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ABSTRACT 

The problem to be studied for this thesis was that of whether the usual 

statement calculus is a suitable formal system for every many-valued logic 

in a particular collection of logics. The logics in question are those that fall 

between the usual two-valued logic and a modified form of the nukasiewicz­

Tarski three-valued logic. 

Since this betweenness relationship was an original concept and 

appeared nowhere in the literature, the first goal in th~ .research plan was 

to define this relationship precisely. Preliminary concepts included.trnth. 

value mappin~ and for~yin~ness of logics, concepts that, like betweenness, 

are original to this paper and that facilitate the comparison of many-valued 

logics. After betweenness was defined, the next stage of the research would 

be to investigate the logics between the classical logic and the modified Lg 

and to see for which of these logics the statement calculus is suitable. This 

would involve direct calculations with truth tables as well as the use of any 

published results on the axiomatization and also the comparison of many­

valued logics. 

Because of the scarcity of work or literature on the problem of 

comparing many-valued logics, direct calculation turned out to be the most 

effective method of research. The introduction of a device called a .tru.th 

class table proved to be invaluable. Such a table allows the logician to work 

with ~ of truth values instead of with individual truth values themselves. 

Truth class tables were calculated that are characteristic of the logics 

under consideration. 

It was discovered that the usual statement calculus is not suitable for 

every logic between the two-valued logic and the modified Lg. The main 



result of the thesis is a theorem relating sufficient conditions under which 

a many-valued logic will have the usual statement calculus for a suitable 

formal system. It is not yet known whether these conditions are necessary 

as well as sufficient. Concluding remarks demonstrate, as a corollary to 

the main result, that for any integer n there exist n-valued logics for which 

the usual statement calculus is suitable. 
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CHAPTER I 

INTRODUCTION 

1 

The claim made quite casually by Rosser and Turquette, that "ever since 

there was first a clear enunciation of the principle 'Every proposition is 

either true or false,' there have been those who questioned it,"1 is not 

supported by those authors in their text, Many-Valued Lo~cs. It is, 

nonetheless, probably true; or perhaps we should say, in deference to their 

work, that the claim probably has a truth value close to, but not necessarily 

equal to, absolute truth. In any event, doubts about the bivalent or true-false 

nature of logic seem to have existed for some time. Even Aristotle, 

renowned for his embrace of two-valued logic, developed some arguments 

that, when interpreted in a certain manner, seemed to indicate that not all 

propositions were either true or false. 2 It is these doubts that ultimately led 

to the field we know today as many-valued logic. 

Postponing for a moment our examination of the development of many­

valued logic, we note that, for some time, ordinary two-valued logic existed 

primarily in the province of the philosophers. The first distinct systems of 

logic were that of Aristotle, the "syllogistic," and that of the Stoics, the 

"dialectic."3 i:.ukasiewicz regards the Stoic dialectic as the true ancestor of 

today's propositional logic, and he traces its further existence and 

development through the Middle Ages.4 Despite this early blossoming and 

long maintenance of logic in the hands of the philosophers, however, it was 

mathematicians who, hundreds of years later, truly expanded the 

1 Rosser and Turquette [21), p. 10. 
2 llukasiewicz [7], pp. 125-126. 
3 llukasiewicz [8], pp. 197-202. 
4 llukasiewicz [8], p. 198. 
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discipline. In the words of nukasiewicz, "modem logic is reborn out of the 

spirit of mathematics. "5 

The great mathematician and philosopher Gottfried Wilhelm von 

Leibniz was, according to Lewis and Langford, the "first serious student of 

symbolic logic, "6 because of his quest for both a language in which all of 

science could be expressed and a system for reasoning within that 

language. However, it was not until the nineteenth century that successful 

attempts were made to create a symbolic logic. George Boole in 184 7 

presented a system that would eventually be known as Boolean algebra; 

Lewis and Langford consider this system to be the foundation for later 

developments in the field.7 Gottlob Frege in 1879, Charles Peirce in 1895, 

and Bertrand Russell and Alfred North Whitehead in 1910 introduced 

successively better systems of propositional logic,8 and results involving 

these systems followed. 

Now that our review has reached the twentieth century, we can begin a 

discussion of many-valued logic, since it was during the first half of this 

century that many-valued logic began to be considered as a worthwhile area 

of study. Until then, the two-valued logic had been the system of choice. 

According to Kosko [ 4], however, two developments early in this century 

fostered a sense of doubt in, and dissatisfaction with, the black-and-white, 

bivalent view of science and mathematics. These developments were the 

discoveries of Russell's Paradox around 1900 and Heisenberg's Uncertainty 

Principle in the 1920s. In Kosko's words, "it took the new mathematics of 

5 1:.ukasiewicz [8], p. 214. 
8 Lewis and Langford [5), p. 5. 
7 Lewis and Langford [5], p. 9. 
8 1:.ukasiewicz [7], p.116. 



Russell and the new quantum mechanics of Heisenberg to make us first 

doubt, really doubt, the logic we inherited from Aristotle."9 

3 

Russell's Paradox involves membership in sets and is constructed, 

briefly, as follows. Objects can be elements of sets. In fact, sets themselves 

can be members of sets. Sets can even be members of themselves. For 

example, the set of all sets is a member of itself, as it is a set; the set of all 

infinite sets (sets with an infinite number of members) is also a member of 

itself, since it has an infinite number of members. Of course, not all sets 

are members of themselves. The set of all numbers, for example, is not a 

member of itself as it is not a number. The paradox becomes clear when we 

consider the set (call it F) of all sets that are .llQt members of themselves. Is 

F a member of itself? If so, then it is not a member of itself, since that is the 

condition for membership in F. Thus, F is not a member of itself. But if F is 

not a member of itself, then it satisfies the condition for membership in F, 

so F is a member of F after all. Thus, F is neither a member of itself nor a 

nonmember. The statement "Fis a member of itself' is neither true nor 

false--a paradox. 

One way to avoid this paradox is to introduce, as Russell did, a system of 

~ and then require that a set of one type can be a member only of sets 

with the next highest type. Under this restriction, no sets can be members 

of themselves. However, another solution is to introduce another truth 

value besides truth and falsity. Then the statement "F is a member of itself' 

can take this value. Russell himself experimented with this sort of solution 

in an article called "Vagueness. "1o 

9 Kosko [ 4), pp. 93-94. 
1° Kosko [ 4), p. 92n. 
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The other discovery, Heisenberg's Uncertainty Principle, states that it is 

impossible to measure both the velocity and the position of a particle. The 

more precisely the velocity is measured, the less precisely the position can 

be measured, and vice versa. Instead of stating that a particle has a certain 

velocity and a certain position, we can only state that the particle has a 

certain probability distribution for its velocity and another for its position. 11 

Thus, statements such as "particle A has this velocity" seem to be neither 

true nor false--especially as we measure particle A's position with greater 

and greater precision. 

These developments, writes Kosko, pointed away from the usual two­

valued logic where every proposition is either 0% true or 100% true, and 

toward a new viewpoint that led ultimately to the development of fuzzy logic, 

which we will mention later. However, before we leave the subject of 

quantum mechanics, we bring up two other concepts from this area that 

are related to the study of many-valued logics. 

First, there is the idea in quantum mechanics that certain quantum 

events exist not as actual events but as probabilities of events. For example, 

a particular radioactive atom may have a 50% chance of decaying within a 

certain amount of time. Until this decay affects something in the 

macrocosm--the resulting radioactive particle hits a detector or a human 

chromosome, for example--in other words, until the event is measured, it 

cannot be considered to have taken place or to have failed to take place. The 

atom has neither decayed nor failed to decay. Thus, the sentence "the atom 

has decayed" is neither true nor false until the measurement takes place. 12 

While we have found nothing in the literature to indicate that this concept 

11 Kosko [4], pp. 103-107. 
12 Penrose [15), pp. 375-378. 



led directly to any consideration of many-valued logics, we feel that it 

certainly could have led to such a consideration. 

5 

Another quantum mechanical concept that directly relates to many­

valued logics involves the principle that no causal signal or particle travels 

faster than light. Putnam [17] calls this the principle of "No action at a 

distance." Thus, if a star goes supernova four light-years from Earth, we 

on this planet cannot be affected by it in any way until at least four years 

have elapsed. However, there have been experimental results in quantum 

mechanics in which, though no particle was detected actually moving 

faster than light, there was no way the result could have occurred unless 

some particle actually had moved faster than light. 13 It was these 

contradictory results that prompted Hans Reichenbach to recommend a 

new approach to logic using a three-valued system in which it would be 

possible for both the "No action at a distance" principle and the 

experimental results to coexist. 14 

Thus, some of the impetus for studying many-valued logics seems to 

have come from both the realm of mathematics, in the form of Russell's 

and other paradoxes, and the realm of physics, as a result of work in 

quantum mechanics. However, a great portion of the early work on many­

valued logics came from a logician named Jan f.ukasiewicz of the 

University of Warsaw. The reason for his pioneering work in the 1920s and 

1930s seems to derive from neither mathematical paradoxes nor quantum 

oddities but instead from a philosophical issue, the question of free will 

versus determinism, as described below. 

13 Putnam [17), p. 77. 
14 See Putnam [17) for a fuller account. 
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It was stated earlier that Aristotle developed some arguments that 

seemed to discredit the principle of bivalence, that is, that every proposition 

is either true or false. As f:iukasiewicz relates [7], Aristotle started with the 

self-evident Law of the Excluded Middle. This law states that "P or not-P" is 

true regardless of whether P is true or false. He then argued that from this 

principle it followed that determinism was correct. However, as 

f:iukasiewicz writes, "Aristotle formulated his argument in support of 

determinism solely for the purpose of its subsequent rejection as invalid. "15 

f:iukasiewicz, like Aristotle, did not wish to accept determinism. 

However, unlike Aristotle, f:iukasiewicz accepted the argument leading 

from the Law of the Excluded Middle to determinism. To get around this 

difficulty, then, he developed many-valued logics in which the Law of the 

Excluded Middle does not hold. The best-known contribution of 

f:iukasiewicz in this area is his work with Alfred Tarski on the systems Ln 
of n-valued logic. These have since been studied by other authors16 and will 

be described in a later chapter. 

We make one final note on f:iukasiewicz. A careful reading of his 

argument leading to determinism from the Law of the Excluded Middle 

shows a mistake in the original step. The idea is to show that a statement 

"A or not-A" leads to a statement "if P is true, then P has been true at every 

time t." His argument begins with the choice of an arbitrary time t and 

consideration of the statement "Pis true at time t, or not-Pis true at time t." 

However, this does IlQi have the form "A or not-A. "17 f:iukasiewicz (and, if 

this is Aristotle's argument, then Aristotle also) has begged the question in 

15 l:,ukasiewicz [7], p. 125. 
18 Ackermann [1], pp. 37-43. 
17 l:,ukasiewicz [7], pp. 114-117. 
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his very first step. Nevertheless, noting all of the advances i:tukasiewicz 

made in the field of many-valued logic, we wonder where that field would be 

today if flukasiewicz had not made this error. 

Another name in the early history of many-valued logic is that of Emil 

Post. His contribution was primarily in one article [16] in 1921, in which he 

generalized some two-valued logical concepts to the case of many values. 

His work is noted by Rosser [20] and also by Rasiowa [18], who remarks that 

Post's work led eventually to the study of Post algebras. These are algebraic 

systems that reflect the nature of the Ln logics of flukasiewicz and Tarski. 

These, then, were some of the developments that led initially to the study 

of many-valued logics. A later landmark was the 1952 monograph Many­

Valued Logics by Rosser and Turquette. In this work, drawing on their 

own and others' previous contributions, Rosser and Turquette laid the basis 

for the theories of many-valued statement calculi and many-valued 

predicate calculi. 18 Their contribution in the area of many-valued 

statement calculi is impressive: they presented an algorithm for 

constructing, for any finitely many-valued logic satisfying certain standard 

conditions, an axiom system that reflects the structure of that logic. 19 The 

importance of that result cannot be overstated, since one of the main 

objectives in investigating a many-valued logic is to find an axiom system 

for it. 

11 The difference between a statement calculus and a predicate calculus is roughly as 
follows. A statement calculus involves methods for inferring, for example, the statement 
"Q" from the statements "If P, then Q" and the statement "P." A predicate calculus involves 
methods for inferring, for example, the statement "Socrates is mortal" from the statement 
"For any man x, x is mortal" and the fact that Socrates is a man. 

19 Rosser and Turquette [21], pp. 10-48. 
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Later developments in the study of many-valued logic involve Post 

algebras and fuzzy logic. Post algebras are algebraic structures based on 

Post's work. According to Rasiowa, they were first investigated by 

Rosenbloom and, since then, have been considered by Chang and Hom, 

Dwinger, Rousseau, and others. Post algebras consist of elements 

corresponding to truth values of a many-valued logic and operators that 

correspond to the usual statement connectors .IlQt, and, QC, and if,, ,then.~ 

They provide an algebraic framework for representing many-valued logics 

in much the same way Boolean algebras provide an algebraic framework 

for ordinary two-valued logic. As mentioned earlier, they correspond to the 

systems Ln of '.bukasiewicz and Tarski. 

Fuzzy logic is a related field that is currently playing a role in the 

development of smart circuitry and machines. The topic originated with 

Lotfi Zadeh of the University of California at Berkeley in a 1965 paper titled 

"Fuzzy Sets." Kosko [ 4] notes that in that paper, Zadeh considered set 

membership in terms of flukasiewicz's many-valued logic. Crisp, all-or­

nothing membership in sets does not exist in fuzzy logic. Take, for 

example, the set of tall men. We do not find a cutoff height, say six feet, 

such that all men taller than six feet are in the set and all men shorter than 

six feet are outside the set. Instead, we consider all men to be in the set to 

some degree.21 One who is six-foot-one may have an eighty per cent 

membership in the set, while one who is five feet tall may have just a twenty 

per cent membership. Machinery, such as washing machines, fans, and 

20 Rasiowa [18], pp. 132-133. 
21 In fact, we could consider all human beings to be in the set to some degree, with 

women and children having lesser degrees of membership. For that matter, we could 
consider all animals or all living things or all material objects to be in the set to some 
degree. 
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trains, that employs fuzzy logic in its circuitry tends to work better than 

machinery that uses binary circuitry. For an explanation of these technical 

matters, the reader is referred to Kosko [ 4]. What is significant for our 

purpose is that, first, fuzzy logic rejects the old principle of bivalence, and 

second, fuzzy logic was inspired in part by the work of fuikasiewicz. 

Other work in recent years has moved away from mathematics and 

toward that area where logic was housed for hundreds of years: philosophy. 

Recent efforts seem to be less interested in axiomatization, which is not 

surprising considering the extensive work of Rosser and Turquette in this 

area. Instead, philosophers are trying to interpret many-valued logic. For 

example, should a truth value reflect a probability? Should it reflect a 

degree of precision?22 

One topic that seems to be lacking in the current study of many-valued 

logics--in fact, it seems never to have been energetically addressed--is the 

comparison of many-valued logics, and it is to this topic that we tum in the 

present paper. As we explain later, there have been few attempts to 

compare arbitrary many-valued logics. The aims of the present paper are 

to present a general method for comparing many-valued logics and to 

investigate the behavior of certain logics that, under this comparison 

method, fall into a certain class. 

We begin by considering some relevant concepts in two-valued logic, and 

we continue by defining many-valued logics in general. A more thorough 

explanation of our objectives follows, as do the definitions of the necessary 

new concepts. Finally, our main result is stated and proved, and 

implications and directions for future research are discussed. 

22 See Marquis [12) and Weston [25). 



CHAPTER II 

REVIEW OF TWO-VALUED LOGIC AND 

THE USUAL STATEMENT CALCULUS 

Two-Valued Loe:i,c and Truth Tables 

10 

Before presenting the material on many-valued logics, we will review 

certain aspects of the usual two-valued logic, with which most people are 

relatively familiar. The most obvious aspect of this logic is that there are 

only two truth values, called ~ and fa1s.e. and abbreviated as "T" and "F" 

respectively. Using these truth values, we define four truth functions. A 

truth function is simply a rule that, given a finite list (or n-tuple) of truth 

values, assigns a single truth value to that list. For example, we might 

define a truth function h that assigns the value T to the list (T ,F) while 

assigning the value F to the list (F,T), which is different from (T,F) because 

of the order of its components. In such a case, our notation will be "h(T ,F) = 

T" and "h(F,T) = F," or, more commonly, "Th F = T" and "F h T = F." This is 

analogous to writing "2 + 3 = 5" instead of "+(2,3) = 5." Any particular truth 

function will assign truth values only to lists with a certain number n of 

arguments. If n is 1, then the truth function is unary; if n is 2, the truth 

function is binary. 

The four truth functions associated with the two-valued logic are 

negation, conjunction, disjunction, and implication. The first is 

symbolized by "~" and should be thought of as representing the English 

word Il.Q1. The function ... is unary; ~(T) = F and ~(F) = T. Thus, if a 

sentence Pis true, i.e., if P has the value T, then the sentence "not-P" is 

false, i.e., it has the value F. If Pis false, then "not-P" is true. 
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The second truth function is a binary one, symbolized by "/\" and 

representing the English word .and. The sentence "P and Q" is true only 

when P and Qare both true and is false otherwise; accordingly, T/\T = T, 

TI\F = F, F/\T = F, and F/\F = F. 

The third truth function is binary, symbolized by "V" and representing 

the English word Qt. The sentence "P or Q" is false only when P and Q are 

both false. Thus, TVT = T, TVF = T, FVT = T, FVF = F. 

The final truth function is another binary one, symbolized by "-" and 

representing the English phrase if ••• then. The sentence "if P, then Q" is 

false only when P is true and Q is false. For example, if P is the sentence 

"You buy two" and Q is the sentence "You get one free," then "if P, then Q" is 

the sentence "If you buy two, then you get one free," which is false only in 

the instance where you buy two and do not get one free. Thus, T-T = T, 

T-F = F, F-T = T, and F-F = F. All of these functions are illustrated in 

figure 1, which displays the information in truth tables. 

It is important to note that the functions/\ and V can be expressed in 

terms of the functions - and-. Instead of writing "PVQ," we may write 

"-P-Q," since, as the reader can verify, these two expressions will have the 

same truth value no matter what the truth values of P and Q are. For 

example, suppose P has the value F and Q has the value T. Then PVQ has 

the value T, as we see from the truth table forV. But -P has the value -(F), 

which is T; so -P-Q has the value -(F)-T, which is T-T, and this in turn 

is T by the truth table for - . 

Similarly, instead of writing "P/\Q," we may write "-(P.....-Q)." The 

significance of these observations is that, though the two-valued logic has 



nee:atitm conjunction 

p /\ T F 

T F T T F 

F T F F F 

disjunction im:ulication 
V T F - Q. T F 

T T T T T F 

F T F F T T 

Figure 1. Truth tables for the two-valued logic. 

four truth functions, we really Il..filill. only two of them. This fact will be a 

great help for the work to come. 

The Syntax of the Usual Statement Calculus 

12 

Our discussion of the two-valued logic has so far been an informal one. 

We can be forgiven our lack of precision. As long as mathematicians and 

logicians have studied the two-valued logic--since Aristotle's time, or 

earlier--it was not until the nineteenth century that formal and precise 

methods began to be developed for expressing and investigating the logic.23 

The tool that is now used almost universally to study the two-valued 

logic is called the statement calculus, 24 and it is the best example of a formal 

23 For an outline of these developments, see Copi [3], p. 7. 
2

• The phrase statement calculus is used by some authors in a more general sense. In 
all chapters to come, the statement calculus defined here will be referred to as the .Yfilllll 
statement calculus to avoid confusion. 
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system. To construct a formal system, we enumerate, first, certain axioms 

or beginning assertions, and second, certain rules of inference. All later 

assertions will be deemed acceptable or unacceptable not on the basis of 

their meaning (no meaning is imparted to the assertions), but on the basis 

of whether they follow from the axioms by successive applications of the 

rules of inference. 

Thus, if a system is to be truly formal, we should be able to work within 

it without any particular assumptions as to what it means . The reader 

should bear in mind, however, that while the statement calculus was 

formulated for the purpose of investigating the two-valued logic, no explicit 

mention of that logic will be made in the formulation of the statement 

calculus. 

The formulation of the statement calculus involves a series of 

definitions, which are more or less standard ones in mathematical logic. 

We use the definitions given by Margaris [11],25 as these definitions are very 

explicit, leaving nothing to the interpretation or the imagination of the 

reader. 

Definition: The following twelve symbols are the formal symbols of the 

statement calculus: 

- y ( ) X ex f3 'Y # 

Definitions: A string is any finite concatenation (ordering) of formal 

symbols. A variable is a string composed of one occurrence of "x" followed 

by zero or more occurrences of "I." A constant is a string composed of one 

occurrence of "y' followed by zero or more occurrences of "I." 

25 Some slight adaptations of the Margaris definitions have been made and are due to 
Millar [14]. 
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Though we do not formally attach any particular interpretation to the 

statement calculus, an informal explanation of motivations for these 

definitions is in order. Variables can be considered in the same sense here 

as in algebra: a variable is used to represent something that we want to talk 

about but cannot identify; its value is not fixed. A constant, on the other 

hand, represents something in particular, and its value is fixed. 

The next definitions need to be explained before they are given. A 

predicate in mathematics, like a predicate in English, is essentially a verb: 

it expresses something about an object or objects. For example, in the 

sentence "13 is prime," the predicate is "is prime"; the are:ument is the 

object talked about, which in this case is the number thirteen. Hence, the 

predicate "is prime" is a one-place predicate because it takes only one 

argument. Two-place predicates include "is equal to," "is greater than," 

and "is less than." Three-place predicates include "is between," as in, 

"point A is between point Band point C." 

Operations, on the other hand, are functions, like the truth functions 

discussed earlier. When given an n-tuple of the appropriate number of 

arguments, an operation assigns a value: for instance, addition("+") is a 

two-place operation that assigns to the 2-tuple (2,3) the value 5. Operations, 

like predicates, can be one-place, two-place, and so on. Unlike predicates, 

they do not assert anything about objects, but merely name objects. For 

instance, "2+3" does not say anything about 2 and 3; it just names their 

sum. However, "2+3 = 5" asserts something about that sum and the 

number 5, namely, that they are equal. 



Thus, with the above discussion in mind of what predicates and 

operations signify, we define symbols to represent them within the 

statement calculus. 

Definition: An n-place predicate symbol is a string composed of one 

occurrence of the symbol "a." followed by n occurrences of the symbol "#" 

followed by zero or more occurrences of the symbol "I." 

Definition: An n-place operation symbol is a string composed of one 

occurrence of the symbol "~" followed by n occurrences of the symbol "#" 

followed by zero or more occurrences of the symbol "I." 

In the definitions above, the roles of the symbols"#" and "I" are clear. 
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The number of occurrences of"#" is the number of arguments of the 

predicate or the operation. The occurrences of "I" are simply a tally; they 

distinguish between different n-place predicates or operations. 

Definition: Term is defined recursively as follows: 

1. All variables are terms. 

2. All constants are terms. 

3. If fis any n-place operation symbol, and t1, t2, ... , tn are terms, then 

£t:t1, t2, ... , tn) is a term. 

4. Only strings are terms, and a string is a term only if its being so 

follows from (1) to (3) above. 

Definition: Formula is defined recursively as follows: 

1. If G is any n-place predicate symbol, and t 1, t2, ... , tn are terms, then 

G(t1, t2, ... , tn) is a formula, called an atomic formula. 

2. If P is a formula, then ~P is a formula. 

3. If P and Qare formulas, then P-Q is a formula. 
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4. If P is a formula and vis a variable, then VvP is a formula. 

5. Only strings are formulas, and a string is a formula only if its being 

so follows from (1) to (4) above. 

The reader may have noticed that we have finally used all of the given 

formal symbols. Now that we can express sentences in it, the language of 

our formal system is complete. It remains only to set up a method for 

deciding which sentences are acceptable and which are not, much like 

separating the true sentences from the false ones. 

One more comment is in order before we continue. If we continue our 

discussion from above, interpreting predicates as verbs, terms as nouns, 

and so on, we can interpret the symbols"-" and"-" to mean "not" and 

"if ... then," respectively. No interpretation has yet been given for the symbol 

"V." It should be interpreted as "for all." Suppose, for example, that we 

have decided that, whenever the predicate symbol "a#" occurs within the 

system, it represents the predicate "is prime." Then the formula a#(x) 

asserts that "xis prime." Finally, then, the formula V:xa.#(x) asserts that 

"for all x, x is prime," or, "everything is prime." In this case, the formula 

a#(x) is said to lie within the scope of the symbol \ix, which is called a 

guantifier. If a quantifier occurs immediately before a formula in 

parentheses, as in \/xii (a#(xll) - -a##(xll ,xii)), then everything within the 

parentheses is said to lie within the scope of the quantifier. 

We must now set up the machinery for deciding which statements are 

acceptable. Such statements will be called theorems. We proceed in the 

time-honored mathematical tradition of laying down a few beginning 



formulas, called axioms, which will be regarded as acceptable 

immediately, and a very few rules of inference for deriving logically 

satisfactory formulas from other satisfactory formulas. 

We begin with a finite number of axiom schemes: 

Al. P - (Q - P). 

A2. (P - (Q - R)) - ((P - Q) - (P - R)). 

A3. (-Q - -P) - (P - Q). 

17 

When P and Q, or P, Q, and R, in the above axiom schemes are replaced 

with actual formulas, the resulting string is an instance of that particular 

axiom scheme, or, more simply, an axiom. 

Thus, we have an infinite number of axioms, but the key is that we only 

need a finite number of axiom schemes to express them. Our set of rules of 

inference is even simpler: there is only one rule of inference, called modus 

ponens, the well-known rule that from "if P, then Q" and "P," we can infer 

"Q." The acceptable statements (theorems) are found through proofs. 

Definition: A PIQ,Of is a finite sequence of formulas such that every formula 

in the sequence is 

(i) an axiom, or 

(ii) a formula inferred from two earlier formulas in the sequence by 

modus ponens (that is, a formula Q such that both P and P-Q have already 

occurred, in either order, in the sequence). 

Definition: A theorem is a formula that is the last step in some proof. 

This, then, is the formal basis of the statement calculus. 

Suitability and the Completeness Theorem 

The reader has no doubt noticed that the above formulation of the 

statement calculus made no mention of truth values, and also that the 
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earlier discussion of truth values made no mention of proofs. 

There is a good reason for this. In any study of logic, the objective is, in 

essence, to decide which sentences are acceptable and which are not. 

However, to be able to decide which sentences are acceptable, we must first 

have a set of sentences to consider. Our sentences are the formulas just 

defined. Once this set of sentences exists, there are different contexts in 

which to consider those sentences. One context is that of syntax or form. 

Syntactically acceptable sentences are those that are theorems. 

The other context is that of semantics or meaning. Semantically 

acceptable sentences are those that are tautologies. A tautology is a 

sentence that is always true no matter whether its component parts are 

true or false. The sentence "I have never seen this person before, and I 

resent the accusation" is not always true: in fact, it is false if the speaker 

has seen the person before or if the speaker doesn't really resent the 

accusation. However, the sentence "if the sky is cloudy, then the sky is 

cloudy" is always true, no matter whether the sky really is cloudy. Such a 

sentence is an example of a tautology; its component parts are two 

instances of the sentence "the sky is cloudy". We can symbolize such a 

sentence in the statement calculus with a formula of the form P-P. These 

two instances of the formula P are then the component parts, or prime 

constituents. of the formula P-P. We make the notions of prime 

constituent and tautology precise with the definitions that follow. 

Definitions: A formula is a prime formula if 

(i) it has the form \lvP, where vis any variable and Pis any formula, or 

(ii) it is an atomic formula that does not lie within the scope of a 

quantifier. 
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A prime constituent of a formula P is any consecutive part of P that is a 

prime formula. For example, if Pis -cx##III (f3#(x),x) -Vxllcx##(xll,xll), 

then the prime constituents of Pare cx##lll(f3#(x),x) and \/xllcx##(xll,xll). 

Once we have distinguished the prime constituents of a formula, we can 

assign a truth value to each prime constituent. We agree that identical 

prime constituents are assigned the same truth value. Then, if we 

interpret the symbols - and - in the formula to be the truth functions - and 

- , we see that the entire formula receives a truth value on the basis of the 

values assigned to its prime constituents. 

Definition: A tautology is a formula that receives the value T under m 
assignment of truth values to its prime constituents. 

Example: As noted above, the sentence "if the sky is cloudy, then the sky is 

cloudy" is a tautology, and this can be shown as follows. Suppose we are 

representing the predicate "is cloudy" within our system by the symbol 

"cx#III." Then, letting the constant -yl represent the sky, the above sentence 

becomes cx#lll(-yl)- cx#lll(-yl). The only prime constituent is cx#lll(-yl); when it 

is assigned the value T, the sentence receives the value T-T = T. When the 

prime constituent is assigned the value F, the sentence receives the value 

F-F=T. 

In fact, it is not always necessary to distinguish every prime constituent 

of a formula in order to pronounce the formula a tautology. For example, 

any formula with the form P-P will be a tautology, whether P itself is 

prime as in the above example, or whether Pis made up of hundreds of 

millions of prime constituents. This is so because no matter what values 

the prime constituents of P are assigned, P itself will always receive either 
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the value Tor the value F. We then need only consider the cases T-T and 

F-F, as above, to conclude that we have a tautology. 

The tautologies, then, can be thought of as the formulas that are 

acceptable under the logic. Since we earlier thought of the theorems of a 

formal system as the acceptable formulas within the formal system, the 

link between truth values and formal systems becomes clear: a formal 

system will be said to be suitable for a logic if the formulas that are 

theorems in the formal system are exactly the formulas that are tautologies 

of the logic. We do not define this concept precisely at this point, since we 

have not yet defined tautology for any logic other than the classical two­

valued one; indeed, we have not even defined ~ yet! However, the reader 

has probably guessed by now that the statement calculus is a suitable 

formal system for the classical two-valued logic. 

This result, called the Completeness Theorem,~ shows that the 

statement calculus does exactly what it was designed to do: it reflects which 

statements are tautologies in the classical two-valued logic. Once we 

generalize our discussion to include logics with more than two values, we 

will be concerned again with such a question: given a particular many­

valued logic, what kind of formal system has to be set up to reflect the 

tautologies of that logic? 

Certainly, we must introduce some more definitions to tell exactly what 

is meant by "many-valued logic" and "tautology," and these definitions will 

appear in the next chapter. However, a closing note for this chapter is in 

order, and it concerns the character of the given formulation--Margaris's-­

of the statement calculus. Many authors, when discussing many-valued 

26 For a proof of the Completeness Theorem, see Margaris [11]. 
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logics, and logics in general, postulate at the beginning a set of "sentential 

variables" p, q, r, .... ZT However, this avoids the question of just:whfil a 

"sentence" i.§., i.e., what objects can be substituted for a sentential variable. 

It also fails to state what the sentential variables themselves are, once the 

letters p through z have been used in the above progression. The Margaris 

framework is superior to any such vague formulation, in that it defines 

every part of the structure explicitly and thus leaves nothing up to the 

discretion of the reader. This is a desirable feature for any formal system. 

The reader should also be aware that while this formulation of the 

statement calculus does include an infinite number of variables, constants, 

predicates, and operations, it does IlJll require an infinite number of 

symbols to name them. To add a new name to our system, we just add 

another "#" or "I" mark. The entire system is expressible in terms of the 

given twelve symbols. This finitely expressible character is another feature 

that makes this formulation attractive. We shall return to the topic of finite 

expressibility. 

27 See hukasiewicz [8], Rosser and Turquette [21], Mendelson [13], Chang [2]. 



CHAPTER III 

GENERALIZATION TO MANY VALUES 

Requirements of a Many-Valued System 
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Our aim in this chapter is to define precisely the concept of a many­

valued logic. To this end, we consider certain notions that other authors 

have included, or have at least mentioned, in their definitions of the 

concept. Our definition will be essentially that of Mendelson [13], with 

slight alterations in deference to hukasiewicz [6] and Rosser and Turquette 

[21]. 

The reader will recall, from the last chapter, the meaning of atomic 

formulas of a formal system. Such formulas are those that, quite simply, 

cannot be decomposed into smaller formulas; they are the basic sentences 

of the language of the formal system. Similarly, in the study of many­

valued logics, it is assumed that there exists some set of formulas, each of 

which will take one of the truth values of the logic, or of formula variables, 

each of which will range over the set of truth values of the logic when the 

set of truth values is defined. Usually these formulas (or formula variables) 

are referred to as statements (or statement variables). Margaris [12] 

defines a statement as a formula in which no variable v occurs outside the 

scope of the quantifierYv. However, the term is usually used in a more 

general sense to mean any sentence, and we adopt such usage here. 

After the manner of Rosser and Turquette [21], we make these 

statements (or formulas) our first requirement for a many-valued logic. 

Thus, a many-valued logic will be said to be defined for a set of formulas. 

In all cases we will consider, this set of formulas will be exactly those 

constructed in the manner of Margaris [12], described in the last chapter. 
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Second, we must choose a set of truth values to represent varying 

degrees of acceptibility for the statements. There are many ways to choose 

these values (for example, Chang's [2] choice of all values in the interval 

[-1,1]), but the two most common choices are as follows. First, for an M­

valued logic, Rosser and Turquette [21] and Mendelson [13] choose the 

integers from 1 to Mas their truth values, with 1 representing absolute 

truth and M absolute falsity. Such a truth-value set has two disadvantages 

from the standpoint of the present paper. First, it is counterintuitive, in 

that greater numbers correspond to lesser degrees of truth. Second, our 

purpose is to compare logics that may differ in their number of truth 

values, and comparisons cannot readily be made between, for example, a 

logic whose truth values are 1, 2, and 3 and one whose truth values range 

from 1 to 1000. The other manner of choosing truth values, used by 

fiukasiewicz in the majority of his papers,28 is the one we will use for the 

present paper. This system places falsity at zero and truth at one, so that it 

not only agrees with our intuition that a greater truth value should 

correspond to a greater degree of truth but also facilitates comparisons 

between logics. It further fits our intuition when compared to Boole's Laws 

of Thought or to probability theory. Finally, this placement of truth and 

falsity also admits logics with an infinite number of truth values. 

Third, we need a set of truth functions, which are functions on the set of 

truth values. For example, the - of the classical two-valued logic is a truth 

function from {0,1} to {0,1} such that -(0) = 1 and -(1) = 0. We will suppose 

that these truth functions can be symbolized by the statement connectors 

among the formal symbols that constitute our set of formulas. For 

28 See hukasiewicz [7], p. 141, and hukasiewicz and Tarski (10], p. 87n. 
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example, the truth functions - and - are symbolized by"-" and"-" within 

the formulas we constructed in the preceding chapter. 

The distinction between a statement connector and its corresponding 

truth value function is a conceptually important but fairly obvious one; 

consequently, while some authors (notably Rosser and Turquette [21] and 

Mendelson [13]) are always careful to draw the distinction, others 

(i:iukasiewicz [8], Chang [2]) seem to regard it as sufficiently clear without 

further elaboration or different notation. In the present paper, we note the 

distinction, but we use the same symbol to denote both the statement 

connector and its corresponding truth function. The usage will always be 

obvious from the context. 

Finally, Rosser and Turquette [21] and Mendelson [13] require the choice 

of an integer S such that 1 ~ S < M (recall that here the integers 1 to M are 

the truth values of the logic). Once this choice has been made, the integers 

1, ... , Sare called designated values, and should be thought of as the values 

that are "true enough" for a specific purpose. The integers S+l, ... , Mare 

then the undesignated values, those that are not "true enough." It is worth 

noting that i:iukasiewicz's work does not include the general concept of 

designated values; when designated values are considered at all, the only 

designated value is absolute truth.zi However, we will follow the procedure 

of Rosser and Turquette and Mendelson, with a definition for designated 

values on our zero-to-one scale that is analogous to the definition on their 

scale. We will also define designated values for logics with infinite 

numbers of values. 

29 See, for example, hukasiewicz [6], pp. 283ff. 



Many-Valued Loejcs and Suitability 

With the above considerations in mind, then, we make the necessary 

definitions as follows. 

Definitions: An n-yalued loeic is a quadruple <P, V, f, S>, where 

(i) P is a set of formulas; 

(ii) Vis the set {k/(n-1): k = 0, 1, ... , n-1}; 

(iii) f is a finite collection of functions on the set V, such that each 

element off is represented by a stat~~ent connector among the 

formal symbols of P; and 

(iv) S is a nonzero element of V. 
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Then the set Vis called the set of truth values of the n-valued logic. The 

elements off are called the truth functions of the n-valued logic. The 

elements of the subset {x e V : x ~ S} are called the desiimated values of the 

n-valued logic, and elements of the complement {x e V : x < S} are called the 

undesignated values of the n-valued logic. 

Definitions: An infinite-valued logic is a quintuple <P, V, f, V 1, Vo>, 

where 

(i) P is a set of formulas; 

(ii) Vis the interval [0,1] or Vis the set {x e [0,1] : xis rational}; 

(iii) f is a finite collection of functions on the set V, such that each 

element off is represented by a statement connector among the 

formal symbols of P; and 

(iv) V 1 and Vo are disjoint subsets of V such that V 1VV o = V and, for 

every x1 in V 1 and every xo in Vo, x1 > XO· 
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Truth values and truth functions are defined as for an n-valued logic. 

The elements of the set V 1 are called the desi~ated values of the infinite­

valued logic, and the elements of the set Vo are called the undesignated 

values of the infinite-valued logic. 

Definition: A many-valued logic (or, a~) is an n-valued logic (n a 

positive integer) or an infinite-valued logic. 

The reader can verify that these definitions comply with the 

requirements listed in the previous section.· Notice that we could have 

defined designated and undesignated values in then-valued case the same 

way we defined them in the infinite-valued case, that is, by delineating sets 

V 1 and VO rather than by choosing a number S to serve as the lowest 

designated value. However, because of the requirements and practice of 

Rosser and Turquette [21] and Mendelson [13], choosing a lowest designated 

value seems more appropriate historically in then-valued case. Thus, we 

use this definition for then-valued case. Such a definition would be 

needlessly restrictive for an infinite-valued logic, which may or may not 

have a lowest designated (or a highest undesignated) value. 

Our purpose, given a many-valued logic, is to find a formal system that 

"matches" the logic, i.e., a system that is suitable for the logic; we define 

this concept below. The reader will notice that the definitions for prime 

constituent, tautology, and suitability are analogous to the definitions made 

for the same terms within the context of the classical two-valued logic. 

Definitions: Let L be a many-valued logic defined on a set of formulas 

whose statement connectors F1, F2, ... , Fm correspond to the truth 

functions f1, f2, ... , fm of the logic L. Let P be a formula in this set. Then 

prime constituent of P is defined recursively as follows: 
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(i) if P is an atomic formula, that is, P contains no occurrences of the 

statement connectors F1, F2, ... , Fm except those that are inside the scope of 

quantifiers, then the prime constituent of P is P itself; 

(ii) if P is Fi(Q 1, Q2, ... , Qij), where ij is the number of arguments of the 

connector Fi, and where Q1, Q2, ... , Qi; are formulas, then the prime 

constituents of Pare all of the prime constituents of Q1, Q2, ... , Qij; 

(iii) only formulas of the posited set are prime constituents, and a 

formula in this set is a prime constituent only if its being so follows from 

conditions (i) and (ii) above. 

A formula P is a tautolo~ of the logic L if, under any assignment of 

truth values of L to the prime constituents of the formula P, the 

corresponding truth function takes a designated value. 

A formal system is suitable for a many-valued logic if the theorems of 

the formal system are precisely those formulas that are tautologies of the 

many-valued logic. 

As an example, consider the many-valued logic L3introduced by Jan 

hukasiewicz [9] and later studied, with other, similar logics, by 

hukasiewicz and Tarski [10]. The set of truth values of L3 is {O, 1/2, 1}. The 

truth functions of L3 correspond, as might be expected, to lli!t, .and, m:, and 

if ..• then and are illustrated in figure 2. These truth functions are 

symbolized, respectively, by N, K, A, and C, and they can be expressed 

numerically as follows. If the statement P1 has truth value p1, then NP1 

has truth value 1- Pl· If statements P1 and P2 have truth values Pl and P2, 

respectively, then P1 KP2has the truth value min{p1, P2}; P1 A P2has the 
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N R C ~ 1 1/2 0 

1 0 1 1 1/2 0 

1/2 1/2 1/2 1 1 1/2 

0 1 0 1 1 1 

K P2. P. 1 1/2 0 A 1 1/2 0 

1 1 1/2 0 1 1 1 1 

1/2 1/2 1/2 0 1/2 1 1/2 1/2 

0 0 0 0 0 1 1/2 0 

Figure 2. Truth functions of the logic 13. 

truth value max{p1, P2l; and P1 C P2has the truth value min{l, P2- p1+1}.00 

For example, suppose that the statement P 1 has the truth value 1/2 and P2 

has the truth value 0. Then, by the above formula, P1 C P2 has the value 

min{l, 0 - 1/2 + 1} = min {1, 1/2} = 1/2, as we verify by consulting the table. 

As in the two-valued logic, it is possible to define some of these functions in 

terms of the others. Given statements P and Q, regardless of their 

individual truth values, P A Q always takes the same truth value as 

(P C Q) C Q; thus, whenever a formula of the form P A Q appears, we can 

replace it with the appropriate expression of the form (P C Q) C Q. 

Similarly, PKQ always takes the same truth value as N((NP)A (NQ)), or, 

30 The functions given for N and C above are as given by Ackerman [1], p. 40, and by 
Rosser [19], p. 137. The others are adapted from the functions given by Rosser and 
Turquette [21], p. 15, where the truth values are instead the set {1, 2, 3}. 
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in light of the above observation, by N (((NP) C (NQ)) C (NQ)).31 Thus, every 

truth function of L3 can be expressed in terms of N and C. 

Other systems Ln, where n is the number of truth values for the logic, 

were studied by hukasiewicz and Tarski32 
; in these systems, the functions 

N and C are defined numerically as above, and the functions Kand A are 

defined in terms of them. The logic L2 is then the classical two-valued 

logic. Similar functions are defined for the infinite-valued hukasiewicz­

Tarski logic, whose truth values range over the interval [0,1].33 In each 

case, there is only one designated value which, of course, is 1. 

For each logic Ln, with n > 2, there exist formulas that are tautologies 

in L2 but are not tautologies in Ln. For instance, P A (NP), the Law of the 

Excluded Middle, is not a tautology in L3, since if P has truth value 1/2, 

then NP has truth value 1/2, and so PA (NP) has truth value max {1/2, 1/2} 

= 1/2. In fact, the Law of the Excluded Middle is not a tautology in any Ln 

with n > 2. We assume that this fact was noticed byhukasiewicz, who, by 

his own account, 34 wished to avoid that particular law. However, suppose 

we loosen our requirements a bit for L3, and designate instead the values 1 

.and 1/2. Then the Law of the Excluded Middle and many other formulas 

that are not tautologies of L3 become tautologies of the new logic, which we 

will henceforth denote as L3'. 35 

31!:Jukasiewicz dispensed with parentheses through a notation known as Polish 
notation; as Polish notation is not necessary, we omit discussion of it here and use 
parentheses instead. 

32 See Ackerman [1]. 
33 See Rosser [19]. 
34 Seei::Jukasiewicz [7]. 
35 For example, N (P K (NP)), which says that a statement and its negation are not both 

acceptable, is a tautology in L3' but not in L3, as the reader can easily verify. 
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Our original indication was that such a logic would have as tautologies 

exactly those formulas that are tautologies in the classical two-valued logic. 

However, some of the steps leading to this conclusion were faulty, and we 

are unsure whether it is in fact so. It is known that the set of tautologies of 

L3' is a subset of the set of tautologies of the classical two-valued logic, 

which we will henceforth denote as C. Whether these sets are in fact the 

same remains to be proved. 

The importance of the logic Lg for the present work will be made clear 

in the following chapter. In the remaining discussions, we shall denote the 

truth functions N and C of Lg' as"-" and"-", respectively. 

A final word is in order before we continue to the work of the present 

paper. The purpose in studying a many-valued logic is, at least for us, to 

find a suitable formal system for it. However, as Mendelson notes,36 this 

can always be done in at least a trivial manner: we simply take, as axioms 

for a formal system, the set of all tautologies of the logic; and we dispense 

with rules of inference altogether. Such a procedure, however, would be 

uninteresting and, from a mathematical point of view, wasteful, since some 

of the tautologies could perhaps be derived from others, given appropriate 

rules of inference. It is our aim instead to find a finite axiomatization--that 

is, one with a finite number of axiom schemes and a finite number of rules 

of inference. Such a structure is more interesting from a mathematical 

point of view and fulfills our desire, mentioned in the last chapter, for finite 

expressibility. 

That such a finite axiomatization exists for a large class of finitely 

many-valued logics was demonstrated by Rosser and Turquette [21]. It is 

36 See Mendelson [13], p. 37. 



our aim in the present paper to specify, for a certain collection of many­

valued logics, that they can in fact be finitely axiomatized by the usual 

statement calculus. 

31 
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A survey of the literature indicates that little has been attempted in the 

area of comparin~ many-valued logics. In fact, there seem to be just two 

contexts in which such comparisons have been considered. The first 

involves the systems Ln described before. As mentioned, some formulas 

that are tautologies of C (= L2) are not tautologies for any Ln with n > 2. In 

fact, the set of tautologies of any system Ln with n > 2 is a proper subset of 

the set of tautologies of C. In this sense, C is being compared to the other 

systems Ln. 

The second context is discussed in the article by Schock [23]. Neither of 

these cases involves the sort of generality that is of interest for the present 

study. The systems 1n. all involve the particular functions N and C as 

described earlier, and Schock assumes certain "standard conditions" on the 

logics in question. 

The assumptions we make in the present paper will be much less 

restrictive than those made for the Ln or those made by Schock. On the 

other hand, our assumptions will be sufficiently powerful to guarantee a 

relatively uniform structure for the logics in which we are interested. The 

main concept is that of betweenness, which was conceived during the 

writing of the 1992 paper [24]. In this paper, a three-valued logic M was 

investigated and found to have the usual statement calculus as a formal 

system. This logic Mis nearly identical to the logic L3'; the only difference 

occurs in the (1/2) - (1/2) entry of the truth table for implication. In the 

logic L3', (1/2)- (1/2) has the value 1; in M, it has the value 1/2. The usual 
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statement calculus is suitable for the logic C and appeared to be suitable for 

1 3' as well. It is also suitable for the logic M, which is between C and 13' in 

the sense mentioned above. The question that presents itself is as follows: 

Is the usual statement calculus suitable for .all logics between C and 13'? 

To answer this question, we must make precise our notion of 

betweenness and all of the concepts involved in comparing many-valued 

logics. We do so in the next chapter. 
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The aim of the present paper is to investigate a certain class of logics: 

those that are between the classical two-valued logic C and the modified 

Lukasiewicz three-valued logic L3'. In this chapter, we make precise this 

notion of betweenness by introducing some machinery for comparing 

logics. We also discuss some characteristics of the logics between C and 

L3'. 

Standardization of Truth Values 

The notion of betweenness involves a comparison of many-valued logics. 

Such a comparison, in turn, requires a certain uniformity between the 

logics to be compared. We have taken a step toward such uniformity by 

standardizing the sets of truth values, setting truth to one and false to zero 

for any many-valued logic. However, further standardization is necessary. 

If we are to compare logics, then it seems appropriate to do so by comparing 

their respective truth functions. However, difficulties soon surface if the 

truth values of the logics have not been standardized beyond the zero-to-one 

scaling. 

The first difficulty is that truth function tables for logics of differing 

numbers of truth values cannot properly be compared. It seems reasonable 

that we should call one truth function f more forgiving than another truth 

function g if, given any ordered n-tuple of truth values as arguments, the 

value off applied to those arguments is either the same as, or closer to truth 

than, the value of g applied to those arguments. For example, we would 

consider the function - of the classical two-valued logic to be more 

forgiving than the/\ofthe same logic, since F-T = Twhile F/\T = F, F-F = 
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T while F /\F = F, and the functions agree on the other possible argument 

values. Apparently, then, given the truth tables in figure 3, in which f and 

g agree on all common ordered pairs except (1,0), we should consider the 

function f (from a four-valued logic) more forgiving than the function g 

(from a three-valued logic), since fU,O) = 2/3 and g(l,O) = 1/2, and 2/3 is 

closer to one than 1/2 is. 

f 1 2/3 1/3 0 g 1 1/2 0 

1 1 1 1 2/3 1 1 1 1/2 

2/3 1 1 1 1 1/2 1 1 1 

1/3 1 1 1 1 0 1 1 1 

0 1 1 1 1 

Figure 3. Functions on different sets of truth values. 

However, of 1/2 and 2/3, each is only one truth value away from absolute 

truth in its respective logic. Further, while we have standardized each 

logic to make 1 absolute truth and O absolute falsity, our assignment of the 

fractions k/(n-1) to the middle truth values was arbitrary. These 

considerations suggest that it is improper to see the 2/3 of one logic as "truer 

than" the 1/2 of another logic, so it is a dubious move for us to pronounce f 

more forgiving than gin this manner. In addition, f, because it ranges 

over a greater number of truth values, has lines in its truth table that do not 

even exist in the truth table for g. We cannot directly compare the truth 

tables for f and g without either leaving these lines out or constructing 



analogous lines for the g truth table, and neither course of action seems 

proper. 
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The second difficulty that presents itself is that even if two logics have 

the same number of truth values, they may differ in their sets of designated 

values. Certainly any comparison between logics should take designated 

values into account. This is especially true when the study is tied 

intimately to the determination of which tautologies are theorems, and thus 

to which formulas are tautologies. Thus, if the sets of designated values 

differ, it is again improper to compare truth tables directly. Consider, for 

example, the functions cpl and cp2 whose truth tables are displayed in figure 

4. The tables themselves are identical. However, if cp1 is a truth function in 

a logic whose designated values are 1, 2/3, and 1/3, and cp2 is a truth 

function in a logic whose only designated value is 1, then cp1 should be 

considered more forgiving than cp2. In other words, the tables by 

themselves cannot discriminate between the logics. 

As another example of identical truth functions in logics with differing 

sets of designated values, compare the truth functions from the three­

valued logic L3 with the corresponding functions in our adaptation L3' of 

L3. 

To eliminate the difficulties outlined above, we introduce the concept of a 

truth-value mappine:. 

Definition: Let J and K be j- and k-valued logics, respectively, where j ~ k. 

(We will understand this to include the cases where J is an infinite-valued 

logic and Kisak-valued logic, and where J and Kare infinite-valued logics 

but K has countably many truth values.) A truth-value mapping from J to 
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cpl 1 2/3 1/3 0 cp2 1 2/3 1/3 0 

1 1 2/3 1/3 0 1 1 2/3 1/3 0 

2/3 1 1 2/3 0 2/3 1 1 2/3 0 

1/3 1 1 1 0 1/3 1 1 1 0 

0 1 1 1 2/3 0 1 1 1 2/3 

Figure 4. Functions on logics with different sets of designated values. 

K is a function ffrom the set of truth values of J onto the set of truth values 

of K such that 

(i) f(lJ) = lK and f(OJ) = OK, that is, fmaps the truth and falsity of J to the 

truth and falsity, respectively, of K; 

(ii) if J has a least designated value not equal to 1, then this value is 

mapped to the least designated value of K (if it exists); similarly, if J has a 

greatest undesignated value not equal to 0, this value is mapped to the 

greatest undesignated value of Kif it exists; and 

(iii) for any distinct truth values x and y of J, ifx > y, then f(x)~f(y). 

Example: Let J and K be five- and four-valued logics, respectively. Let 1 

and 3/4 be the designated values for J, and let 1 and 2/3 be the designated 

values for K. Then figure 5 illustrates a truth-value mapping from J to K. 

There is only one other truth-value mapping from J to K; it is as in figure 5, 

except that it maps 1/4J to 1/3K. Note the form of the diagram. 

Diagramatically, a truth-value mapping is a mapping for which none of the 

arrows cross. 



J values K values 

1------------~~ 1 

3/4-----------~ 2/3 

2/4 1/3 

W 0 

0 

Figure 5. A truth-value mapping. 
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Example: Consider the three-valued logic M investigated in [24]. Only one 

truth-value mapping g from M to L3' exists. The designated values for each 

of these logics are 1 and 1/2, so g must map 1 to 1, 1/2 to 1/2, and Oto 0. Also, 

there is only one truth-value mapping h from M to the classical two-valued 

logic: it maps 1 to 1, 1/2 to 1, and Oto 0. 

With the·concept of a truth-value mapping in place to standardize our 

logics further, we can make the necessary comparisons between truth 

functions. We now make precise the concepts of more forgiving and less 

forgiving. 

Definitions: Let J and K be j- and k-valued logics, respectively, where j ~ k. 

Let fbe a truth-value mapping from J to K Let cp1 be an m-place truth 

function of J, and let <?2 be an m-place truth function of K. 

Suppose that, for any truth values x1, x2, ... , xm of J, the truth value 

f(cpi(x1, x2, ... , xm)) is greater than or equal to the truth value 
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cp2(f(x1), f(x2), ... , f(xm))· Then cp1 is said to be as forei,vin~ as mz.,mfu 

respect to f. If cp1 is as forgiving as cp2 and strict inequality holds for some 

m-tuple of truth values--that is, if f(cp1(x1, x2, ... , xm)) > cp2(f(x1), f(x2), ... , 

f(xm)) for some x1, x2, ... , xm--then cp1 is more forei,vin~ than mz.,mfu 

respect to f. 

Similarly, suppose that, for any truth values x1, x2, ... , xm of_J, the 

truth value f(cp1(x1, x2, ... , xm)) is less than or equal to the truth value 

cp2(f(x1), f(x2), ... , f(xm))· Then cpl is no more forei,vin~ than m2 with respect 

to.£ If strict inequality holds for some m-tuple of truth values, then cpl is 

less forei,vin~ than m2 with respect to f. 

If cpl is neither no more forgiving than nor as forgiving as cp2 with 

respect to f, then cpl and cp2 are not comparable with respect to f; otherwise, 

they are comparable with respect to f. 

It is not known whether a truth function that is less or more forgiving 

than another truth function under one truth-value mapping will have the 

same relation to the second function under another truth-value mapping. 

However, for the results obtained in the present paper, we only need one 

truth-value mapping to exist for any relationship of forgivingness. Thus, if 

the particular truth-value mapping is obvious from the context, we drop the 

phrase "with respect to f." 

Examples: With respect to the truth-value mapping h described earlier, the 

truth function - from the logic M is more forgiving than the truth function 

- from the classical two-valued logic C. Equality holds in the definition of 
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more forgiving, except in the ~(1/2) case: h(-M(l/2)) = h(l/2) = 1 > 0 =~cl= 

~c(h(l/2)). Also, the function - from the logic Mis more forgiving than the 

function - from C. Equality holds in the definition of more forgiving, 

except in the (1/2) - 0 case: h((l/2) -M 0) = h(l/2) = 1 > 0 = 1-c 0 = 

h(l/2) -c h(0). 

As the reader can verify, with respect to the truth-value mapping g 

described earlier, the function - from Mis no more forgiving than the 

function - from L3', and the function - from M is less forgiving than the 

function - from L3'. 

Now we can compare truth functions. When we take the next step-­

comparing entire logics--it seems reasonable that if all of the truth 

functions of a logic A 1 are as forgiving as the truth functions of a logic A2, 

then we should consider A 1 to be "as forgiving as" A2, We must be 

cautious, however, about which truth functions we compare. Obviously we 

cannot compare a unary function of A 1 to a binary function of A2, More 

generally, if m is not equal to n, we cannot compare any m-place function of 

A 1 to any n-place function of A2, In addition, two different logics may have 

differing numbers of truth functions, as figure 6 illustrates. Even with a 

truth-value mapping in place, we are unable to compare the logics A1 and 

A2, because we have no way to decide whether to compare the function f to 

g1 orto g2. 

We eliminate such a difficulty by assuming that for any logic under 

consideration, every truth function of the logic can be expressed in terms of 

two truth functions f and g that may or may not be among the truth 

functions of the logic. Because of our special interest in the logics C and 

Lg', and because for each of these there exist a unary function - and a 
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Logic A1 

f 1 2/3 1/3 0 gl 1 1/2 0 g2 1 1/2 0 

1 1 1/3 1/3 1/3 1 1 1/2 0 1 1 1 1 

2/3 1 2/3 1/3 1/3 1/2 1 1/2 1/2 1/2 1 1/2 0 

1/3 1 1 2/3 1/3 0 1 1 1/2 0 1/2 1/2 0 
I 

0 1 1 2/3 2/3 

Figure 6. Logics with different numbers of truth functions. 

binary function - in terms of which all truth functions of the logic can be 

expressed, we will further assume that one of {f,g} is unary and the other 

binary.37 This is not such a harsh demand as it may seem. Salomaa [22] 

notes that in any finitely many-valued logic, it is possible to find a unary 

and a binary truth function such that every truth function of the logic can 

be expressed in terms of those two functions.38 Also, certain infinite-valued 

logics have such functions, such as the infinite-valued Lukasiewicz logic.31 

37 This second assumption is not necessary. We can define more forgiving and~ 
forgiving for logics in which f and g are not unary or binary, and in fact we can make 
these definitions for logics where it takes more than just two functions (though a finite 
number) to express all the truth functions. However, the notation involved is cumbersome, 
and since such a level of generality is not necessary for the present paper, we omit it. 

38 Actually, Salomaa notes that in any finitely many-valued logic, it is possible to find 
a Sheffer function, i.e., a binary function in terms of which we can express ev ery possible 
function on the truth values of the logic. Certainly, then, given a Sheffer function, all the 
truth functions of the logic (a subset of the set of functions on the truth values) can be 
expressed in terms of it. 

39 See Rosser [19). 



42 

Once the needed unary and binary ~ruth functions are formulated for 

each logic under consideration, we can compare these functions in the 

obvious manner. It is from this discussion that the following definitions 

arise. 

Definitions: Let J and K be j- and k-valued logics, respectively, where j ~ k. 

Let fbe a truth-value mapping from J to K. Let d1 and d2 be a unary and a 

binary function, respectively, on the truth values of J such that every truth 

function of J can be expressed in terms of d1 and d2. Let e 1 and e2 be a 

unary and a binary function, respectively, on the truth values of K such that 

every truth function of K can be expressed in terms of e1 and e2. 

If d1 is as forgiving as e1 and d2 is as forgiving as e2, then J is said to be 

as forgiving as K, 40 and K is no more forgiving than J. If J is as forgiving 

as K and, in addition, one of the ~ is more forgiving than the corresponding 

ei, then J is more forgiving than K, and K is less forgiving than J. 

If d1 is no more forgiving than e1 and d2 is no more forgiving than e2, 

then J is said to be no more forgiving than K, and K is as forgiving as J. If J 

is no more forgiving than K and, in addition, one of the ~ is less forgiving 

than the corresponding ei, then J is less forgiving than K, and K is more 

forgiving than J. 

If one of the ~ is more forgiving than the corresponding ei and the other 

dj is less forgiving than the corresponding ej, or if either pair is not 

40 We could be more precise and say that J is more forgiving than K with respect to f, di~ 
.d~1· and e2. Since, as in the definition of forgivingness for functions, our purposes only 

require that one truth-value mapping exist, as well as one choice of d1, d2, e1, and e2, and 

since context will always prevent confusion, we dispense with this terminology for the 
obvious reason. 
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comparable, then the logics are not comparable. Otherwise, the logics are 

comparable. 

Example: The logic M is more forgiving than the classical two-valued logic 

(with respect to the truth-value mapping h described earlier and the sets 

{-M, -M} and {-c, -c}), Also, Mis less forgiving than L3'. 

Example: Any logic is both as forgiving as, and no more forgiving than, 

itself. This can be seen by considering, as a truth-value mapping, the 

identity mapping on its set of truth values. ·· 

Definition: Let J, K, and B be many-valued logics such that J is more 

forgiving than K. Then B is said to be between J and K (or B is said to be 

between K and J) if 

(i) Bis as forgiving as Kand Bis no more forgiving than J, and 

(ii) B is more forgiving than K or B is less forgiving than J. 

Example: Any logic L is between itself and any other comparable logic. 

However, L is not between L and L, since L cannot be either more forgiving 

or less forgiving than itself. 

Example: The reader can verify that the logic L3' is more forgiving than 

the logic C. Then, as demonstrated earlier, the logic M is between the 

logics C and L3'. 

Now that the notion of betweenness has been defined, we can finally 

investigate the logics that, like M, are between C and L3'. AB stated before, 

our objective is to discover whether all of these logics have the usual 

statement calculus as a suitable formal system. 

Truth Class Tables 

Our investigation will be aided by the introduction of truth class tables, 

which are similar to truth tables. The difference is that, whereas a truth 
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table gives the value ofx-y for individual truth values x and y, a truth class 

table tells what subset of truth values x-y is in when x and y are in 

particular subsets of truth values. By working with truth class tables, we 

are freed from considering fully detailed truth tables. This enables us to 

make general statements about many different truth functions (on different 

sets of truth values) simultaneously, and also prevents us from writing out 

truth tables that have a very large number of entries. 

The development of truth class tables for the present work is as follows. 

Suppose we are considering a logic I (for "intermediate") that is between C 

and Lg'. Then we know by the definition of betweenness that, with respect 

to some truth-value mappings, I is as forgiving as C and no more forgiving 

than L3'. We will show first that the mappings in question are mappings 

from I to C and from I to Lg', and not from these logics to I. In other words, 

the mappings in question map "outward" from the intermediate logic. 

Since I is as forgiving as C, then there must be a truth-value mapping 

from I to C or from C to I. However, Chas only two truth values, and for a 

truth-value mapping to exist from C to I, I must itself have only two values. 

In this case, I is the logic C, as we show now. Since the truth of C must 

map to the truth of I, and the falsity of C maps to the falsity of I, we can 

compare directly the truth tables for - and-. Since I is as forgiving as C, 

both truth tables of I must contain the truth value 1 everywhere but in the 

-1 and the 1-0 case. Considering the only possible truth-value mapping 

from Lg' to I, and considering that under this mapping L3' is as forgiving 

as I, we see that in the logic I, -1 must be 0 and 1-0 must be 0 also, as the 

reader can easily verify from the definition of as forgiving as and the truth 

tables for Lg'. Then the truth functions - and - are the same as those of C, 
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so the two logics are the same. Thus, the only two-valued logic between C 

and L3' is C itself. 

Now, if I is a logic between C and L.3', we can assume I is not C, for 

otherwise, there is nothing to investigate. Then I has more than two truth 

values, so the truth-value mapping in question, i.e., the mapping with 

respect to which I is as forgiving as C, is a mapping from I to C. 

We also know that I is no more forgiving than L3' with respect to a 

truth-value mapping from I to L3' or from L3' to I. Suppose the truth-value 

mapping is from Lg' to I; then I must have two values (in which case I is C, 

as noted above) or three values. If I has three values, then the truth-value 

mapping in question, since it is onto, must in fact be the identity mapping 

on the set {1, 1/2, O}. Since this is the case, when we apply the definition of 

as forgiving as, we are simply comparing directly the truth tables of I to the 

truth tables ofL3'. Ifwe consider the identity mapping as a mapping not 

· from L3' to I but from I to L3', we will again compare the truth tables 

directly, and the same forgivingness relationship will hold. 

Thus, either I has two values, a case we do not need to consider, or I has 

three values, in which we can use the identity mapping from I to Lg' as the 

truth-value mapping for our investigations, or I has more than three 

values, in which case any truth-value mapping must map from I to Lg'. 

Therefore, in all cases we can assume that the truth-value mappings with 

respect to which I is between Lg' and C are in fact truth-value mappings 

from I "outward." 

Thus, we know there exist a truth-value mapping f from I to L3' and a 

truth-value mapping g from I to C. Now, consider the truth values of I. 

Specifically, consider them as three disjoint subsets: {x: f(x) = 1}, 
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{x: f(x) = 1/2}, and {x: f(x) = O}. These are the "truth classes" to be used for 

the truth class tables and will be denoted as 't, u, and <j>, respectively.41 Bythe 

definition of truth-value mapping, every element of 'tis greater than every 

element of u, and every element of u is greater than every element of <j>. It 

follows that we can consider <j> to be a subset of [0,a], u a subset of [a,b], and 't 

a subset of [b,1] for appropriately chosen a and b.42 However, what is most 

important is simply the fact that we can divide the truth values in this way. 

Notice that, since 't and u contain all the values that f maps to 1 or to 1/2, it 

must be that 't and u contain all the designated values of I. Therefore, g 

maps any element of 't or of u to 1. The subset <j>, on the other hand, contains 

all the undesignated values of I. 

We know by the definitions ofless forejying and more forejying for logics 

that there exist a unary function - and a binary function - on the truth 

values of I such that all truth functions of I can be expressed in terms of -

and - . Now we can construct truth class tables for these functions - and 

- . These will enable us to study the logic I by means of the subsets 't, u, and 

<I>, instead of by means of the truth values directly. The construction is as 

follows: To find an entry for the truth class table--the entry for -t, for 

example--we choose a truth value x that is in 't. Then, using the fact that I 

" In [24), the truth values 1, 1/2, and O of the logic M were denoted T (for "truth"), U (for 
"uncertainty"), and F (for "falsity"). The set names 't, u, and q> are intended to reflect these 
denominations. 

'
2 The word ~ is important here. It is impossible for q> to be the whole interval [O,a] 

filld. u the whole interval [a,b], or u the whole interval [a,b] filld 't the whole interval [b,1], 
since a cannot be in both q> and u, and b cannot be in both u and 't. 
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is as forgiving as C and no more forgiving than 1 3', we calculate which 

subsets, 't, u, or <I>, can contain ~x. For this example, it turns out that if x is 

in 't, then ~x must be in <I>, so the "~-r:' entry in the truth class table is q,. The 

completed truth class tables for ~ and - are in figure 7. A comma in an 

entry means that the truth value in question could lie in either given subset. 

For example, if x and y are both in 't, then x-y may. be in 't or in u. 

- '\) <I> 

't 't, '\) '\) <I> 

'\) 't, '\) 't, '\) 'U,q> 

<I> 't, '\) 't, '\) 't, '\) 

'\) 

<I> 

<I> 

'U,q> 

't,'U 

Figure 7. Truth class tables for logics I between C and 13'. 

The full derivation of these truth class tables is given in Appendix B, 

where it is also shown that these tables characterize the logics between C 

and 13'. That is, any logic I that is represented by the tables in figure 7 is in 

fact betweep C and 13'. 

The object of our investigation is to seek a "squeezing theorem" for logics 

between C and 1 3'. That is, we want to know whether every logic between C 

and 13' has the usual statement calculus as a suitable formal system. In 

light of the preceding discussion, this becomes the question of whether 
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every logic that is represented by the truth class tables in figure 7 has the 

usual statement calculus as a suitable formal system. 

The results of this search are presented in the next chapter. 



CHAPTER VI 

A PARTIAL SQUEEZING THEOREM FOR 

LOGICS I BETWEEN C AND L3' 

Nonexistence of a Full Sgueezin~ Theorem 
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The objective described in the last chapter is impossible. Logics I exist 

between C and L3' that are represented by the given truth class tables, and 

yet do not have the usual statement calculus as a formal system. 

Such a logic is illustrated in figure 8. If we let 1, 2/3, and 1/3 be the 

designated values of this logic, then there is a truth-value mapping g such 

that g(l) = 1, g(2/3) = g(l/3) = 1/2, and g(0) = 0. Then 't = {1}, u = {2/3, 1/3}, and 

<I>= {0}. The truth class tables for this logic, then, are given in table 9, and 

they can be easily calculated by the reader. For example, consider the u-<1> 

case. The truth value 2/3 is in u, and 0 is in <I>, and 2/3-0 = 0 is in <j>. 

However, 1/3 is also in u, and 1/3-0 = 2/3 is in u. Thus, the entry for the 

u-<1> case is "u,<j>." The other entries for the tables are filled in similarly. 

Clearly this logic is between C and L3'. For example, if x and y are any 

elements of 't, then x-y is an element of u, so x-y is certainly an element of 

't or u, so this part of the characteristic truth class table for - is fulfilled. 

Similarly, the other entries in the truth class tables for this logic fit the 

characteristic truth class tables, so this logic is between C and L3'. 

However, it does not have the usual statement calculus as a formal system. 

In fact, even the Axiom Schemes Al-A3 are not all tautologies in this logic. 

Al is, but A2 receives the undesignated value (0) when Pis assigned 1 or 
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- 1 2/3 1/3 0 -
1 2/3 2/3 2/3 0 1 0 

2/3 2/3 2/3 2/3 0 2/3 0 

1/3 2/3 2/3 2/3 2/3 1/3 0 

0 2/3 2/3 2/3 2/3 0 1/3 

Figure 8. A counterexample for the putative "squeezing theorem." 

- 'l) <I> 

't 'l) 'l) <I> 't <I> 

'l) 'l) 'l) u,<1> 'l) <I> 

<I> l 'l) 'l) 'l) <I> 'l) 

' 

Figure 9. The truth class tables for the counterexample. 

2/3, Q is assigned 1/3, and R is assigned 0. Further, A3 fails when P is 

assigned 1 or 2/3 and Q is assigned 0. This is certainly not the only logic for 

which these axioms fail. Many of the truth table entries can be changed 

without making A2 or A3 tautologies, and yet preserving the betweenness 

relationship of the separate logics. 

Though we are unable to find the desired "Squeezing Theorem," we can 

state a corresponding partial result. 



The Partial Sgueezin~ Theorem for Lo~cs I 

between C and La' 

51 

The partial result gives conditions that are sufficient for a logic between 

C and L3' to have the usual statement calculus as a formal system. Its 

proof will require some preliminary lemmas, but we state the theorem 

here. 

Metatheorem; Let I be a many-valued logic between C and Lg'. Suppose 

that either of the following conditions holds: 

(i) the set 'tUq> is closed under the operations ~ and - , and, for any truth 

values x1, x2 in u and any truth value yin <l>, the truth value x1-x2 is in u, 

and the truth values x1-Y and ~x1 are in u; or 

(ii) for any truth value x in u and any truth value yin <l>, the truth values 

x-y and ~x are in q>. 

Then the usual statement calculus is a suitable formal system for the 

logic I. 

Any logic I between C and Lg' will have truth class tables as in figure 7. 

The conditions in the metatheorem simply narrow the possibilities for the 

table entries. For example, condition (ii) changes the u-<j> and ~'U entries 

from "u,<j>" to "<j>." The altered truth class tables for logics meeting either of 

these conditions separately are shown in figures 10 and 11. 

In our proofs of the metatheorem and of the lemmas leading to it, we 

assume, since· all truth functions of I can be expressed in terms of the 

functions ~ and - , that these are in fact the only functions used. 
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- 't '\) 

't 't '\) 't 

'\) 't,'U '\) '\) '\) 

't 't,'\) 't 

Figure 10. Truth class tables for a logic I satisfying condition (i). 

- 't '\) 

't,'U '\) 

'\) 't,'\) 't,'U '\) 

't, '\) 't,'\) 't,'U 't,'U 

Figure 11. Truth class tables for a logic I satisfying condition (ii). 

In the results that follow, let I be a logic between C and La' such that 

condition (i) is satisfied, that is, the truth values of I can be divided into sets 

't, u, and <I> that fulfill the truth class tables in figure 10. 

Lemma 6.1: Let P be a formula. Ifno prime constituent of Pis assigned a 

truth value in u, then P does not receive a truth value in u. 

Proof: By strong induction on the number of occurrences of - and ~ in P. 
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Basis: P has no occurrences of- or-. Then Pis an atomic formula or 

has the form \-lvQ. Then P is a prime formula and is its own prime 

constituent, so if P is not assigned a value in u, it will not receive a value in 

'\). 

Inductive step: Suppose P has n occurrences of- and -, and assume 

that the lemma holds for formulas with fewer than n such occurrences. 

Suppose no prime constituent of P is assigned a truth value in u. 

Case 1: Pis -Q for some formula Q that has n - 1 occurrences of 

- and-. The prime constituents of Qare identically those of P, so none of 

them has been assigned any value in u. By the induction hypothesis, Q does 

not receive a value in u. Then Q receives a value in 'tor <I>, so that, by the 

truth class table for-, P receives a value in <I> or -r, and hence not in u. 

Case 2: Pis Q-R for some formulas Q and R, each with fewer 

than n occurrences of- and-. None of the prime constituents ofQ or ofR 

has been assigned a value in u, since they are all prime constituents of P. 

Then, by the induction hypothesis, Q receives a value in 'tor a value in <I>, 

and R receives a value in 'tor a value in <I>, so there are four possibilities in 

all. The truth class table for - shows that P receives a value in 'tor <I> for 

each of these possibilities. In each case, therefore, P does not receive a 

value in u. 



By the strong form of the principle of mathematical induction, 

therefore, the theorem holds for any formula P with any number of 

occurrences of- and-, that is, it holds for any formula P. 

Lemma 6.2: Let P be a formula. Let A be an assignment of truth values 
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from 't <I> to the prime constituents of P. Let B be the assignment of the truth 

values 1 and O of C to the prime constituents of P such that B assigns 1 to the 

prime constituents that were assigned values in 't, and B assigns O to the 

prime constituents that were assigned values in q,. If P receives a value in 't 

under the assignment A (where - and - represent the truth functions 

associated with I), then it receives the value 1 under the assignment B 

(where - and - represent the truth functions associated with C), and if P 

receives a value in <I> under the assignment A, then it receives O under the 

assignment B. 

Proof: Let A and B be as in the statement of the lemma. The proof of the 

lemma is by strong induction on the number of occurrences of - and - in P. 

Basis: P has no occurrences of- or-. Then Pis its own prime 

constituent and receives whichever truth value it is assigned. The result is 

vacuously true by the choice of the assignment B. 

Inductive step: Suppose P has n occurrences of - and -, and assume 

the lemma holds for formulas with fewer than n such occurrences. 

Case 1: P is -Q for some formula Q that has n - 1 occurrences of 

- and-. By Lemma 6.1, since no prime constituent of P was assigned a 

value in u, P receives a value in 't or in <I> under the assignment A. If P 

receives a value in 't under the assignment A, then Q receives a value in <I> 
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by the truth class table for~. By the induction hypothesis, then, Q receives 0 

under the assignment B. Then, by the truth table for ~ in C, P receives 1 

under that assignment. If, on the other hand, P receives a value in <I>, then 

Q receives a value in 'tor u by the truth class table for~. But the prime 

constituents of Qare exactly the prime constituents of P, so none of them 

was assigned a value in u under the assignment A. Thus, by Lemma 6.1, Q 

cannot receive a value in u, and hence it receives a value in 't. Then, by the 

induction hypothesis, Q receives 1 under the assignment B. Therefore, by 

the truth table for ~ in C, P receives O under that assignment. 

Case 2: Pis Q-R for some formulas Q and R, each with fewer than n 

occurrences of- and~. By Lemma 6.1, P receives a value in 'tor a value in 

<I> under the assignment A. 

Subcase 2.1: P receives a value in 't. Suppose, for purposes of 

contradiction, that P receives the value O under the assignment B. Then, by 

the truth table for- in C, Q receives the value 1 and R receives the value 0. 

Since the prime constituents of Q and of Rare all prime constituents of P, 

and since none of these has been assigned a value in u, under the 

assignment A each of Q and R receives a value in 'tor in <I> by Lemma 6.1. 

Then, by the induction hypothesis, since Q receives the value 1 under the 

assignment B, and since it cannot receive a value in both 't and <I>, it receives 

a value in 't under the assignment A. Similarly, R receives a value in <I> 

under the assignment A. Then, by the truth class table for - , P receives a 
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value in <I>, which contradicts the original assumption. Therefore, P cannot 

receive O under the assignment B, so that it must receive 1 under that 

assignment. 

Subcase 2.2: P receives a value in q>. Then, by the truth class table 

for - , Q receives a value in 't, and R receives a value in q>. Again, by 

Lemma 6.1, Q cannot receive a value in u, so Q receives a value in 't. Then, 

by the induction hypothesis, under the assignment B, Q receives 1 and R 

receives 0, so that P receives Oby the truth table for - in C. 

By the strong form of the principle of mathematical induction, the 

theorem holds for any formula P with any number of occurrences of - and 

-, that is, it holds for any formula P. 

Lemma 6.3: If a formula Pis a tautology in I, then it is a tautology in C. 

Proof: Let P be any formula that is not a tautology in C. Then, for some 

assignment of O's and l's to the prime constituents of P, P receives the value 

0. Create a new assignment A that assigns the absolute truth of I to every 

prime constituent that was assigned 1 and assigns the absolute falsity of I 

to every prime constituent that was assigned 0. By Lemma 6.1, since no 

prime constituent of P is now assigned a value in u, P receives a value in 't 

or in q>. Suppose P receives a value in 't. Then, by Lemma 6.2, P receives the 

value 1 under the original assignment of O's and l's, contradicting the 

assumption about P. Therefore, P must receive a value in <I> under the 

assignment A, so that P is not a tautology of I. 

Metatheorem 6.4: Every tautology of I is a theorem of the usual statement 

calculus. 
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Proof: By Lemma 6.3, every tautology of I is a tautology of C. Margaris [12] 

demonstrates that every tautology of C is a theorem of the usual statement 

calculus. The metatheorem follows. 

In the discussion that follows, the term tautoloe:y refers exclusively to 

tautologies of I. Recall that a tautoloe:y of I is a formula such that for any 

assignment of truth values to the prime constituents of P, P receives a value 

in 't or in 'U. 

Lemma 6.5: Let P be a formula. Let an assignment of truth values of I be 

made to the prime constituents of P. 

(i) Suppose P receives a value in <j>. If the truth-value assignment is 

altered so that the prime constituents previously assigned values in 'U are 

assigned 1 instead, and all other assignments are retained, then P receives 

a value in <I> under the new assignment. 

(ii) Suppose P receives a value in 't. If the truth-value assignment is 

altered so that the prime constituents previously assigned values in 'U are 

assigned 1 instead, and all other assignments are retained, then P receives 

a value in 't under the new assignment. 

(Note that in this theorem, the "1" referred to is absolute truth in I.) 

Proof: By induction on the number of occurrences of - and ~ in P. 

Basis: P has no occurrences of- or~. Then Pis its own prime 

constituent and, if it receives a value in <I> or 't, must have been assigned the 

same value. The lemma is vacuously true in this case. 
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Inductive step: Suppose P has n occurrences of - and -, and assume 

that the lemma holds for all formulas with fewer than n such occurrences. 

Suppose that, under the given assignment of truth values, P receives a 

value in <j>. 

Case 1: P is -Q for some formula Q with n - 1 occurrences of -

and-. Then, by the truth class table for-, Q receives a value in 't under the 

original assignment, so that by the induction hypothesis. Q receives a value 

in 't under the new assignment. Then, by the truth table for-, P receives a 

value in <I> under the new assignment. 

Case 2: Pis Q-R for some formulas Q and R, each with fewer 

than n occurrences of - and -. By the truth class table for - , Q receives a 

value in 't and R receives a value in <I> under the original assignment of 

truth values, so under the new assignment Q receives a value in 't and R 

receives a value in <j>. Then P receives a value in <I> under the new 

assignment by the truth table for - . 

Now suppose that, under the given assignment of truth values, P 

receives a value in 't. 

Case 3: P is -Q for some formula Q. Then by the truth class table 

for-, Q receives a value in <I> under the original assignment, so by the 

induction hypothesis, Q receives a value in <I> under the new assignment as 

well. Then, by the truth class table for-, P receives a value in 't under the 

new assignment. 



Case 4: Pis Q-R for some formulas Q and R, each with fewer 

than n occurrences of - and -. Then, by the truth class table for - , Q 

receives a value in <I> or R receives a value in 't. 
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Subcase 4.1: Q receives a value in <I> under the original 

assignment. Then, by the induction hypothesis, Q receives a value in <I> 

under the new assignment as well. By the truth class table for - , P then 

receives a value in 't under the new assignment. 

Subcase 4.2: R receives a value in 't under the original 

assignment. Then, by the induction hypothesis, R receives a value in 't 

under the new assignment as well. Once again, by the truth table for - , P 

receives a value in 't under the new assignment. 

Thus, by the strong form of the principle of mathematical induction, the 

lemma holds for any formula with any number of occurrences of - and ~, 

so that it holds for any formula. 

Lemma 6.6: Let P and Q be any formulas. If P and P-Q are both 

tautologies, then Q is a tautology as well. In other words, modus ponens 

preserves tautology. 

Proof: Suppose that P and P-Q are tautologies and that Q is not a tautology, 

that is, Q receives a value in <I> under some assignment of truth values to its 

prime constituents. By Lemma 6.5, there is an assignment of truth values 

from 't and from <I> to the prime constituents of Q such that Q receives a 

value in <I> under that assignment also. Create a new assignment of truth 

values to the prime constituents of P and Qin the following way. To every 
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prime formula that is a prime constituent of Q, assign the same truth value 

as in the assignment just described using Lemma 6.5. To every prime 

formula of P that is not a prime constituent of Q, assign the (absolute truth) 

value 1. By Lemma 6.1, since no prime constituent of P was assigned a 

value in u, P must receive a value in 'tor in <I>, and since it is a tautology, P 

must receive a value in 't. But then, since P receives a value in 't and Q 

receives a value in <I>, P-Q receives a value in <I> by the truth class table for 

-, contradicting the assumption that P-Q was a tautology. Thus, Q cannot 

receive a value in <I> under any assignment of truth values to its prime 

constituents, so that Q is a tautology. 

Lemma 6.7: Any instance of Axiom Scheme Al, A2, or A3 is a tautology. 

Proof: The relevant truth class tables are displayed in figures 12 to 14. 

These tables can be easily calculated from figure 10. Note that none of the 

truth class tables for Al, A2, or A3 includes the set <I> as a final entry. 

Lemma 6.8: Any step in a proof is a tautology. 

Proof: Let P be a formula that is the nth step in some proof. By the 

definition of m:o,Qf, P is an instance of an Axiom Scheme or is inferred from 

two earlier steps by modus ponens. The proof is by induction on n. 

Basis: P is step 1 or step 2. Then P is an instance of an Axiom Scheme 

and thus is a tautology by Lemma 6. 7. 

Inductive step: P is step n, where steps 1 to n - 1 are tautologies. Then P 

is an instance of an Axiom Scheme or is inferred from two earlier steps, 

steps j and k (1 ~j <k), by modus ponens. In the first case, P is a tautology 

by Lemma 6. 7. In the second, steps j and k are tautologies by the induction 
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p Q Q-P P-(Q-P) 

't 't 't 't 

't '\) 't,'U 't,'U 

't cj> 't 't 

'\) 't '\) '\) 

'\) '\) '\) '\) 

'\) cj> 't,'U 't,'U 

cj> 't cj> 't 

cj> '\) '\) 't,'U 

cj> cj> 't 't 

Figure 12. The truth class table for Axiom Scheme Al. 

p Q -Q -P -Q--P P-Q (-Q--P)- (P-Q) 

't 't cj> cj> 't 't 't 

't '\) '\) cj> '\) '\) '\) 

't cj> 't cj> cj> cj> 't 

'\) 't cj> '\) 't,'U 't,'U 't,'U 

'\) '\) '\) '\) '\) '\) '\) 

'\) cj> 't '\) '\) '\) '\) 

cj> 't cj> 't 't 't 't 

cj> '\) '\) 't 't,U 't,'U 't,'U 

cj> cj> 't 't 't 't 't 

Figure 13. The truth class table for Axiom Scheme A3. 
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p Q R P-(Q-R) (P-Q)-(P-R) (P-(Q-R))- ((P-Q)-(P-R)) 

't 't 't 't 't 't 

't 't '\) '\) '\) '\) 

't 't <I> <I> <I> 't 

't '\) 't 't,'U 't,'U 't,'U 

't '\) '\) '\) '\) '\) 

't '\) <I> '\) '\) '\) 

't <I> 't 't 't 't 

't <I> '\) 't,'U 't,'U 't,'U 

't <I> <I> 't 't 't 

'\) 't 't 't,'U 't,'U 't,'U 

'\) 't '\) '\) '\) '\) 

'\) 't <I> '\) '\) '\) 

'\) '\) 't 't,'U 't,'U 't,'U 

'\) '\) '\) '\) '\) '\) 

'\) '\) <I> '\) '\) '\) 

'\) <I> 't 't,'U 't,'U 't,'U 

'\) <I> '\) 't,'U '\) '\) 

'\) <I> <I> 't,'U '\) '\) 

<I> 't 't 't 't 't 

<I> 't '\) 't,'U 't,'U 't,'U 

<I> 't <I> 't 't 't 

<I> '\) 't 't,'U 't,'U 't,'U 

<I> '\) '\) 't,'U 't,'U 't,'U 

<I> '\) <I> 't,'U 't,'U 't,'U 

<I> <I> 't 't 't 't 

<I> <I> '\) 't,'U 't,'U 't,'U 

<I> <I> <I> 't 't 't 

Figure 14. The truth class table for Axiom Scheme A2. 



hypothesis, so P is a tautology by Lemma 6.6. By the strong form of the 

principle of mathematical induction, every step in a proof is a tautology. 

Metatheorem 6.9: Every theorem of the usual statement calculus is a 

tautology in I. 
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Proof: Every theorem is, by definition, the last step of a proof. By Lemma 

6.8, then, every theorem is a tautology of I. 

Metatheorem 6, 10: The usual statement calculus is a suitable form.al 

system for the given logic I. 

Proof: Metatheorems 6.4 and 6.9. 

The first part of the partial squeezing theorem has been proved. 

In the results that follow, let J be a logic between C and Ls' such that 

condition (ii) is satisfied, that is, the truth values of J can be divided into 

sets -c, u, and <I> that fulfill the truth class tables in figure 11. 

Lemma 6.11: Let P be a formula. Let A be an assignment of truth values of 

J to the prime constituents of P, and let B be an assignment of truth values 

of the two-valued logic C to the prime constituents of P, such that 

(i) B assigns 1 to those prime constituents that were assigned 

designated values of J under the assignment A, and 

(ii) B assigns O to those prime constituents of P that were assigned 

undesignated values of J under the assignment A. 

Then the formula P receives a designated value of J under the 

assignment A if and only if P receives the value 1 under the assignment B, 

and P receives an undesignated value of J under the assignment A if and 

only if P receives the value O under the assignment B. 

Proof: By strong induction on the number of occurrences of ~ and - in P. 



Basis: P has no occurrences of - or - . Then P is its own prime 

constituent, and the result holds by the construction of B. 
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Inductive step: Suppose P has n occurrences of - and - , and assume 

the result holds for all formulas with fewer than n such occurrences. 

Suppose P receives a designated value of J under the assignment A. 

Case 1: Pis -Q for some formula Q with n - 1 occurrences of -

and - . Then, by the truth class table for - J, since P received a designated 

value (that is, a value from 'tor u), Q received an undesignated value (that 

is, a value from<)>). Then, by the induction hypothesis, Q receives O under 

the assignment B, and hence P receives 1 by the truth table for -c· 
Case 2: Pis Q-R for some formulas Q and R, each with fewer 

than n occurrences of - and - . Then, by the truth class table for - J, either 

Q received an undesignated value or R received a designated value under 

the assignment A. 

Subcase 2.1: Q received an undesignated value under A. 

Then, by the induction hypothesis, Q receives O under B. Then P, which is 

Q-R, receives 1 under B by the truth table for -c· 
Subcase 2.2: R received a designated value under A. Then, by 

the induction hypothesis, R receives 1 under B. Then P receives 1 by the 

truth table for - C· 

Now suppose P receives an undesignated value of J under the 

assignment A. 

Case 3: P is -Q for some formula Q with n - 1 occurrences of - and - . 

Then, by the truth class table for - J, Q received a designated value under A; 
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so, by the induction hypothesis, Q receives 1 under B. Then P, which is -Q, 

receives O under B by the truth table for ~c· 
Case 4: Pis Q-R for some formulas Q and R, each with fewer than n 

occurrences of - and - . Then, by the truth class table for - J, Q received a 

designated value and R received an undesignated value under the 

assignment A. Thus, by the induction hypothesis, Q receives 1 under B and 

R receives O under B, so P that receives O under B by the truth table for-c. 

Thus, by the strong form of the principle of mathematical induction, the 

stated result holds for a formula with any number of occurrences of - and 

-, and hence it holds for any formula. Note that while this induction proof 

has established only the "if' part of Lemma 6.11, the "only if' part follows 

trivially from the fact that any truth value of J is either a designated value 

m: an undesignated value. 

Lemma 6.12: A formula Pis a tautology in the logic J if and only ifit is a 

tautology in the two-valued logic C. 

Proof: Let P be a formula that is not a tautology of J. Then, for some 

assignment A of truth values of J to the prime constituents of P, P receives 

an undesignated value. Then, if B is an assignment of truth values of C to 

the prime constituents of P, constructed as in Lemma 6.11, then P receives 

the value O under the assignment B, and P is not a tautology in C. 

Now let P be a formula that is not a tautology in C. Then there is some 

assignment Bo of truth values of C to the prime constituents of P such that 

P receives the value O under the assignment BO. Let A be the assignment of 

truth values of J to the prime constituents of P such that A assigns lJ to 

every prime constituent to which Bo assigns le, and also assigns OJ to 

every prime constituent to which BO assigns Oc. 
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If we now construct an assignment B of truth values of C to the prime 

constituents of P, as in Lemma 6.11, then this assignment Bis the same as 

our assignment Bo. If P received a designated value under the assignment 

A, then, by Lemma 6.11, P would receive 1c under the assignment B 

(which is Bo), contradicting the choice of B0. Therefore, P receives an 

undesignated value under the assignment A, so Pis not a tautology of J. 

Metatheorem 6.13; A formula P is a tautology of J if and only if P is a 

theorem of the usual statement calculus; that is, the usual statement 

calculus is a suitable formal system for the logic J. 

Proof; Lemma 6.12 and the Completeness Theorem. 

Metatheorem 6.14: Let I be a many-valued logic between C and 13'. 

Suppose that either of the following conditions holds: 

(i) the set 't\Jq> is closed under the operations ~ and - , and, for any truth 

values x1, x2 in u and any truth value yin <I>, the truth value x1-x2 is in u, 

and the truth values x1-y and ~x1 are in u; or 

(ii) for any truth value x in u and any truth value yin <I>, the truth values 

x-y and ~x are in 4>. 

Then the usual statement calculus is a suitable formal system for the 

logic I. 

Proof: Metatheorems 6.10 and 6.13. 



CHAPTER VII 

CONCLUDING REMARKS 
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The significance of Metatheorem 6.14 is, in part, that it is a 

generalization of an earlier result, and generalizations are always welcome 

in mathematics. If Metatheorem 6.14 had been available when the 1992 

paper [24] was written, it would have saved the author a sizeable amount of 

work. In fact, it would have made the 1992 paper altogether unnecessary. 

The logic M studied in that paper is a special case ofMetatheorem 6.14. 

Recall that the truth functions ofM are as in figure 15. Since M has three 

truth values, these values are mapped to the truth values of 13' by the 

identity mapping, so that 't = {1}, u = {1/2}, <I>= {O}. Then the truth class tables 

of M are as in figure 16, as the reader can verify, and these tables are 

certainly a special case of condition (i) of Metatheorem 6.14. 

More significant is our discovery that there are an infinite number of 

many-valued logics that have the usual statement calculus as a suitable 

formal system. In fact, we have essentially discovered a method for 

creating, for any n, an n-valued logic for which the usual statement 

calculus is suitable. To see this, let n be a positive integer greater than or 

equal to two. We define truth functions on the set of truth values {k/(n-1): 

0 !S: k !S: n-1} in the following manner. First, we separate the truth values 

into three sets 't, u, and <I> such that x > y for all x in 't and all y in u, and 

such that y > z for all y in u and all z in <j>. Beyond this basic requirement, 

the separation of the truth values is a matter of personal choice. With the 

separation accomplished, we simply construct truth tables for ~ and - in 
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Figure 15. Truth functions of the logic M. 
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Figure 16. Truth class tables of the logic M. 
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such a way that Metatheorem 6.14 applies. In other words, we construct 

functions - and - whose truth class tables are as in figure 10 or figure 11. 

It seems that since there are such a variety of many-valued logics for 

which the usual statement calculus is suitable, the study of many-valued 

logics has a certain credibility. Critics cannot say that many-valued logics 

produce methods of reasoning that are alien to our natural way of thinking, 

because we have just seen that a large class of logics obey exactly the rules 

which govern our natural way of thinking. The same logical arguments 

that have been used for centuries with the black-and-white two-valued 



69 

system are still valid for a shades-of-~ay interpretation. All that change 

are the degrees of truth that can be assigned to the atomic statements, and 

these were never addressed by the system anyway. 

However, while this partial squeezing theorem for these particular 

logics has led to these discoveries, questions remain as to even more 

general results, specifically the following: 

(i.) Are the sufficient conditions given in Metatheorem 6.14 necessary 

conditions as well? 

(ii.) Can betweenness be redefined to make possible a full squeezing 

theorem for logics between C and L3'? If so, can that result be generalized 

still further? 

It is not yet clear how question (i) will be answered, although, of the 

logics so far investigated that fail to satisfy the conditions for Metatheorem 

6.14, the usual statement calculus is suitable for none of them.43 However, 

as stated earlier, it is still an open question whether the usual statement 

calculus is suitable for L3'. If so, then question (i) must be answered in the 

negative, since L3' does not meet either condition of Metatheorem 6.14. 

Condition (i) is violated because 1/2-1/2 = 1, so that u-u is 1:, not u. 

Condition (ii) is violated because -(1/2) = 1/2, so that -u is u, not cj>, and 

because, similarly, u-cj> is not cj>. 

If the usual statement calculus is in fact suitable for L3', we would have 

to add some conditions to Metatheorem 6.14, and then ask question (i) 

again. This seems a small price to pay for the nice symmetry we would 

have in such a case. 

'
3 See Appendix C. 
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Question (ii), on the other hand, can be considered as follows. Since the 

truth class tables, which governed the behavior of the logics we studied, 

came directly from the definitions for forgivingness and betweenness, and 

these in turn depended on the definition of truth-value mapping, it is 

reasonable to wonder whether an alteration in those definitions might 

produce a stronger result. If more restrictions are placed on the 

betweenness relation, then a smaller set of logics will be between C and L3'. 

Can we, in fact, restrict the definition in such a way that this smaller set is 

made up entirely of logics for which the usual statement calculus is 

suitable? 

Early attempts at new definitions are not promising. An examination of 

the betweenness and forgivingness definitions suggests that they are 

already as restrictive as we can expect them to be44 
, so apparently the target 

of the alterations should be the definition of truth-value mapping. 

Suppose, then, that we wish to define truth-value mapping so that all 

logics that are between C and L3' under the new definition meet the 

conditions of Metatheorem 6.14, part (i), in other words, so that the truth 

class tables of such a logic have the form illustrated in figure 17. That is, 

certain table entries that originally could be narrowed down only to 't u are 

now required to be 't specifically. 

u In fact, the only reasonable change appears to be in the definition of betweenness: We 
could require that, in order for a logic I to be between C and L3', I must be both more 

forgiving than C and less forgiving than Ls'· However, since more- and less­

forgivingness require only ~ strict inequality within comparison of .QM pair of truth 
tables (and there seems to be no reasonable way to increase those demands), the effect of 
such a change on our truth class tables would be minimal. 



- 't 1) 

't 1) <I> 

1) 't,1) 1) 1) 1) 

<I> 't 't '1) 't <I> 

Figure 17. Truth class tables fulfiliing condition 6.14.i. 
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The reader will remember the reason that, in the construction of the 

original truth class tables45
, these entries were left as "1:,1.>." For example, if 

x and y are values in 't, we discovered that x-y had to be a value that 

mapped to two-valued truth. In other words, x-y was designated, so it 

could be from either,: or 1.>. We were unable to pin down its value any 

further. 

To guarantee the construction of truth class tables like the ones in figure 

17, then, we would have to require that .Q.Il}x elements of 't can map to two-

valued truth. Then if x-y maps to two-valued truth, x-y !DJ.lfil be in 't, and 

the table entry is as desired. 

However, a new problem presents itself. If we require that only 

elements of,: can map to two-valued truth, then we are defining one truth­

value mapping (that from I to C) on the basis of another truth-value 

45 See Appendix B. 
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mapping (that from I to L3', without which we would have no set 't to 

discuss). This is clearly an improper state of affairs; the only way around it 

is to restrict which values may map to truth under any given mapping. For 

instance, if we stipulate that the absolute truth of one logic is the filllx value 

of that logic that can map to the absolute truth of another logic, then it will 

work out, in the case of mappings from I to e and to L3', that the only 

element of 'tis 1 I, which is also the only truth value of I that maps to the 

absolute truth of e. Then if, while constructing a truth class table, we 

discover that one of the entries must map to le, then we know this entry 

must be 't, the set whose only element is the element that maps to le. 

However, this creates another problem. If the absolute truth of I is 

the only truth value of I that maps to two-valued truth, then all other 

designated values of I, as well as all the undesignated values, will map to 

two-valued falsity. Suppose that we now construct a new truth class table 

with 't, u, and <I> retaining their original meanings (note, however, that in 

this case 't = {1}, since only absolute truth can map to the 1 of L3'). Suppose 

xis in u and y is in <j>. Let g be the truth-value mapping from I toe. Then 

g(x) = g(y) = 0, so g(x)-g(y) = 1. Since I is as forgiving as e, g(x-y) ~ 

g(x)-g(y), so g(x-y) = 1. Then x-y = 1. Let fbe the truth-value mapping 

from I to L3'. Then ft:x) = 1/2 and fly)= 0 by the definitions ofu and <j>. Since 

I is no more forgiving than L3', f(x-y) ~ f(x)-ft:y) = 1/2. Thus, x-y does not 

map to 1 and therefore cannot be 1, so we have contradicted our earlier 

finding. The same happens for the ~u case. 
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The only solution to this problem is to make u empty, so that these 

problematic cases (u-<1>, -u) never arise. The resulting general definition of 

truth-value mapping becomes a rather uninteresting one: the truth of the 

logic J maps to the truth of the logic K, and all other values of J map to the 

falsity of K. If we retain the name "r' for the set of truth values that map to 

the 1 of Lg', and we denote the rest by "p" (for "rest"), we can construct a 

new sort of truth class table for such a logic. As illustrated in figure 18, 

such truth class tables are remarkably similar to the original truth tables of 

C. Thus, it should be easy to prove that any logic satisfying these truth 

class tables has the usual statement calculus as a suitable formal system. 

- p 

't p p 

p 't p 't 

Figure 18. Truth class tables for a new definition of truth-value mapping. 

However, the above definition of truth-value mapping seems 

unnaturally restrictive, and it also violates our expectation that designated 

values map to designated values and undesignated values map to 

undesignated values. Moreover, the resulting concept of betweenness 

seems remarkably artificial. 
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Whether such a concept of betweenness is nonetheless useful--and 

whether it leads to a general squeezing theorem for these and other many­

valued logics--is a question for the future to decide. 
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APPENDIX A 

A DEMONSTRATION THAT THE USUAL STATEMENT CALCULUS 

IS SUITABLE FOR THE THREE-VALUED LOGIC M 

To show that the usual statement calculus is a suitable formal system 

for the logic M, we must demonstrate, first, that every formula that is a 

tautology under Mis a theorem of the usual statement calculus, and 

second, that every theorem of the statement calculus is a tautology of M. 

Since all connectors of the logic M can be written in terms of- and~, 

we assume, in the following discussion, that - and ~ are the only 

connectors used. The proof is from Walk [24], with slight modifications. 

Lemma A.1: Let P be a formula. If no prime constituent of P is assigned 

the truth value 1/2, then P does not receive the truth value 1/2. 

Proof; By strong induction on the number of occurrences of - and ~ in P. 

Basis: P has no occurrences of- or~. Then Pis an atomic formula or 

has the form \ivQ. Then P is a prime formula and is its own prime 

constituent, so if P is not assigned 1/2, it will not receive 1/2. 

Inductive step: Suppose P has n occurrences of- and~, and assume 

that the lemma holds for formulas with fewer than n such occurrences. 

Suppose no prime constituent of P is assigned the truth value 1/2. 

Case 1: P is ~Q for some formula Q that has n - 1 occurrences of -

and~. The prime constituents of Qare identically those of P, so none of 

them has been assigned 1/2. By the induction hypothesis, Q does not receive 

1/2. Then Q receives O or 1, so, by the truth table for~, P receives 1 or 0. 

Case 2: P is Q- R for some formulas Q and R, each with fewer than 

n occurrences of- and~. None of the prime constituents ofQ or ofRhas 

been assigned 1/2, since they are all prime constituents of P. Then, by the 



78 

induction hypothesis, Q receives O or 1, and R receives O or 1, so there are 

four possibilities in all. The truth table for - shows that P receives O or 1 for 

each of these possibilities. 

Then, by the strong form of the principle of mathematical induction, the 

theorem holds for any formula P with any number of occurrences of - and 

-, that is, for any formula P. 

Lemma A.2: Let P be a formula. If an assignment of O's and l's is made to 

the prime constituents of P, then the truth value P receives will be the same 

whether the connectors - and ~ in P are regarded as connectors in the 

classical two-valued logic C or as connectors in M. 

Proof: Let an assignment of O's and l's be made to the prime constituents of 

P. The proof of the lemma is by strong induction on the number of 

occurrences of- and~ in P. 

Basis: P has no occurrences of- or-. Then Pis its own prime 

constituent and receives whichever truth value, 0 or 1, it is assigned. The 

result is vacuously true in this case. 

Inductive step: Suppose P has n occurrences of- and~, and assume 

the lemma holds for formulas with fewer than n such occurrences. 

Case 1: P is ~Q for some formula Q that has n - 1 occurrences of -

and~. By Lemma A.1, P receives O or 1 if the connectors - and - are 

regarded as truth functions of M. If P receives 0, then Q receives 1 by the 

truth table for - in M. Then, by the induction hypothesis, Q receives 1 when 

- and ~ are regarded as truth functions of C. Therefore, by the truth table 

for~ in C, P receives 0. If, on the other hand, P receives 1, then Q receives 0 

by the truth table for ~ in M, and by the induction hypothesis, Q receives 0 
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when - and - are regarded as truth functions of C. Thus, by the truth table 

for - in C, P receives 1. 

Case 2: Pis Q-R for some formulas Q and R, each with fewer than n 

occurrences of - and - . By Lemma A.1, P receives O or 1 if the connectors 

- and - are regarded as truth functions of M. 

Subcase 2.1: P receives 0. Then, by the truth table for - in M, Q 

receives 1 and R receives 0. Then, by the induction hypothesis, when - and 

- are regarded as truth functions in C, Q receives 1 and R receives O again, 

so that P receives Oby the truth table for - in C. 

Subcase 2.2: P receives 1. Then, by the truth table for - in M, Q 

receives O or R receives 1. Suppose Q receives 0. Then, by the induction 

hypothesis, Q receives O when - and - are regarded as truth functions of C, 

so by the truth table for- in C, P receives 1. Now suppose R receives 1. 

Then, by the induction hypothesis, R receives 1 when - and - are regarded 

as truth functions of C, so by the truth table for - in C, P receives 1. 

Then, by the strong form of the principle of mathematical induction, the 

theorem holds for any formula P with any number of occurrences of - and 

-; that is, for any formula P. 

Lemma A.3: If a formula Pis a tautology in M, then it is a tautology in C. 

Proof: Let P be any formula that is not a tautology in C. Then, for some 

assignments of O's and l's to the prime constituents of P, P receives the 

value 0. By Lemma A.2, P receives the value O under this assignment when 

the connectors in P are regarded as truth functions of M. Then P is not a 

tautology in M. 

Meta theorem A.4: Every tautology of M is a theorem of the usual statement 

calculus. 
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Proof; By Lemma A.3, every tautology of M is a tautology of C. Margaris 

[12] demonstrates that every tautology of C is a theorem of the usual 

statement calculus. The metatheorem follows. 

In the discussion that follows, the term tautoloe:y refers exclusively to 

tautologies of M. 

Lemma A.5: Let P be a formula. Let an assignment of O's, 1/2's, and l's be 

made to the prime constituents of P. 

(i) Suppose P receives the value 0. If the truth-value assignment is 

altered so that the prime constituents previously assigned 1/2 are assigned 

1 instead, and all other assignments are retained, then P receives the value 

0 under the new assignment. 

(ii) Suppose P receives the value 1. If the truth-value assignment is 

altered so that the prime constituents previously assigned 1/2 are assigned 

1 instead, and all other assignments are retained, then P receives the value 

1 under the new assignment. 

Proof: By induction on the number of occurrences of - and - in P. 

Basis: P has no occurrences of- or-. Then Pis its own prime 

constituent and, ifit receives O or 1, must have been assigned O or 1. The 

lemma is vacuously true in this case. 

Inductive step: Suppose P has n occurrences of- and-, and assume 

that the lemma holds for all formulas with fewer than n such occurrences. 

Suppose that, under the given assignment of O's, 1/2's, and l's, P 

receives the value 0. 

Case 1: P is -Q for some formula Q with n - 1 occurrences of - and 

-. Then, by the truth table for-, Q receives the value 1 under the original 

assignment, so by the induction hypothesis. Q receives the value 1 under 
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the new assignment. Then, by the truth table for-, P receives the value 0 

under the new assignment. 

Case 2: Pis Q-R for some formulas Q and R, each with fewer than 

n occurrences of- and-. By the truth table for-, Q receives 1 and R 

receives O under the original assignment of truth values, so Q receives 1 

and R receives O under the new assignment as well. Then P receives O by 

the truth table for - . 

Now suppose that, under the given assignment of O's, 1/2's, and l's, P 

receives 1. 

Case 3: Pis -Q for some formula Q. Then by the truth table for-, Q 

receives O under the original assignment, so by the induction hypothesis, Q 

receives O under the new assignment as well. Then, by the truth table for-, 

P receives 1 under the new assignment. 

Case 4: Pis Q-R for some formulas Q and R, each with fewer than 

n occurrences of - and - . Then, by the truth table for - , Q receives O or R 

receives 1. 

Subcase 4.1: Q receives O under the original assignment. Then, 

by the induction hypothesis, Q receives O under the new assignment as 

well. Then, by the truth table for - , P receives 1 under the new 

assignment. 

Subcase 4.2: R receives 1 under the original assignment. Then, 

by the induction hypothesis, R receives 1 under the new assignment as 

well. Then, by the truth table for - , P receives 1 under the new 

assignment. Thus, by the strong form of the principle of mathematical 

induction, the lemma holds for any formula with any number of 

occurrences of- and-, so it holds for any formula. 
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Lemma A.6: Let P and Q be any formulas. If P and P-Q are both 

tautologies, then Q is a tautology as well. In other words, modus ponens 

preserves tautology. 

Proof: Suppose that P and P-Q are tautologies and that Q is not a 

tautology; that is, Q receives O under some assignment of truth values to its 

prime constituents. By Lemma A.5, there is an assignment of O's and l's to 

the prime constituents of Q such that Q receives the value O under that 

assignment also. Create a new assignment of truth values to the prime 

constituents of P and Q in the following way. To every prime formula that is 

a prime constituent of Q, assign the same truth value as in the zeroes-and­

ones assignment just described. To every prime formula of P that is not a 

prime constituent of Q, assign the value 1. By Lemma A.1, since no prime 

constituent of P was assigned the value 1/2, P must receive O or 1, and since 

it is a tautology, P must receive 1. But then, since P receives 1 and Q 

receives 0, P-Q receives 0, contradicting the choice of P-Q as a tautology. 

Thus, Q cannot receive O under any assignment of truth values to its prime 

constituents, so Q is a tautology. 

Lemma A.7: Any instance of Axiom Scheme Al, A2, or A3 is a 

tautology. 

Proof: The relevant truth tables are displayed in figures 19 to 21. 

Lemma A.8: Any step in a proof is a tautology. 

Proof: Let P be a formula that is a step in some proof. By the definition of 

llrQ,Qf, P is an instance of an Axiom Scheme or is inf erred from two earlier 

steps by modus ponens. 

Case 1, P is an instance of an Axiom Scheme. Then P is a tautology 

by Lemma A. 7. 



83 

p Q Q-P P--+(Q-P) 

0 0 1 1 

0 1/2 1/2 1 

0 1 0 1 

1/2 0 1 1 

1/2 1/2 1/2 1/2 

1/2 1 1/2 1/2 

1 0 1 1 
1 1/2 1 1 

1 1 1 1 

Figure 19. The truth table for Axiom Scheme Al. 

p Q ~Q .... p -Q-~P P-Q (~Q--P)--+ (P-Q) 

0 0 1 1 1 1 1 

0 1/2 1/2 1 1 1 1 

0 1 0 1 1 1 1 

1/2 0 1 1/2 1/2 1/2 1/2 

1/2 1/2 1/2 1/2 1/2 1/2 1/2 

1/2 0 1 1/2 1/2 1/2 1/2 

1 0 1 0 0 0 1 
1 1/2 1/2 0 1/2 1/2 1/2 

1 1 0 0 1 1 1 

Figure 20. The truth table for Axiom Scheme A3. 
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p Q R P-(Q-R) (P-Q)-(P-R) (P-(Q-R))- ((P-Q)-(P-R)) 

0 0 0 1 1 1 
0 0 1/2 1 1 1 
0 0 1 1 1 1 
0 1/2 0 1 1 1 
0 1/2 1/2 1 1 1 
0 1/2 1 1 1 1 
0 1 0 1 1 1 
0 1 1/2 1 1 1 
0 1 1 1 1 1 

1/2 0 0 1 1/2 1/2 
1/2 0 1/2 1 1/2 1/2 
1/2 0 1 1 1 1 
1/2 1/2 0 1/2 1/2 1/2 
1/2 1/2 1/2 1/2 1/2 1/2 
1/2 1/2 1 1 1 1 
1/2 1 0 1/2 1/2 1/2 
1/2 1 1/2 1/2 1/2 1/2 
1/2 1 1 1 1 1 
1 0 0 1 1 1 
1 0 1/2 1 1 1 
1 0 1 1 1 1 
1 1/2 0 1/2 1/2 1/2 
1 1/2 1/2 1/2 1/2 1/2 
1 1/2 1 1 1 1 
1 1 0 0 0 1 
1 1 1/2 1/2 1/2 1/2 
1 1 1 1 1 1 

Figure 21. The truth table for Axiom Scheme A2. 

Inductive step: Pis step n, and steps 1 to n - 1 are tautologies. Then 

P either is an instance of an Axiom Scheme or is inferred from two earlier 

steps, Steps j and k ( 1 S,; j < k), by modus ponens. By the induction 
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hypothesis, Step j and Step k are tautologies. By Lemma A.6, since Step j 

and Step k are tautologies, P is a tautology as well. 

Meta theorem A.9: Every theorem of the usual statement calculus is a 

tautology in M. 

Proof: Every theorem is, by definition, the last step of a proof. By Lemma 

A.8, then, every theorem is a tautology ofM. 

Metatheorem A,10: The usual statement calculus is a suitable formal 

system for M; that is, the formulas that are theorems of the usual 

statement calculus are precisely those that are tautologies of M. 

Proof: Metatheorems A.4 and A.9. 
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THE CHARACTERISTIC TRUTH CLASS TABLES 

FOR LOGICS I BETWEEN C AND L3' 
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In this appendix, we supply the full derivation of the truth class tables 

introduced in table 6, and we demonstrate that these tables are, as claimed, 

characteristic of the logics between C and L3'. 

The derivation of the truth class tables is as follows. Let I be a logic 

between C and L3', and let - and - be a binary and a unary truth function, 

respectively, on the truth values of I, such that all truth functions of I can 

be expressed in terms of - and - . 

Recall from chapter 5 that, because I is between C and L3', there exist a 

truth value mapping g from I to C such that I is as forgiving as C with 

respect to the mapping g and the sets{-,-} and {-c,-c}, and a truth value 

mapping f from I to L3' such that I is no more forgiving than L3' with 

respect to the mapping f and the sets{-,-} and {-L,-L}. 

For the remainder of this appendix, we dispense with subscripts and 

use the symbol - for the specified binary truth functions and - for the 

specified unary truth functions. Further, we use the symbols O and 1 for 

truth and falsity in each logic. Context will clarify whether the object is to 

be considered a function or a truth value of I, C, or L3'. 

Denote as 't the set of truth values of I whose image under f is 1. Denote 

as u the set of truth values of I whose image under fis 1/2. Note that by the 

definition of truth-value mapping, 't and u contain only designated values of 

I, so that for any truth value x in 'tor in u, g(x) = 1. Denote as <I> the set of 



truth values of I whose image under fis 0. Note that <I> contains only 

undesignated values of I, so that for any truth value x in <I>, g(x) = 0. 
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We construct the truth class table for - . Let x and y be any elements of 

't. Then ftx) = fty) = 1, so ftx)-fty) = (1-1) = 1. Since I is no more forgiving 

than La', ftx-y) ~ f(x)-fty) = 1, so fl:x-y) = 0, 1/2, or 1; thus, x-y can be in 

any of the sets 't, u, or <j>. Further, g(x) = g(y) = 1, so that g(x)-g(y) = (1-1) = 

1. Now, I is as forgiving as C, so g(x-y)~g(x)-g(y) = 1. Hence g(x-y) 

must be 1, from which it follows that x-y must be in 'tor in u. We record 

this fact with the notation "'t, u" at the appropriate place in the table. 

Let x be any element of 't, and let y be any element of u. Then g(x) = g(y) = 

1, so that g(x)-g(y) = (1-1) = 1. Since I is as forgiving as C, g(x-y) ~ 

g(x)-g(y) = 1, or g(x-y) = 1. Then x-y must be in 'tor in u. Also, fl:x) = 1 

and fty) = 1/2, and hence ftx)-fty) = (1-1/2) = 1/2. Since I is no more 

forgiving than La', f(x-y) ~ f(x)-fty) = 1/2, so ftx-y) is 0 or 1/2. Then x-y is 

in <I> or in u. However, we just showed that x-y cannot be in <j>. Thus, x-y 

is in u. 

Let x be any element of 't, and let y be any element of <j>. Then g(x) = 1 and 

g(y) = 0, so that g(x)-g(y) = (1-0) = 0. Since I is as forgiving as C, g(x-y) ~ 

g(x)-g(y) = 0, so g(x-y) is 0, 1/2, or 1; thus, x-y can be in any of the sets 't, 

u, and <j>. However, ftx) = 1 and fty) = 0, so that ftx)-fty) = (1-0) = 0. Since I 

is no more forgiving than L3', ftx-y) ~ 0, so ftx-y) = 0. Then x-y is in <I> by 

definition. 
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Moving to the next row in the table for - , let x be any element of u, and 

let y be any element of 't. Then ftx) = 1/2 and fty) = 1, so that ftx)-fty) = 

(1/2-1) = 1. Since I is no more forgiving than L3', ftx-y) s ftx)-fty) = 1, so 

ftx-y) is 0, 1/2, or 1, and x-y can be in any of the sets 't, u, and q>. Also, g(x) 

= g(y) = 1, so that g(x)-g(y) = (1-1) = 1. Since I is as forgiving as C, g(x-y) 

.&! g(x)-g(y) = 1, so g(x-y) = 1. Then x-y is in 'tor in u. 

Let x and y be elements of u. Then ftx) = fty) = 1/2. Hence ftx)-fty) = 

(1/2-1/2) = 1. Since I is no more forgiving than L3', f(x-y) ,s; f(x)-f(y) = 1, so 

ftx-y) is 0, 1/2, or 1, and x-y can be in any of the sets 't, u, and q>. Also, g(x) 

= g(y) = 1, and thus g(x)-g(y) = (1-1) = 1. Since I is as forgiving as C, 

g(x-y) .&! g(x)-g(y) = 1, so g(x-y) = 1. Then x-y must be in 'tor in u. 

Let x be any element of u, and let y be any element of q>. Then g(x) = 1 

and g(y) = 0, so that g(x)-g(y) = (1-0) = 0. Since I is as forgiving as C, 

g(x-y) > g(x)-g(y) = 0. Consequently, g(x-y) is 0 or 1, from which it 

folllows that x-y can be in any of the sets 't, u, and q>. Further, ftx) = 1/2 and 

fty) = 0, so that ftx)-fty) = (1/2-0) = 1/2. Since I is no more forgiving than 

L3', f(x-y) ~ f(x)-f(y) = 1/2, so that ftx-y) is 0 or 1/2. Thus, x-y is in u or in 

q>. 

Let x be any element of <I>, and let y be any truth value of I. Then ftx) = 0, 

so that f(x)-fty) = (0-f(y)) = 1 for any y. Since I is no more forgiving than 

L3', ftx-y) ~ f(x)-f(y) = 1, so that ftx-y) is 0, 1/2, or 1. Thus, x-y can be in 

any of the sets 't, u, and q>. However, g(x) = 0, so that g(x)-g(y) = (0-g(y)) = 1 



for any y. Since I is as forgiving as C, g(x-y)~g(x)-g(y) = 1, and thus 

g(x-y) = 1. It follows that x-y is in 'tor in u. 
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The truth class table for - is complete. Next, we construct the truth 

class table for ~. Let x be any element of 't. Then g(x) = 1, so that ~g(x) = ~ 1 = 

0. Since I is as forgiving as C, g(~x) ~ ~g(x) = 0, so that g(~x) is 0 or 1, and 

~x can be in any of the sets 't, u, and<)>. Also, f(x) = 1, so that ~f(x) = ~1 = 0. 

Since I is no more forgiving than L3', f(~x) .s ~f(x) = 0, and hence ft~x) = 0. 

Then ~x is in <)>. 

Let x be any element of u. Then g(x) = 1, and ~g(x) = ~ 1 = 0. Since I is as 

forgiving as C, g(~x) ~ ~g(x) = 0, so g(~x) is 0 or 1, and ~x can be in any of the 

sets 't, u, and<)>. However, ftx) = 1/2, so that ~ftx) = ~1/2 = 1/2. Since I is no 

more forgiving than L3', f(~x) .s ~ftx) = 1/2, so that ft~x) = 0 or 1/2. Then ~x 

is in u or in <)>. 

Finally, let x be any element of<)>. Then f(x) = 0, so that ~ftx) = ~0 = 1. 

Since I is no more forgiving than L3', f(~x) .s ~ftx) = 1, so ft~x) is 0, 1/2, or 1, 

and ~x can be in any of the sets 't, u, or<)>. Further, g(x) = 0, so that ~g(x) = 

~0 = 1. Since I is as forgiving as C, g(~x) ~ ~g(x) = 1, and consequently g(~x) 

= 1. Then ~x is in 't or in u. We have completed the truth class tables shown 

in figure 22. 

We now demonstrate that any logic represented by the truth class tables 

in figure 22 is between the logics C and L3'. 

Theorem: Suppose I is a logic all of whose truth functions can be expressed 

in terms of the binary truth function - and the unary truth function ~. 
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- 't '\) 

't,'U '\) 

'\) 't,'U 't,'U 'U,<l> '\) 'U,<l> 

i 't,'U 't,'U 't,'U 't,'U 

Figure 22. Truth class tables for logics I between C and L3'. 

Suppose further that the truth values of I can be separated into three sets--1:, 

u, and <!>--such that these sets satisfy the truth class tables for - and -

shown in figure 22. Then the logic I is between the logics C and L3'. 

Proof: We show first that I is more for~ving than C. 

Let g be the truth value mapping from I to C such that 

{

1 ifx is in 'tor u; 
g(x) = 

0 if xis in <j>. 

The reader is reminded that the 1 and O above are the truth values of the 

two-valued logic C and that when, below, we refer to 1 and Oas values of the 

functions - and - , we are considering - and - as negation and implication 

for the logic C. We show that the function - of I is as forgiving as the 

function - of C. Let x be a truth value of I. 

Case 1: xis in 1:. Then ~xis in <l> by the truth class table for-. Then 

g(-x) = 0 = -1 = -g(x) by the definition of g. 



Case 2: x is in u. Then -x is in u or -x is in q>. 

Subcase 2,1: -xis in u. Then g(-x) = 1 > 0 = -1 = -g(x) by the 

definition of g. 
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Subcase 2.2: -xis in q>. Then g(-x) = O = -1 = -g(x) by definition of g. 

Case 3: xis in q>. Then-xis in 'tor-xis in u. In either case, g(-x) = 1 

by the definition of g, so g(-x) = 1 = -0 = -g(x). 

We show that the function - of I is as forgiving as the function - of C. 

Let x and y be truth values of I. 

Case 1: xis in 't. 

Subcase 1.1: y is in 't. Then x- y is in 'tor x-y is in u, by the truth 

class table for - . In either case, g(x-y) = 1 = (1-1) = g(x)-g(y). 

Subcase 1.2: y is in u. Then x-y is in u by the truth class table for - , 

and g(x-y) = 1 = (1-1) = g(x)-g(y) by the definition of g. 

Subcase 1.3: y is in q>. Then x-y is in <I> by the truth class table for - , 

and g(x-y) = 0 = (1-0) = g(x)-g(y) by the definition of g. 

Case 2: xis in u. 

Subcase 2.1: y is in 't. Then x-y is in 't or x-y is in u. In either case, 

g(x-y) = 1 = (1-1) = g(x)-g(y). 

Subcase 2.2: y is in u. Then x-y is in 'tor x-y is in u. In either 

case, g(x-y) = 1 = (1-1) = g(x)-g(y). 

Subcase 2.3: y is in q>. Then x-y is in u or x-y is in q>. 

(a) Ifx-y is in u, then g(x-y) = 1 > 0 = (1-0) = g(x)-g(y). 
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(b) Ifx-y is in <I>, then g(x-y) = 0 = (1-0) = g(x)-g(y). 

Case 3: x is in q,. 

Subcase 3.1: y is in 't. Then x-y is in 'tor x-y is in u. In either case, 

g(x-y) = 1 = (0-1) = g(x)-g(y). 

Subcase 3,2: y is in u. Then x-y is in 'tor x-y is in u. In either 

case, g(x-y) = 1 = (0-1) = g(x)-g(y). 

Subcase 3,3: y is in q>. Then x-y is in 'tor x-y is in u. In either 

case, g(x-y) = 1 = (0-0) = g(x)-g(y). 

For any x and y that are truth values of I, we have seen above that 

g(-x) ~ -g(x) and g(x-y) ~ g(x)-g(y). Thus, I is as forejying as C. Now, by 

the filri.ct inequalities in subcase 2.1 for - and subcase 2.3 for-, we see that 

I is more forgiving than C. 

We now show that I is less forgiving than L3'. Let fbe the truth value 

mapping from I to L3' such that 

1 if xis in 't; 

flx) = 1/2 ifx is in u; 

0 ifx is in q,. 

The reader is reminded that, when 1, 1/2, and 0 are referred to as values 

of the functions - and - , we are considering - and - as truth functions in 

L3'. We show that the function - of I is no more forejying than the function 

- of L3'. Let x be a truth value of I. 

Case 1: x is in 't. Then -x is in <I> by the truth class table for - . Then 

fl~x) = 0 = -1 = -flx). 



Case 2: x is in u. Then -x is in u or -x is in cj>. 

Subcase 2,1: ~xis in u. Thenf(-x) = 1/2 = -1/2 = ~fCx). 

Subcase 2.2: ~xis in cj>. Then f(~x) = 0 < 1/2 = -1/2 = ~fCx). 

Case 3: x is in cj>. Then ~x is in 'tor -x is in u. 

Subcase 3.1: -xis in 't. Then f(-x) = 1 = ~O = ~f(x). 

Subcase 3.2: -x is in u. Then f(-x) = 1/2 < 1 = ~O = -f(x). 
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We show that the function - I is no more forejyine: than the function -

of L3'. Let x and y be truth values of I. 

Case 1: xis in 't. 

Subcase 1.1: y is in 't. Then x-y is in 'tor x-y is in u. 

(a) Ifx-y is in 't, then f(x-y) = 1 = (1-1) = f(x)-f(y). 

(b) Ifx-y is in u, then f(x-y) = 1/2 < 1 = (1-1) = f(x)-f(y). 

Subcase 1,2: y is in u. Then x-y is in u. Then f(x-y) = 1/2 = (1-1/2) 

= f(x)-f(y). 

Subcase 1.3: y is in cj>. Then x-y is in cj>. Then f(x-y) = 0 = (1-0) = 
f(x)-f(y). 

Case 2: x is in u. 

Subcase 2.1: y is in 't. Then x-y is in 'tor x-y is in u. 

(a) Ifx-y is in 't, then f(x-y) = 1 = (1/2-1) = f(x)-f(y). 

(b) Ifx-y is in u, then f(x-y) = 1/2 < 1 = (1/2-1) = f(x)-f(y). 

Subcase 2.2: y is in u. Then x-y is in 'tor x-y is in u. 



(a) Ifx-y is in 't, then f(x-y) = 1 = (1/2-1/2) = f(x)-f(y). 

(b) Ifx-y is in u, then f(x-y) = 1/2 < 1 = (1/2-1/2) = f(x )-f(y). 

Subcase 2.3: y is in (j>. Then x-y is in u or x-y is in (j>. 

(a) Ifx-y is in u, then f(x-y) = 1/2 = (1/2-0) = f(x)-f(y). 

(b) Ifx-y is in (j>, then f(x-y) = 0 < 1/2 = (1/2-0) = f(x)-f(y). 

Case 3: x is in <j>. 

Subcase 3.1: y is in 't. Then x-y is in 'tor x-y is in u. 

(a) Ifx-y is in 't, then f(x-y) = 1 = (0-1) = f(x)-f(y). 

(b) Ifx-y is in u, then f(x-y) = 1/2 < 1 = (0-1) = f(x)-f(y). 

Subcase 3.2: y is in u. Then x-y is in 'tor x-y is in u. 

(a) Ifx-y is in 't, then f(x-y) = 1 = (0-1/2) = f(x)-f(y). 

(b) Ifx-y is in u, then f(x-y) = 1/2 < 1 = (0-1/2) = f(x)-f(y). 

Subcase 3.3: y is in <j>. Then x-y is in 'tor x-y is in u. 

(a) Ifx-y is in 't, then f(x-y) = 1 = (0-0) = f(x)-f(y). 

(b) Ifx-y is in u, then f(x-y) = 1/2 < 1 = (0-0) = f(x)-f(y). 
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Thus, for any truth values x and y of I, we see that f(-x) < -f(x) and 

f(x-y) ~ f(x)-f(y). Thus, I is no more forgiving than La'. By the strict 

inequalities in subcases i.2.2 and i.3.2 for the function~ and subcases 1.1.b, 

ii.2. 1.b, ii.2.2.b, ii.2.3.b, ii.3. 1.b, ii.3.2.b, and ii.3.3.b for the function - , we 

see that I is in fact less fore:ivin~ than L3'. 

Then, by the definition of betweenness, I is between C and L'. 



APPENDIXC 

LOGICS BETWEEN C AND L3' FOR WHICH THE USUAL 

STATEMENT CALCULUS IS NOT SUITABLE 

As mentioned in chapter VII, a relevant question to consider now is 

whether the conditions given in Metatheorem 6.14 are in fact necessary. 

That is, given a logic I between C and Lg' for which the usual statement 

calculus is suitable, m.u.51 condition (i) or condition (ii) hold? 
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This question is open. As noted in chapter 7, if L3' is found to have the 

usual statement calculus as a suitable formal system, then the question 

will be answered in the negative, since neither condition (i) nor condition 

(ii) holds for L3'. 

Of the other logics so far studied for which conditions (i) and (ii) fail to 

hold, none has the statement calculus as a suitable formal system. An 

example is the logic given as counterexample in the first section of chapter 

4. By comparing the truth class tables for this logic to the truth class table 

for a logic I satisfying condition (ii) ofMetatheorem 6.14, we can see how 

near· a miss there is, that is, a difference~ in the "u-<1>" entry. But--as 

the saying goes--"near misses count only with horseshoes and grenades."1 

If we concentrate on that "u-<1>" entry, we see that it is ''u,<I>" for this 

logic, so that a truth value in such a case would be either in u or in <j>. In 

this logic, as noted, Axiom Scheme 3 is not a tautology. The usual 

statement calculus is not a suitable formal system because this logic does 

not have enough tautologies. If we narrow our focus to include, instead, 

only those logics whose "u-<1>" entry is "u," we tend to find that if such a 

1 Millar (14]. 
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logic does not satisfy condition (i) of Metatheorem 6.14, then the logic has 1QQ 

many tautologies to have the usual statement calculus as a formal system. 

Whether this is so in general, that is, for all logics between C and L3' 

that fail Metatheorem 6.14 and have "u" as a "u-<1>" entry, is not yet known. 

The following are four particular instances of such a situation. In each 

case, the presence of a tautology that is not a theorem of the usual 

statement calculus indicates that that calculus is not suitable for such a 

logic. Figures 23 to 26 display the truth class tables for the four types of 

logics under consideration. 

Observation: Let I be a logic between C and L3' such that, for any truth 

value x in the set u and any truth value yin the set <I>, the truth value x-y is 

in the set u. Then the following results hold, as can be verified by referring 

to figures 23 to 26. 

(i.) If ~x is in u for all x in <I>, then ~Q - Q is a tautology. 

(ii.) If x-y is in u for all x and yin <I>, then (Q - Q) - Q is a tautology. 

(iii.) If x-y is in u for all x in <I> and all y in 'C, and if x-y is in 'C for all x 

and yin <I>, then (Q - (Q - Q)) - Q is a tautology. 

(iv.) If x-y is in u for all x and yin 'C, and if x-y is in 'C for all x and yin 

<I>, then ((Q - Q) - (Q - Q)) - Q is a tautology. 
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- 't '\) <I> -
't 't,'U '\) <I> <I> 

'\) 't, '\) 't,'U '\) '\) 'U,<I> 

<I> 't,'U 't,'U 't,'U <I> '\) 

Figure 23. Truth class tables for situation (i). 

- '\) <I> 

't 't,'U '\) <I> 't <I> 

'\) 't,'U 't,'U '\) '\) u,<1> 

<I> 't,'U 't,'U '\) <I> 't,'U 

Figure 24. Truth class tables for situation (ii). 

- 't '\) <I> 

't 't,'U '\) <I> 't <I> 

'\) 't,'U 't, '\) '\) '\) 'U,<j> 

<I> '\) 't,'U 't <I> 't,'U 

Figure 25. Truth class tables for situation (iii). 
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- '\) <I> 

't '\) '\) <I> 't <I> 

'\) 't,U 't,U '\) '\) u,(j> 
I 

<I> 
I 

't,U <I> , 't,U ;'t,U 
' I 

Figure 26. Truth class tables for situation (iv). 
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