force. The total force on the wall is then 20,000,000 
newtons, or 20 meganewtons. Although the newton is small, this is a 
major force, enough to lift 2,000,000 kg. The house itself does not weigh 
this much, but it doesn't sail away because the force on this side is 
opposed by the air pressure pushing on the other side of the wall. 
Unbalanced air pressure can produce spectacular results. A one-sided 
pressure drop of 10% or so in tornadoes has been observed to result in 
the explosion of buildings. Air pressure decreases with altitude. At 80 
km it is down to one pascal. 

Feeling the pressure your.self? Here is a way to measure just how 
much pressure your feet are under. Step onto a piece of-newsprint and 
draw around your shoes. Measure the area of your soles with a trans­
parent square centimetre grid or by drawing such squares right on the 
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newspaper. Count the squares, giving a value of ½ for each partial 
square and 1 for each square fully enclosed by the outlines. Divide by 
10,000 to convert this number into square metres. The pull of gravity on 
you in newtons is about ten times your mass in kilograms. Divide this 
value by the area of your soles in square metres to find the pressure in 
pascals. If your feet hurt at the end of the day, now you know why. 
Calculate the pressure on your ankles to see why they are subject to 
injury. 

The subject of pressure is a current battleground between advocates 
of SI and proponents of older, non-coherent measurements . (3) 
Meteorologists wish to keep the bar, which is used in weather forecast­
ing. Physicians support retention of the millimetre of mercury (4), 
which refers to the pressure under a column of mercury 1 mm high. 
Normal human blood pressure in this unit is described with two values: 
120 and 80. Physicians find the unit convenient because they measure 
blood pressure with a device which actually uses a column of mercury. 
But how do such values relate to other pressures? It is clearer to 
describe the pressures as about 16 and 10 kPa, roughly the pressure in a 
balloon. The name "millimetre of mercury" sounds more like a measure 
of height than pressure and so obscures the nature of the quantity it 
purports to describe. Despite its long history, it is absolutely useless in 
combination with any other sorts of measures. 

Doctors will probably capitulate sooner or later, but the switch to­
ward SI with this quantity is moving very slowly for now. Tires marked 
in kilopascals have been declared safety hazards. Americans evidently 
feel little pressure to speed up metrication. 

Summary 

This article has reviewed the kilogram per cubic metre, the newton, 
and the pascal. The next article in this series will discuss SI units of 
energy, power and temperature. 
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*** 
Beak of the Week 

Research has shown that woodpeckers, at the peak of percussion, 
strike their beaks against trees at 1,300 mph. Upon impact, the birds' 
heads snap back with a force of 1,000 g's. Why don't they knock them­
selves out? 
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