Student led video production projects in the classroom

Slade Hovick

University of Northern Iowa

Copyright ©2008 Slade Hovick

Follow this and additional works at: https://scholarworks.uni.edu/grp

Part of the Education Commons, and the Film Production Commons

Let us know how access to this document benefits you

Recommended Citation

https://scholarworks.uni.edu/grp/882

This Open Access Graduate Research Paper is brought to you for free and open access by the Student Work at UNI ScholarWorks. It has been accepted for inclusion in Graduate Research Papers by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
Student led video production projects in the classroom

Abstract
The purpose of this paper is twofold: first, to review the literature on using video production projects in educational settings, and second, to evaluate their effectiveness. Specifically, the issues of student motivation and student retention, and what effects student-led video production projects have on these areas, are considered closely.
Student Led Video Production Projects in the Classroom

Slade Hovick
University of Northern Iowa
MAE in Educational Psychology: Professional Development for Teachers
Final Project
May 2008
This Research Paper by: Slade Hovick

Entitled: Student Led Video Production Projects in the Classroom

Has been approved as meeting the research paper requirements for the degree of

Master of Arts in Education
Educational Psychology: Professional Development for Teachers

Radhi H. Al-Mabuk
Director of Paper

John E. Henning
Reader of Paper

Slade Hovick
Writer of Paper

John E. Henning
Advisor

Radhi H. Al-Mabuk
Department Head

5-8-08
Date Approved
Abstract:

The purpose of this paper is twofold: one is to review the literature on using video production projects in educational settings, and second to evaluate their effectiveness. Specifically, the issues of student motivation and student retention and the effects student led video production projects have on these areas are considered closely.

Because video production within the classroom is a relatively new concept in the field of education, there has been very little written on the topic. However, extensive information exists on the predecessors of classroom video production projects: educational film and instructional television. This paper is predicated on the premise that by reviewing the rise and fall of these earlier technologies, educators can better understand the path student-led video production projects need to take, and how it can be used more effectively as an instructional tool.

Effort is taken to illustrate and examine various strengths and weaknesses of the video production process when compared to traditional instructional tools and approaches, such as the lecture method. The potential misgivings educators might hold when considering this technology are also examined. For those educators who already have in interest in implementing this teaching tool in their own classroom, this paper is meant to be a guide to receiving strong, positive results from the video production process.
Table of Contents:

Chapter 1: Introduction ... 1

 Statement of the Problem.. 1
 Addressing the Problem... 5
 Definition of Terms.. 6
 Organization of Paper... 8

Chapter 2: A History of Film, Television, and the Personal Camcorder in the Education........ 11

 Introduction.. 11
 History of Film Use in the Classroom... 15
 History of Television Use in the Classroom.. 19
 The Personal Camcorder... 31

Chapter 3: Video Production in the Classroom... 34

 Video Technology as a Tool for Interdisciplinary Curriculum............................. 34
 Phases of Video Production... 35
 Research... 37
 Effects of Video Production Projects on Students... 39

Chapter 4: Solution... 44

 Video Production as a Viable Option.. 44
 The Role of the Teacher... 46
 Time Requirements.. 50

Chapter 5: Synthesis... 53

 Statement of the Problem.. 53
 Benefits to Video Production... 54
 Avoiding Mistakes of the Past... 56
 Addressing Concerns... 58

References... 61
Chapter 1:
Introduction

In recent years, educators have begun to discover varying the instructional methods students experience has a positive effect on learning outcomes. Until only recently, the lecture format was thought to be one of the most effective teaching strategies in education. Because of this mentality, excellence in teaching was defined by the individual teacher’s knowledge of the subject matter and not necessarily by the effectiveness of their teaching strategies (Epstein, 2003). However, educators are beginning to realize education is not all about listening to experts talk about their knowledge or reading about concepts that have already been discovered. Education is about “exploring, questioning, and making one’s own discoveries” (Hildreth, 2001).

Statement of the Problem:

American educators today face a growing concern for students’ successful acquisition of learning outcomes. For many, the root of this concern comes from the apparent lack of student motivation and retention of material. Although concerns for student motivation and retention are nothing new in the field of education, the recent growing emphasis on accountability in American schools has teachers becoming more conscious of these areas in their students.

While searching for a way to address the issues of motivation and retention, educators have begun to look toward various learning theories that might prove to be effective in deepening student understanding. The various theories focus on a different balance of
responsibility between student and teacher by placing a greater emphasis on one or the other. These are commonly referred to as teacher-centered and student centered approaches to education.

The teacher-centered approaches are usually used in an attempt to maximize the amount of information being delivered while minimizing the time and effort that is required. The most common example of a teacher-centered approach to teaching is the lecture format where the teacher speaks about ideas and concepts the students should learn about while students feverishly take notes on what is being said.

Teacher-Centered Approaches:

The teacher-centered approaches of education do have some merit. As stated earlier, these methods can convey a large amount of information in a short amount of time. These methods also give total control of the organization, pacing, and content of the class to the teacher. These are also convenient methods when teaching a large numbers of students in a class, and assessments can usually be easily generated and carried out.

Despite the strengths the teacher-centered approaches have, there are also some major flaws which keep these methods less than ideal. In the teacher-centered classroom the knowledge is completely controlled by the teacher. This means students are fully relying on the teacher to learn the material. This promotes a passive learning approach by limiting students’ discovery of knowledge and minimizing students’ use and development of critical thinking skills.
Student-Centered Approaches:

Student-centered approaches require a more active participation from both the teacher and students. These approaches place a greater responsibility for learning on students. The teacher’s role in the student-centered classroom is to facilitate and lead the discussion, questioning, and discovery of knowledge.

One of the more common student-centered educational approaches is a “philosophy of learning founded on the premise that, by reflecting on our experiences, we construct our own understanding of the world we live in,” (On Purpose, 2001) commonly known as the constructivist learning theory. Many educators have found that a student acting out a simulation is an effective form of education because the process requires the student to take action and make decisions about his or her own learning. Generally speaking, “learning by doing has been shown to be a highly effective technique by which students master knowledge” (Epstein, 2003).

“Constructivist learning is about building knowledge, not only receiving it. In the process of active rather than passive learning, learners discover their own answers and concepts. They create their own interpretations, reflect on their own understanding, and apply rather than recite what they learn. Such learning is deeper, more comprehensive, and longer lasting” (Huang, 2007). The most important aspects of the constructivist-learning style include active learning with support from the teacher and both individual and collaborative learning. One of the more effective techniques in constructivist learning is called problem-based learning (Choi, 2007). In this method, students are given a problem which they are to go about solving. Through the process of discovering a solution, the
students learn the desired material in a far more personal context that correlates with the constructivist view of learning through discovery. A constructivist teacher, then, “is one who designs the learning environment and most learning activities to be as student-centered as possible, aiming for the creation of meaningful learning in each of the students through work that is active, constructive, cooperative, authentic, and intentional” (Hernandez-Ramos, 2007).

Student-centered educational approaches, like constructivism, focus on engaging students in the learning process by encouraging students to take ownership of their learning. Unlike teacher-centered approaches, student-centered approaches promote active learning and foster critical thinking skills through the use of multiple learning styles. However, much like the teacher-centered approaches, student-centered approaches do have drawbacks.

Student-centered approaches can become more time consuming and more difficult to implement as class sizes increase. These approaches can also become more difficult depending on the type of curricula a school follows. Some forms of curricula make student-centered approaches less effective.

Both teacher-centered and student-centered approaches have unique problems to their implementation. It is because of these problems that further approaches must be considered and adapted for use in conjunction with these approaches to further students’ retention and motivation in the classroom.
Addressing the Problem:

As a teaching tool, video production has a firm basis in knowledge building and has been shown to be a strong application of the constructivist learning principles. Of these principles, collaboration is viewed as a critical component of “creative learning and to children’s abilities to evaluate and justify their opinions; to gather knowledge from others; to share their experience with others; and to transform their existing understandings as learners in a constant process of personal and social development” (Hernandez-Ramos, 2007). When properly planned and conducted, a video project provides students the opportunity to work closely with their peers in ways to develop these characteristics found to be vitally important in student-centered approaches of education. Students work toward a common goal by conducting intensive research and pulling together their combined ideas in the scripting phase and experience cooperative hands-on work during the taping and editing phases of a video project (Loveland, 2006). The use of such a project in a classroom environment “encourages student-centered learning, utilizes collaborative learning via group discussions, and allows learners to handle more complex and difficult cases by actively and socially constructing knowledge” (Choi, 2007). This process of learning is a departure from the standard, traditional styles of classroom learning that simply aim to achieve cognitive gains in students. This is important to constructivist educators who believe there is far more to the learning process than just cognitive gains (Epstein, 2003).

Similarly, the use of video production projects in the classroom provides teachers with the organization and controlled structure found in teacher-centered educational approaches. Furthermore, the use of video production projects accommodates large class
sizes by having students in small groups working together on a single computer which minimizes issues of availability of technology while maximizing cooperation among students. There projects also allow teachers to observe each group and facilitate the learning process on a more individual level without sacrificing large amounts of class time.

Definition of Terms:

In discussing student led video production projects and their use in the classroom, there will be several key terms used. The following is a brief list of these terms and their operational definitions.

Comprehension:

Comprehension is the act of understanding what is experienced. Comprehension occurs when people internalize the information while making sense of their experiences.

Retention:

Retention is the long term possession of previously comprehended knowledge and information. Students successfully retain knowledge and information so long as they maintain the ability to remember the knowledge or information.

Learning:

Learning is the acquisition of knowledge, understanding, or skill through study, instruction, or investigation. Learning is comprised of both comprehension and retention.
Teaching:

Teaching is the act of assisting a person or group of people in the learning process. Teaching, as it is defined here, does not solely concern the imparting of knowledge from one source to another. Although this is a form of teaching, there are other methods. One method, discussed in depth in this paper, is that of acting as a guide in a cooperative partnership with the student/s in discovering and developing knowledge.

Motivation:

Motivation refers to the reasons a person has for engaging in an activity. People with a higher level of motivation have a greater desire to participate and think about an activity they are engaged in. In the context of this paper, the activity being discussed will usually be the learning process.

In-service:

In-service is a term used in education to refer to professional development days for educators. During these days, educators meet and work towards better serving their students by examining their teaching, new techniques and pedagogy, and how they might incorporate new techniques into their teaching practices.

Video Production:

Video production is the process of creating a video. This process consists of several stages such as developing an initial story idea through scriptwriting, filming raw footage, and
editing the raw footage to create the finalized video. These stages will be discussed and defined in more depth in chapter three.

Educational Film:

Educational films are motion pictures created with the intent of educating its viewers on a specific topic or subject matter.

Instructional Television:

Instructional television consists of television programs which were intended to educate its viewers on a specific topic or subject matter.

Organization of the Paper:

In the following chapters, the use of student led video production as an instructional method will be examined through a review of both past and current educational research on the subject of video use in the classroom.

In chapter two, a summative look at the history of video technology use in the classroom setting is provided. This chapter is broken into three sections which follow the chronological development of video technology use as an instructional tool in the American school system. The first section deals with the implementation of educational films as an instructional method. A comparative view of the strengths and limitations brought about by the use of film will be examined. A close look will also be given at the apparent overly
enthusiastic projections for the use of this technology by its supporters along with its limited use by practicing educators.

The second section pushes forward to the use of television programming as an instructional aid. Both the optimistic views of television’s supporters and the concerns of practicing teachers in the use of television are presented along with a summary of both the positive and negative educational implications attached to educational television use in the classroom setting.

The third section of this chapter discusses the development and early use of personal camcorders in the educational setting. Several examples of instructional applications for the personal camcorder are given.

Chapter three concerns more modern research on the topic of video production in the classroom. The research is presented through three categories based on the educational aspect the study is based on. These categories are retention, motivation, and social interactions between students. Each section underlines the research findings on the relationship between these educational areas and students’ participation in video production based instructional strategies.

Chapter four presents a specific model for integrating video production into the classroom to address the educational issues of retention and motivation. A series of progressive steps are listed for teachers who are interested in this form of instruction. The end of this chapter consists of general tips and warnings for implementing a student led video production project in a classroom setting.
Chapter five will serve as a general overview of the previous information presented in the paper. This chapter briefly reviews and highlights the concepts behind student led video production projects to help in summarizing the overall findings of the paper while providing possible implications that arise from the findings.
Chapter 2:
A History of Film, Television, and the Personal Camcorder in Education

This chapter consists of four sections: Introduction, History of Film Use in the Classroom, History of Television Use in the Classroom, and The Personal Camcorder.

The introductory section of this chapter discusses the educational practices at the turn of the twentieth-century, the stirrings of change brought on in this time by progressivism, and the general pattern found in the implementation of new technological instructional aids throughout the course of the twentieth-century. The section on the history of film use in the classroom discusses the early development, implementation of, and eventual lack of use of film in the classroom. The section on the history of television in the classroom discusses the hype surrounding the development and implementation of television as an instructional aid, specific cases of television use in schools, and the fall of television use in American schools. The personal camcorder section provides brief descriptions on several examples of common uses for the personal camcorder in the classroom setting which leads to the third chapter on current research involving student led video production projects.

Introduction:

The nineteenth-century saw several expansions to the medium of instruction with such developments as the chalk board and photographs. These innovations were meant to expand the potential for illustrating facts, skills, and values to students through the traditional, teacher-centered educational approach of the lecture format. The twentieth-
century saw several developments in instructional tools and technology, as well, with the development and implementation of films, radio, tape recorders, television, VCRs and DVD players, computers, and the internet, just to name a few. All of these electronic tools brought about hopes of revolutionizing the field of teaching with promises of “individualized instruction, relief of the tedium of repetitive activities, and presentation of content beyond what was available to a classroom teacher” (Cuban, 1986). It was these promises that dominated the writings on motion pictures and television use in the classroom during the early implementation of the technologies.

A Reoccurring Pattern in Technology:

In reviewing the literature on technology in classrooms, a definite pattern emerges:

1. In the initial wave of enthusiasm, literature on the use of the new technology was dominated by claims of revolutionary change in the field of education. These claims usually had promotional tactics mixed into the literature.

2. The innovations were seldom initiated by teachers. Instead, promoters of the technology were often administrators, wholesalers, and executives who believed simple, swift methods of solving the problems in education were within reach. Very few policy makers questioned the usefulness of the technology or whether it should even be introduced in education. Furthermore, investigators rarely adopted a teacher’s perspective or incorporated expertise of practicing teachers.

3. Shortly after the initial wave of enthusiasm for the technology, studies were created to test the effectiveness of the new technology in education. The new technology was
inevitably found to be just as effective in providing students with information as conventional teaching methods.

4. Teachers would eventually voice complaints about the logistics of the technology’s use, technical problems, incompatibility with current teaching techniques, and similar issues.

5. Eventually, the use of the technology would be found to be minimal in surveys of teachers around the country. Such surveys made many progressives lash out at teachers with claims of narrow-mindedness and stubborn reluctance in using the technology that had been shown to be effective by scientific research.

(Cuban, 1986)

Twentieth-Century:

By the turn of the twentieth-century, public schools had established a form of instructional practices similar to that of today. Schools usually were divided into grades with separate classrooms for each teacher. The physical environment of the classroom had rows of students’ desks all facing a chalkboard or teacher’s desk. “Courses of study set the boundaries and expectations for what had to be taught and when. Report cards, homework, textbooks, teacher lectures, and student recitations were standard features of urban classrooms at the turn of the century... According to critics, instruction was regimented, mechanical, and mindless” (Cuban, 1986). Because of this, teachers were, and in many cases continue to be, accused of being inflexible and resistant to the use of new educational...
technologies by having a closed-door policy when it comes to using mechanical instructional aids.

When examining the conflicting messages teachers face in the field of education, it is not hard to understand why using traditional, lecture based instructional practices instead of more modern pedagogy drawing on the use of technological instructional aids is so appealing. These conflicting social messages come to teachers from policies, routines, and expectations of administrators, school boards, parents, and the community at large along with instructional texts, curricula chosen by administrators, personal pedagogy teachers choose to follow, and educational goals teachers hold for their students (Cuban, 1986). Each of these sources provides contradictory expectations for teachers. Among other things, teachers are expected to:

- Socialize all children, yet teach each child to value their individuality.
- Teach students the importance of the past, but give each child the skills to be a productive, marketable member of modern society.
- Develop students’ respect for authority while encouraging children to be independent, think for themselves, and to always be questioning what they hear.
- Foster group cooperation and collaboration, but prepare students to compete.

(Cuban, 1986)

To cope with these conflicting messages, teachers focused on transferring as much knowledge and skills as possible through the use of techniques such as teacher lectures,
teacher posed questions, reading assignments in textbooks, chalkboard work, and other in-class activities where the teacher was the center of attention and students sat silently listening and occasionally supplying answers to questions.

History of Film Use in the Classroom:

The Rise of Film:

Despite the popular use of the lecture style of teaching, many educators dreamed of new forms of instruction that would be both productive and enriching. Teachers wished that children could somehow learn more information and at a faster rate while teachers taught less. It was this dream of increased student productivity with less effort on the part of teachers that resulted in a push for the use of film in the classroom by educational reformers who followed the idea of progressivism in the early decades of the twentieth-century. Progressives wanted instruction to be built upon student interests, a gateway to real-life situations found out in the larger world, and involving for students with activities that had intellectual and social outcomes. Progressives believed they found their solution in film. Film was seen as a real and concrete medium that could bring reality to academic content and motivate students while taking up far less instructional time (Cuban, 1986). Even Thomas Edison supported the concept of film in education by saying, “the motion picture is destined to revolutionize our educational system and that in a few years it will supplant largely, if not entirely, the use of textbooks” (Wang, 2003).

Silent commercial films became a part of American culture in the late 1890s and early 1900s, but it wasn’t until around 1910 when both commercial and noncommercial films were
introduced to the classroom. During these initial years, research designs, meant to discover the effectiveness of film as an educational tool, included the use of an experimental group and a control group. Both groups would receive instruction on a topic but only the experimental group would view a film covering the topic. Both groups would then take an achievement test in order to measure the outcome. In most cases, the experimental groups would demonstrate either superior or equal results on these achievement tests when compared to the control groups who did not view a film as part of their instruction (Cuban, 1986). Once the findings of these experimental studies were presented, several school districts took notice.

Financial Issues in Film Use:

Although many school districts had the desire to use educational films in their schools, the majority of schools who could initially afford to purchase the needed materials, and equipment were found to be limited to only the larger, city school districts. These districts had a greater pool of available funds to spend and more people who would use the technology. Because of this, the use of films in the classroom setting became a symbol of progressive teaching approaches (Cuban, 1986).

Even within these larger districts, however, it was too expensive to have a film projector in every classroom. This meant that teachers had to adhere to a schedule in order to use the technology. When teachers needed a projector, they had to sign up well in advance for a later date. Many teachers found this to be too strict and confining because it limited the teachers' chances to take advantage of spontaneous learning opportunities. Furthermore,
teachers found it too difficult to plan far enough ahead of time to when they would need to use the equipment. Many teachers also felt threatened by the use of film in the classroom, because many teachers found it took away from their authority. This was most evident when teachers found they were sitting in the back of their classrooms while the film was being shown. Many teachers stated they spent most of their time during the film keeping students from misbehaving or falling asleep (Wang, 2003).

Schools were not the only ones feeling the financial sting in using educational films, however. The producers of educational films failed to show consistent, substantial profits even during the height of educational film use. Because films that were sold could be used for five to ten years due to the changes in student audiences after ever year, the market for educational films was limited. When producers did manage to sell a film, the gross profit was often equal if not less than the cost of production because of the fifty dollar price-tag on black and white film and one hundred dollar price-tag on color film reels. Furthermore, the return on these films did not come immediately, but were usually stretched out because an educational film would often take up to five years to reach the full, intended market (Reglein, 1950).

Teachers’ Mistrust:

“We do not ask why they are made as they are, and why they are not better or differently made. We accept them and enjoy them. And though we think we use them, in reality they use us” (Slesinger, 1940). This passage from a paper written by Donald Slesinger in 1940 concerning film use in American schools is reflective of what many
educators thought and feared about the use of film in their classrooms. While progressives were singing the praises of educational films and the impact film would have on education in America, many teachers were beginning to voice concerns about the production and use of films in their classrooms. In these teachers’ minds, nearly all filmmakers had served one of three purposes in the creation of a film. These consisted of creating art, making political propaganda, and advertising a product, service, or cause. In all of these forms of film, teachers viewed the objective to be the invoking of strong emotional responses in the audience. To do this, filmmakers were thought to show the subject of their films in the most advantageous light possible by including only the information that would elicit the desired effect in their audiences. It was for this reason that teachers often viewed filmmakers with mistrust. They believed that filmmakers were artists trying to convey an impression, whereas educators were trying to convey truth and knowledge. Film was viewed similarly with teachers seeing film as a method of appealing to the emotions and teaching as a way to appeal to the intellect (Slesinger, 1940). Because many teachers held the belief that education should have the goal of teaching students to base their actions and thoughts on information, critical thinking, and analysis instead of emotional responses, many teachers failed to see the supposed benefits in using film as an instructional tool. Mistrust of the film industry would be one of many contributing factors in the eventual fall of film in education.

The Fall of Film:

After several decades of using educational films in the classroom, the evidence pointed to an extremely infrequent use of films by educators. Watching films was found to
take up only a small fraction of the instructional day. Film may have entered the teachers’ repertoire of educational tools, but teachers proved to use it sparingly, if at all. Research into finding the cause of this minimal use of film by educators came up with several reasons:

- Teachers had a lack of skills in the use of projection equipment and film.
- The cost of films, equipment, and maintenance was too high.
- The equipment was too inaccessible when teachers really needed it.
- Teachers found it too difficult and time consuming to find and fit the correct film to the class.

(Cuban, 1986)

In the end, it was determined that film had failed to meet the promises delivered early on in its implementation in schools. It was found that the average teacher in 1954 viewed only an equivalent of approximately a one-reel film about every month (Cuban, 1986).

Although film had failed to produce the learning outcomes educators and progressives had hoped for, on the heels of film’s downfall would come yet another electronic medium that would bring with it a new hope of succeeding where film had failed.

History of Television Use in the Classroom:

The earliest agreed upon beginning of television use in the classroom took place in 1939 at the Los Angeles high school. Within the first few years that followed, instructional television use blossomed throughout the country with Philadelphia public schools
participating in closed-circuit broadcasts, commercial broadcasts of educational television being beamed into people’s homes in the mornings, and school districts nationwide searching to find the hidden potential they believed lay in instructional television.

*The Rise of Instructional Television:

The rise of instructional television came on the heels of the fall of film with promises to revolutionize the field of education in much the same way that film failed to do. However, television proved to have many of the same issues as its predecessor. Among these issues were a lack of teacher training in the use of the technology, a poor quality of instructional programs, problems with scheduling when and where to view the programs, and high financial expenses in the installation and maintenance of the equipment (Wang, 2003). Furthermore, many teachers held the same reservations towards television as they did towards film. Most teachers found television to be a “single-direction medium” (Wang, 2003) having limited interactions with students. Teachers also had a great deal of difficulty with integrating informational television programs into the normal lesson because of conflicts in matching the content in the televised lessons to the curriculum they were using. It was the lack of attention to these very concerns and needs of practicing teachers that led to the fall of instructional television and several other instructional technologies that came before it. Teachers were overlooked, in large part, because of the way in which these technologies were initially conceived.

As with film, instructional television was conceived, designed, and advocated by non-teachers. Not only were the initial conceptions of the technology brought about without the
consultation of educators, but teachers were seldom ever consulted. This became a common occurrence in the implementation of educational technologies because of the top-down approach to implementing changes in the schools.

Without the backing of practicing teachers, advocates of instructional television relied on research designs to push the implementation of the technology. Many of these designs, however, were quasi-experimental in nature and were often conducted in a non-school setting (Wang, 2003). These early research designs were focused on comparing televised lessons with standard, in-class teacher approaches. To quantify the results of these two forms of instruction, researchers used standardized achievement tests. While there were several occasions where the standardized test scores in core high school subjects such as science, reading, and math were shown to have dramatic improvements in students who watched televised lessons, the general trend was shown to have no substantial difference in learning between students with televised lessons and students with traditional lessons (Cuban, 1986).

With what appeared to be strong evidence based on scientific research experiments conducted during the 1950s and the early 1960s that supported the use of instructional television, television quickly became the most successfully funded educational technology American schools had ever seen. While lobbyists for the National Program in the Use of Television in the Public Schools encouraged school boards and superintendents in ten cities and three states to implement instructional television as a critical component of daily instruction, newspapers, magazines, and professional teaching journals filled their pages with articles about the benefits of instructional television use in American schools. With all of the booming hype surrounding instructional television, the Ford Foundation used its Fund for the
Advancement of Education to promote the use of the technology by investing over twenty million dollars by the year 1961 in schools and colleges as a way of relieving a shortage of teachers that had resulted from drastic increases in enrollment rates. The federal government also showed support for instructional television when Congress passed the National Defense Education Act in 1958 and again in 1962 when President Kennedy asked Congress and the U.S. Office of Education to spend thirty-two million dollars on the development of classroom television. By the year 1971, over one-hundred million dollars had been contributed to the development and implementation of instructional television by both public and private sources (Cuban, 1986).

Teachers as Gatekeepers:

Despite the claims of research designs that televised lessons were just as effective in facilitating student learning as traditional teaching approaches and the immense financial backing provided throughout the 1950s and 1960s, the lack of teacher support would prove to doom the efforts of instructional television supporters. These advocates failed to realize ultimate authority in deciding whether or not instructional television will be integrated into the classroom setting was in the hands of the teachers of those classrooms (Wang, 2003). Teachers act as the "gatekeepers of instructional technology" (Cuban, 1986). Had advocates of instructional television spent more effort in integrating the new technology with time-honored teaching practices in mind, they would have found, as many educators have, that process can be more important to instruction than product. This is especially true when the
process leads to more activity in students, promotes greater feelings of excitement, and brings about a heightened love for learning (Zophy, 1998).

There were several problems that were focused on by teachers but ignored by the proponents of instructional television. Teachers found their roles and the roles of their students were changing with the integration of the new technology. Teachers thought they were being encouraged to be performers and script readers instead of teachers while their students were being trained to be passive learners who mindlessly took notes without questioning or even considering the content being presented (Zophy, 1998). This view of passivity in students came from the lack of interaction between the televised teacher and the students. The televised teacher could not pose questions for the students to answer and follow responses with information reliant upon those responses. Furthermore, American culture viewed television as a leisure activity done for relaxation, which only compounded the issue of promoting passive learning (Huston, 1998).

The loss of important tools used by effective classroom teachers was another problem brought about by the absence of actual interaction between the televised instructor and the students viewing the program. It was impossible for the televised teacher to observe body language and eye contact in the students during a lesson in order to help direct the flow of the lesson and the delivery of the material. Without these tools, the televised teacher could only hope students were following the material without becoming lost or, alternatively, giving in to boredom. Similarly, the lack of verbal and nonverbal communication between the televised teacher and the students caused televised lessons to be less spontaneous when compared to traditional lessons (Zophy, 1998).
Another aspect of televised lessons that proponents failed to consider prior to its implementation in the American school system was the possibility that strong classroom teachers may fail to be strong televised teachers. Most educators were not aware of how to be television actors. When placed in front of a camera, many teachers became more rigid and unnatural than when teaching in front of a classroom of visible students (Zophy, 1998).

Another drawback present in televised lessons was found when content spanned multiple televised lessons. Unlike with the classroom setting, teachers of a series of televised lessons didn’t know for certain if the viewers have seen the previous lessons or not. Televised programs had to go on with only the assumption that the viewer had seen the previous lessons. One way programs attempted to accommodate for this problem was by delivering the content at a variety of different levels of difficulty to allow for all viewers to find some portion of the lesson understandable (Huston, 1998). However, this method left viewers feeling either confused or bored - based on their level of comprehension - with the material being presented for the majority of the program which proved to be a highly inefficient way of teaching.

This inefficiency was largely rooted in the lack of control given to the viewer concerning the pace and ordering of the material being presented in a television program (Huston, 1998). Although television was viewed as a medium that had the ability to appeal to the eyes, ears, and emotions simultaneously, the technology was limited by only being able to run at a constant rate that did not take into account students with a variety of learning speeds (Slesinger, 1940). Messages, pacing, and repetition were not easily adaptable for each learner’s preference (Huston, 1998).
With instructional television advocates disregarding the input of experienced teachers, these issues went unchecked. This disregard for the input of educators was one of the main reasons why few teachers chose to use instructional television in their classrooms.

Another reason for the lack of support from teachers came from their fear of being replaced by the technology. This fear grew when teachers discovered the strength of television in stretching their schools’ budgets. Jonathan Zophy put it well in his article, “Lost in Cyberspace: Some Concerns About Televised Instruction,” when he said, “Unsalaried machines do not raise troubling questions or need health care. They do not need much office space or secretarial support. Machines do not require research grants, or travel allowances. While machines need service contracts and technicians, these costs do not seem as onerous as the cost of maintaining a full-time professor.” For many teachers, using instructional television in their classrooms seemed much like training their own replacement.

Teachers also began to fear for their jobs when they discovered their typical tasks during a televised lesson consisted of simply turning on the television set and leading the students in a follow-up discussion once the program was over (Cuban, 1986). With the majority of their influence over the structure of the class gone, teachers began to view themselves less as teachers and more as teachers’ aids.

Television’s Limited Success:

What success instructional television has had has been most predominate in very young elementary and preschool children. Younger children seem easier to reach than older children because of the young child’s lack of distinction between entertainment and
information (Huston, 1998). A study conducted by Peter Dirr and Ronald Pedone from 1976 to 1977 confirms this pattern of greater use in lower grades. In their study, Dirr and Pedone took a stratified sample of 3,700 classroom teachers, which they believed represented the nation’s schools, and observed their instructional practices to determine how much and how often they used instructional television. They found that thirty-two percent of the sample teachers used instructional television regularly. With the national pupil to teacher ratio being slightly over twenty students per class at the time of the study, Dirr and Pedone estimated that approximately fifteen million students watched television lessons regularly. Dirr and Pedone concluded their study by reporting that the average teacher in 1977 used only thirty to sixty minutes of television per week with the highest reports of use coming from elementary teachers. More recently conducted surveys have found that most teachers very rarely use television in their classrooms, but that the teachers who do report greater use remain to be predominantly elementary teachers (Cuban, 1986).

Exceptions to the Trend in Television Use:

While the general trend of the use of instructional television in schools was and has remained predominately that of a teaching aid where the classroom teacher controls and delivers the bulk of the lessons, the 1950s and 1960s did see some exceptions where schools were either strongly supplemented by television instruction with the classroom teacher showed the video lesson to the students and followed it up with an in-class discussion and assignments or where schools’ total instructional program was centered around televised lessons.
During the mid 1950s, Hagerstown, Maryland was struggling with overcrowded schools and uncertified, untrained teachers. To combat this issue, Hagerstown schools requested financial backing from the Fund for the Advancement of Education to conduct an experiment with closed-circuit television with the town’s eighteen thousand students acting as the subjects. The request was met with Hagerstown receiving over one and a half million dollars to be used in setting up and broadcasting the closed-circuit programming to classes of over one hundred students at a time and in implementing teacher planning and in-service programs. At the height of the experiment, Hagerstown had over seventy staff members telecasting lessons in eight subjects at the elementary level and fifteen subjects at the secondary level (Cuban, 1986).

Once the televised lessons at Hagerstown were fully underway, administrators collected data on student, teacher, and parent attitudes towards the use of televised lessons in the schools. All groups responded in favor of its’ use. The overwhelming support shown by not only students and parents but by teachers as well was largely due to school officials’ attempts to involve teachers in the planning of the curriculum before the full implementation of the televised lessons. These school officials approached the use of instructional television as a team effort between studio teachers and classroom teachers (Cuban, 1986).

Despite the overall enthusiasm from students, faculty, and parents alike and the general effectiveness of the program, the experiment ended after five years due to a lack of funding when both the Fund for the Advancement of Education and the telephone company, which had paid for the installation of the television cables and the annual broadcasting costs, withdrew their backing.
A similar case, but one where an instructional television program was being implemented as the center of the instructional day, occurred on the islands of Samoa. In the early 1960s, the educational system on the islands of Samoa was in terrible shape. Most of the schools were one-room school houses which were far from adequate in accommodating the islands' five thousand plus students. The islands had just under three hundred teachers with not one of them having received a mainland certificate in teaching. This was the state of the educational system in Samoa when H. Rex Lee was appointed as governor. Lee decided to make the islands’ educational system his top priority. In looking for a swift and effective change, Lee found television to be an opportunity to improve the schools at a reasonable cost and set out to obtain financial aid to help in implementing the new technology. Within the first three years of his appointment, Lee procured over one million dollars in aid from Congress. With this backing, Lee saw to it that by 1966 eighty percent of the students in Samoa spent from one fourth to one third of their class time watching televised lessons with much of the rest of the day being spent preparing for the lessons and completing follow up activities (Cuban, 1986). The following is a schedule from September 1965 for students in the seventh and eighth grades:
In 1972, a survey was taken of both student and teacher reaction to the curriculum. Both groups showed displeasure toward the daily amount of television viewing. The program was most accepted in earlier grade levels, but as the grade level grew higher so did the level of dissatisfaction with the program. Classroom teachers were complaining they wanted more control over the lessons and expressed opinions of displeasure with being junior partners to the televised teacher. The televised teacher would do all the planning and presenting while the classroom teacher dealt more directly with the students by dealing with
the occasional behavioral issues. Similarly, over half the elementary students and seventy percent of high school students said televised lessons were used too much. The discontent from both students and teachers led to the schools’ decision to drop the program after several years (Cuban, 1986).

Though Hagerstown and Samoa had varied levels of success with the use of television as in their school districts, it should be noted that these schools were very unique. Very few school districts embraced the use of television in the classroom setting as fully as these two examples. Most school districts looked at television as little more than an instructional tool to be used at the teachers’ discretion.

The Fall of Instructional Television:

By the mid-1960s, the teacher shortage was easing and enthusiasm behind instructional television began to fade because of the poor quality of the programs, the lack of interaction with students, and inadequate curricular support (Wang, 2003). Combined with the lack of consultation with teachers during its’ development and teachers’ fears of being replace by the technology, television sets rested on storage shelves and gathered dust in schools across the nation during the 1950s and 1960s. Without the backing of teachers, promoters of instructional television would find the impact of the technology to be insignificant and the much hoped for cost benefits would not be realized (Zophy, 1998). Instead of revolutionizing the field of education, as had been predicted, the dominant pattern for instructional television since it’s initiation in the 1950s to today has been that of a simple instructional tool used on occasion by the classroom teacher (Cuban, 1986).
The Personal Camcorder:

Many years after the implementation, rise, and eventual fall of television, the personal camcorder became available to the general public. Now the average person could go beyond the viewing of films and television and create their own. It did not take long for educators to see the potential use of this technology in their classrooms and begin applying for grants to purchase a personal camera for school use.

As the technology has gotten cheaper, more compact, and simpler to use, teachers and administrators have come up with several different ways in which to use the personal camcorder in their schools.

Educational Uses of the Personal Camcorder:

The use of video can help students reflect on their learning and specific activities. With more modern camcorders, there is a fold out screen called a LCD (Liquid Crystal Display) Monitor. With this monitor students can quickly and easily view a video that was taken quickly after it’s filming. George Froman from the University of Massachusetts in Amherst calls this immediate reviewing of an action a student performs “instant video revisiting.” Many educators have found that this process helps children be more reflective. Students are more likely to explain what they were doing, thinking, and feeling when watching a video of an action rather than simply trying to recall the action in their minds (Buckleitner, 2001).

Another important component that has been emphasized more recently in the field of education is the idea of getting the community at large to be active participants in the
education of students. The use of videos made in the classroom setting with the aid of personal camcorders is an effective method for reaching out and keeping the community updated on the activities and progresses of students. This can be done by contacting the local community-access channel in the area and submitting a video shot in the classroom. This is a wonderful way for a school to facilitate positive public relations and it lets the community know what the local schools are doing (Buckleitner, 2001). Students also get very motivated and excited by seeing their work on television. It should be noted that in order for this process to occur, the teacher wanting to submit a video needs to have written permission from the legal guardians of each child shown in the video for legal reliability reasons.

Personal camcorders can also be used as record keeping tools within the classroom. With a camcorder, a teacher can become a classroom historian who records the activities and occurrences of the class. The teacher must ensure to keep the camera's battery charged and have a blank tape on hand at all times in order to capture interesting events as they occur. Although this might confuse and fluster students early on, the students will become accustomed to the process as time goes on. This method is a great way to document important classroom events throughout the academic year. The students can then have the footage played back on the last day of school or during parent-teacher conferences to illustrate to both the student and the parents the progress each student has made. This process can also be used to relive field trips the class has gone on. This helps in reinforce what the students saw and learned while on the trip (Buckleitner, 2001).

Just as students can reflect on their work through the use of video technology, teachers can do the same to work toward self-improvement in their teaching practices. The
teacher needs only to set up the camcorder in the back of the room and begin recording just prior to beginning a lesson. This allows teachers to see how they respond to students and to the material. Many teachers are amazed at how much they learn about their own teaching personalities and mannerisms. This is also a good technique for reviewing the events of the lesson to see if something was missed or is needed to be reviewed in a future lesson.

While all of these techniques have their usefulness in the classroom setting, there is another method of using the personal camcorder which yields a more student-centered approach to learning. This method is discussed at length in the next chapter.
Chapter 3:
Video Production in the Classroom

This chapter consists of four sections: Video Technology as a Tool for Interdisciplinary Curriculum, Phases of Video Production, Research, and Effects of Video Production Projects on Students.

The introductory section is on video technology as a tool for interdisciplinary curriculum. This section discusses the recent push for interdisciplinary curriculum and the emphasis of educational technologies, including video production technologies, in facilitating the push for interdisciplinary curriculum. The section on the phases of video production walks through the three basic phases of video production while shortly discussing the activities and benefits students experience in each phase. The section on research into video production explains the lack of current research and gives a brief description of the findings of the research that has been done. The section on the effects of video production projects on students illustrates how video production projects in the educational setting can increase retention, motivation, and social interactions in students.

Video Technology as a Tool for Interdisciplinary Curriculum:

A new trend in education is the concept of teaching across the curriculum. As this trend increases, it is critical to find new and creative methods to teach different subjects through the use of a single technique. One method that has been more recently investigated is the collaboration of subject areas through educational technology. One way of doing this is through the use of communications technology and more specifically, video production
technology. The use of video production can function as a way to bring about teacher collaboration among a wide range of academic subject areas (Loveland, 2006).

Interdisciplinary curriculum, or curriculum integration, is a teaching pedagogy where teachers who represent all of the major content areas are grouped as teams to work toward a common goal of quality education for their students. These teams work together to develop teaching strategies that cover and connect curriculum from the different content areas. Curriculum integration gives students the opportunity to develop higher-order thinking and learning skills. In this method of teaching, students make connections between their class work and the skills and knowledge they will need in the future (Loveland, 2006). Video acts as a bridge for teachers who are interested in interdisciplinary collaboration. The diverse project possibilities coming from the use of video which covers several different content areas is limitless (Hernandez-Ramos, 2007). Each video project has the potential of drawing on skills from language arts, science, art, communication, and math. “Students write scripts, develop promotional plans, calculate lighting ratios, work with time code editing, design and construct sets, troubleshoot equipment and a host of other real-world tasks common to the film and video industry” (Loveland, 2006). It is through these experiences that students learn to better understand and value collaborative work (Hernandez-Ramos, 2007).

Phases of Video Production:

In many ways, the phases involved in the management of a video project are much the same as the management of a creative writing assignment or that of an oral presentation. Each of these activities goes through a process of planning, organizing, and controlling the
work needed to complete a desired task (Loveland, 2006). All video projects consist of three main phases. These are preproduction, production, and post-production. Each of these phases draws on the students’ knowledge in different ways and demands the students use a variety of both academic and real-world skills.

Preproduction:

The preproduction phase is a “design process [which] includes defining a problem, brainstorming, researching and generating ideas, identifying criteria and specifying constraints, selecting the correct approach, and developing the film proposal” (Loveland, 2006). It is during this phase of the video production process that students experience the different aspects of “idea generation, legal/ethical concerns, storyboarding, scriptwriting, crew needs, talent searching, and copyrights” (Loveland, 2006). This process involves a great deal of logical thinking skills along with coming to creative and appropriate compromises with fellow group members to solve real-life problems that arise with both the project and the group dynamic.

Production:

During the production phase, “students would learn [and use] the technical aspects of video production. Topics [might] include the parts of the camera, camera movement, lighting, audio, equipment interfacing, time code, Teleprompters, chroma-key, character generation, and animation creation. This phase would allow students to actually bring their concepts to reality by learning to use the different types of equipment and producing their
programs” (Loveland, 2006). This process draws on learner’s problem solving skills and creativity. As with any technology, unforeseen issues come up that will push the students in directions they had not expected. The techniques and skills the students use during the production phase are linked to both critical thinking and “critical analysis that open up alternative positions from which students can think, debate, and act” (Hernandez-Ramos, 2007).

Postproduction:

The postproduction phase is where students study and use the different techniques of editing. These might include adding graphics, transitions, animation, text, and mattes along with cutting both audio and video and placing them in the desired order (Loveland, 2006). This phase again calls on students to use their creativity and problem-solving skills to produce a finished product.

Research:

Although it has been shown that regular viewing of educational television has a positive influence on children’s cognitive development (Micheal, 2007), it is believed that when students experience the process of creating and developing such educational programs or videos they experience an even greater array of positive growth. However, because this concept is so new in the field of education, very little research has been done that exactly correlates with the use of student lead video production projects as an educational approach. What little research has been done and reports from teachers who have used the technique
have found that “these projects may enhance knowledge retention, promote acquisition of teamwork skills, develop confidence in public speaking within a safe environment, and make use of [students’] seemingly boundless creativity and ingenuity” (Epstein, 2003). Students have illustrated these growths in reporting instruction that is anchored in video projects make the class more enjoyable. Students have also reported that this type of instruction gives them a better understanding and appreciation of the usefulness of the material in the lessons. This illustrates a positive shift in students’ attitude toward subject matter (Choi, 2007).

In recent years, there have been a number of studies designed to measure the effect of video-based instruction on the learning process. In one study, educational researchers, Choi and Johnson, set out to discover if video-based instruction enhances student retention. Their subjects reported that video-based instruction was more memorable than the traditional text-based instruction. These findings are supported by those of Baggett and Kozma who claim that “information obtained visually is more memorable, and that the simultaneous process of both auditory and visual information can aid learner retention” (Choi, 2007). With video’s ability to communicate “using visuals, audio, and graphics that incorporate a variety of visual and auditory stimuli,” (Loveland, 2006) it is a perfect choice for any educator who wishes to reach students through several different learning modalities. Furthermore, video can also be more effective than text to convey real-life situations in the problem-based classroom (Choi, 2007). Further studies have found similar results that indicate video-based instruction is more effective for student retention than text-based instruction, especially when coupled with problem-based instruction. Choi further supports his findings on the positive result of comprehension by describing several of these studies in the following:
“According to Salomon, learners who have limited prior knowledge might benefit more from information in the multiple-symbol system of video technology because it can help enhance their understanding. Overbaugh also argued that video might be ideal for learning complex skills because it can expose learners to problems, equipment and events that cannot be easily demonstrated and understood verbally. Research regarding the Jasper series, which was conducted by the CTGV and by Shyu also showed that video-based anchored instruction helped students understand what they learned through the improvement of problem-solving skills” (Choi, 2007).

Effects of Video Production Projects on Students:

The strength of video-based instruction in problem-based learning lies in its ability to convey setting, characters, and action in an interesting way while also presenting more complex problems and situations. In this way, video projects help students better understand and retain content when compared to expository materials like text and traditional teaching methods such as the lecture-based lessons (Choi, 2007).

Throughout the different phases of the video production process, students use their reading, oral communication, writing, and critical thinking skills in various ways. All of these elements are then integrated with hands-on experiences that help to cultivate the students’ understanding (Huang, 2007). After students go through the video production process, teachers can be assured that their students are walking away with more knowledge
of how to identify both problems and the opportunities to solve problems, how to select and use resources, and how to evaluate a finished solution. (Loveland, 2006) Not only do the students gain a better understanding of the content knowledge and the video production process, but creating a video project gives students a “great sense of accomplishment by allowing them to come up, from start to finish, with a final product that they can be proud of” (Hernandez-Ramos, 2007). And in the educational world, that can make all the difference.

Retention:

Video production projects allow students to *use* the assigned material instead of simply *reading* it. This enables students to better recall valuable information. Because the students have more freedom in how they demonstrate their knowledge, the students will often create a type of personal attachment to the material which proves to be far more memorable than something they read or that was presented to them by someone else (Epstein, 2003).

If the delivery of a video project is done correctly, the students will actively bring their own strengths to the video production process (Epstein, 2003). Students who usually sit and remain quite during classroom discourse will find their voice, and students who struggle with writing will write more than ever (Miller, 2007). Many teachers have found that students get so involved in the activities that they are not even aware of the teacher’s presence. This allows students to “develop their own understanding and make their own choices about how to create effective storytelling” (Huang, 2007) through video production which proves to make learning more memorable and meaningful.
The added advantage of the video production process is the videotape or digital copy of the project itself. With this, students can review the information easily for a refresher or simply for the entertainment value (Epstein, 2003).

Motivation:

The creation of video projects in the classroom “combines fun with serious teaching” (Hildreth, 2001). This method has been used by science centers and the children’s entertainment industry for decades. If Disney can use these techniques to hook and teach our children, we should be able to as well. When students are motivated by what they are doing in the classroom, they feel connected and passionate about their learning. It is well accepted that when students are passionate about their learning, more learning and less classroom management challenges occur (Loveland, 2006). The controlled use of play during a video project can be a strong motivating force for students. “It is undertaken for its own sake, not for a basic need or social demand, and it requires active participation of the player” (Hernandez-Ramos, 2007). However, it is critical to the learning environment that the teacher reinforces the importance of structured play by ensuring students are aware that while they are involved in play, they are learning from the experience (Hernandez-Ramos, 2007). Only when these steps are met will providing the students with a variety of activities prove to increase motivation and active involvement in a fully positive way (Huang, 2006).

Students tend to respond enthusiastically to the video project production process “because, for them, it [is] an opportunity to be creative and exert greater control over an aspect of their curriculum that is fairly structured and inflexible” (Epstein, 2003). It is this
sense of ownership that gives students a different, more positive perspective on their assignments (Hildreth, 2001). This enables students to get engaged and investigate their learning on a more personal level (Epstein, 2003).

Furthermore, video-based instruction is an efficient way of presenting a problem-based lesson that addresses the students’ perceived lack of authenticity and personal relevance to students’ lives. The ability to motivate students to explore concepts more fully is one of video’s greatest strengths. “Production is hard work, but it is fun, and students find the experience exhilarating and inspiring. Educators can harness this power and create imaginative learning opportunities for their students” (Hernandez-Ramos, 2007).

Social Interactions:

Video-based instruction also has benefits for the overall classroom environment. The use of video projects greatly helps to decrease some of the problems teachers face in their classrooms on a daily basis. A well constructed video project motivates students and encourages them to share their ideas and knowledge with the rest of the class so as to improve student engagement and encourage a higher quality of student work. The majority of the video projects that are done in a classroom setting are done as group projects that help to foster better collaboration and communication skills (Hernandez-Ramos, 2007).

The video production process has students presenting information effectively by socially constructing their knowledge (Huang, 2007). Through this process, students gain an “understanding of the importance of studying and learning good social and communication skills” (Loveland, 2006). When this understanding is achieved, students become active
learners who apply what they learn and collaborate with others to achieve a common goal. The acquisition of these and other skills students apply in the video production process gets students one step closer to graduating with “real-world skills content knowledge, and technological literacy, enabling them to become better citizens” (Loveland, 2006).

While the use of video production in the classroom setting as an instructional method is relatively new and, therefore, has not been heavily researched, what has been shown of this process leads to a beneficial conclusion about its use. Students show increases in motivation and retention with the implementation of the three phases of video production while developing real-world skills that students will need to become successful in the outside world.

The catch to the successful acquisition of these skills, however, as with any educational program, is these skills are only achieved when the video production process is utilized correctly in the classroom setting. That is where the teacher’s role becomes vitally important to the video-based instructional process, and it is to this topic that we turn next.
Chapter 4: Solution

This chapter consists of three sections: Video Production as a Viable Option, The Role of the Teacher, and Time Requirements.

The section on the viability of video production in the classroom discusses the benefits of using the student led video production project process in the classroom setting while briefly illustrating the difference between having students go through the video production process and having students simply watch a film or television program. The section on the roles of the teacher addresses the concern many teachers face of becoming uninvolved in the learning process when students produce a video production project. The final section on the time commitments involved in facilitating a student led video production project addresses another concern of teachers that the process will require more time than is justified by the educational gains produced.

Video Production as a Viable Option:

With recent developments in digital video technologies, along with the significant drop in the cost of digital video cameras and computers with large amounts of storage, it is easier than ever to reap the educational benefits that come with the implementation of video projects in the classroom (Hernandez-Ramos, 2007).

“Television supplies both visual and auditory images and content; [and] therefore, some have argued, it does not stimulate the viewers to generate their own visual images or to make inferences that go beyond the content given” (Huston, 1998). It is for this reason that
having students go through the process of writing, creating, producing, and presenting their own television or video programs is far superior to simply viewing a television or video program because it stimulates the students' imaginations and creative skills in ways that both film and television failed to do while promoting students to take ownership of the learning process. Through the use of the video production process, students can travel to distant lands and move freely through both time and space all from the comfort and security of their own classroom (Huston, 1998).

Although video is an ideal way of motivating students, promoting long term retention of material, and making connections between the material and the students' personal lives throughout the course of a school year, attempts to introduce video technologies to both teachers and students must also include an introduction to other computer and video tools that might be unfamiliar to them which, as is the case with any new technology, can often be approached with fear and anxiety. Fortunately, “the advent of computer-based tools for the production of digital video means that the cumbersome and expensive tools and settings needed for analogue video are no longer needed” (Hernandez-Ramos, 2007). Loveland further explains the pre-existing availability of this technology that many educators overlook:

“Television production has been in place in middle and high schools for the past several years. Once thought of as an English elective, media communications, or journalism class, these courses have begun to evolve from a focus on news reporting to encompass many technical aspects of the television production process. Many schools now have facilities where
students can produce and broadcast news programs, special events, and television shows they have created and developed” (Loveland, 2006).

Although these facilities were not necessarily meant for students to use, teachers could use them in a project-based setting to teach the elements of video production and to fulfill their roles in the student led video production process.

The Role of the Teacher

Many critics of the student led video production method, along with many teachers reluctant to use video production in the classroom, express a concern that the teacher’s role becomes minimal when using this method. This could not be further from the truth, however. The teacher’s role to the success of this method is crucial.

Teacher as Builder of Prior Knowledge:

The role of prior knowledge in shaping learning was first proposed by Bartlett in 1932 in the development of the schema theory. This theory showed memory as an “active process, not reproductive, but construction in its operation. Schemata are high level complex structures used to organize and interpret experience, which lead us to predict, expect or understand things on the basis of our existing schemata” (Myhill, 2004). It is a person’s schemata that gives an overall perspective of our knowledge of the world so we can integrate what we experience into our current knowledge base. With this process, a person builds on
his or her understanding and knowledge through the interactions between new experiences and prior knowledge (Myhill, 2004).

In Eva Michel’s investigations on how knowledge acquisition through films could be enhanced she found that “the formation of coherent memory representation…appears to be crucial for later remembering and reporting” (Michel, 2007). Because of this, she found that “to ensure knowledge gain from watching educational films, organizing and structuring information should be added prior to the to-be-learned material. One way to do this may be to provide advance organizers prior to the to-be-learned information. Such organizers should build up central and important concepts of the later learning material facilitating the assimilation of new information into the existing semantic network” (Michel, 2007). The concept of bringing prior knowledge to the conscious level in order to make connections to new information so as to enhance a student’s retention of the new information is beneficial in any teaching method, and the use of video production in the classroom is no exception. Therefore, among the roles of the teacher using video production in the classroom setting is the responsibility of integrating recently acquired information with students’ pre-existing knowledge. The creation and presentation of “advanced organizers,” as Michel puts it, is a critical first step in the students’ success in this method. It is with these advanced organizers that the students will introduced to the central concepts they will be focusing on and how the knowledge they will obtain will be used to properly create the video project.
Teacher as Technology Expert:

Along with an advanced organizer that introduces the students to the material they will be dealing with, the teacher is also responsible for familiarizing the students with the basic operations of the cameras and video editing equipment or programs they will be using to create their videos, along with giving them helpful pointers for creating a better video (Hernandez-Ramos, 2007). This of course implies the teacher must first be fully competent with the technology before presenting it to the students.

Teacher as Student Group Organizer:

After the groundwork in introducing both the material and the technology to the students is laid, the teacher must then create the student groups for the project. In Dr. Grace Huang’s workshop entitled “Reading Theatre, Parents as Actors: Movie Production in a Family Literacy Workshop” which strives to “empower and motivate parents to learn various storytelling strategies through theatrical production experiences” (Huang, 2007) in going through the entire movie production process from script to premiere, Huang considers the optimal group to consist of four to five people. Any group larger than five, she warns, would only serve to “dilute the interactive experiences” (Huang, 2007). A group of four to five students makes it so each person can participate fully while still having a large enough group to have a sufficient diversity in the ideas generated for the project. Huang also makes the point that “a sufficient number of cast members [is] important to the success of movie production” (Huang, 2007). A group of four to five students gives the group a great deal of creative leeway in deciding how their project will be constructed and acted out.
Once groups are established, the students should be given specific roles to ensure the success of their video projects. Students will work far more efficiently when the teacher provides clear instructions about the activity and each individual’s role within the group before they begin the project (Huang, 2007). With each member being assigned a role, the students can “work as a team by…developing a plot, designing a performance, writing a script, and even attending to set design” (Epstein, 2003). Dr. Pedro Hernandez-Ramos advises in his article, “Aim, Shoot, Ready! Future Teachers Learn to ‘Do’ Video,” which depicts a two hour “workshop to introduce pre-service teachers to digital video in the context of an instructional technology course or as a stand-alone activity,” that although each student has a specific task for which they are held accountable, every member in the group should be required to work both behind and in front of the camera. This again helps to ensure that each member of the group participates equally to the finalized video project.

Teacher as Model:

The teacher also has the responsibility of fulfilling the role of a model for the students. This is best done when the instructor presents a video of his or her own creation that meets the described expectations. This serves two purposes according to Dr. Huang. “One, it create[s] a visual example for [students]; two, it motivate[s] [students] and create[s] momentum for their own movie production…Seeing an actual production in action would enhance their confidence” (Huang, 2007). Students find it reassuring to see an example of the video project they are about to undertake. In modeling the project for the students by not only dramatizing a character but also going through the video production process, a teacher
provides the students with a format to follow and a clearer picture of the expectations of the assignment (Hildreth, 2001).

Teacher as Discussion Facilitator:

The final role of the teacher in a video production instructional method is to facilitate discussion among the different groups. Class discussion should be emphasized after the videos have been shown to the class. This allows students to reflect upon what happened (Huang, 2007) within each video project and to make personal connections with the learning content and finding it’s relevance to real-life situations (Choi, 2007). In discussing the different projects and the various views presented in the videos, students should be encouraged to “go beyond their experience by studying and reflecting upon it, producing their own ideas about it, and devising ways to articulate or test these ideas” (Epstein, 2003). It is important to provide students with “room to think about what they have just learned and how they will apply the knowledge to their daily life. It helps them take the ownership of their learning, see how they have succeeded, and encourage transfer of their learning to a real setting” (Huang, 2007) which is the ultimate goal of an educational lesson.

Time Requirements:

When it is time for the students to begin working on their projects, it is important that the instructor gives the student enough time to organize their thoughts, research their topic, and produce the final video. In his article, “Lights, Camera, Action...It’s Science!,” David Hildreth, an assistant professor of educational studies at Guilford College in North Carolina,
makes the case that one to two class periods should give students enough time to prepare for their projects. One period could then be used for planning and the other for gathering research materials. However, the time a teacher provides the students in the preproduction stage of the project is heavily dependent upon the extent of information they expect to be found in the projects and how critical the teacher chooses to be about the quality of the video production. Some of the aspects, outside of the content material, a teacher might want to focus on could consist of the quality of characters, camera work, storyline/plotline, setting, and sound (Hildreth, 2001).

A major concern for many teachers who are interested in this instructional approach is the amount of time needed to complete the process. Although it is true that having the students go through all three stages of video production, preproduction, production, and postproduction, can take several days of instructional time, these days are not used in vain. Going through the project based instructional process of producing a video saves time through eliminating other educational processes that would be used in its stead. For instance, because this method is project based and the finalized video is the final method of assessment for the process the teacher who uses this process saves time by not having to spend instructional time on studying and reviewing for an exam and not having to administer an exam. Furthermore, because the students are learning the material while going through the process of creating their video project, the instructor uses the time that would otherwise be spent on instructing the students on the material to aid them and help guide their own discovery of the material which has been shown to yield better initial understanding and long-term retention.
While considering the amount of time needed for the successful completion of this instructional strategy, it is important for the teacher to keep students on task and moving through the production process. As Dr. Hernandez-Ramos explained in his article, “Aim, Shoot, Ready! Future Teachers Learn to ‘Do’ Video,” when the proper guidance was lacked from the instructor, “experience had shown that students would spend too much time and effort up front trying to agree on script ideas and get frustrated when they then had too little time left for editing and ‘postproduction’” (Hernandez-Ramos, 2007). One of the teacher’s key responsibilities, according to Dr. Grace Huang, is to move “through the setting, checking in, cautiously joining in the activity, affirming, and commenting on the interaction that [is] occurring” (Huang, 2007). She goes on to explain that while moving around the room and observing students’ work the instructor should provide suggestions to a group if he or she notices a dilemma the group is facing (Huang, 2007).

A final, optional step to be considered when determining the time requirements involved in a student led video production project is the organization of a “parent night” (Hildreth, 2001). Parent Night is a time when “parents can come to watch their child’s presentations. This helps in fostering student-parent-teacher relations” (Hildreth, 2001) along with giving the students a chance to show the results of their hard work and to be proud of what they have accomplished.
Chapter 5: Synthesis

This chapter consists of four sections: Statement of the Problem, Avoiding Mistakes of the Past, Benefits to Video Production, and Addressing Concerns.

The Statement of the Problem section discusses the issues educators face with student motivation and retention of material, why these issues must be addressed to benefit student learning, and how video production techniques used in the classroom can address these issues. The Avoiding Mistakes of the Past section briefly reviews the failures of film and television in the field of education, the reasons for their failure, and what today’s educators can do to avoid repeating these mistakes. The Benefits of Video Production section describes the potential positive outcomes brought about from correctly implementing a student led video production project in a classroom. The Addressing Concerns section addresses the reservations educators might have in implementing a video production project with their students. These concerns cover time commitments, fears concerning a lack of educational outcomes, and beliefs that the role of the teacher is negligible during the course of a student led video production project.

Statement of the Problem:

This paper has been written to address the ongoing issues of a lack of student motivation and student retention of information. Educators are finding the old “tried and true” methods of the lecture style lesson to be insufficient in gaining and maintaining student motivation and involvement in the learning process. While the lecture method is easily
delivered, familiar to most, and provides teachers with an opportunity to present large quantities to information to students, the lack of student involvement and engagement disintegrates any hopes of major educational benefits brought about by using it.

To combat this problem, educators have been searching for alternative lesson formats that prove to motivate students to learn, aid in students’ attempts to retain the knowledge learned during the lesson, and provide the teacher with plenty of opportunity to teach a large amount of information. A popular movement in education today that has come out of this search is the constructivist learning theory. This student-centered approach to teaching and learning places students in a pivotal role in their own learning. Students construct their own learning with the teacher acting as a facilitator and guide. Through this method, students take ownership of their own learning which results in greater retention of the information because students have come to the information on their own terms and have experienced it in their own words.

Benefits to Video Production:

Student led video production projects are closely tied to the constructivist learning theory principles. Because the video production process is led by students, meaning the students come up with the concepts for their videos, write their own scripts, shoot the video, and produce the video with the teacher acting as a guide, facilitator, and technical expert, the students get the experience of creating something from their own imagination that illustrates the culmination of their knowledge and experience in specific areas.
With the flexibility and creative freedoms video production provides, students have the ability to convey setting, characters, and action in an entertaining and thoughtful way. Going beyond listening and learning about content material and being responsible for developing and presenting the material in a specific, useful form increases students’ retention. Students are far more likely to remember material they used in creating a video than information being presented to them by a classroom teacher.

As an instructional tool, video production has the capability to build bridges between multiple curricular areas and thereby create an interdisciplinary curriculum. Educators have been finding in dividing the curricular areas students experience, students are not realizing the importance each of these courses have in their lives. Instead, students view content area classes as bothersome and simply something they have to do to get through school. By integrating the curriculums, video provides teachers with a way of illustrating the real life importance of their specific curriculums while giving students a sense of how the different curriculums work in unison for the greater benefit of students.

Along with coming to realizations of the importance of the individual curriculums to their lives, students also develop several important life skills they will find useful. Video production can be a very intellectually demanding activity that pushes students in several ways. Students use their reading, oral communication, writing, and critical thinking skills on a constant basis when creating a video production. Students are constantly experiencing informal assessments and being challenged that arise in the production process. Through dealing with these challenges, students gain the knowledge of how to identify problems and, equally important, how to identify viable solutions to those problems.
As with any hands-on, creative process, video production has been shown to be highly motivating to students. Largely, this occurs when students bring their own strengths and abilities into the production process. In doing this, students develop their own interests and goals within the video production process which only furthers student involvement and motivation by giving students a sense of ownership in their learning. This sense of ownership enables students to get engaged and investigate their own learning on a more personal level (Epstein, 2003). Most motivating to students is the sense of accomplishment they experience from having created a video project they can be proud of.

Avoiding Mistakes of the Past:

While educators look to student led video production projects as a technological tool that can further our educational practices and further students’ academic achievement, it is important to remember the mistakes education has seen with other forms of instructional technologies. Instructional film and television were once viewed as educational panaceas. Promoters of these technologies gave many promises of educational reform and betterment of student achievement that would inevitably prove misleading and, overall, incorrect.

Current educators must learn from these mistakes and take measures to avoid revisiting them with new educational technologies. This is as true for video production technologies as for any other. However, unlike film and television, video production projects are not to be promoted as the end of all educational problems. Nor should video production projects stand as the solitary educational practice to replace all others. No. Student led video
production projects should be considered as a tool for educators should use at their discretion.

As with any instructional technique, over using video production projects could easily decrease the benefits sought after in its use. This was the largest mistake proponents of film and educational television made. Reformers who backed the use of film and television in the classroom did so in such a way as to encourage the complete reconstruction of the American educational system centered on these technologies. It was their belief that all classes should be taught through the use of these technologies and that soon after their instillation into the schools film and television would completely envelope the field of education. This meant that the role of the teacher would go from instructor and facilitator to technician and disciplinarian and books would become obsolete.

With this mentality, reformers failed to realize the impact the classroom teacher would have on the use of these technologies in the classroom. In fact, educational reformers and the developers of educational film and television went so far as to seemingly ignore the input of practicing teachers. This would inevitably lead to the downfall of film and television in the classroom.

It is important for current educational reformers to consider the perspectives and wisdom of practicing teachers when developing and implementing new technologies, like video production technologies, for the classroom environment. This also means that teachers need to carefully consider the advantages and disadvantages of using a new educational tool in their classrooms. Several questions should be asked about the technology before making a decision upon its implications and usefulness:
- Is the technology easy to learn and simple to use?
- Will the technology get a lot of use in the classroom?
- Is the technology going to be motivating to a teacher's specific group of students?
- Does the technology match well with the intended material and curriculum to be covered?
- Is the technology reliable?
- If something does go wrong or if the teacher has problems that need to be addressed, is there someone available and reliable who will be able to address the teacher’s issues?
- Is the technology efficient enough and effective enough with respect to student outcomes to justify the time and effort required it learning and implementing it?
- How will this technology affect the teacher’s roles in the classroom?

(Wang, 2003)

Each of these questions should be addressed by the teacher considering the new technology. It is through careful consideration and reflection that today's educators can best prevent repeating the mistakes of their predecessors.

Addressing Concerns:

While the questions listed above prove to be very effective in aiding teachers in making a decision upon the use of new technologies, such as video production technologies, in their classrooms, there are several common concerns that arise for teachers that effect their
decision. Time is teachers’ greatest issue in education. There never seems to be enough instructional time for teachers to cover all of the material they want to. It is for this reason the lecture method is so appealing to teachers. In the lecture method, teachers can present a large amount of information to a large number of students. It is also for this reason many other instructional approaches are passed up by educators.

Student led video production projects are viewed as requiring large time commitments and often teachers feel the rewards are not proportionate to the effort put forth. However, student led video production projects manage to cover a great deal of information while both motivating the students and increasing their retention of the material. This minimizes the time needed to review material and re-teach concepts students may seem to be confused upon in using other instructional approaches.

A correctly implemented student led video production project covers all of the different steps in more traditional instructional approaches, from introducing the material to discovering the meaning of the material to assessing student knowledge and understanding, by having students develop their own understanding and produce a final project that illustrates their knowledge in a creative and interesting way. Therefore, the time spent on the project is made up for in the time gained from not having to go through these different stages of an instructional unit.

The other major concern teachers have when implementing new technologies into their classrooms is centered on the role of the teacher. When proponents of film and television began discussing the future of their technologies, they envisioned a new form of classroom where the teacher was little more than a technician who began and stopped the
programs, made certain students were on task and paying attention, and administered assessments and other work to the students after the program concluded.

With a student led video production project, teachers' roles are still that of a facilitator. Their role is crucial to the success of the students. As discussed earlier in this paper, teachers have several roles to play in this process. Some of these roles have the teacher as a builder of prior knowledge, an expert in the technology, a student group organizer, a model for the project, and a discussion facilitator. With each of these roles, the teacher aids the students in guiding their thoughts and providing information the students will need to complete the video production project. Unlike in the early stages of educational film and television, teachers will remain in important roles while remaining in charge of the lesson.

While there is a degree of risk for failure with any educational approach, the use of student led video production projects has benefits that far outweigh the risks. As long as educators struggle with student motivation and retention, there will be a need for new educational approaches that have been tested and found to be effective in addressing these issues. The use of student led video production projects is just one of many instructional approaches, but it is one that needs to be very seriously considered by classroom teachers for its benefits to student achievement.
References:

Huang, G., et. al. (Summer 2007). Reading theatre, parents as actors: Movie production in a family literacy workshop. *Reading Improvement 44*(2), 87-98.

