Iowa Science Teachers Journal

Volume 18 | Number 3

Article 9

1981

A 5-Year Comparison Study of Iowa High School Science

Jack Gerlovich Iowa Department of Public Instruction

Follow this and additional works at: https://scholarworks.uni.edu/istj

Part of the Science and Mathematics Education Commons

Let us know how access to this document benefits you

Copyright © Copyright 1981 by the Iowa Academy of Science

Recommended Citation

Gerlovich, Jack (1981) "A 5-Year Comparison Study of Iowa High School Science," *Iowa Science Teachers Journal*: Vol. 18: No. 3, Article 9. Available at: https://scholarworks.uni.edu/istj/vol18/iss3/9

This Article is brought to you for free and open access by the IAS Journals & Newsletters at UNI ScholarWorks. It has been accepted for inclusion in Iowa Science Teachers Journal by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.

A 5-YEAR COMPARISON STUDY OF IOWA HIGH SCHOOL SCIENCE

Jack Gerlovich Dept. of Public Instruction Des Moines, Iowa 50319

Introduction

There have been some major changes among the nation's schools in the past 20 years. These include (a) appearance of paraprofessionals; (b) new instructional technologies; (c) varying levels of desegregation; (d) federal funding accompanied by federal control; (e) larger school districts; (f) more informal instructional arrangements; and (g) unionization of teachers. (1)

Within the context of these changes, it has been professed that science has been experiencing a progressive de-emphasis in the general curriculum. (2) It has been alleged that such general de-emphasis of science can be seen in many ways. Among the major allegations are:

- Decreased graduation requirements for science. (3)
- Declining science enrollments since 1973, especially in the areas of physics and physical science. (4)
- Decreasing numbers of school districts with the largest and smallest districts curricula most severely affected by declining enrollments. (5,6)
- Due to increasing shortages of science teachers, increasing numbers of science courses are taught by teachers without applicable content preparation. (7)
- Changes in science curriculum emphases, generally away from traditional programs (Biology, Chemistry, Physics, etc.) toward general and/or interdisciplinary courses. (8)

The purpose of this study was to address these allegations through a 5-year (1973-74 to 1978-79) comparison of Iowa public high school science curricula and staff characteristics. The study focused upon curricula and staff by school district size. Only teaching staff with bachelor degrees or beyond were included in the study.

Procedure

The sample included all science teachers in Iowa public high schools. The data came from the Basic Education Data Survey of the Department of Public Instruction (DPI). Each year the DPI collects curriculum and staff information concerning every high school (grade 9-12 only) and staff member teaching in Iowa's public and non-public schools. This study was confined to public high schools only. The DPI has gathered evidence that substantiates the accuracy of the information derived from the BEDS forms filed each year by school districts. It can be concluded that errors of deviations on the forms are the exception and do not generally affect total data validity. The accuracy of this study was consistent with the accuracy provided by the BEDS and subject to the same inherent limitations.

Results

Science Graduation Requirements (grades 9-12)

Since reliable data concerning graduation requirements were available only for the years 1976-77 through 1978-79, this portion of the study encompassed only three years.

Table 1 indicates the science graduation requirements for Iowa public high schools listed by school district size. It is readily apparent that general declining enrollments have affected school district sizes. From 1976-77 to 1978-79 the total number of school districts declined from 449 to 447. In addition, as enrollments declined in large and intermediate size districts additional small districts were created. From 1976-77 to 1978-79 the number of school districts with enrollments of less than 500 increased from 148 to 156; simultaneously the number of intermediate and large school districts declined.

K-12 School	No. of				Uni	ts					
Enrollment	Districts	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	_
Less than 500	(148)	0	0	36	1	108	1	1	0	1	1976-77
	(154)	0	0	37	2	112	1	1	0	1	1977-78
	(156)	1	0	34	2	117	0	1	0	1	1978-79
500-749	(94)	0	0	36	1	55	0	2	0	0	1976-77
	(91)	1	0	36	1	51	0	2	0	0	1977-78
	(92)	0	0	35	2	53	0	2	0	0	1978-79
750-999	(75)	0	0	34	1	39	0	1	0	0	1976-77
	(74)	0	0	32	2	38	0	2	0	0	1977-78
	(76)	0	0	32	2	40	0	2	0	0	1978-79
1,000-1,499	(47)	1	1	17	1	27	0	0	0	0	1976-77
	(46)	0	1	16	1	28	0	0	0	0	1977-78
	(39)	0	1	13	1	24	0	0	0	0	1978-79
1,500-1,999	(25)	0	0	8	0	17	0	0	0	0	1976-77
	(23)	0	0	7	1	15	0	0	0	0	1977-78
	(27)	0	0	9	2	16	0	0	0	0	1978-79
2,000-2,999	(31)	0	1	12	0	17	0	1	0	0	1976-77
	(32)	0	1	14	16	0	0	1	0	0	1977-78
	(29)	0	1	12	0	14	0	2	0	0	1978-79
3,000 or more	(29)	0	0	19	0	10	0	0	0	0	1976-77
	(29)	0	1	17	11	0	0	0	0	0	1977-78
	(28)	0	1	19	0	8	0	0	0	0	1978-79

Table 1 Graduation Requirements in Science 1976-7 to 1978-9 for grades 9-12 (9)

In the area of science, small school districts (enrollment less than 500) appear to be increasing the science requirements for graduation. The number of school districts, in this category, requiring 1 unit (1 year) of science declined from 36 in 1976-77 to 34 in 1978-79; simultaneously, the number of districts requiring 2 units has increased from 108 to 117 for the same time period. In large school districts (2,000 or more) graduation requirements have generally been decreasing in the area of science.

Table 2 indicates both the total and average enrollments in each science subject by school district size for the 1973-74 and 1978-79 academic years. Average enrollments were calculated to compensate for fluctuations in the numbers of school districts in each size category. Averages were calculated by taking total enrollments by subject for each of the DPI size categories and dividing these totals by the number of districts of that size. Such figures provide only a general estimation of enrollment trends.

Due to declining enrollments in the larger districts, those districts with enrollments of less than 500 showed a considerable increase in numbers (130 in 1973-74 to 156 in 1978-79). School districts with enrollments of 500-749, 1,000-1,499, and 2,000-2,999 show significant declines in numbers.

It is apparent from Table 2 that there has been a general increase in enrollment in the subject areas of biology, chemistry, and general science, with a concomitant decrease in physics, physical, and earth science. It may be interesting to note that in large school districts (2,000 or more) physics and earth science have shown significant average enrollment increases, while the smaller districts have held stable or declined. This average enrollment increase in physics and earth science for large school districts is even more significant when it is observed that during this 5-year period there has been a substantial decrease in the number of school districts with enrollments of 2,000 or more students. General science appears to be the science subject area showing the fastest and most uniform growth in enrollment.

Staff characteristics

The National Center for Educational Statistics reports that since 1961 the percentage of bachelor degrees earned in science has held steady at almost 8%, while the percentage of master and doctorates declined from 8% to 4% and 30% to 20% respectively. (11) This may indicate that fewer teachers are pursuing advance degrees or that in a growing economy, more lucrative and rewarding science careers are available in the private sector of business for those with specific science education. (12)

Tables 3 and 4 provide a comparison of Iowa public high school science staff characteristics by subject area and school district size. The total number of bachelor degrees in science increased from 2,273 in 1973-74 to

K-12 District Enrollment	No. Districts	Biolo	gy	Chem	istry	Phys	sics	Phys Scie		Ear Scie		Conser	vation	Gene Scie	
Less than 500		Total	Ave	Total	Ave	Total	Ave	Total	Ave	Total	Ave	Total	Ave	Total	Ave
1973-4 1978-9	130 156	1,401 5,294	11 34	1,261 1,525	10 10	623 805	5 5	1,593 1,966	12 13	608 614	5 4	69 260	61 2	2,022 2,302	16 15
500-749															
1973-4 1978-9	102 92	4,776 4,982	47 54	1,572 1,580	15 17	788 632	8 7	2,177 1,698	21 19	988 893	10 10	215 134	2 2	2,008 1,972	20 21
750-999															
1973-4 1978-9	76 76	5,409 5,702	71 75	1,728 1,951	23 26	747 653	10 9	2,719 2,573	36 34	977 537	13 7	301 314	4 4	1,728 2,167	23 29
1,000-1,499															
1973-4 1978-9	52 39	4,919 4,376	95 112	1,390 1,300	46 33	598 466	12 12	3,003 2,050	58 53	1,372 663	26 17	124 167	2 4	1,130 1,257	22 32
1,500-1,999															
1973-4 1978-9	25 27	2,919 4,387	117 163	974 1,477	39 58	540 548	22 20	2,135 1,232	85 46	1,052 1,230	42 46	329 600	13 22	685 1,785	27 66
2,000-2,999															
1973-4 1978-9	36 29	6,421 6,013	178 207	2,182 1,957	61 68	707 740	20 26	2,958 2,370	82 82	1,374 1,131	38 39	229 128	6 4	2,158 2,036	60 70
3,000 or more															
1973-4 1978-9	29 28	17,760 16,608	612 593	5,880 5,260	203 188	2,365 2,586	82 92	6,184 5,418	213 194	6,387 6,222	220 222	1,256 982	43 35	5,928 9,354	204 334
Total															
1973-4 1978-9	450 447	46,303 47,362	103 106	14,989 15,050	33 34	6,638 6,430	15 14	20,769 17,307	46 39	12,758 11,290	28 25	2,523 2,585	6 6	15,660 20,873	35 47

Table 2 Average Enrollment in Iowa Public High Schools (9-12) Science Courses by School District Size

. .

. . .

2,274 in 1978-79, while the number of master degrees declined from 1,300 to 1,225 during the same time period.

Biology and chemistry both showed increases in the total number of teachers between 1973-74 and 1978-79. Both subject areas exhibited increases in the number of teachers with bachelor degrees, with a simultaneous decrease in the number with master degrees. With the exception of those with enrollments of less than 500 or between 1,500 and 1,999, all school district size categories showed decreases in the number of biology and chemistry teachers. Declining enrollments in intermediate (500-1,500 students) and very large districts (3,000 + students) resulted in increasing numbers of very small (less than 500 students) and large (1,500-2,000 students) districts.

A comparison of Tables 3 and 4 indicates a common pattern concerning changes in the numbers of physics, physical science, earth science, and general science teachers between 1973-74 and 1978-79. In general there has been a decrease in the number of teachers in all four subject areas. Again the effect of declining enrollments on the numbers of teachers was felt least in school district categories with K-12 enrollments of less than 500 or between 1,500 and 1,999 students.

It is apparent from Tables 3 and 4 that conservation and related environmental courses have increased in emphasis in the past five years. Increases in the number of teachers has been almost universal in all school district sizes. In 1973-74 the ratio of conservation teachers with bachelor and master degrees in Iowa's public high school was approximately 1 to 1; by 1978-79 the former had surpassed the latter by almost 2 to 1.

Table 5 indicates that, in addition to changes in teacher preparation, there have been significant changes in some teaching assignments. The total number of teachers who presently have math/science combination teaching assignments in Iowa's public high schools has increased from 245 in 1973-74 to 282 in 1978-79. The most significant increase in such teaching assignments has been in the very small (less than 500 students) and very large school districts (3,000+ students).

Table 6 provides a five year comparison of Iowa public high school science teachers with undergraduate and/or graduate majors in their present teaching subject area. The table only considers biology, chemistry, physics and physical science due to the availability of data within the DPI BED system. It is apparent that in the area of chemistry, physics and physical science most teachers do not have a major in that specific subject area. The biological sciences appear to have many more teachers instructing in the subject area in which they majored in college. It also appears that the large and very large school districts have a greater percentage of teachers with majors in their current teaching area.

Curricular offerings

Table 7 provides a comparison of the number of teachers instructing in specific subjects by grade level and school district size in Iowa's public

										1	Physica	al		Eart	h		Conse	er-		Genera	al
K-12 District		Biolog	ζy	C	hemis	try		Physic	cs		Science	е		Scien	ce		vatio	n		Scienc	e
Enrollment	BA	MA	Total	BA	MA	Total	BA	МА	Total	BA	MA	Total	BA	MA	Total	BA	MA	Total	BA	MA	Total
Less than 500	116	22	138	72	24	96 ,	60	25	86 ^e	49	9	58	49	10	59.	2	1	3	100	18	118
500-749	112	30	143^{a}	60	32	94^a	59	31	91 ^J	49	13	63 ⁹	43	11	55 ¹	4	2	6	112	22	135
750-999	79	37	116	43	27	70	41	27	68	38	26	64	37	9	46	8	1	9	90	28	118
1,000-1,499	66	24	90,	22	27	49	20	29	49	33	16	49	30	11	41	2	2	4	77	18	95
1,500-1,999	38	15	54 ⁰	8	15	23	7	16	23	14	13	27	15	9	24	2	3	5	40	16	56
2,000-2,999	47	50	97	12	24	36	15	23	38	27	25	52	24	22	46	4	4	8	86	41	127
3,000 or more	109	140	252 ^C	20	49	<i>69</i>	5	43	48	72	71	146 ⁿ	43	52	95	7	11	18	205	126	334
Total	567	318	890	237	198	437	207	194	403	282	173	459	241	124	366	29	24	53	710	269	983
	_		-																		
Key: a - 2 specia		-	loctorate			pecialis			doctor		i - 1	doctor	ate k		pecialis						
b - 1 doctor	rate (l - 2 d	octorate	88	f - 1 a	loctorat	e		special doctor	. ,	j - 1	doctor	ate	2 d	octorat	<i>es</i>					

Table 3 Iowa Public High School Science Teachers by Subject and School District Size (1973-4) (13)

38

Table 4 Iowa Public High School Science Teachers by Subject Area, Education and School District Size (1978-9)

K-12 District		Biol	ogy	(Chem	istrv		Phy	sics		Phy Scie	vsical nce		Ean Scie			Con vat			Gen Scie	
Enrollment	BA	MA		BA	MA	Total	BA	MÅ	Total	BA	MA	Total	BA	MA	Total	BA	MA	Total	BA	MA	Total
Less than 500	179	37	216	103	33	136	88	27	116d	61	14	75	60	9	69	13	3	16	130	32	162
500-749	100	27	127	59	29	89b	52	26	79e	36	19	56f	45	7	52	10	2	12	96	15	111
750-999	88	27	115	42	22	64	29	27	56	30	24	54	36	7	43	10	1	11	85	25	1119
1,000-1,499	58	26	84	14	23	37	15	21	36	25	12	37	27	7	34	5	3	8	57	16	73
1,500-1,999	42	22	64	11	17	28	13	15	28	21	15	36	12	15	27	6	4	10	42	16	58
2,000-2,999	45	37	82	10	19	30C	10	20	30	18	14	32	19	9	28	4	2	6	52	18	70
3,000 or more	108	140	250a	21	47	68	11	36	47	54	65	119	45	41	86	14	17	31	163	135	298
Total	620	316	938	260	190	452	218	172	392	245	163	409	244	95	339	62	32	94	625	257	883

Key: a - 1 specialist, b - 1 specialist d - 1 specialist f - 1 specialist 1 doctorate c - 1 doctorate e - 1 specialist g - 1 specialist

K-12 District	1973-4	1978-9
Enrollment	No. of	Teachers
Less than 500	68	82
500-749	53	44
750-999	39	38
1,000-1,499	27	29
1,500-1,999	10	16
2,000-2,999	17	20
3,000 or more	31	53
Total	245	282

Table 5 Iowa Public High School Teachers with Math/Science Combination Teaching Assignments by School District Size (15)

Table 6 Iowa Science Teachers with Undergraduate or Graduate Majors in their Teaching Area by Subject and School District Size (16)

1973-4

K-12 District Enrollment	Biol	logy	Chen	nistry	Phy	vsics		sical ence
	Major	Non Major	Major	Non Major	Major	Non Major	Major	Non Major
Less than 500	81	57	23	73	11	75	7	51
500-749	80	63	24	70	17	74	3	60
750-999	59	57	30	40	15	53	9	55
1,000-1,499	55	35	18	31	14	35	1	48
1,500-1,999	35	19	12	11	8	15	4	23
2,000-2,999	78	19	16	20	14	24	9	43
3,000 or more	170	82	32	37	19	29	11	135
Total	558	332	155	282	98	305	44	415

1	•		O		n
L	9	1	o	-	э

K-12 District Enrollment	Biol	logy	Chen	nistry	Phy	sics		sical ence
	Major	Non Major	Major	Non Major	Major	Non Major	Major	Non Major
1	133	83	36	100	13	103	8	67
2	70	57	31	58	19	60	10	46
3	65	50	30	34	13	43	3	51
4	47	37	14	23	7	29	3	34
5	45	19	14	14	10	18	7	29
6	54	28	9	21	8	22	5	27
7	173	77	37	31	20	27	15	104
Total	587	351	171	281	90	302	51	358

30

								Subj	æt,	Gra	de	Leve	el, and	d num	ber	of	teach	ers													
K-12 District Enrollment		Bio	logy			Che	mist	ry			Ph	ysics	3		•	sical ence					rth				nse ati	-		(eral ence	
	9	10	11	12	9	10	11	12		9	10	11	12	9	10	11	12	9	9	10	11	12	9	10	11	12		9	10	11	12
Less than 500	10	113	39	44	2	6	91	57		8	11	25	54	43	5	14	6	1	9	3	3	3	0	0	1	3		54	6	8	11
500-749	20	109	61	56	2	9	88	58		11	10	27	55	45	9	13	4	20)	5	5	4	0	4	5	6		45	10	10	16
750-999	21	75	49	49	1	11	6 8	53		1	5	18	56	48	13	9	6	18	3	4	2	2	1	5	2	8		30	8	15	21
1,000-1,499	9	54	40	38	0	12	47	45		1	3	25	44	39	10	9	7	15	5	2	2	1	1	3	4	4		11	16	22	26
1,500-1,999	3	31	23	23	0	5	23	18		1	3	8	18	16	3	7	6	12	?	2	2	2	1	5	5	5		8	7	10	15
2,000-2,999	11	63	48	44	1	11	36	35		0	2	16	33	33	8	12	9	19)	3	3	2	2	0	4	6		18	8	10	14
3,000 or more	29	137	113	104	0	34	66	64		2	12	33	44	69	27	29	25	40) ;	18	17	16	5	12	12	14		37	32	33	38
Total	103	582	373	358	6	88	419	330		24	46	152	304	293	75	93	63	143	3 3	37	34	30	10	29	38	46	2	03	87	108	141

Table 7 Dominant Iowa Public High School Science Course offerings by Grade Level and School District Size (17)

1973-4

2

1978-9

				-		_		Subj	ect,	, Gr	ade	Lev	el, an	d nu	mb	er	of te	each	ers	1											
K-12 District Enrollment		Bi	olog	,		Che	emis	try			Ph	ysic	3			nysi cier			1			rth Ice	l			nse tio	-			neral ence	
S	9) 1	0 1	1 1	2 9	0 10	11	12		ę) 10	11	12		9	10	11	12	9	9 1	10	11	12	9	1	01	1 12	9	10	11	12
Less than 500	28	17	0 11) 11.		11	129	91		7	12	64	62	6	0	11	34	7	16	5	4	5	4	5	1	0 1	4 15	91	23	21	25
500-749	17	9	1 5	5 5	2	11	86	65		8	11	37	51	4	4	12	23	4	20)	1	1	1	1		51	09	51	15	12	14
750-999	24	7	3 5	7 5.	1	15	63	59		4	5	23	40	4	5	18	15	7	10)	1	1	1	1	ł	31	0 11	33	17	19	22
1,000-1,499	9	44	4 4.	1 3	0	12	36	35		1	4	17	22	2	8	5	5	3	5	9	4	5	5	1	ł	5	76	16	15	17	16
1,500-1,999	4	4	2 2	7 2	7 5	6	27	23		1	2	8	17	2	2	3	6	3	14	1	2	1	1	3		7	7 8	13	10	8	11
2,000-2,999	2	54	4 4	3 4	3 1	11	29	29		0	6	11	17	2	0	7	7	6	13	3	1	1	1	2	é	3	22	19	2	3	6
3,000 or more	33	148	8 13	2 12	2 1	36	62	64		1	12	29	39	4	2	17	21	20	54	1	19	18	17	10	2	0 2	0 21	74	38	44	47
Total	122	622	2 46	5 45	5 15	102	432	366		22	52	189	248	26	1	73	111	50	136	5 3	32	32	30	23	53	3 7	0 72	297	120	124	141

high schools. Although there were slight differences among school districts by size, there was a great deal of agreement as to the grade level at which each subject is taught. The subject and dominant grade each subject offered were: Biology — grade 10; chemistry — grade 11; physics — grade 12; physical science — grade 9; earth science — grade 9; conservation — grade 12; and general science — grade 9. Between 1973-74 and 1978-79 there were no major shifts in the grade levels at which each subject was taught.

Discussion and Conclusions

As a result of this 5-year (1973-74 to 1978-79) comparative study of Iowa public high school (grades 9-12) staff and curricula, certain allegations may be more confidently addressed.

- Due to general declining enrollments, reorganization and consolidation have resulted in reductions in the number of intermediate (1,000-2,000 students) and very large (3,000+ students) school districts. The number of very small (500 students) school districts, however, have increased significantly.
- Science graduation requirements are generally increasing in small public high schools, while they are generally stable or declining slightly in larger school districts. It must be cautioned, however, that such changes may be partially explained by increases in the number of small to general declining enrollments and resultant reorganization and/or consolidation.
- Average and total enrollments are increasing in most areas of science in very small school districts, while they are experiencing sporadic changes in the larger districts. Average and total enrollments have generally increased in biology, chemistry and general science, regardless of school district size.
- The numbers of course offerings in conservation, general science, biology, and chemistry have generally increased, while those in physics, physical science and earth science have generally declined.
- The most significant and uniform growth in science courses, regardless of school district size, appears to be in biology and general science.
- There have been no significant changes in the grade levels at which science subjects are taught.
- The number of science teachers with master degrees are generally decreasing, while the number with bachelor degrees are increasing. Biology, chemistry, and conservation have shown total increases in the number of teachers.
- There has been a general increase in the number of biology and chemistry teachers who have undergraduate or graduate majors in their teaching area. Very large school districts have shown uniform increases in the number of teachers with majors in their teaching area and decreases in the number of teachers without majors in their teaching area.

- There appears to be significant increases in the number of teachers with combination math/science teaching assignments.
- Consistent with national trends, it appears that the very small and very large school districts are experiencing the greatest staff and curricular changes.

References

- Stake, Robert E. and Jack A. Easley, Jr. Design, Overview and General Findings, Vol. 2. In: Case Studies in Science Education. Washington, D.C.: U.S. Government Printing Office, 1978.
- Helgeson, Stanley L., Patricia E. Blosser, and Robert W. Howe. Science Education, Vol. 1. In: The Status of Pre-College Science, Mathematics, and Social Science Education 1955-75. Washington, D.C.: U.S. Government Printing Office, 1978.
- 3. Ibid.
- 4. Fiske, E.B. Halycon Days for Science are Over in Schools. *New York Times*, Sunday, April 22, 1979. pp. 1, 14. New York, NY.
- A Statistical Profile: Education in the States 1973-74 Compact, pp. 14-15, July, August, 1974. In: The Status of Pre-College Science, Mathematics, and Social Science Education 1955-75, Washington, D.C.: U.S. Government Printing Office, 1978.
- 6. Odden, Allan; Phillip É. Vincent. *The Fiscal Impacts of Declining Enrollments*, Education Finance Center, Education Commission of the States. Denver, Colorado, December 1976.
- 7. Howe, Trevor G., Jack A. Gerlovich. Teacher Supply and Demand in the 1970's with Trends in the Areas of Math and Science in Iowa Public Schools. Unpublished study, 1979.
- 8. Roberts, R. Natural Sciences Struggle for Dollars and Recognition: Reforms in Retreat in the High Schools. *New York Times*, Sunday, April 22, 1979. pp. 14-16. New York, NY.
- 9. Iowa Department of Public Instruction, Management Information Division. Iowa Public High School Graduation Requirements, including the Basic Subject Areas of Language Arts, Mathematics, Science, and Social Studies. Iowa Basic Educational Data Survey (BEDS) Document. Des Moines, Iowa. June 1976, 1977, 1978.
- 10. Iowa Department of Public Instruction, Management Information Division, Des Moines, Iowa.
- 11. Sullivan, W. Science is Holding its Own in the Colleges New York Times; April 22, 1979; p. 16. New York, NY.
- 12. Op. Cit., Howe, Gerlovich
- 13. Op. Cit. Iowa Department of Public Instruction
- 14. Ibid.
- 15. Ibid.

16. Ibid. 17. Ibid. Bad Breath

Why do garlic, onions and other pungent foods impart a lingering odor to breath?

The odor doesn't come from the stomach, because the gullet opens only occasionally, generally remaining collapsed like an empty toothpaste tube, according to Claire Reyner in *Everything Your Doctor Would Tell You If He Had Time*. And it's not because remnant of foods linger in the mouth.

It's because the molecules that give foods a pungent aroma pass through the stomach walls and into the bloodstream, then into the lungs, from which they are expelled by breathing.