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ABSTRACT 

The ability to acquire and use remotely sensed data has revolutionized large-scale 

ecological studies by reducing dependence on difficult and expensive field survey 

techniques for acquisition of land use and land cover data. Multispectral satellite 

imagery, typically from the Landsat Multispectral Scanner (MSS), Thematic Mapper 

(TM) and the SPOT High Resolution Visible (HRV) instruments, has proven particularly 

valuable in surveying and classifying vegetation cover (Frank & Thorn, 1985). 

Further studies have concluded that alpine vegetation communities and habitats can be 

mapped successfully by including the geomorphic parameters of elevation, slope, and 

incidence when classifying remotely sensed data. 

This research analyzes the degree of classification accuracy that can be obtained 

by using digitized National Aerial Photography Program (NAPP) aerial photographs and 

topographic data derived from a digital elevation model (DEM) by comparing these to 

detailed tundra vegetation and topographic data for an alpine tundra area in the Wind 

River Range, Wyoming. 

Two main objectives are associated with this research. The first objective is to 

determine the extent to which alpine vegetation types are visible with the spatial and 

spectral characteristics of digitized NAPP imagery. The second objective is to determine 

if topographic information such as elevation, slope, and aspect data derived from manual 

field study and a USGS DEM will increase the overall classification accuracy when 

combined with the digital color channels of the digitized NAPP. 



Discriminant function analysis was used to conduct the statistical classifications 

of the data sets. Bivariate relationships among the field and digitized NAPP variables 

were evaluated to test for variable similarity and to aid in the prediction of what kind of 

results can be expected from discriminant function classification. Statistical classification 

using linear discriminant analysis produced overall classification accuracies of 76.17% 

for the spectral data (digitized NAPP RGB). The classification accuracy of the integrated 

digitized NAPP and DEM data sets was 84.38%. This is significantly greater than the 

classification of either data set alone. These results support the idea reported in the 

literature, it is necessary to integrated TM and DEM data in multispectral classifications 

of mountain environments. 
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CHAPTER 1 

INTRODUCTION 

1 

The ability to acquire and use remotely sensed data has revolutionized large-scale 

ecological studies by reducing dependence on difficult and expensive field survey 

techniques for acquisition of land use and land cover data. Multispectral satellite 

imagery, typically from the Landsat Multispectral Scanner (MSS), Thematic Mapper 

(TM) and the SPOT High Resolution Visible (HRV) instruments, has proven particularly 

valuable in surveying and classifying vegetation cover (Frank & Thorn, 1985). However, 

studies of alpine landscapes in western North America using remotely-sensed imagery to 

map vegetation distribution show relatively low levels of classification success (Fleming, 

1988; Harvie, Cihlar, & Goodfellow, 1982; Kenk, Sondheim & Yee, 1988; Markon, 

1992). Studies in normally accessible areas such as agricultural regions and forests often 

can rely on "ground truthed" data in the form of vegetation maps to which aerial and/or 

satellite imagery can be compared for improved accuracy classification (Jennings, 1996). 

In the relatively inaccessible terrain of alpine tundra ecosystems, ground inventory and 

assessment is difficult, time consuming, expensive, and often inaccurate (Frank & Thorn, 

1985). Thus, ground accuracy, similar to that available in more accessible areas, is 

usually not possible in mountain areas. Remotely sensed imagery often is the only data 

source available for vegetation mapping in such inaccessible areas (Crist & Deitner, 

1998). Mapping of such an area can be achieved economically only with the aid of large

scale aerial color infrared photography (Jensen, 1996). 



2 

Terrain classification is the grouping of earth surface regions that are similar in 

certain attributes including vegetation, soils and geomorphic characteristic. This method 

of classification traditionally is accomplished by remote sensors such as Landsats earlier 

Multispectral Scanners (MSS), Thematic Mapper (TM) and the more recent Landsat 

Enhanced Thematic Mapper (ETM+). Classification of remotely sensed imagery 

involves the creation of rules based on the unique spectral signatures of the different land 

cover types. The success of each classification depends on the ability of the sensor to 

detect the terrain attributes of interest (Jensen, 1996). In low relief areas, land cover 

attributes are well represented by the spectral and spatial response of the Landsat sensor. 

In high relief areas however, mapping accuracy suffers in several ways when using only 

remotely sensed imagery: (a) classification accuracy may decrease because of 

topographic effects (Holben & Justice, 1981) and the large degree of topographic and 

geomorphic variability over relatively small areas in alpine regions (Frank, 1988), and (b) 

the lower spatial resolution of traditional imagery such as Landsat and SPOT reduce the 

classification accuracy. Consequently, there is increased interest in combining, high 

spatial, accurate up-to-date remotely-sensed data and ancillary data such as slope, aspect 

and digital elevation models. Such combinations of data may enhance land cover 

classification for the ultimate use in the study of ecosystem change. 

Alpine regions have been studied and mapped in the past for several reasons: (a) 

inventory of vegetation species and patterns (Bamberg, 1961; Billings, 1988; Scott, 1995; 

Walsh, Bian, Brown, Butler, & Malanson, 1989), (b) geomorphic activity (Billings, 1988; 

Caine, 1969, (c) land use planning (Ives & Bovis, 1978), and (d) association with 



3 

geologic features (Butler & Walsh 1990; Gardner, 1986; Walsh, Cooper, Van Essen, & 

Gallager, 1990). The mapping in these alpine regions was accomplished using a 

combination of traditional field techniques. In more recent studies traditional techniques 

were used to guide automated digital classification from remotely sensed imagery 

(Billings, 1988; Butler & Walsh, 1990). It can be concluded from these studies, that 

specific vegetation communities and habitats can be mapped successfully by including 

the geomorphic parameters of elevation, slope, and incidence when classifying remotely 

sensed data. My research seeks an economical method that scientists can use to find and 

monitor alpine vegetation. I will analyze the degree of classification accuracy that can be 

obtained by using digitized National Aerial Photography Program (NAPP) aerial 

photographs and topographic data derived from a digital elevation model (DEM) by 

comparing these to detailed tundra community vegetation and topographic data for an 

alpine tundra area in the Wind River Range, Wyoming. 

Selection of remotely sensed data used here are based on criteria set by Jensen 

( 1996). The considerations used in the selection are spectral, temporal, and radiometric 

resolution. I added cost to this set of criteria in order to develop an economical technique 

that uses remotely sensed data as a reconnaissance tool for the classification of alpine 

vegetation. NAPP imagery was chosen over other forms of imagery for several reasons: 

(a) it captures data in both visible and NIR wavelengths, (b) it has the ability to contain 

high digitized geometric resolution, ( c) it is readily available for the study area, and ( d) 

the total cost of acquiring the data is low. These parameters are compared to those of 

other sensors in Table 1. 



Table 1 

Comparison of Available Sensors for Project 

Sensor 

Landsat 5 TM 
(Last 10 Years) 

Landsat 7 ETM + 

SPOT XS, XI 

NAPP Digitized at 
25 Micrometers 

Resolution in 
(Multspectral) 

30 x 30 Meter 

30 x 30 Meter 

20 x 20 Meter 

1 Meter 

Research Objectives 

Cost 

$2500-4000 

$600 

$2500 

$30 

4 

Two main objectives are associated with this research. The first objective is to 

determine the extent to which alpine vegetation types are visible with the spatial and 

spectral characteristics of digitized NAPP imagery. The second objective is to determine 

if topographic information such as elevation, slope, and aspect data derived from manual 

field study and a USGS DEM will increase the overall classification accuracy when 

combined with the digital color channels of the digitized NAPP. 

Related to the major objectives are a number of secondary objectives: (a) to 

determine classification accuracies of the spectral and integrated data sets, (b) to confirm 

an improvement in classification accuracy by adding the DEM data to the spectral data 

set, and (c) to determine whether the derived technique using digitized NAPP and DEM 

data can be used to classify alpine vegetation beyond this study area. 



A result of this project will be to demonstrate the scale at which digital NAPP 

imagery can reproduce traditional ground-based mapping. A demonstration of this scale 

is critical for future vegetation mapping of wilderness ecosystems, especially in alpine 

regions where, as mentioned previously, ground logistics are limited, and traditional 

mapping techniques are difficult or too expensive. 

Study Area 

Regional Geology 

5 

The Wind River Range is the largest mountain chain in Wyoming (Figure 1). The 

range trends NW/SE approximately 140 miles from Terrace Mountain in the north to 

South Pass City (Blackstone, 1993). Forty-seven of the 50 peaks in Wyoming over 4000 

meters in elevation are found in the Wind River Range (Steidtman, Middleton, & Shuster, 

1989). The topographic crest of the range, including the state's highest point, Gannett 

Peak, forms over 100 miles of the continental Divide (Blackstone, 1993). 

The Wind River Range is an eroded, double-plunging, asymmetrical anticline that 

was raised 60-40 million years ago during the late Cretaceous-early Eocene Laramide 

orogeny. The main massif of the range primarily consists of 3.4 and 2.3 billion year old 

Precambrian granodiorite plutons with smaller areas of migmatite, gneiss, and meta

sedimentary rocks (Blackstone, 1993). 

Roaring Fork Mountain 

The 286.9 hectare study site is located on eastern flank of Roaring Fork Mountain 

approximately 32 km southwest of Lander, Wyoming (Figure 2). Roaring Fork Mountain 

is composed mainly of granite of the Louis Lake Formation (Snoke et al., 1996) which 



Figure 1. Wind River Range, Wyoming. Study site located just east of Stough Creek 

Basin on Roaring Fork Mountain. 

6 



has been intruded locally by a number of mafic dikes. Roaring Fork Mountain is 

essentially an extensive summit flat that is a remnant of the regional surface that existed 

prior to the uplift of the range during the Laramide Orogeny (Blackstone, 1993). 

7 

Gently sloped summits and ridges (collectively referred to as summit flats) are 

abundant in many Lararnide ranges in the western United States (Small & Anderson, 

1998). As with any environment, the most important geologic factors in the production 

of the landscape are lithology and structure. These have an influence in that they tend to 

control the response of a landform through the resistance and strength of its constituent 

material (Caine, 1969). Summit flat environments, such as the alpine landscapes of 

Roaring Fork Mountain, are notable for the variability of their erosional resistance (Small 

& Anderson, 1998). Geologic, physiographic, climatic, hydrologic, and biotic factors, as 

well as mechanical and chemical weathering are a few of the characteristics and 

processes responsible for influencing erosional change in alpine environments. 

Generally, the alpine environment is normally characterized by a high rate of energy 

transfer and this is particularly evident where steep slopes prevail (Caine, 1969). 

However, steep gradients are not as prevalent in summit flat environments so erosion 

rates and accumulation of waste is less rapid (Small & Anderson, 1998). 

Thus, these alpine environments support diverse ecosystems with extensive 

vegetation communities that change noticeably over short distances with local 

geomorphic variations. The present surface of the eastern flank of Roaring Fork 

Mountain ranges from 2800 to 3500 m in elevation and is essentially fellfield with 



Figure 2. Image inset shows the "horseshoe" of Roaring Fork Mountain. The smaller 

inset describes the portion of Roaring Fork Mountain used for this study. Insets show 

Roaring Fork Mountain and study area. Digitized NAPP image 1778-08 August, 06 

1992. Scale 1 :40000. 

8 
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patches of felsenmeer (Scott, 1998). The vegetation on Roaring Fork Mountain generally 

consists of alpine tundra communities with low willow stands in favorable moist places. 

Turf is found on both slopes and level sites and small sedge and grass "meadows" 

are scattered throughout the area. Also, semi-barren ridge tops are present with late 

snow-melt areas. Snow accumulation and availability of water are apparently the primary 

controls on species composition (R.W. Scott, personal communication, April 12, 1998). 

Climate on Roaring Fork Mountain is typical of mid-latitude alpine environments. 

During a 122-day sampling period in the summer of 1992 (June-October) two 

microclimate stations located on roaring Fork Mountain at an elevation of 3383 m 

recorded average summer air temperature conditions 5-9 degrees C at the alpine 

vegetation-atmosphere boundary; 10 cm or less above the ground surface. Daily 

maximum ranged from 10-16 degrees C while daily minimums averaged 0-3 (Scott, 

1995). 



CHAPTER2 

LITERATURE REVIEW 

10 

This chapter describes previous remote sensing and ecosystem studies of 

mountain ecosystems and alpine vegetation at sites in western North America. These 

studies provide an insight into the digital image processing techniques employed in 

previous research for mapping and accuracy assessment in alpine regions. The studies 

noted here are those that used digitized aerial photography, satellite data, and topographic 

and digital elevation data. This chapter is divided into three sections of discussion: (a) 

studies that investigated the biophysical factors and processes influencing the pattern and 

composition of mid-latitude alpine tundra, (b) remote sensing investigations that include 

digitized aerial and multispectral data, and (c) investigations the classification and the 

methods of assessing the classification accuracies used in this research. 

Previous High Mountain Ecosystems Investigations 

One of the most thorough descriptions of alpine vegetation in the Rocky 

Mountains of North America was written by Billings (1988). He described the alpine 

biome as one of the smallest (in area) of the major North American ecosystem 

complexes. The alpine occupies high mountain summits, slopes, and ridges above the 

upper limits of forests. In response to intense radiation, wind, cold, snow, and ice, most 

alpine vegetation is characterized as short, low growing, dwarf shrubs, trees, and 

perennial herbaceous plants less than a few centimeters tall. Vegetation types vary from 

"lawn-like" meadows in moist or wet sites, to dry "fellfields" on windward slopes, to 
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battered cushion plants and lichens on rocky ridges, and to barren areas with persistent or 

long-lasting snowdrifts, screes, and/or rock cliffs (Billings 1988). 

Billings ( 1988) observed that wind is a strong modifying factor in alpine 

environments. Strong winds blowing snow off peaks and ridges result in a characteristic 

meso-topographic moisture gradient in alpine regions in the Rocky Mountains. The 

pattern of alpine vegetation is largely determined by the moisture gradient, ranging from 

dry, rocky fellfields on windward slopes, to wet meadows and snowbed communities on 

leeward slopes, and to bogs on valley floors downslope of leeward snowdrifts. This 

vegetation/moisture gradient results from the complex combination of snow-pack, time of 

snowmelt, wind speed and direction, slope steepness, and diversity of the extent flora. 

The prevailing wind direction in the mountains of the middle latitudes is from the 

southwest and results in west and southwest windward slopes being snow-free or with 

relatively shallow snow-pack. Eastern and northeastern slopes accumulate the deep drifts 

that provide moisture for alpine vegetation on leeward slopes and valley bottoms. 

Available soil moisture along this topographic moisture gradient is a primary controlling 

factor for the composition, productivity, and distribution of alpine vegetation species. 

Table 2 summarizes alpine plant communities identified by Billings ( 1988) that 

occur along transects of the topographic moisture gradient observed during field surveys 

and studies from several sites in the central and northern Rocky Mountains of Colorado, 

Wyoming, and Montana. 



Table 2 

Alpine Tundra Plant Communities 

Prevailing Wind 
Relationship 

1. Windward Slope 

2. Upper Lee Slope 

3. Middle Lee Slope 

4. Lower Lee Slope 

5. Bottom Lee Slope 

Mountain Environments 

Community 

Open, Rocky Fellfield 

Modified Fellfield 

Early Snowbed 

Early Snowbed 

Late Snowbed 

Moist Meadow 

Late Snowbed 

Wet Meadow and Bog 
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Topographic Position 

150 m below ridge top to ridge 
top 

Ridge top to 40 m below ridge 
top 

40 - 60 m below ridge top 

60 - 90 m below ridge top 

90 - 120 m below ridge top 

120 - 150 m below ridge top 

150 - 160 m below ridge top 

260 - 300 m below ridge top 

Billings ( 1988) found that since mountaintops vary in elevation and latitude, their 

environments differ in spite of sharing many environmental characteristics in common. 

These differences are more easily seen along various environmental gradients. The most 

obvious of these gradients are latitudinal (from equatorial to polar regions) and elevation 

(from lower slopes to the summits). Billings (1988) noted that these "macrogradients" 

have a great deal of influence on the amount solar radiation received, the length of day, 

temperatures, and amounts of precipitation. As one result, such gradients have 

considerable control of the kinds of plants and animals which are available in the region 
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to make up the biological parts of mountain ecosystems (Billings 1988). Within the large 

gradients are smaller environmental gradients which exist on every mountain. These, 

along with bedrock differences, control almost all the local distribution patterns of plant 

and animal species within the constraints set by the elevation gradient on that particular 

mountain. 

The smaller gradients are determined primarily by topography. Topography, in 

itself, does not control growth and distribution of the alpine organisms but does moderate 

those factors which interact directly with the organisms: solar radiation, soil moisture, 

soil and air temperatures, wind, and both the blasting and protecting aspects of snow. 

Ridges, slopes, valley and cirque floors act together along what Billings ( 1988) called a 

"mesotopographic" gradient. 

A mesotopographic gradient crosses a ridge top and descends the lee slope to a 

small valley or to a cirque floor in a distance of 50 to a few hundred meters or so. Ridge 

tops are exposed to strong winds and are relatively cold and dry. Snow is blown into 

drifts on the upper part of the lee slope. Such drifts do not begin melting until the 

following summer; some do not disappear except in very dry years, if then. Meltwater 

from the drifts keeps the lower lee slopes moist; this water eventually accumulates in 

small bogs, tarns and brooks. A mesotopographic gradient strongly modifies the energy

determined latitudinal and elevation gradients by shifting the snow patterns and 

ultimately, the amount and timing of water available for plant growth. The result is a 

steep vegetation gradient in which analogs of vegetation along with the whole latidudinal 

gradient occur in close proximity. 
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Within mesotopographic gradients, boulders or rock outcrops produce small, 

elongated snowdrifts in their lee. Small depressions also catch blowing snow. Even 

these small drifts produce small environmental gradients and the captured snow, because 

of the winter protection it affords, is reflected in vegetation patches consisting of species 

needing such protection. Any variation of this nature can result in microtopographic 

gradient. 

Both mesotopographic and microtopographic gradients result in rather orderly 

patterns in high mountain environments. These environmental patterns result in 

vegetation and biological community patterns that match the environmental patterns. 

Billings ( 1988) found it convenient to utilize a series of mesotopographic units on a 

single mountain when studying high mountain ecosystems. The combination of a 

mesotopographic unit with its microtopographic units and variations in bedrock produces 

certain patchiness in high mountain environments. Because of the gradients, there is 

some orderliness to this patchiness. 

Billings ( 1988) also noted that it is the physical factors which dominate and 

control the ecosystem. The plants and animals are there in patterns determined by local 

gradients in solar ultraviolet and visible radiation, net radiation, low soil and air 

temperatures, snow distribution, wind speeds, length of "growing" or snow-free season, 

steepness of slope, type of rock, and soil characteristics including soil frost action. Plants 

(alpine vegetation) are small in these cold, windy environments. Vegetation cannot 

modify or "soften" the environment, as does a montane forest lower down the slope. 

Consequently, the biological portion of the environment seems to be less important than 
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physical factors in determining patterns and growth rates in alpine biological 

communities. 

Synthetic Alpine Slope 

Burns and Tonkin ( 1982) developed a Synthetic Alpine Slope (SAS) model as a 

spatial soil-geomorphic threshold model for alpine environment. The model is based on 

the spatial relationships between aspect, topography, seasonal snow accumulation, and 

the distribution of plant communities and alpine soils. The direct relationship between 

alpine vegetation and their study area were confirmed by their field observations (e.g., 

soil pits). They concluded that variations in soil characteristics follow topographically 

controlled variations in snow cover and that the distribution of snow cover controls the 

distribution of soils. A dimensionless measure of topography, the SAS is similar to the 

previously mentioned mesotopographic unit of Billings ( 1988). It is different in that SAS 

contains more specific components. Each of the seven microenvironment sites of the 

SAS is defined by an edaphic-topographic snow cover relationship as shown in Figure 3. 

The extremely windblown (EWB) sites are found on the tops of the drainage divides on 

the ridge crests and knolls. Extremely windblown, these sites are dry with sparse 

vegetation, primarily cushion plants. The wind blown (WB) sites are located from the 

tops to 30% down the drainage divide. Mixed vegetation of cushion plants, sedges, and 

herbs, are also very dry. Minimal snow cover (MSC) sites occur in similar positions on 

the drainage divides as the WB sites and generally have more snow cover in the winter 

months than the WB sites and usually contain thick turf vegetation, primarily kobresia. 



Extremely WindBlown = (EWB) (EWB) 

WindBlown = (WB) 

Minimal Snow Cover= (MSC) (MSC) 

Early Melting Snow Bank == (EMS) 

Late Melting Snow Bank = (LMS) 

Semi-Permanent Snow Bank = (S PS) 

Wet Meadow = (WB) 
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Figure 3. Synthetic Alpine Slope Model: Microenvironmental sites on the leeward side of 

the slope as described by Burns (1980) and Burns and Tonkin (1982). 

Early melting snowbank (EMS) sites are located 30% to 90% of the way down on 

gentle slopes with a greater variety of vegetation. Snowbanks persist in this location 

during the winter months but usually melt completely by early June. Late melting 

snowbank (LMS) sites are present 50% to 90% of the way down the drainage divides in 

leeward nivation hollows. In these sites, snowbanks melt out in early July and August. 

The sites are characterized as quite rocky with sparse vegetation. Semi-permanent 

snowbank (SPS) sites, which are found 60% to 90% of the way down the drainage 

divides in nivation hollow. Snowbanks rarely melt and generally contain no vegetation 

and have usually undergone downslope movement producing lobes and terraces. Wet 

meadow (WM) sites are characterized by bog vegetation and are situated below 

snowbank sites in depressions and on turf-banked terraces and lobes at the bottoms of 



drainage divides. Meltwater from winter snowbanks and snowbanks farther upslope 

generally cover these sites contributing to the WM saturated conditions. 
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The SAS model shown in Figure 3 is for leeward slopes but similar slope models 

occur on windward slopes as well. The windward slope is characterized by generally 

having less snow accumulation. LMS and SPS sites do not usually occur there while WB 

and MSC sites extend further downslope. 

Alpine Vegetation Classes 

In spite of the variety of plant life forms , most alpine vegetation is dominated by 

perennial graminoids (grasses). Almost all perennial graminoids have much more living 

tissue below ground than above. Annual species are absent or very few in number. 

Annual plants are miniature and contribute little to vegetational cover or productivity. 

Associated with these grasses and sedges are herbaceous dicotyledons and dwarf shrubs. 

The most productive and luxuriant alpine vegetation lies in the meltwater meadows 

below melting snowdrifts. The least productive and most sparse vegetation lies under the 

snowdrift itself and is exposed only in late summer. Here, a few dwarf perennial 

dicotyledons are the only plants scattered over barren rocks, gravel, and a bit of soil. 

Table 3 lists a scheme proposed by Billings ( 1988) for classifying Rocky Mountain 

alpine plants. 

Alpine plants of the middle latitudes are dormant for 9 to 10 months of the year. 

During this time, temperatures of the surrounding air and soil are at or below freezing. 

The plants are snow covered except on the wind-swept ridges where snow cover is 

sporadic. A number of kinds of plants on these ridges or upper windward slopes actually 
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cannot tolerate protective snow cover and occur only where high winds of winter keep 

the ground bare and frozen. Among these are sedge (Kobresia) and certain small rosette 

Table 3 

Classification Scheme of Alpine Plant-Growth Forms 

Alpine Plant 

1. Perennial Herbs 

2. Perennial Cushion Plants 

3. Giant Rosette Plants 

4. Shrubs (Dwarf or Prostrate) 

5. Succulents 

6. Annual herbs 

7. Lichens 

8. Mosses 

Growth Form 

Ferns 
Dicots 
Graminoids 
Lycopodioids 

Deciduous 
Evergreen 

Stem (Cacti) 
Leaf (Sedum) 

Dicots 
Gramminoids 

saxifrages and cushion plants. Such plants, in dormant condition, are adapted to 

environmental conditions which seem as severe as any on earth: extremely cold and dry 

because of exposure. The perennating or live parts of alpine plants in long-winter 



mountains are in the buds, roots, and rhizomes; in evergreen plants, the younger leaves 

also remain alive. 

Remote Sensing Investigations 
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During the past two decades, great strides have been made in the applications of 

computer technology to assist in the interpretation of multi-spectral data (Jensen, 1996). 

Most of the research involving digital processing of multi-spectral data for the 

identification of land cover has been applied to electro-optical scanning systems (Landsat 

or airborne scanners). Some authors have investigated the use of computer assisted 

interpretation of digitized aerial imagery and have documented the benefits and problems 

associated with this technique (Jensen & Estes, 1978; Mace & Bonnicksen, 1982; Quirk 

& Scarpace, 1982; Scarpace, 1978; Scarpace, Quirk, Kiefer, & Wynn, 1981; Tucker, 

1979; Turner & Thompson, 1982). One of the crucial components in the analysis 

technique is the knowledge of the relationship between light striking the film and the 

resultant film density (Scarpace, 1978). Many investigators have reported techniques to 

determine this relationship. Largely oriented toward quality control of film processing, 

these techniques are also applicable to analysis of remote sensing imagery. Some 

investigators have applied calibration techniques to photographic imagery exposed for 

remote sensing purposes (Scarpace, 1978). 

Aerial Photography and Multispectral Investigations 

Manual interpretation of aerial photographs have been widely used to inventory 

land cover. However, this can be a labor-intensive process with inconsistencies among 

photo interpreters. Digital interpretation has several advantages over manual 
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interpretation. It permits mathematical transformations and enhancements of the imagery 

(Jensen & Estes, 1978). It can also reduce bias and inconsistency among interpreters due 

to differences in skill levels, fatigue, and other factors. However, human interactions 

with digital analysis is still required. By digitizing the photographs, the advantage of 

computer aided interpretation can be combined with the fine resolution of aerial 

photography (Jensen, 1996). 

As a result, there has been an increase in the use of remote-sensing techniques 

used by scientists and federal agencies that provide an economical means for obtaining 

vegetation mapping data. In particular, the analysis of black and white, color, and color 

infrared photographs, to inventory and monitor alpine regions (Becking, 1959). Aerial 

photography provides rapid collection of large amount of data as well as providing a true 

overview of an area. The interpretation of large-scale imagery ( 1: 10,000 to 1 :40,000) has 

been an integral part of many land-related studies. For example, mapping land-cover and 

land-use classification, forest management, geology, and geography (Jensen & Estes, 

1978). 

Becking ( 1959) evaluated black and white aerial photography for mapping small 

tundra communities, but concluded that, even though small mapping units could be 

recognized on large-scale photography, vegetation type could not be interpreted. 

Vegetation cover, or density, was the primary control over tonal variation on the 

photography, which is not necessarily associated with vegetation types. Keammerer 

( 1976) mapped broad vegetation types in the Colorado Rocky Mountain Front Range 

with color infrared aerial photography. She was not able to distinguish vegetation type 



directly on the imagery, but she could classify landscape characteristics associated with 

vegetation distributions directly from the imagery. 
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Frank and Thorn (1985), Frank and lsard ( 1986), and Frank (1988) developed 

remote sensing techniques to map alpine tundra in the Colorado Rocky Mountain Front 

Range. They used digitized aerial photography, developed topoclimatic indices, and 

processed Landsat Thematic Mapper (TM) digital imagery to map the alpine vegetation 

classes found in Table 4. 

Table 4 

Alpine Vegetation Classes 

Alpine Vegetation 

1. Wet Herbaceous Meadow (Sedge-Elephantella) 

2. Dry Herbaceous Meadow (Golden Banner- Yarrow) 

3. Moist Alpine Meadow (Apline Avens Alpine Meadow) 

4. Dry Alpine Meadow (Kobresia) 

5. Dry Alpine Meadow (Sedge-Kobresia) 

6. Rocky Alpine Meadow (Moss Campion Fellfield) 

Frank ( 1988) compared his classification results with a large-scale vegetation map 

prepared using field surveys manual cartographic techniques. He reported the following 

results : (a) Classification accuracy's for herbaceous meadows, 84.44 %; moist alpine 

meadows, 66.3 1 %; and dry alpine meadows, 86.73 %; (b) fellfield communities were not 
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distinguishable from dry alpine meadows because spectral and topoclimatic difference 

were not sufficiently different at the resolution of the database; and (c) wet alpine 

meadows were not distinguished from wet herbaceous meadows because the spectral 

characteristics were similar even though elevation difference existed between the two 

communities. Alpine meadow were identified more accurately than Frank ( 1988) 

expected considering the spatial resolution of Landsat TM and the DEM. He suggested 

the models used in this study would be useful for mapping other alpine communities in 

the Rocky Mountains. 

Frank and Thorn ( 1985) found that alpine tundra distributions could be mapped 

using a two-stage classification system that combined digitized aerial photography with 

digital elevation, slope, and aspect data; however, the method was difficult to extend 

beyond the local study sites. Frank and Isard ( 1986) developed a more generalized 

method to combine digitized aerial photography with topoclimatic indexes to map alpine 

tundra, but the topoclimatic indexes were not readily transferable to surrounding areas. 

Cybula and Nyquist (1987) used a similar method to characterize vegetation distributions 

by combining Landsat MSS, topographic, and general participation inferred from 

watershed delineation's. Smith and Pittman (1996) used digital imaging processing 

techniques of scanned NAPP photography to successfully map forest species delineation 

in the area of Fort Jackson, South Carolina. 

Frank ( 1988) combined Landsat TM data with topographic and topoclimatic 

variables to map dominant vegetation communities in the Colorado Rocky Front Range. 

The best Landsat TM transformations used as predictor variables were found by 
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calculating a discriminant function for each observation, then calculating the correlation 

between each predictor variable and the discriminant function. 

Digitized photographs have been used with varying degrees of success. Accuracy 

depends on the detail of the information desired and the use of proper correction 

procedures. Hoffer, Anuta, and Phillips (1972) reported accuracies of 94% and 95% for 

digitized 1: 120,000-scale color infrared (CIR) and black and white multi-band imagery, 

respectively. Quirk and Scarpace (1982), working with digitized 1:24,000-scale CIR 

photography from the Green Bay Wisconsin area, concluded that the analysis of a 

digitized photograph could analyze large areas at a finer resolution than manual 

interpretation. 

Mace and Bonnickson (1982) compared digitized 1: 120,000-scale CIR 

photography with Landsat multi-spectral scanner (MSS) data for classifying forest-cover 

types on the Apostle Islands in Wisconsin. Some film calibration techniques were 

followed except that the vignetting correction was omitted because the small study area 

was close to the area of the principal point. Ground resolution was set at 36 meters . 

Overall, classification accuracies for the MSS were less than for the digital CIR data 

(47.9% and 68.3%, respectively). Results concluded that accuracies increase as the detail 

of land-cover classes are decreased by aggregating forest type classes. 

Turner and Thompson (1982) digitized eleven 1:21,000-scale CIR photographs to 

classify a North Carolina barrier island into water, sand dune, mesic shrub, xeric shrub, 

shrub thicket, pine woodland, and high and low salt marsh. In this case, no film 

calibration was applied to the digital data. The overall classification accuracy was 62%. 



The classification accuracy for vegetation was 48%. The authors noted that both film 

calibration and a classification technique more suited for remote sensing might have 

increased accuracy. 
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Jensen and Estes (1978) indicated that vignetting can severely reduce the 

accuracy for digital analysis of multi-temporal high altitude CIR photographs. Efforts 

were made to reduce the effects of vignetting by using anti-vignetting filters on the 

camera system and preprocessing the digitized density values by an anti-vignetting 

algorithm. However, signature extensions of crop types across the digitized photography 

was still hampered by vignetting effects. 

Classification and Accuracy Assessment Investigations 

Assessing the accuracy of classification of remotely sensed data is a necessity. 

Traditionally the accuracy of photointerpretation has been assumed 100% correct. 

However this assumption is rarely valid. Due to the complexity of digital classification, 

the necessity for accuracy assessments of the results is greater (Congalton, 1991 ). In the 

mentioned research, the only study that reported an accuracy assessment was the 

photointerpretation of Landsat MSS by Knepper ( 1977). The other studies used 

automated classification routines to classify the digital data but did not report on the 

accuracy of the resulting classification. In this research, the field data are gathered and 

used in rigorous statistical accuracy assessment. 

The classification techniques used in the studies reviewed included both 

supervised, unsupervised methods, and as linear discriminant analysis. Linear 

discriminant analysis has often been used to classify remotely sensed including recent 
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studies in mountainous terrain using a DEM (Franklin & Moulton, 1990; Franklin & 

Wilson, 1991 ). The linear discriminant classifier is preferred for hypothesis testing with 

the maximum likelihood classifier because it is more robust and handles the assumptions 

of mild violations are better tolerated (Huberty, 1994). The output from the discriminant 

analysis is tabular with no map output. The combination of the two classifiers (linear 

discriminant functions and maximum likelihood) can be accommodated in a methodology 

as demonstrated by Franklin and Moulton ( 1990). The discriminant analysis can be used 

for the classification with attribute tables for output and the maximum likelihood 

classification can be used to show the spatial distribution of the results with a map output. 

This research is based on this methodology which was developed by Franklin and 

Moulton ( 1990) for general landcover classifications. 

The study by Walsh (1987) used a DEM in the analysis but not in the 

classification stage. Instead, the DEM was applied after classification in a GIS 

environment. DEMs should be included in the analysis of spectral response patterns of 

mountainous regions (Walsh, 1987) to reduce partially the topographic effect (Holben & 

Justice, 1981). Studies have proven that topography represented by a DEM is an 

independent source of information that improved classification accuracies for both 

Landsat MSS (Franklin & Ledrew, 1983) and TM data (Franklin & Moulton, 1990). A 

DEM Treated as ancillary data can be incorporated into a classification routine in a 

number of different ways including: ( a) preclassifcation scene stratification, (b) 

postclassification sorting and ( c) logical channel classification (Hutchinson, 1982). 

Recent developments for incorporating ancillary data into classifications are a three stage 
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classifier by Franklin and Wilson ( 1992) and evidental classification (Franklin, Peddle, 

Wilson, & Blodgett, 1991 ). As mentioned, this research used the basic logical channel 

method where the DEM variables will be included in the classification as normal input 

channels with the digitized NAPP data because the technique has proven successful when 

the objectives include assessment of classification accuracy with and without ancillary 

data (Franklin, 1987). 

The number of vegetation types that can be classified using remote sensing 

imagery is large and not yet fully known (Frank & Thorn, 1994 ). One of the remaining 

goals of remote sensing in mountain environments is to find a means for extending local 

scale observations and models to larger, geographic regions. 



CHAPTER3 

METHODOLOGY 
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This chapter describes the data and the methodology for this research. The first 

section describes the acquisition and processing of the four main data sets: (a) Global 

Positioning System data collection (b) field data (c) the digitized NAPP image and (d) the 

DEM data. The second section provides an overview of the methodology used for 

digitizing the NAPP imagery. The third section summarizes the classification 

methodology used to integrate the digitized NAPP Imagery and the DEM. The methods 

were previously developed by Franklin and Moulton, (1990), Franklin and Wilson, 

( 1992) and were published in a series of papers by Hutchinson ( 1982), Franklin and 

Ledrew (1984), Walsh (1987), Franklin and Moulton (1990), and Franklin and Wilson 

(1992). 

Four sets of data were required for this research: (a) Global Positioning System 

data, (b) documented vegetation data of the study area, (c) digitized NAPP data, and (d) 

DEM data. The Global Positioning System data provided the three-dimensional location 

information for each site, the vegetation data includes field data at each site, which 

consists of topographic data and percentage surface cover. The digitized NAPP data 

includes reflectance values for each spectral band and topographic data was extracted 

from a DEM for each pixel in the study area. These data sets are used to determine if the 

unique spectral and geomorphic signatures of the alpine vegetation can be captured and 

used to train a classifier for a supervised classification. 
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Global Positioning System Data Collection 

GPS data were collected at each location during field surveys conducted in 

August 1998. The Trimble Navigation Geoexplorer II, a six channel, Coarse/Acquisition 

(Cl A) receiver, was used to collect GPS data for each ground control point (GCP) and 

vegetation region used in this study. 

GPS site survey data included GCP of selected monuments and landscape 

features, vegetation sample locations and elevation profiles. Landscape features 

consisted of rock formations at separate peaks of the study area and well-defined lake 

boundaries and trail intersections. 

The GPS base station data used here were recorded and archived by University of 

Wyoming and the Bureau of Land Management (BLM) personnel at the BLM Casper 

District Office in Casper, Wyoming, for August 8th and 9th, 1998. Base station files 

consist of GPS horizontal and vertical positional data collected at the base station ( a 

known point) for a 24-hour period corresponding to each day of the alpine vegetation site 

surveys. The base station data were required for post-survey differential corrections of 

the GCP and site survey data to correct the systematic error (i.e., Selective Availability) 

induced in the GPS signal by the Department of Defense. By determining the difference 

between the known position of the base station and position computed from the data 

recorded for a specific 24-hour time period, a correction factor can be determined and 

applied to remote GPS survey receivers within 300 miles of the base station to remove 

most of the systematic positional error induced by Selective Availability. 
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The position of the BLM Casper Community Base Station antenna (Table 5) was 

determined by static differential GPS survey to a relative three dimensional accuracy of 5 

cm with respect to the Wyoming High Accuracy GPS Network (HARN). The GCP's and 

GPS site survey data collected during August 1998 are presented in Table's 6, 7, and 8. 

Table 5 

Casper GPS Community Base Station (CBS) 

Base Station Parameters 

Latitude: 

Longitude: 

Antenna Height Above Ellipsoid (HAE): 

Datum: 

Ellipsoid: 

Field Data 

42° 51' 23.43144" North 

106° 18' 11.02347" West 

1554.313 Meters 

NAO 1983/1993 

GRS 1980 

Field data collection involved the identification of biophysical variables that were 

thought to affect location, composition, and pattern of alpine tundra on Roaring Fork 

Mountain. The variables included (a) topoclimatic variables (e.g., horizontal and vertical 

location, slope, aspect, slope configuration, topographic position (b) biogeographic 

variables (plant communities), and (c) geomorphic variables (e.g., landforms, structures, 

geomorphic processes). The variables were observed and/or measured through a 
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Table 6 

Roaring Fork Mountain Global Positioning System Data Collection August 8. 1998 

Rover Files Casper CBS Files 
DGPS 

Corrected Files 

R080809a.ssf C8080809.ssf R080809a.cor 
R080809b.ssf R080809b.cor 
R080809c.ssf R080809c.cor 

R080810a.ssf C8080810.ssf R08081 Oa.cor 
R08081 Ob. ssf R08081 Ob.cor 

R08081 la.ssf C8080811 .ssf R080811 a.cor 
R080811 b.ssf R08081 lb.cor 
R08081 lc.ssf R08081 lc.cor 
R08081 ld.ssf R08081 ld.cor 

R080812a.ssf C8080812.ssf R080812a.cor 
R080812b.ssf R080812b.cor 

Table 7 

Roaring Fork Mountain Global Positioning System Data Collection August 9. 1998 

Rover Files Casper CBS Files 
DGPS 

Corrected Files 

R080908a.ssf C8080908. ssf R080809a.cor 

R080909a.ssf C8080909.ssf R080909a.cor 

R080910a. ssf C8080910.ssf R08091 Oa.cor 

R080913a.ssf C8080913.ssf R080913a.cor 
R080913b.ssf R080913b.cor 
R080913c.ssf R080913c.cor 

R080914a.ssf C8080914.ssf R080914a.cor 
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Table 8 

Roaring Fork Mountain Ground Control Point Global Positioning System Data Collection 

August 9. 1998 

GCP Files 

R08091 0b.ssf 

R0809 l 4c.ssf 

R08092 l a.ssf 

Casper CBS Files 

C8080910.ssf 

C80809 l 4.ssf 

C808092 l .ssf 

Phase Processed DGPS 
Corrected Files 

C80809 l 0.cor 

C8080914.cor 

C8080921.cor 

combination of field reconnaissance and remote sensing techniques. A stratified random 

sampling method of the study area was used for site selection. 

Vegetation and topographic data for the study area were previously collected by 

Dr. Richard W. Scott (1970). Scott's survey was conducted during the first two weeks of 

August 1970. It provides a temporal match in the growth cycle of the alpine vegetation as 

compared to the anniversary date of the NAPP photography (7-31-89) and the GPS field 

survey of August 8-10, 1998. Ground data were gathered to describe the morphology and 

surface cover of the sample of each site. The basic morphology of a site can be described 

with the topographic variables of elevation, slope, and aspect as outlined in the general 

system of geomorphometry (Evans, 1972). Scott originally measured these variables as 

feet above sea level, degree of slope, and degree of azimuth, respectively as described in 

Table 9. Figure 4 illustrates the vegetation sites chosen Scott used in this study. The 

number of samples is an important consideration when designing the sampling scheme. 

For study areas with less than 12 land-cover classes, a minimum of 50 random 



Table 9 

Richard Scott's Topographic Data for Alpine Vegetation Located on Roaring Fork Mountain, Wyoming 

Plot Elevation Aspect Slope Description 

708 10,600 228° 30° Just above timberline. Soil is very thin, stony, coarse fragments 

709 10,700 246° 22° Aprox. 80ft higher then 708. Soil is stony but more stable than that of 
708 

7010 10,700 252° 19° 100ft North and 20 ft upslope from 709. Veg, dense, taller 

7011 10,800 224° 26° Rocky, wind swept ridges. Soil is very thin, stony, ozonal, coarse, 
fragments 

7012 11,100 252° 12° Small alpine slope surrounded by fellfield boulders 

7014 10,600 239° 14° Lush meadow above water seap 

7015 -7020 10,950 216° oo Very wet, Wet seap. 

7021 -7025 10,950 216° 15° Up from 7020 along the bank 

7026 10,840 280° 11 ° Salix Planifolia thickets along small stream 

7027 11,100 273° 90 Salix Planifolia thickets along small stream 
(table continues) 

l.,.) 

N 



Plot Elevation Aspect 

7028 11,100 300° 

7029 11,360 330° 

7030 11,400 oo 

7031 10,950 oo 

7032 11,100 61 ° 

7033 11 ,120 oo 

7034 11 ,100 237° 

7035 11,300 20 

7036 11,450 325° 

7037 11 ,300 308° 

7057 11 ,100 60° 

Slope 

oo 

go 

oo 

oo 

90 

50 

60 

18° 

70 

12° 

10 

Description 

Dryer than 7027 

Moist Geum turf located aprox. 6ft from meltwater stream 

Wind Swept saddle on Roaring Fk. Mt. Coarse material 

Wind swept ridge. Very little soil, coarse rocky material. 

Exposed rocky ridge w/ large boulders 

Wind Swept saddle between Stough CK and Leg Lake 

Sheetwash slope, poorly vegetated. Small particles of qtz and feldspar 

Late snowmelt area Bare ground 

Summit of one of Roaring Forks peaks with many large, wind eroded 
rocks w/ veg. in between 

Turf 

Meltwater streams, freeze/thaw activity 

\.,.) 
\.,.) 



Figure 4. Vegetation sites selected by Scott and subsequently revisited and geolocated 

using GPS. Scale 1: 18000. 
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samples per class is recommended (Congalton, 1991 ). However, the number of training 

samples can be adjusted based on the importance of each class. Sampling can be 

increased in important classes and decreased in less important classes. In this study, the 

number of samples varies from 6 to 81 per class, for a total of 256 samples or pixels 

(Table 10). 

Table 10 

Classification System and Number of Training Samples/Pixels 

Class Class Name 
Number of 

Samples/Pixels 

1. Moderately Drained Tundra Meadow 69 

2. Dry Meadow 6 

3. Exposed Fellfield/Moist Vegetation 81 

4. Exposed Fellfield 39 

5. Moist Tundra Meadow 61 

Total 256 

Integrating the NAPP Imagery 

The NAPP aerial photograph of the Roaring Fork mountain study area was 

originally acquired on July, 31 1989 with a sun elevation of 49.3°, azimuth of 138.1 °, on 

flight path 8313 and flight row 1182, using Kodak Aerochrome 2443 color-infrared 

(CIR) film. NAPP photographic coverage is designed for a wide variety of applications 



in that its black and white photographs are panchromatic (wavelength, 0.47 - 0.73 µm) 

and its CIR images are a multispectral film composite. That is, the CIR film 

simultaneously records in the green (wavelength, 0.5-0.6 µm), red (wavelength, 0.6-0.7 

µm), and the near infrared (wavelength, 0.73-0.90 µm) parts of the spectrum as seen in 

Figure 5 (Kodak Aerial Services, 1996). For a complete explanation of the NAPP 

program and its parameters please refer to Appendix A. 
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Figure 5. Spectral Sensitivity Color infrared films are sensitive to ultraviolet, visible, and 

infrared radiation to approximately 900 nm (Kodak Aerial Services, 1996). 
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Digitizing the NAPP Imagery 

Light (1993) summarized the optimum methods for converting the NAPP data 

into a national database of digitized photography that meets National Mapping Accuracy 

Standards. Microdensitometer scanning of the photography using a spot size of 25 µm 

preserves the 27 resolvable line-pair-per-millimeter (Ip/mm) spatial resolution in the 

original NAPP photography. This yields a digital image that has a ground spatial 

resolution of :Sl .0 m, depending on the original scene contrast. This meets most land

cover and land-use mapping user requirements (Light, 1993). The digitized information 

can be color separated into separate bands of information. 

To meet the mapping standards as defined by Light (1993) the computation of 

pixel ground resolution was accomplished using the parameters defined in Table 11 . The 

analog to digital conversion of the 1:40000 scale NAPP (23cm x 23cm) image was done 

on a Howtek Scanmaster 4500 11.0" x 11.8" optical drum scanner with a tungsten 

halogen light source. The scanner uses three matched Triple Photomultipliers (PMT) 

sensors (red, green, blue) set at 25 microns resulting in a three band, 1,000 dots per inch 

(dpi) image with 1.016 meter spatial pixel resolution. The Howtek scanner used Trident 

imaging software to write the digital data to the "lossless" image compression (2: 1) file 

format Tagged Image File Format (TIFF). The integer based file format was chosen over 

other file formats because the lossless compression retains critical pixel information 

required for effective computer based remote sensing algorithms and is commonly used 

among the major image processing software packages such as ERDAS Imagine. 
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The storage requirement for digital image data is large. Obtaining the optimal 

pixel size ( or scanning density) is a trade-off between capturing maximum image 

information and the digital storage burden. For example, scanning the 23cm X 23cm 

NAPP image at 25 microns for red, green, and blue results in a file with 9088 rows and 

9070 columns. At 8 bits per pixel using lossless image compression, the three band file 

occupies about 247 megabytes. Scanning resolution versus digital data volume is 

illustrated in Figure 6. 

Table 11 

Computation of Pixel Ground Resolution 

Method Formula Pixels Size in Meters 

Using DPI: PM= (S/DPI)/39.37 (40000/1000)/39.37 = 1.016 PM 

Using Micrometers PM= (S x µm) 0.000001 (40000 x 25.40) 0.00001 = 1.016 PM 

Note. The NAPP photo digitized for this study is 1:40000 scale scanned at 1000 DPI or 

25.40 µm = 1.016 Pixels per meter. DPI = dots per inch; µm = micrometers; S = photo 

scale; PM = pixel size in meters . Adapted from "Introductory Digital Image Processing: 

A remote sensing perspective," (2nd ed.), by J. R. Jensen, 1996, p. 20. Copyright 1996 

by Prentice-Hall. 
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Figure 6. Illustrates data volume increases geometrically as the micrometer is decreased. 

For this study, a scanning resolution of 25µm was used to convert the NAPP image. 

Image Processing 

5 

After data conversion, the histogram for each band of the digitized NAPP imagery 

was evaluated for its radiometric characteristics and normalized as defined by Smith & 

Pittman, (1996). Smith and Pittman found that Radiometric Enhancement was necessary 

with digitized NAPP CIR imagery to separate mineral from vegetation. Radiometric 

enhancement deals with the individual values of the pixels in the image. Enhancement 

makes important features of raw, remotely sensed data more interpretable to the human 

eye (ERDAS, 1994). Enhancement techniques are often used instead or in conjunction 

with classification techniques for extraction. This is especially critical in alpine 

vegetation studies to insure information regarding the relationship between vegetation 

and spectral reflectance can be obtained visually and by computer processing (Franklin & 
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Ledrew, 1984). Spectral reflectance from green, healthy vegetation is characterized by 

strong chlorophyll absorption in the red wavelength interval (.63-.69 µm) and reflectance 

in the near-infrared interval (.76-.90 µm) from plant canopy. Variations from this 

idealized reflectance model occurs when changes in vegetation vigor and the composition 

of the surrounding soil background change both spatially and temporally. For alpine 

vegetation, a decreasing near-infrared /red reflectance ratio is not uncommon in response 

to slightly increasing vegetation cover (Frank, 1988). This effect occurs when spectral 

reflectance is modified by the surrounding soil and rock background reflectance. Under 

this condition, reflectance decreases as vegetation productivity masks the background 

reflectance. 

Histograms of the "raw" digitized NAPP are bi-modal as seen in Figure 7. In 

order to enhance the spectral differences between alpine vegetation and the surrounding 

mineral background, the radiometric normalization procedure histogram equalization was 

applied to the digitized NAPP image. The histogram equalization technique is used 

because the distinction between dry and moist vegetation, and vegetation and the soil

mineral background were not as pronounced in the digitized image as they were in the 

original NAPP photograph. Histogram equalization is a non-linear stretch that 

redistributes pixel values so that there are approximately the same number of pixels with 

each value within a range. The result approximates a histogram that is more Gaussian in 

nature and accomplishes two tasks. Contrast is increased at the "peaks" of the histogram 

and lessened at the "tails" (as seen in Figure 8) enhancing the visual interpretability of the 

image as well as preparing for the maximum likelihood 
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Figure 7. Histogram and image are prior to the application of the histogram equalization. 
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Figure 8. Histogram and image after application of the histogram equalization 



classification process which assumes statistics for each band be normally distributed 

(Erdas, 1994). 

Orthorectification 
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Prior to classification, the digitized NAPP Imagery is orthorectified to the UTM 

grid system, spheroid Clark 1866, North American Datum (NAD) 27 for zone 12 using 

the nearest neighbor Orthorectification camera model algorithm in the IMAGINE 8.3.1 

(Erdas, 1994). The correction for the image used 12 dispersed ground control points and 

two mosaiced USGS DEM's resulting in a Root Mean Square Error of 0.476 meters in 

the X direction and 0.474 meters in the Y direction. Orthorectification model was chosen 

over the polynomial rectification method because polynomial does not account for 

elevation which is critical in remote sensing studies in mountainous areas (Figure 9). 

Before the camera model could be used, the two required USGS DEMs (0f3798 and 

0e3799) were mosaiced together. First, they were imported into Erdas Imagine using the 

DEM import function in the Imagine Import module. The Mosaic algorithm was then 

used to mosaic the two georeferenced USGS DEM together using the Overlap function, 

thus, eliminating the need to compensate for the negative numbers commonly dealt with 

when mosaicing USGS DEMs. The camera lens introduces distortions to the image 

increasing and radiating from the center of the image outward. Therefore, the scanned 

NAPP photo is more or less a 3d parabola. The camera model allows you to enter the 

lens parameters to remove the distortion characteristic of each lens type (provided you 

have accurate 3d ground control) to create custom geometric corrections for a specific 
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Figure 9. Illustrates the Orthorectification Model used to rectify the digitized NAPP to 

three dimensions. 

camera including principle points, focal length, and fiducials. Figure 10 illustrates the 

orthorectified color composite scene of the RGB bands 1, 2, 3 of the study area. The 

digitized NAPP imagery is used as a complete set and as an extracted subset of 256 

pixels, which represents the field sites. The field sites were located on the image with the 

aid of: (a) Scott's vegetation location data, (b) experience of gathering data in the field, 

(c) the analog copy of the NAPP image, and (d) USGS digital Raster Graphs. These 

pixels are extracted from the complete set by first creating a pixel coordinate table 



Figure 10. Orthorectified color composite scene of the RGB bands 1, 2, and 3 of the 

study area. Scale 1 :26000. 
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which contains the class number and X and Y pixel coordinates. This is output to an 

ASCII format and input to S-Plus for linear discriminate analysis to help determine final 

classification accuracy. The digitized NAPP dataset is input into the maximum 

likelihood classifier in ERDAS Imagine to illustrate the spatial distribution of the 

vegetation classes. 
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DEM data 

Ground measured topographic data are available for 21 sample sites visited in the 

field. This sample size is sufficient for the linear discriminant analysis (Davis, 1986). To 

map the entire area for spatial distribution of topographic data, every pixel is required 

(233,436 in total after subset). The same two USGS DEM's of the study area used in the 

orthorectification process were acquired on CD-ROM in the Spatial Data Transfer 

Standard (SDTS) file format. The DEM data for 7.5-minute units correspond to the 

USGS 1 :24,000 scale topographic quadrangle map series for all of the United States and 

its territories. Each 7.5-minute DEM is based on 30 by 30 meter data spacing with the 

UTM projection. 

Modules are available in ERDAS Imagine to extract slope and aspect form the 

DEM. The calculation of these topographic variables are discussed in detail by ERDAS 

Inc. (1994). The slope and incidence values are extracted from elevation, then a window 

of the DEM that represents the study area, is extracted. Grey level images of elevation 

are given in Figure 11, slope in Figure 12, and aspect in Figure 13. Aspect (direction of 

azimuth) is a directional variable that is circular in nature. For example, 10° is closer to 

350° than to 50°. This characteristic creates a serious problem with traditional classifiers 

such as linear discriminant analysis and maximum likelihood classification, which can 

handle linear data only. To overcome this problem, aspect data must be transformed into 

a linear scale (Erdas, 1994). The transformation algorithm tested by Hutchinson (1982) 

and used by Franklin and Moulton (1989) is used in this 



47 

Figure 11. Elevation image of the study area. Scale approximately 1: 18000. 
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Figure 12. Slope image of the study area. Scale approximately 1: 18000. 
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Figure 13. Aspect image of the study area. Scale approximately 1:18000. 
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study. The algorithm computes an incidence value as a function of site or pixel specific 

aspect and slope values, and constants of solar elevation and solar azimuth values, of the 

digitized NAPP image. 

The Grey level values of elevation, slope and aspect were extracted from the 

DEM for the 256 pixel samples and added to the digitized NAPP attribute table. This file 

was input into the linear discriminant analysis to determine the increased accuracy that 

can be achieved by the DEM variables alone and the increase in accuracy when added to 

the digitized NAPP data set. The mosaiced DEM was later evaluated with the digitized 

NAPP data set for maximum likelihood classification output of landcover map. 

Classification of Digitized NAPP Imagery and DEM Data. 

As previously mentioned, an unsupervised classification of the imagery can 

provide insight into the landscape types of a study area, aiding in the selection of sample 

sites for the stratified sampling method. For this research, the unsupervised classification 

of the digitized NAPP imagery was performed first and then compared to Scott's existing 

vegetation. This is accomplished using the widely used clustering algorithm called 

Iterative Self-Organizing Data Analysis Technique (ISODATA) module in ERDAS 

Imagine. ISODAT A represents a fairly comprehensive set of heuristic procedures that 

have been incorporated into an iterative classification algorithm (ERDAS, 1994). 

ISO DAT A is self-Organizing because it requires relatively little human input. The 

ISODATA algorithm requires the analyst to specify the following criteria: (a) C-max 

which is the maximum number of clusters to be identified by the algorithm (e.g., 12 

clusters) and (b) T which is the maximum percentage of pixels whose class values are 
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allowed to be unchanged between iterations. When this number is reached, the 

ISO DAT A algorithm terminates. For the study area, a maximum iteration of 25 with a 

convergence threshold of 0.95 was set using a X and Y skip factor of 1 to insure that the 

clustering algorithm processed all pixels. 

The result of the unsupervised classification yielded a pseudo color five class GIS 

thematic map and provided the initial qualitative evaluation of the spectral characteristics 

of the digitized NAPP imagery as compared to the vegetation data previously mapped by 

Scott. The classification scheme for this thesis is developed by generalizing the existing 

vegetation data from Scott to 5 classes which coincide with the objectives of this study. 

For example, guided by the unsupervised classification, the detailed alpine vegetation 

data collected by Scott are generalized into five alpine vegetation habitat classes: (a) 

Moderately Drained Tundra Meadow, (b) Dry Meadow, (c) Exposed Fellfield/Moist 

Vegetation, (d) Exposed Fellfield, and (e) Moist Tundra Meadow. The sample sites are 

selected from Scott's field data, revisited during the GPS survey and compared to the five 

class thematic map in order to properly select the appropriate training areas for the 

supervised classification phase. The methodology for this research is based on the logical 

channel method to integrate the digitized NAPP and DEM data. Two supervised logical 

classification algorithms are employed: (a) linear discriminant functions and (b) 

maximum likelihood decision rules. Reference materials for training the classifiers 

include Scott's vegetation data, resource inventory maps, analog airphotos and field 

reconnaissance. The data gathered by the field reconnaissance are also used for the 

classification accuracy. 
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The logical channel method is used for the following reasons: (a) it has been used 

successfully in graduate thesis work aimed at general land cover classification (Franklin 

& Moulton, 1990) and (b) it is a basic method available on commercial image processing 

software for incorporating ancillary topographic data to compensate for topographic 

effect (Franklin & Moulton, 1990, Hutchinson, 1982). 

Statistical classifications are accomplished using the linear discriminant analysis 

(LOA) method to generate linear discriminate functions from the field or training data. 

The functions are then used to classify the training data to determine the classification 

accuracy. The LOA is processed on a Pentium II based computer using Windows NT 

with the MathSoft's geostatistical software package S-PLUS. Originally devised by R. A. 

Fisher as a "sensible" way of distinguishing between groups, LOA is a method of 

classification that statistically distinguishes between two or more groups from a 

collection of discriminating variables . The discriminating variables measure the 

characteristics on which groups are expected to differ. The objective of LDA is to 

combine mathematically, the variables in a weighted, linear fashion, so the groups are 

forced to be as statistically distinct as possible (S-Plus 2000, 1996). The structure of the 

discriminant function can be written in the following form: 

Y=ax+ax+ .... +ax I I 2 2 n n 

Where X,, x
2 

.. . x
11 

are the variables 

and a, , a 
2 

.•• a,, are coefficien ts used to determine a single value for Y. 



A linear discriminant function takes an original set of measurements from a 

sample and transforms it into a single discriminant score. LDA therefore, reduces a 

multivariate problem to a linearly ordered situation (Davis, 1986). 
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Output from the LDA is in tabular form so interpretations consist of statistical 

comparisons between the collected filed data and the digitized NAPP and DEM data sets, 

the discriminant functions and contingency tables of the percent correctly and incorrectly 

classified pixels. The contingency tables are used to construct error matrices as discussed 

by Congalton ( 1991 ). Total accuracy, errors of commission, errors of omission, and 

Kappa statistics are then reported form this information. 

LDA is used to determine the statistical accuracy assessment of the classifications 

and to test the potential to reduce the number of variables for subsequent analysis and 

mapping. The number of variables is reduced so that the optimal discriminating power is 

maintained and redundant variables are eliminated from the analysis. This is done so a 

data set with a minimum number of variables can be used for input into the maximum 

likelihood classifier. The latter task is to illustrate the spatial distribution of the 

classification. The maximum likelihood classifier is run using ERDAS Imagine for 

Windows NT on a Pentium II based processor. Discriminant analysis, in general, is a 

process of dividing up ncol (x) dimensional space into k pieces such that the groups are 

as distinct as possible. While cluster analysis seeks to divide the observations into groups, 

discriminant analysis presumes the groups are known and seeks to understand what 

makes them different. 
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The maximum likelihood classification procedure requires three steps: (a) 

location of the training areas on the image, (b) generation of the class signatures, and ( c) 

classification of the entire image. The field sites are located on the image using the GPS 

data collected during site reconnaissance for training area selection. Grey levels are then 

assigned and class signatures are generated for the training areas. 

The class signatures are the probabilities used to classify each pixel into one of 

the given classes. Each pixel is put into the class for which it has the highest probability. 

The range of each class is defined as a hyperellipse surrounding the means of the classes. 

The algorithm used in ERDAS Imagine is the Mahalanobis minimum distance (ERDAS, 

1994 ). If a pixel falls inside the hyperellipse of a class, a probability value is assigned to 

the class with the highest probability value. Conversely, if a pixel does not fall inside any 

hyperellipse or at least one band exceeds the limits of the hyperellipse, the pixel is 

assigned to the null class. The results from the maximum likelihood classification are 

written to a pseudo-color image channels and colors are reassigned to enhance the 

display. The supervised classification land cover map is illustrated in Appendix B. 
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This chapter describes the spectral relationships among the digitized NAPP 

channels using statistical and graphical feature selection of the digitized NAPP imagery, 

field topography and DEM data sets. In order to discover the extent to which NAPP 

imagery can be used to classify alpine vegetation a transformed divergence statistic and 

co-spectral plot algorithm were used to test the correlation of the digitized NAPP 

channels. Bivariate relations among the field and digitized NAPP variables were 

evaluated to test for variable similarity and to aid in the prediction of what results can be 

expected from discriminant function classification. 

Discriminant function analysis was used to conduct the statistical classifications 

of the data sets. The field data were classified to determine the ability of the data to 

represent the surface cover of the study area. Finally, the digitized NAPP and DEM data 

sets were combined to determine classification accuracy of the complete data set and to 

determine the extent to which these data sets improved the accuracy of the classification. 

Methods of feature selection were used to quantitatively and qualitatively select 

which subset of bands ( or features) provides the greatest degree of separability between 

any two data classes. The basic problem of spectral pattern recogniton is that, given a 

spectral distribution of data in bands of remotely sensed data, a discrimination technique 

must be used that allows separation of the major land cover categories with a minimum 

of error and a minimum number of bands. These statistical methods are used to reduce 

the amount of redundant data. When data overlaps, the appropriate decision rule can be 
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used. In the classification of remotely sensed data, we are concerned with two types of 

error: (a) that a pixel may be assigned to a class to which it does not belong (an error of 

commission), and (b) that a pixel is not assigned to its appropriate class (an error of 

omission). Evaluating the separation (correlation) between variables and classes is used 

here to help predict, understand, and explain why such errors occur when using digitized 

NAPP and topographic data sets. 

Signature Evaluation 

Transformed Divergence 

Divergence is one of the first measures of statistical separability used in machine 

processing of remote sensor data. It is widely used as a method of feature selection 

(Mausel, Kamber, & Lee, 1990). This statistic gives an exponentially decreasing weight 

to increasing distances between classes and scales the divergence values to lie between 0 

and 2000. This demonstrates which bands yield the greatest separability when taken 1, 2, 

or 3 at a time. It is more useful; however, to calculate divergence with single or paired 

bands of digitized NAPP imagery for discrimination among all classes of interest. 

The transformed divergence relationships can indicate if information is shared 

between the variables in a data set. If information is similar between variables with in 

dataset, then some of the variables may be redundant. For example, if the digitized 

NAPP channels are highly correlated then similar information is shared among the 

channels; therefore, some of the channels may be eliminated from further analysis, which 

may produce similar results to the full data set. This can be useful when determining if 

the surface cover a study area is well represented by the digitized NAPP data. If the 
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surface cover, as represented by accurate ground data, correlated highly with the digitized 

NAPP data, then high classification accuracies could be expected. 

The bivariate relationships can indicate if information is shared between variables 

in a dataset or between variables in different data sets. If information is similar between 

variables within a dataset, then some of the variables may be redundant. If correlations 

between variables of different data sets are high, then variables from one data set can be 

used to predict the other. Weak to moderate correlations between variables of two 

predictor data sets may suggest the data sets contain different information that will 

improve the success of further analysis if used together. For example, moderate 

correlations between the digitized NAPP and DEM data sets could suggest that 

classification accuracies will be highest when the two data sets are integrated into a 

classification rather than used separately (Franklin & Ledrew, 1984). An analysis of the 

bivariate relationships between the variables is employed to test suitability of the data 

sets for use in the discriminant function classification. 

As noted above, transformed divergence measures the between-class separation 

between data sets. In this section, the transformed divergence of the three digitized 

NAPP bands (or channels) and the class pairs as decided by the ground reference data 

and the unsupervised classification are examined. This is done in attempt to understand 

the variations of the NAPP channels as compared to the class pairs. The correlation 

between the digitized NAPP and derived class pairs for the 256 "known" sample pixels 

are presented in the Tables 12-14. The important relationships between 



Table 12 

Transformed Divergence Signature Separability Listing Using Bands: 1 2 3 Taken 3 at a Time 

Separability Listing Class Pairs 

Bands Average Minimum 1:2 1:3 1:4 1:5 2:3 2:4 2:5 3:4 3:5 4:5 

1 2 3 1971 1726 2000 2000 2000 1726 2000 2000 2000 1980 2000 2000 

Note. Normalized probability is 0.2000. Class 1 = Moderately Drained Tundra Meadow; Class 2 = Dry Meadow; Class 3 = Exposed 

Fellfield/Moist Vegetation; Class 4 = Exposed Fellfield; Class 5 = Moist Tundra Meadow. Band 1 = Red; Band 2 = Green; Band 3 = Blue. 

u, 
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Table 13 

Transformed Divergence Signature Separability Listing Using Bands: 1 2 3 Taken 2 at a Time 

Separability Listing Class Pairs 

Bands Average Minimum 1:2 1:3 1:4 1 :5 2:3 2:4 2:5 3:4 3:5 4:5 

l 2 1989 1887 2000 2000 2000 1887 2000 2000 2000 2000 2000 2000 

3 1998 1982 2000 2000 2000 1882 2000 2000 2000 2000 2000 2000 

2 3 1945 1451 2000 2000 2000 1451 2000 2000 2000 1998 2000 2000 

Note. Normalized probability is 0.2000. Class 1 = Moderately Drained Tundra Meadow; Class 2 = Dry Meadow; Class 3 = Exposed 

Fellfield/Moist Vegetation ; Class 4 = Exposed Fellfield; Class 5 = Moist Tundra Meadow. Band 1 = Red; Band 2 = Green; Band 3 = Blue. 
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\0 



Table 14 

Transformed Divergence Signature Separability Listing Using Bands: 1 2 3 Taken 1 at a Time 

Separability Listing Class Pairs 

Bands Average Minimum 1:2 1:3 1:4 1:5 2:3 2:4 2:5 3:4 3:5 4:5 

1 1936 1639 2000 1997 2000 1961 2000 2000 2000 1639 1839 1926 

2 1984 1844 2000 2000 2000 1844 2000 2000 2000 2000 2000 2000 

3 1862 624 2000 2000 2000 624 2000 2000 2000 1998 2000 2000 

Note. Normalized probability is 0.2000. Class 1 = Moderately Drained Tundra Meadow; Class 2 = Dry Meadow; Class 3 = Exposed 

Fellfield/Moist Vegetation ; Class 4 = Exposed Fellfield; Class 5 = Moist Tundra Meadow. Band 1 = Red; Band 2 = Green; Band 3 = 

Blue. 

0\ 
0 



variables that help explain the digitized NAPP spectral response are discussed in the 

following sections. 
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A transformed divergence value of 2000 suggests excellent between-class 

separation, while below 1700 is poor. The class separability of the class pairs against all 

three bands (RGB) for the Roaring Fork Study area indicates the overall average spectral 

separability is 1971 (Table 12). Normally, there is no need to compute the divergence 

using all three bands as this represents the totality of the data set. In the case of digitized 

NAPP imagery, however, it was computed as a baseline for reference. Class Pairs 1 and 

5 (Moderately Drained Tundra Meadow and Moist Tundra Meadow) and 3 and 4 

(Exposed Fellfield/Moist Vegetation and Exposed Fellfield) indicate strong to weak 

correlations with individual figures of 1726 and 1980, respectively. Under the parameters 

of the transformed divergence algorithm, this is considered acceptable results. This 

indicates the three digitized NAPP bands are highly correlated with respect to classes 1 

(Moderately Drained Tundra Meadow) and 5 (Moist Tundra Meadow). Thus, some (or 

all) of the channels may be redundant. Results of the correlations between landcover 

variables indicate close association between vegetation and mineral data in the study 

area. The analyses of the class pairs in relation to all three digitized NAPP channels 

show a strong separability value of 2000. This value indicates weak correlations for all 

class pairs except for classes 1 :5 (Moderately Drained Tundra Meadow and Moist Tundra 

Meadow) and 3:5 (Exposed Fellfield/Moist Vegetation and Exposed Fellfield). The 

variables of Moderately Drained Tundra Meadow and Moist Tundra Meadow have 

moderate to strong negative correlation. A negative correlation indicates there is a 



62 

dominant control mechanism between the class pair 1 :5 (Moderately Drained Tundra 

Meadow and Moist Tundra Meadow) and the three digitized NAPP channels. In the 

longer wavelengths of the near-infrared portion of the spectrum (700-1350 nm), both 

reflectance and transmittance are high while absorptance is very low. Color infrared 

films are sensitive to ultraviolet, visible, and infrared radiation to approximately 900 nm. 

Though water content is very different in these two alpine habitats, in near infrared 

wavelengths the primary control mechanism is moisture and internal leaf structures 

resulting in the strong correlation. Soil moisture, organics, and particle size are potential 

control mechanisms in these wavelengths; however, soil profiles were not described for 

this research. 

The mineral content of the class pair of 3:4 (Exposed Fellfield/Moist vegetation 

and Exposed Fellfield) indicates a weak correlation resulting in an acceptable between 

class separation value of 1980. This value is driven by the moist vegetation component 

while being lowered by similar mineral characteristics. 

Table 13 illustrates band pairs taken 2 at a time in relationship to class pairs. The 

table provides additional information regarding the spectral characteristic of digitized 

NAPP imagery. Band combinations 1 :2, 1 :3, and 2:3 result in average between-class 

separability values 1887, 1882, and 1451, respectively, for the class pair of 1 :5 

(Moderately Drained Tundra Meadow and Moist Tundra Meadow). Band combinations 

1 :2 and 1 :3 indicate moderate to good between-class separation. Bands 2 and 3 provide 

the highest correlation with the class pair 1 :5 (Moderately Drained Tundra Meadow and 

Moist Tundra Meadow) indicating that spectral characteristics of these two bands contain 
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too much redundant or overlapping information to be used successfully. Class pair 3:4 

(Exposed Fellfield/Moist vegetation and Exposed Fellfield) indicates a minimal increase 

in correlation in relationship to Bands 2 and 3, however, the separability value of 1998 is 

considered negligible. According to the transformed divergence statistics for Bands 

taken 2 at a time, Bands 1 and 3 provide the best minimum and average signature 

separability discrimination for the class combinations used in this study. 

The signature separability listing in Table 14 illustrates the transformed 

divergence statistics using digitized NAPP imagery Bands 1, 2, and 3 taken 1 at a time. 

This signature separability listing provides the most information on the spectral 

characteristics of the digitized NAPP imagery. The average individual band separation 

value ranged from 1862 to 1984, while minimum separability ranged from 624 to 1844. 

Band 2 provides the best overall average and minimum separability values of, 1984 and 

1844, respectively. Both statistical values fall within the guidelines of moderate class 

separation. Band 2 indicates an increase in correlation of class 1 :5 (Moderately Drained 

Tundra Meadow and Moist Tundra Meadow). Otherwise, Band 2 yields a value of 2000 

which suggests excellent between-class separation of all other class pairs. 

Band 1 shows increased correlation between class pairs 1 :3, (Moderately Drained 

Tundra Meadow and Exposed Fellfield/Moist Vegetation), 1:5 (Moderately Drained 

Tundra Meadow and Moist Tundra Meadow), 3:4 (Exposed Fellfield/Moist Vegetation 

and Exposed Fellfield), 3:5 (Exposed Fellfield/Moist Vegetation and Moist Tundra 

Meadow), and 4:5 (Exposed Fellfield and Moist Tundra Meadow). The minimum 

statistical value for Band 1 is 1639 for the class pair 3 :4 (Exposed Fellfield/Moist 
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Vegetation and Exposed Fellfield). This value suggests that Band 1 should not be used 

alone for the analysis of Exposed Fellfield/Moist Vegetation and Exposed Fellfield. 

However, as noted in Table 12, where bands are taken 2 at a time, Band 1 when 

combined with Band 3 yields excellent between-class separation and is suggested as the 

best overall band combination for these alpine vegetation habitats including the class pair 

of 3:4 (Exposed Fellfield/Moist vegetation and Exposed Fellfield). 

Band 3 suggests a moderate signature separability value at 1862. This average 

value is skewed by the outlier for the 1 :5 (Moderately Drained Tundra Meadow and 

Moist Tundra Meadow) class pair value of 624. Excluding the 1 :5 (Moderately Drained 

Tundra Meadow and Moist Tundra Meadow) class pair value, Band 3 yields excellent 

signature separability with an average value of 1999. 

Cospectral Feature Space Plots 

The transformed divergence quantitatively demonstrates which bands and band 

combinations provides the best signature separability. Feature space plots provide useful 

visual between-class separability information (Jensen & Toll, 1982) and provide the 

actual insight into the between band correlation. The plots are generated using the mean 

and standard deviations of the training class statistics for each class band. They consist of 

a 256 x 256 matrix (0 to 255 in the x-axis and Oto 255 in the y-axis). In Figures 15-17 the 

training class statistics for the five Roaring Fork Mountain alpine vegetation habitat 

classes are portrayed in this manner and draped over the feature space plot of the 

digitized NAPP Bands 1 :2; 1 :3; and 2:3. The lower and upper limits of the two

dimensional parallelepipeds (rectangles) were obtained using the ±lcr of each band of 



Figure 14. Plot of the Roaring Fork Mountain, Wyoming, digitized NAPP training 

statistics for five classes measured in Bands 1 and 3 displayed as co-spectral parallelel 

pipeds. The upper and lower limit of each parallelepiped is ±1 standard deviation. 
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Figure 15. Plot of the Roaring Fork Mountain, Wyoming, digitized NAPP training 

statisitcs for five classes measured in Bands 1 and 2 displayed as co-spectral parallelel

pipeds. The upper and lower limit of each parallelpiped is ±1 standard deviation. 
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Figure 16. Plot of the Roaring Fork Mountain, Wyoming, digitized NAPP training 

statisitcs for five classes measured in Bands 2 and 3 displayed as co-spectral parallelel

pipeds. The upper and lower limit of each parallelpiped is ±1 standard deviation. 
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each class. There would be confusion between class pairs 1 (Moderately Drained Tundra 

Meadow) and 5 (Moist Tundra Meadow) if only Band 3 data were used to classify the 

scene. The separation of those class pairs become more distinct when including Bands l 

and 2. The classes of Moderately Drained Tundra Meadow and Moist Tundra Meadow 

mirror the results of the transformed divergence algorithm. The high correlation between 

these two classes can be a result of the low discrimination characteristics of the digitized 

NAPP imagery or the lack of appropriate training data collected in the field. Normally, 

water or moisture is a robust enough of control that good between-class separability can 

usually be expected. All three plots share some similarity, however, with the techniques 

used in discriminate analysis redundant information can be placed in its appropriate class. 

Bivariate Correlation 

In this section, the bivariate correlations between the measured variables and the 

digitized NAPP channels are examined. Bivariate correlation (also known as the product

moment coefficient of correlation) measures or estimates the linear association of two 

variables (Davis, 1986). This is done in order to describe the variation of the NAPP 

channels contributed by the surface cover as represented by the field variables. 

Correlations between NAPP channels indicate that some channels are correlated 

and most likely contain redundant data. The correlation coefficients between each NAPP 

channel, and topographic and landcover variables for the sites visited in the field are 

presented in Table 15. 

For the three digitized NAPP color channels correlations range from 0.30 to 0.90. 

The weakest correlation (0.30) is between NAPP Channel 1 (Red) and NAPP Channel 2 



Table 15 

Bivariate Correlation Matrix 

Bivariate Correlation Matrix 

Variable 
Band 1 Band 2 Band 3 

Elevation Slope Incidence MDTM DM EF/MV EF MTM 
(Blue) (Green) (Red) 

Band 1 (Blue) 1.00 

Band 2(Green) 0.30 1.00 

Band 3 (Red) 0.32 0.90 1.00 

Elevation 0.41 0.55 0.52 1.00 

Slope 0.24 0.39 0.44 0.62 1.00 

Incidence 0.22 0.26 0.36 0.40 0.66 1.00 

MDTM 0.23 0.32 0.26 0.39 0.43 0.33 1.00 

DM 0.14 0.20 0.18 0.38 0.39 0.27 0.16 1.00 

EF/MV 0.32 0.31 0.28 0.42 0.52 0.41 0.2 1 0.17 1.00 

EF 0.34 0.32 0.37 0.40 0.28 0.23 0.14 0.19 0.94 1.00 

MTM -0.04 -0.16 -0.07 -0.08 -0.49 -0.22 0.43 0.11 0.09 -0.1 1 1.00 

0\ 
\0 
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(Green). The strongest correlation (0.90) exists between NAPP Channel 2 (Green) and 

NAPP Channel 3 (Blue). Results of correlations between land cover classes indicate 

some close habitat associations in the study area. The significant positive correlations 

between the topographic variables possibly exist because the variables of slope and 

aspect are related to elevation. For example, slope can be extracted from elevation, and 

incidence can be calculated from slope and aspect, both derivatives of elevation (Jensen, 

1996). Other factors might also explain these relationships. The correlation between 

elevation and slope (0.62) could be explained by the assumption that areas modified by 

glacial erosion generally increase in slope angle with increasing elevation (Franklin & 

Ledrew, 1984). The correlation between slope and incidence (0.66) could partially be 

explained by higher slope angles resulting in higher incidence values. A number of 

moderate correlations are found between ground cover and topographic variables. The 

correlations of elevation with MDTM (0.39), DM (0.38), EF/MV (0.42), EF (0.40), and 

MTM (-0.08) indicate altitudinal control of these variables. The variable associated with 

a decrease in alpine vegetation cover as elevation increases and the non vegetated 

variables such as bare rock increase where alpine vegetation is limited. 

Franklin and Moulton (1991) also found elevation to be negatively correlated with 

alpine vegetation and positively correlated with vegetated and non-vegetated surfaces in 

mountainous study areas in North America. The positive correlation between elevation 

and slope is reflected in the relationship between slope and land cover classes where the 

direction of the correlation of elevation with these variables is generally the same for 

slope. The highest correlations between slope and the land cover variables are MDTM 
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(0.43), DM (0.39), and EF/MV (0.52). The moderate positive correlations between slope 

and the MDTM (0.43), DM (0.39), EF/MV (0.52) could reflect this association with 15° 

to 35° slope angles (Franklin & Moulton, 1991 ). The non-vegetated EF class also tends 

to occur on steeper slopes. The moderately negative relationships between slope and 

MTM is negatively correlated with MTM (-0.49), possibly because water generally does 

not collect on high slope angle. The exceptions are the numerous high angle seeps 

located in the study area where lush vegetation is associated with thin drainage networks. 

The spectral resolution of digitized NAPP imagery was unable to distinguish these 

features. 

The relationship between incidence and the land cover variables is similar to that 

of elevation and slope. The highest correlations are between incidence and EF/MV 

(0.41), MDTM (0.33), and DM (0.27). Incidence is calculated from the position of the 

sun and sky at the time the image was acquired (altitude and azimuth) and specific slope 

and aspect values for each sample site. The highest incidence values are, therefore, 

southerly facing with aspect values equivalent to the solar azimuth and slope values 

equivalent to the solar elevation. For the digitized NAPP image used here, the maximum 

values will occur on 15 to 25° slopes facing approximately a 270° azimuth. Conversely, 

low incidence values will occur on the lower southeasterly portions of the slopes and 

valley bottom. The slopes with high incidence values should be associated with dryer 

moisture regimes than those with low incidence values because the west facing slopes 

receive higher solar radiation levels and, thus, higher soil temperatures. Therefore, 

landcover variables that are positively correlated with incidence should be dryer and 
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those with negative correlations, wetter. In the correlations above, the negative 

correlations are the EF and MTM (-0.22) . Higher incidence values also occur where there 

is exposed rock surfaces and very dry soil which normally indicates restricted plant 

growth. 

Weaker correlations occur between the land cover variables and the digitized 

NAPP channels. Negative correlations exist between the MTM variable and the NAPP 

band response ranging from -0.04 to 0.16. This negative correlation indicates that, as the 

percent coverage of moist landcover increases, the amount of light reflected decreases 

due to absorption. This implies that wetter areas reflect less radiation than do dryer areas. 

There also could be differences in reflectance values recorded by the Aerochrome 2443 

film for this landcover type. This is consistent with Franklin and Moulton (1991) who 

found that alpine wetland or highly saturated alpine vegetation can be negatively 

correlated with near-infrared sensor data. There are positive correlations between 

digitized NAPP bands and vegetated land cover classes that range from 0.14 to 0.37. 

This is a result of the reflective characteristics of dryer herbaceous vegetation in the near 

infrared portion of the spectrum as sensed by NAPP imagery (Jensen, 1996). As 

expected, the Exposed Fellfield class is moderately reflective, thus, positively correlated 

with all digitized NAPP bands with a range from (0.14 to 0.28). 

The range of correlation values between elevation and spectral channel are from 

0.41 to 0.55 with the highest correlations in the green Channel (2). The ranges of 

correlations are in a agreement with Smith ( 1996) for the green Channel (2). The positive 

correlations for this study area can be explained by the elevation of the landcover 
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variables. Surfaces that absorb radiation are generally located on lower slopes than 

surfaces with high reflective properties. For example, Wet Moist Tundra Meadow (a 

high absorber of radiation in all spectral channels) is located in areas of "steps" where 

meltwater and local precipitation collect. Herb vegetation and bare rocks, which have 

greater reflectance in all spectral channels, occur on steeper slopes and generally higher 

elevations. The correlation between incidence and digitized NAPP response is positive 

for all bands in the range from 0.22 to 0.36. This correlation can be explained by the 

slopes facing the azimuth of the sun reflecting more directly to the camera during image 

acquisition. This effect is discussed in detail by Holben and Justice (1981 ). 

Correlations between the surface cover, digitized NAPP variables, and 

topographic variables help to describe associations among the sets of variables here. 

Examination of these statistics and comparisons to the literature indicate that the data set 

will work with the discriminant analysis technique. For example, the strong correlations 

among the digitized NAPP variables indicate redundancy in the data, so at least one of 

the channels could be removed before the maximum likelihood classification is 

attempted. 

Moderate correlations among the topographic channels indicate some similarities 

are related but probably not redundant, since the highest correlation is 0.66 (between 

elevation and slope). This would indicate that the topographic data may bring more 

information into subsequent classification procedures. The weak to moderate 

correlations from -0.04 to 0.37 suggest there is information available in the digitized 

NAPP channels that represent the surface cover of the study area. However, the weak 
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correlations indicate the variation of the surface cover is not totally captured by the 

NAPP imagery. These bivariate relationships indicate that an integrated data set of three 

digitized NAPP channels and the three topographic variables (elevation, slope, and 

incidence) bring more information in the supervised classification than the digitized 

NAPP by itself. In order to test this interpretation, the discriminant function 

classification procedure was applied to this data. 

Discriminant Analysis Classification and Accuracy Assessment 

This section describes the results of the linear discriminant analysis, which is a 

method of automated classification based on statistical analysis of the data (Davis, 1986). 

Discriminant analysis is designed to investigate the power of the variables to correctly 

classify the data and to test the hypothesis that integrating the remotely sensed data (the 

digitized NAPP) and a DEM data set will provide a better classification than either data 

set alone. Information from training pixels is used to generate discriminant functions . 

The functions are then used to classify the original training pixels or additional pixels. In 

this study the 256 pixels are used to train the discriminant function. The same 256 pixels 

subsequently are classified based on the generated functions. Past research has shown 

this technique overestimates the classification accuracy, but that it can be used to 

determine differences in function performance (Davis, 1986). Accuracy of the 

classifications are determined by the use of error matrices that include overall accuracy, 

omission of error, commission of error, and Kappa statistics. 

Recall that there are five broad land cover classes that describe the vegetated and 

non-vegetated surfaces of the study area (Table 10). Each sample site or pixel visited in 
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the field is assigned to one of these classes for each of three data sets: (a) field 

topographic data, (b) digitized NAPP data, and (c) DEM data. These data sets are input 

into the linear discriminant analysis using the following combinations: (a) digitized 

NAPP data, (b), DEM data, (c) digitized NAPP+ elevation (DEM), (d) digitized NAPP+ 

slope (DEM), (e) digitized NAPP +incidence, and (f) digitized NAPP+ DEM data. 

These combinations are used to determine how well the variables and the discriminant 

function describe the ability of digitized NAPP to discriminate the classes and the 

increase in discriminating power of combining the digitized NAPP and DEM data sets. 

In the linear discriminate procedure, a mean vector and co-variance matrix characterizes 

each class. The assumptions made for this procedure are (a) multivariate normality and 

(b) homogeneous co-variance matrices. 

Digitized NAPP Error Matrix 

The digitized NAPP data set consists of three channels (Red, Green, and Blue) 

representing the visible green, visible red, and near infrared portions of the 

electromagnetic spectrum (as originally captured by the Kodak Aerochrome 2443 film). 

The discriminant function classification of the three channels is discussed in this section. 

The digitized NAPP has an overall classification accuracy of 76.17% for the five 

classes (Table 16; error matrix). The range for individual class accuracies (error of 

omission) varies from 31 % for Dry Meadow to 97% for Moderately Drained Tundra 

Meadow. These classification accuracies illustrate the success of the classification but do 

not suggest where the problems of confusion between classes might occur. Table 16 

(error matrix) contains the error matrix that illustrates the misclassification between 
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classes. The pixels from Moderately Drained Tundra Meadow have a classification 

success of 89.9% or a 10.1 % error of omission. Although 89.9% of Moderately Drained 

Tundra Meadow pixels were correctly identified as Moderately Drained Tundra Meadow 

only 71.6% of the areas called Moderately Drained Tundra Meadow are actually 

Moderately Drained Tundra Meadow on the ground (error of commission). A closer look 

reveals some confusion between classes. Moderately Drained Tundra Meadow has pixels 

that are misclassified into Dry Meadow, and Exposed Fellfield/Moist Vegetation, with 

the largest amount into the class of Moist Tundra Meadow resulting in confusion among 

classes. Similarly, a moderate amount of misclassed pixels from Moist Tundra Meadow 

are misclassed into Moderately Drained Tundra Meadow along with Exposed 

Fellfield/Moist Vegetation and Exposed Fellfield. This indicates there is poor 

discrimination between Moderately Drained Tundra Meadow and Moist Tundra Meadow. 

Earlier signature evaluation of the digitized NAPP channels also indicated spectral 

confusion between these two classes. The misclassification of pixels from Moist Tundra 

Meadow into Exposed Fellfield is attributed to confusion in the spectral response of the 

digitized NAPP image rather than error in the data collection. The misclassed pixels of 

Exposed Fellfield/Moist Vegetation into both Dry Meadow and Exposed Fellfield is 

attributed to confusion between similar reflective properties as seen by areas of Fellfield 

and well drained or very dry alpine soils almost always located on slopes. The same 

results are seen with Exposed Fellfield. Misclassification within the digitized NAPP data 

set will be the result of spectral discrimination characteristics giving similar spectral 

signatures. 



Table 16 

Error Matrix of the Classification Map of Roaring Fork Mountain, Wyoming Derived from Digitized NAPP Data 

Reference 

Classification MDTM DM EF/MV EF MTM Row Total 

MDTM 57 3 1 0 8 74 

DM 0 4 2 0 0 6 

EF/MV 0 6 71 3 1 79 

EF 0 0 6 31 2 41 

MTM 2 0 2 4 53 56 

Column Total 59 13 82 38 64 195 256 

Overall Accuracy = 195 / 256 = 76.17% Khat= 68.4% 

Note. MDTM = Moderately Drained Tundra Meadow; OM= Dry Meadow; EF/MV = Exposed Fellfield/Moist Vegetation; 

EF = Exposed Fellfield; MTM = Moist Tundra Meadow. 

-.J 
-.J 
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As part of the error evaluation a KAPP A analysis was performed. A discrete 

multivariate technique, KAPPA yields a Khat statistic that is a measure of agreement or 

accuracy (Congalton, 1991). Congalton (1998) suggests that in order to glean as much 

information from the error matrix the Khat statistic be computed. The computation of the 

Khat statistic is computed with the following equation: 

WhereN = 256 

LX;; = (53+4+66+28+44) = 195 
i= I 

±(x;+ x x+) = (74x 59) + (6x 13) + (79x82) + (4 lx38) + (56x 64) = 16,064 
i= l 

K = 256( 195) - 16,064 = 55,296 -16,064 = 33,856 = 68.4% 

hot 256 2 -16,064 65,536- I 6,064 49,472 

The overall classification accuracy of the error matrix 76.17%, while the Khat is 

68.4%. The results are different because the Khat statistic incorporates the major 

diagonal and excluded the omission and commission errors. The Khat computation 

incorporates the off-diagonal elements as a product of row and column marginals is used 

to determine if the results presented in the error matrix are significantly better than the 

random result. The Khat statistic was included in this study as a means of comparison 



between the integrated data set of digitized NAPP channels and DEM data and future 

remote sensing investigations. 

The classification accuracies from the digitized NAPP data compares with two 

studies in similar mountainous terrain using the same methodology, however, using 

Landsat TM data instead of the digitized NAPP imagery. These studies had overall 

classification accuracies of 60% and 77% (Franklin & Moulton, 1990; Franklin & 

Wilson, 1991). 

Evaluating Field and DEM Topographic Data 

79 

The field topographic data as provided by Scott and DEM topographic variables 

were classified and assessed for their individual and overall mean accuracies prior to 

integrating the DEM and digitized NAPP data. This was done to insure that the DEM 

variables could be used in place of field topographic data for this study and future studies 

beyond this site. This important because detailed field topographic data, such as the data 

collected by Scott, may not always exist. 

The DEM contains the full 5 class test pixel data set for all three variables but the 

DEM data required spatial resampling before being integrated with the other data sets. 

Using a USGS DRG draped over the USGS DEM, I plotted additional elevation points to 

increase the spatial resolution of the 30 meter DEM to 8.5 meter per pixel resolution. 

Resampling the pixel resolution of the DEM was done to more adequately match the 1 

meter pixel resolution of the digitized NAPP imagery. 

Table 17 summarizes the classification accuracies obtained from the field 

topographic variables and DEM topographic variables. Included are individual variable 
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Table 17 

Summary of Classification Accuracies of the Field and DEM Topographic Variables are 

Percent Accuracy by Class 

Field Topographic Variables DEM Topographic 

Class Elev. Slope Incid. All Elev. Slope Incid. All 

MDTM 6.0 59.8 24.6 48.5 67.6 0.0 0.0 22.1 

DM 28.4 50.5 0.0 11.0 0.0 9.2 0.0 15.5 

EF/MV 27.3 34. 1 12.4 27.0 4.5 33.7 6.9 10.6 

EF 43.2 62.7 36.1 53.6 52.1 49.4 48.2 56.6 

MTM 22.9 55.2 22.8 32.4 23 .7 45.3 14.6 37.9 

Mean 25.56 52.46 19.18 34.5 29.58 27.52 13.94 28.54 

Note. Elev= Elevation; Incid = Incidence. MDTM = Moderately Drained Tundra 

Meadow; DM = Dry Meadow; EF/MV = Exposed Fellfield/Moist Vegetation; EF = 

Exposed Fellfield; MTM = Moist Tundra Meadow. 

classifications and the three variables used in combination. The overall classification 

accuracy for all three variables is 39.2%. The accuracy range is from 11.8% for Dry 

Meadow to 88% for Exposed Fellfield. Classification accuracies for Moderately Drained 

Tundra Meadow, Exposed Fellfield/Moist Vegetation, and Moist Tundra Meadow are 

62.2%, 28.1 % and 47 .8% respectively. These moderate to high classification accuracies 

indicate the topographic variables contain important information that describe the 

characteristics of the Roaring Fork Mountain study area. 
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The overall classification accuracy for individual topographic variables is highest 

for slope (52.46%) followed by elevation (25.56%) and incidence (19.18%). This 

indicates that slope is the most important topographic variable. When the classifications 

of the field topographic data and DEM data sets are compared, most accuracies are 

similar. The overall classification accuracy for all three variables of the DEM data set is 

28.54%. The overall classification accuracy is 5.96% lower than the field data. This is 

expected because the field data was measured directly in the field, where as the DEM was 

originally 30 meters and resampled down to 8.5 meters per pixel resolution (which 

increases the potential for induced error) . However, there is not a significant difference 

between the overall accuracies of the topographic data set and DEM data set. Thus, 

DEM topographic then can be integrated with the digitized NAPP image. The highest 

overall classification accuracy for individual topographic variables is for elevation 

(29.58%) followed up by slope and_incidence at 27.52% and 13.94%. This indicates that 

all three topographic variables are equally important overall. The importance of the 

variables is carried on into the discriminant function classification using the integrated 

data set of the digitized NAPP and topographic variables. 

Evaluation of Digitized NAPP and DEM Topographic Data 

The integrated data set that includes digitized NAPP and DEM variables contains 

the three color channels and the three topographic variables. The increase in 

classification accuracies gained by adding individual topographic variables and the DEM 

data set to the digitized NAPP data set are examined. Table 18 contains the individual 

and overall classification mean accuracy of different combinations of the integrated set. 



82 

Table 18 

Summary of Classification Accuracies of the Digitized NAPP Channels 1-3 and the DEM 
Data Set 

Percent of Accuracy by Class 
(Omission Error) 

Digitized 
Digitized Digitized Digitized Digitized 

Class NAPP+ NAPP+ NAPP+ NAPP 
NAPP 

Elevation Slope Incidence +DEM 

MDTM 89.9 73.6 72.9 69.9 96.7 

DM 30.7 78.9 62.6 68.3 30.7 

EF/MV 80.4 62.2 78.3 45 .7 86.5 

EF 73.6 77.3 88.8 67.5 81.5 

MTM 68.7 72.9 73.7 66.2 82.8 

Mean 68.66 72.98 76.70 63 .52 75 .64 

Note. Elev= Elevation; Incid = Incidence. MDTM = Moderately Drained Tundra 

Meadow; DM = Dry Meadow; EF/MV = Exposed Fellfield/Moist Vegetation; EF = 

Exposed Fellfield; MTM = Moist Tundra Meadow. 

The individual classes are compared to the individual topographic variables in order to 

identify the strengths of each variable in the overall classification accuracy. 

The addition of incidence to the digitized NAPP data set produced a 5.14% 

overall decrease in classification accuracy from 68.66% to 63 .52%. Moderately Drained 

Tundra Meadow received the only increase in accuracy by 1.24 %. The remaining 

classes all received decreases in accuracy by 0.05% to 23%. 
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The addition of elevation to the digitized NAPP data set increased accuracy by 

4.32% overall to 72.98%. Moderately Drained Tundra Meadow increased the greatest 

from 30.7% to 78.9% while classes Exposed Fellfield and Moist Tundra Meadow 

increased 3.7% and 4.2% respectively. The classification of digitized NAPP+ elevation 

resulted in unexpected decreases in individual class accuracies for both Moderately 

Drained Tundra Meadow (16.3%) and Exposed Fellfield/Moist Vegetation (18.2%). 

Differences in spatial resolution of the digitized NAPP image and the DEM data resulted 

in the possibility of increased error. 

The addition of slope to the digitized NAPP data set increased accuracy by 8.04% 

to 76.70%. The accuracies of classes Dry Meadow, Exposed Fellfield, and Moist Tundra 

Meadow increased by 31.9% to 15.2% and 5% respectively. Moderately Drained Tundra 

Meadow decreased by 17% while class Exposed Fellfield/Moist Vegetation decreased by 

2.1%. 

The addition of all three topographic variables to the digitized NAPP image data 

set increased classification accuracy by 6.98% overall to 75.64%. The greatest increase 

for individual classes is for Moist Tundra Meadow at 14.1 %. Moderately Drained Tundra 

Meadow, Exposed Fellfield/Moist Vegetation, and Exposed Fellfield also received 

increases between 5.1 % and 7.9%. When individual topographic variables were applied 

to Dry Meadow, the increase in accuracy ranged from 31.9% to 48.2%. However, when 

the three combined topographic variables are applied to the digitized NAPP imagery, the 

number of misclassed pixels remain equivalent to the accuracy obtained with digitized 
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NAPP imagery alone (30.7% ). This amount can be attributed to insufficient ground data 

when all three topographic variables are taken into account. 

Integrated Digitized NAPP and DEM Error Matrix 

The error matrix for the integrated data set classification is presented as Table 19. 

The addition of the three variables reduces the number of misclassed pixels by 70% (from 

60 to 42). Remaining misclassed pixels (36.6%) are from within Moderately Drained 

Tundra Meadow. The majority of these misclassed pixels are error of commission and 

error of omission of the Moderately Drained Tundra Meadow class. This suggests that 

this class is poorly represented by both the digitized NAPP and DEM data sets even 

though the individual class accuracy is high. The misclassed pixels are most likely the 

result of poor signature discrimination of the digitized NAPP imagery. 

The number of misclassed pixels for Exposed Fellfield/Moist Vegetation was 

reduced from 24 to 21. The decrease occurred with Exposed Fellfield indicating an 

increase in discriminating ability when the topographic variables of a DEM are included. 

The misclassed pixels of Exposed Fellfield are reduced by 16.6% from 18 to 15. The 

increase in accuracy occurred in related Exposed Fellfield/Moist Vegetation. The 

increase indicates the need for the topographic variables. Moist Tundra Meadow had the 

second largest increase in accuracy in reducing the amount of misclassed pixels from 32 

to 19 ( 40.6% ). This suggests that combining topographic variables is necessary for good 

discrimination of this class and the digitized NAPP imagery. 



Table 19 

Error Matrix of the Classification Map Derived from Digitized NAPP Data of Roaring Fork Mountain, Wyoming Combined 

with DEM Data 

Reference 

Classification MDTM DM EF/MV EF MTM Row Total 

MDTM 57 3 1 0 8 69 

DM 0 4 2 0 0 6 

EF/MV 0 6 71 3 1 81 

EF 0 0 6 31 2 39 

MTM 2 0 2 4 53 61 

Column Total 59 13 82 38 64 216 256 

Overall Accuracy= 216 / 256 = 84.38% Khat = 79.2% 

Note. MDTM = Moderately Drained Tundra Meadow; DM = Dry Meadow; EF/MV = Exposed Fellfield/Moist Vegetation; 

EF = Exposed Fellfield; MTM = Moist Tundra Meadow. 

00 
V, 
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The addition of the three-variable DEM data set (elevation, slope and incidence) 

to the digitized NAPP data set increases overall classification accuracy by 6.98%, from 

76.17% to 84.38%, and reduces the total error count from 60 pixels to 40 pixels. The 

addition of the DEM data set appears to significantly increase the classification accuracy. 



CHAPTERS 

CONCLUSIONS 
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The research described in this thesis presents evidence that both the spectral and 

geomorphic features of a alpine environment can be captured in an integrated data set 

using high spatial resolution data consisting of digitized NAPP imagery and DEM data. 

This resolution is only possible, however, at the level of vegetation habitat. 

The first objective of this research was to determine the extent to which alpine 

vegetation types are visible with the spatial and spectral characteristics of a digitized 

NAPP image. Signature evaluation using the Transformed divergence and Co-spectral 

plot algorithms suggests that digitized NAPP imagery does not posses the spectral 

integrity or appropriate bandwidths to distinguish between the subtle differences inherent 

in alpine vegetation species. 

The second objective was to determine if topographic information such as 

elevation, slope, and aspect derived from field reconnaissance and a USGS DEM would 

increase the overall classification accuracy when combined with the digital color 

channels of the digitized NAPP image. There were significant relationships between the 

surface cover, digitized NAPP, and the topographic variables. I interpret the moderate to 

high bivariate correlations between the NAPP and topographic variables as evidence that 

the digitized NAPP image and topographic data sets each contain information that can be 

used to interpret variations in the surface cover. 

An integrated classification using both data sets creates a better set of 

discriminating variables than either data set alone. Classification accuracies of the field 
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topographic data and the DEM data that consist of elevation, slope, and incidence are not 

significantly different from each other. The lack of signature difference between these 

variables normally indicates that variables taken from a DEM can be substituted for the 

topographic variables in similar analyses (Jensen, 1996). 

Statistical classification using linear discriminant analysis produced overall 

classification accuracies of 76.17% for the spectral data (digitized NAPP RGB). The 

classification accuracy of the integrated digitized NAPP and DEM data sets was 84.38%. 

This is significantly greater than the classification of either data set alone. This result 

supports the idea reported in the literature, integrating remotely sensed and DEM data in 

multispectral classifications of mountain environments can increase overall classification 

accuracy. 

In this study, several constraints hampered classification success. Since the 

digitized NAPP imagery lacked spectral quality the topographic variables were necessary 

to achieve a high degree of classification success. Though high classification accuracy 

was achieved using the digitized NAPP image an important consideration in regards to 

these classification results is only five classes could be distinguished by the digitized 

NAPP imagery. This significantly increases the chances of identifying correct training 

classes. The extension of this digitized NAPP technique for regional or global application 

for classifying alpine vegetation is limited to broad habitat levels and is likely to be 

complicated by the lack of consistency found between each NAPP image. 
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Summary and Recommendations for Future Research 

Approximately 13,000 square kilometers of alpine environment exists in the 

western US. These areas are increasingly studied because of their potential sensitivity to 

global climatic change (Baker, Honaker, & Weisberg, 1995). It has been shown that 

alpine environments may provide the first warning signs of ecological change as a result 

of climate change (Walsh, 1987). Management of these fragile alpine environments is of 

increasing importance, particularly where human activity is present. Alpine environments 

regulate the flow of water from snow-melt in the alpine regions to semi-arid lowland 

areas and contain microenvironments that provide valuable habitats for many species of 

plants and animals. Remote sensing offers a proven and effective method for quantifying 

and inventorying alpine environments and changes in its vegetation and geomorphic 

characteristics over time. 

Scott's vegetation data were necessary in providing verification of where the 

vegetation was located in relation to habitat. However, the topographic variables Scott 

included in his 1970 vegetation survey became the main control for increasing the overall 

classification accuracy digitized NAPP imagery. Improved classification accuracies and 

more precise measurements of Scott's vegetation data could be achieved if the 

methodology were slightly modified using high resolution space and aerial multispectral 

platforms. Monitoring of the alpine vegetation on Roaring Fork Mountain using the high

altitude A VIRIS platform and the more recently developed high-resolution space-born 

multispectral IKONOS imagery. These platforms have already proven to be useful in 

estimating vegetation land cover and could provide more complete and precise spectral 
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information of Scott's vegetation data. Construction of a micro-digital elevation model 

(MDEM) in place of the resampled USGS 30 meter DEM used for the Roaring Fork 

mountain study would probably help to improve the overall classification accuracy and 

further provide information on the topographic characteristics of Roaring Fork Mountain 

study area. 
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APPENDIX A 

NATIONAL AERIAL PHOTOGRAPHY PROGRAM 

The National Aerial Photography Program (NAPP) was initiated in 1987 as a 

replacement for the National High Altitude Aerial Photography program (NHAP). The 

objective of the NAPP is to acquire and archive photographic coverage of the 

conterminous United States and Hawaii at l :40,000 scale, using either black-and-white 

(B&W) or Kodak color-infrared (CIR) film. The ground resolution is approximately I m, 

depending on the contrast in the terrain. The photographs are acquired by contracting the 

flying to private industry. These private sector aircraft constitute the NAPP system for 

photographing the conterminous United States ideally every 5 years. The resulting 

photographic database is readily available to the public through the EROS Data Center in 

Sioux Falls, South Dakota, or the Aerial Photography Field Office in Salt Lake City, 

Utah. The NAPP archive is a national asset, providing photographic coverage for a wide 

variety of mapping and earth science applications. 

The NAPP is designed to acquire photographs at an altitude of 20,000 feet above 

mean terrain with a standard 6-inch focal length aerial camera using either B&W or CIR 

film at a nominal scale of l :40,000. All NAPP flight lines are north-south and provide 

full stereoscopic coverage with approximately 60% forward overlap and 27% or greater 

sidelap. 

Alternate exposure stations are centered on quarter sections of standard 7 .5-

minute quadrangles. This positioning of the station is referred to as "quarter-quadrangle 

centered." Technical specifications for the camera and film in NAPP provide uniform 

film quality and geometry. The camera's resolution values as tested by the USGS Optical 
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Science Laboratory must be equal to or greater than 40 p/mm at the lowest area within 

the camera format and have a geometric distortion of ±10 m or smaller. The 

specifications require minimum Sun angle of 30 degrees above the horizon in flat land, 

and the preferred flying season is generally leaf-off. There are a few exceptions where the 

vegetation types permit an open flying season. Table 20 shows specific NAPP 

parameters. 

Table 20 

NAPP Parameters 

Focal length f 
Format 

Altitude H 
Coverage/frame 

Exposure spacing B 
B/H ratio 

Nominal forward lap 
Image scale 

Item 

Film resolution* CIR 
Film resolution* B&W 

Stereo photos in l :24,000-scale quadrangle 
Ground resolution 

English 

6 in 
9 X 9 in 

20,000 ft 
30,000 ft 

11,390 ft 
0.57 - 0.60 

60% 
1:40,000 

686-990 p/in 
838-990 p/in 

0 
3.3-4.9 ft 

Metric 

152.4 mm 
23 x 23 cm 

6,096 m 
9,200 m 

3,470 m 
0.57 - 0.60 

60% 
I :40,000 

27-39 p/mm 
33-39 p/mm 

10 
1.0-1.5 m 
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