
University of Northern Iowa University of Northern Iowa

UNI ScholarWorks UNI ScholarWorks

Honors Program Theses Student Work

2008

Application of Blast-Based Techniques For Musical Information Application of Blast-Based Techniques For Musical Information

Retrieval Retrieval

Fedor Aleksandrovich Korsakov
University of Northern Iowa

Let us know how access to this document benefits you

Copyright ©2008 Fedor Aleksandrovich Korsakov

Follow this and additional works at: https://scholarworks.uni.edu/hpt

Recommended Citation Recommended Citation
Korsakov, Fedor Aleksandrovich, "Application of Blast-Based Techniques For Musical Information
Retrieval" (2008). Honors Program Theses. 800.
https://scholarworks.uni.edu/hpt/800

This Open Access Honors Program Thesis is brought to you for free and open access by the Student Work at UNI
ScholarWorks. It has been accepted for inclusion in Honors Program Theses by an authorized administrator of UNI
ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and
time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.

https://scholarworks.uni.edu/
https://scholarworks.uni.edu/hpt
https://scholarworks.uni.edu/sw_uhp
https://scholarworks.uni.edu/feedback_form.html
https://scholarworks.uni.edu/hpt?utm_source=scholarworks.uni.edu%2Fhpt%2F800&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/hpt/800?utm_source=scholarworks.uni.edu%2Fhpt%2F800&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uni.edu
https://scholarworks.uni.edu/offensivematerials.html

APPLICATION OF BLAST-BASED TECHNIQUES
FOR MUSICAL INFORMATION RETRIEVAL

A Thesis

Submitted

in Partial Fulfillment

of the Requirements for the Designation

University Honors with Distinction

Fedor Aleksandrovich Korsakov

University of Northern Iowa

May 2008

This Study by: Fedor Korsakov

Entitled: Application of BLAST-based techniques for Musical Information Retrieval

has been approved as meeting the thesis or project requirement for the Designation

University Honors with Distinction

~ ,f\
~ 01---lS>v Cy

Date Dr. Kevin O' ane;Honors Thesis/Project Advisor

Application of BLAST-based Techniques for Musical Information
Retrieval

Fedor KORSAKOV
(student)

Department of Computer Science
University of Northern Iowa
Cedar Falls, IA 50614, USA

korsakov@uni.edu

Abstract

Content retrieval in musical collections has been dependent on textual metadata (e.g. ID3 tags)
which can present problems when the title of a piece is forgotten, misspelled, or when the search
revolves around the similarity of sound. Content-based MIR (musical information retrieval) could offer
an alternative. BLAST (basic local alignment search tool), an algorithm widely used in bioinformatics
to search for sequences of aminoacids within longer sequences, seeks similarities and homologies,
which makes it interesting for MIR, because musical information can be expected to be imprecise, and
because homologies can allow to draw connections between musical pieces. Increased availability of
digital music necessitates MIR methods which would allow to search a polyphonic sound collection
with polyphonic queries to retrieve individual files, and a question can be raised how viable is BLAST
based retrieval for this kind of data. This paper discusses an implementation of such a system.

1. INTRODUCTION

Personal computers are being increasingly used for multimedia purposes. The emergence of
new content distribution models has contributed to the growth of collections of digital music. One of
the effects of this growth is the need for the enhancement of content retrieval mechanisms, which
historically have been dependent on textual metadata associated with files. In the specific case of
musical data, a common approach is to incorporate tags (such as 1D3) into the files. While this method
is adequate for textual search, there are drawbacks in using data representation significantly different
from data itself. Textual search, for all of its simplicity, may have difficulties with situations where the
title of a musical piece is forgotten, misspelled, or typed in a different language, or where the search
revolves around the similarity of the sound (for example, looking for a remix that incorporates a
classical piece) rather than the title. While tags can be edited to compensate for some of these
problems, it is obvious that devising means to perform MIR (musical information retrieval) on the basis
of content could offer a promising alternative solution. Furthermore, such an approach could lead to
innovative user interfaces which would allow searches with acoustic queries which are hummed,
spoken, or played on an instrument.

A conceptually alike challenge is common in bioinformatics, where it is frequently necessary to
perform a search for a sequence of aminoacids within a longer sequence (e.g. genome). BLAST (basic
local alignment search tool) is an algorithm widely used to address this need, and allows not only to
look for the exact match, but also to find similar sequences. The emphasis on speed rather than
accuracy makes BLAST-based retrieval interesting for MIR, since musical information, especially user
queries, can be expected to be inherently imprecise.

2. LITERATURE REVIEW

A substantial body of information exists on the subject of MIR. Mongeau-Sankoff algorithm [8]
is a seminal work which provides an effective similarity measure for pieces of music, but requires the
information to be presented in a symbolic form. While it has been successfully used for MIR [1], the
conversion of musical files into sheet music is beyond the scope of this research. Kline and Glinert [3]
as well as Miura and Shioya [6] all agree that while pitch contours may be used for the purposes of fast
retrieval, the accuracy is very poor. The latter research suggests using pitch spectrum (histogram of
notes per bar) as a means to describe musical information, and even though the technique was
developed for sheet music, the idea behind it may potentially be reapplied in the context of this
research. While a fairly large number of works deal with monophonic (query by humming) or symbolic
queries on symbolic databases, Yan g's research [11] presents interest due to its focus on polyphonic
queries on a polyphonic database. Yang uses spectral indexing and implies that this technique is rather
unexplored. STFT (Short-Time Fourier Transform) is used to generate spectrograms, and then the
resulting data is processed to determine characteristic sequences. It would appear obvious that due to
difficulties of automated music transcription, spectrograms are a promising way to address the problem
of finding a suitable means of representation for the music.

The suitability of various similarity measures to the problems of MIR has been assessed and
discussed by Uitdenbogerd and Zobel [10]. Their research shows that local alignment is a superior
similarity measure, even for short queries; however it is sensitive to normalization, as longer pieces
will usually have more alignment matches, and the problem of normalization has not been fully
addressed in the article. The approach I propose revolves around detection of regions that resemble the
query in the spectrograms of the musical collection, and while this does not directly address
normalization issue, it moves the emphasis towards finding a single high-ranking match within the

1

piece as opposed to assessing the relevance of the piece on the basis of the number of matches over its
entire duration.

3. METHODOLOGY

The problem consisted of finding relevant files in a collection of MP3 files. 18 excerpts (2 - 48
seconds duration) of various musical pieces served as queries. Results were returned as lists of files.
Effectiveness was assessed through presence of the relevant file among the top matches, the relevant
file being the piece from which the excerpt originated. While most musical pieces were unique, some
were present as multiple recordings (i.e. same piece played by various orchestras). In those situations,
the top match with the musical piece in question was considered to be the relevant file regardless of
whether it was the specific recording from which the query originated.

3.1 Environment

The system has been implemented on Mac OS X 10.4, which facilitated access to a variety of
open source libraries (FFTW [2], libpng [4] and libsndfile [5]) and utilities (SoX [9]) and led to a piece
of software that can be easily ported to Linux in the future. The collection consisted of 106 MP3 files,
containing music by Mozart, Haydn, Borodin, Bach, Beethoven, and other classical composers, as well
as the more modem pieces by bands Solstice, Naglfar, Agalloch and Dimmu Borgir.

3.2 Preprocessor

Out of the existing BLAST applications, MegaBLAST [7] was chosen to be used in the search
system due to its efficiency in sequence alignment search among slightly different, relatively long
sequences. However, in order to be used with MegaBLAST, the collection had to undergo initial
processing. The MP3 files were decompressed and converted to monophonic WA V format with SoX.
Single-precision real-to-complex STFT was done on the resulting data, producing an array of complex
values. Complex moduli of these results were normalized and transposed (since the search was going to
occur in the time domain). The next step involved conversion of the two-dimensionally arranged
spectral data into sequential data on which MegaBLAST could operate. Each value in the array of
normalized STFT results was converted into 2 nucleotide characters (each - out of four characters).
Thus in the produced aggregate of sequences, each sequence corresponded to the intensities of a
specific frequency over time, expressed as integers between O and 15 through the following formula,
where Vis the resulting value, and v is the normalized complex modulus:

(sin(rr·v)+M)
V= L 16· (

2 }J
2

The aggregate was converted into PASTA-formatted text which was added to the musical
database through the use of formatdb. The queries (based on the excerpts from musical files) had
undergone similar preprocessing and were stored as separate files. F ASTA headers contained additional
information about the files, i.e. bit rate, as well as length and width of STFT array.

2

3.3 Postprocessor

The queries were submitted to a Ruby script that wrapped MegaBLAST in order to do
additional analysis of the program's output. For each file where matches occurred, the matches'
weighted scores were placed into a hash table where the keys were based on the starting time of the
match divided by the duration of the query. Even though this approach potentially ignores closely
positioned matches that fall outside of the interval of interest (one query duration long), the underlying
assumption was that matches of significance would occur in a region corresponding to the query in size
and not be dispersed further than query's duration. This provided a simple and efficient way of
partitioning the search space into regions that could be later ranked, based on the combined score of the
matches they contained. The combined score was acquired through the following formula, where S is
the region score, D is the distance between the frequency of the sequence in the query and the actual
frequency of the match and, and Bis the MegaBLAST score the match received.

Since MegaBLAST tends to return matches that are fairly close, the variation in B can be
viewed as largely acceptable. Thus the combined score emphasized frequency distance score (D) and
downplayed MegaBLAST score (B). The overall result was that the regions were ranked by their
scores, then files were ranked by the score of their highest-ranking region, and the ranked list of files
was displayed to the user.

4. FINDINGS

On average, in a search, 99 files out of 106 were returned as containing a match. In 56% of the
cases, the relevant file was in top 10 results, in 67% of the cases it was in the top 20, and in all cases it
could be found in the top 50% of the output, thus it is possible to say that the system demonstrated
basic feasibility of usage of MegaBLAST for MIR purposes. However, the likelihood of a successful
search depended on several factors. The queries varied between random and systematically selected.
The most successful searches were performed with short queries that sounded in a manner that was
typical and unique for the pieces in question. Pieces by Mozart tended to yield large numbers of high
ranking unrelated results, while such pieces as "For All Tid" by Dimmu Borgir, with a monophonic
solo, were recognized with a remarkable precision from short (4-5 seconds) queries. The precision of
return did not significantly increase with the increase of the query size, instead more unrelated results
were retrieved. The best results were returned with queries 4-10 seconds long. Thus, it is reasonable to
conclude that a successful search is reliant on a query that is concise and characteristic of the musical
piece in question, and that monophonic music may have a retrieval advantage over polyphonic music.

There were some additional findings related to the implementation. Variations of the number of
nucleotide characters per STFT array value were attempted. It was discovered that 1 character (i.e. a
range of 4 possible values) per value is clearly inadequate, as it leads to searches without conclusive
results, whereas the use of more than 2 characters would create a database larger than the initial
collection by more than 4 times, and therefore 2 characters per value were chosen.

3

5. DISCUSSION

While MegaBLAST can be viewed as interesting for the purposes of MIR, it is geared towards
one-dimensional data, and its usage with music (two-dimensional data) introduces the need for
substantial processing of the results. An algorithm specifically constructed for similarity searches in
two-dimensional data could be more suitable to the problem, especially since the need to do
computationally intensive preprocessing and to allocate a substantial amount of space (approximately
1.3 GB for the database used in this research) towards the storage of preprocessed data presents
additional issues. However, with adequate postprocessing of the matches, MegaBLAST usage can yield
useful results. Furthermore, a behavior that involves returning not only the queried musical piece, but
also acoustically related pieces can be of interest to the user, and there are scenarios (e.g. Internet radio
station) in which it may, in fact, be desirable.

Despite being capable of basic functionality, the system exhibits a number of weaknesses that
should be addressed in future research. High return of polyphonic pieces of limited relevance presents a
major issue. It may be possible to alleviate this problem by weighting scores on the basis of their
frequency. A look at the STFT-generated spectrograms shows presence of artifacts and non-useful noise
in the upper range of frequencies. Giving higher scores to the matches that occur closer to the mid
range of human hearing should reduce the impact of this problem. Another limitation is the fact that by
ranking files on the basis of single best match, it is theoretically possible to overlook files with multiple
good "good" matches but a mediocre "best" match. This demonstrates the importance of normalization,
as mentioned by Uitdenbogerd and Zobel. With that said, in the majority of cases, relevant pieces still
appeared among the top-scoring files. The issue that might be challenging to address is the reliance on
characteristic queries. It may be possible to reduce the severity of this problem by performing a
separate search that would look for the presence of query alone, rather than for the presence of regions
resembling the query, but in its current state the system is better suited for retrieval of files with similar
sounding quality rather than precise matches. Another research direction to consider is the usage of
BLAST instead of MegaBLAST, which would increase the number of detected potential matches and
may positively affect the results.

SOURCES CITED

[1] C. Gomez, S. Abad-Mota and E. Ruckhaus, "An analysis of the Mongeau-Sankoff algorithm for
music information retrieval," In Proc. ISMIR 2007, Austria, 2007, p. 109.

[2] FFTW, http://www.fftw.org/

[3] R. Kline and E. Glinert, "Approximate Matching Algorithms for Music Information Retrieval
Using Vocallnput," MM'03, 2003.

[4] Libpng, http://www.libpng.org/pub/png/libpng.html

[5] Libsndfile, http://www.mega-nerd.com/libsndfile/

[6] T. Miura and I. Shioya, "Similarity among Melodies for Music Information Retrieval,"
CIKM'03, USA, 2003.

[7] MegaBLAST, http://www.ncbi.nlm.nih.gov/blast/megablast.shtml

4

[8] M. Mongeau and D. Sankoff, "Comparison of Musical Sequences," Computer and the
Humanities, vol. 24, 1990, pp. 161-175.

[9] SoX, http://sox.sourceforge.net/

[10] A. Uitdenbogerd and J. Zobel, "Melodic Matching Techniques for Large Music Databases,"
ACM Multimedia '99, USA, 1999, pp. 57-66.

[11] C. Yang, "Efficient Acoustic Index for Musical Retrieval with Various Degrees of Similarity,"
Multimedia'02, France, 2002, pp. 584-591.

APPENDICES

A. Search Results
Query
ECO Symphony No.40 - I. Molto allegro excerpt3.txt

Solstice-excerpt.txt
Agalloch - Ashes Against The Grain - 05 - Net Unlike The Waves e<cerpt3.txt
ForAIITid excerpt.txt
Agalloch_- Ashes Against The Grain - 04 - Fire Above, Ice Below excerpt2.txt
Agalloch_-_Ashes _Against The_ Grain_-_ 04_-_Fire _ Above,_lce _Below _excerpt1 . txt

swann of_plagues_excerpt.txt
ECO Symphony No.40 - I. Molto allegro excerpt2.txt

Mozart-S25Gm excerpt.txt
RCO Symphony No.21 in A,_KV 134 - iii. Menuetto excerpt3.txt
Solstice-excerpt2. txt
Agalloch - Ashes Against The Grain - 05 - Net Unlike The Waves e<cerpt1.txt
RCO Symphony No. 38 in D major, KV 504 Prague - Ill. Finale. Presto excerpt1 .txt
Agalloch - Ashes Against The Grain - 05 - Net Unlike The Waves e<cerpt2.txt

RCO Symphony No.21 in A, KV 134 - iii. Menuetto excerpt2.txt
ECO Symphony No.40 - I. Molto allegro excerpt1.txt
RCO Symphony No.21 in A, KV 134 - iii. Menuetto excerpt1.txt
ECO Symphony No.40 - I. Molto allegro excerpt5.txt

B. Preprocessor Code

#include <stdio.h>
#include <sys/types.h>
#include <dirent.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <fftw3.h>
#include <png.h>
#include <sndfile.h>
#define MUS DIR "/music"
#define WAV-DIR "/wav"
#define IMG=DIR "/png"

5

Duration (s) Ran<
1 10
2 33
3 10
4 1
5 1
5 4
5 7
5 8
5 26
6 2
6 45
9 11
9 33

10 7
17 10
24 12
35 28
48 44

#define DAT DIR "/txt"
#define DBF-DIR "/db"
#define CONVERTER "sox"
#define XTD "wav"
#define XTO "mp3"
#define FNAME LENGTH 256
#define CL LENGTH 516
#define FN-SUCCESS 0
#define FN-FAILURE 1
#define FN-NORESUL 2
#define FRAME SIZE 2
#define IMG BLOCK H 10000
#define IMG-BLOCK-W 64
#define S F-10 -
#define CHUNK 4096
#define ADV 2000

int convert(struct dirent *);

int make img d(char *, float*, long, char*);
int make=img=d_block(char *, float*, long, int);

/* song name, in_data, data size, bitrate, output file*/
int make_fasta(char *, float*, long, int, FILE*);

/* helper stuff*/
long simplify(float *, float*, int, long);
int make_img_block(char *, float*, long , int);
int make_img(char *, float*, long, char*);

/* make them song-specific! */
/* float g min= 100.0; */
float g_max = 0.0;

int spectrum_w = CHUNK/2 + 1;
char appdir[FNAME_LENGTH]="\0";

/* NOTES:
The frequencies have inverse proportional distribution.
Output is normalized!!! (26/01)
*I

main(argc, argv, envp)

{

int argc;
char *argv[];
char *envp[];

struct dirent *df;
DIR *dr;

/* Number of args */
/* Argument ptr array*/
/* Environment ptr array*/

chart cf[FNAME LENGTH+ 4]
char cf[FNAME LENGTH+ 4] =
SNDFILE *sf; -

_ 1111. - ,
II If • ,

SF_INFO sfinfo;

time_t tl = time{NULL);

int a= 0;
while {envp[a] != NULL)

6

{

}

if {strncmp{envp[a], "PWD=" ,4)==0)
{

}

strncpy{appdir,strchr{envp[a], '/'), FNAME_LENGTH);
printf ("appdir:%s\n", appdir);
break;

a= a++;

char temp[FNAME_LENGTH]="\0"; .
snprintf{temp, FNAME_LENGTH, "%s%s", appdir, MUS_DIR);
printf {"opendir:%s\n", temp);
dr = opendir{temp);

FILE *dbf;
temp[0] = "\0";
snprintf{temp, FNAME_LENGTH, "%sf db/collection. txt". appdir);

dbf = fopen{temp, "wb");
if {!dbf)
{

}

printf{"Error opening database file %s.\n", temp);
return FN_FAILURE;

/* there is a directory ... */
if{dr != NULL) {

/* get filenames from directory and for each of them ... */
while{{df = readdir(dr)) != NULL)
{

/*convert each suitable file*/
if {convert{df) == FN SUCCESS)
{ -

/* construct path to converted file*/

strcat{t cf,df->d name);
char f cf[FNAME LENGTH] = "\0";
strncpy{f_cf, t=cf, strlen{t_cf)-3);

snprintf{cf, FNAME_LENGTH, "%s%s/%s%s", appdir, WAV_DIR, f_cf, XTD);

printf{"Opening %s\n", cf);

/* prepare room for converted sound file info*/
memset {&sfinfo, 0, sizeof {sfinfo));

/* open converted file*/
if {{sf= sf_open {cf, SFM_READ, &sfinfo)) != NULL)
{

/* display file info*/
printf {"Sample Rate: %d\n", sfinfo.samplerate);
if {sfinfo.frames > 0x7FFFFFFF)

printf {"Frames : unknown\n") ;
else

printf {"Frames
printf {"Channels
printf { "Format
printf {"Sections
printf {"Seekable

: %ld\n", {long) sfinfo. frames);
%d\n", sfinfo.channels) ;
0x%08X\n", sfinfo.format)
%d\n", sfinfo.sections) ;
%s\n", {sfinfo.seekable ? "TRUE"

7

"FALSE"))

spectrum_w);

/* make room for sound data*/
float *data_ptr = calloc{sfinfo.frames, sizeof{float));

/* suppose this does not work*/
if {data_ptr == NULL)
{

}

/* print error and exit. */
fprintf{stderr, "calloc failure\n");
exit{EXIT_FAILURE);

/* everything is·going well, so read file into our array*/
if {sf_readf_float{sf, data_ptr, sfinfo.frames) < {sfinfo.frames))
{

}
else
{

/* should never happen! */
printf {"Underread\n") ;

printf ("Data read into memory OK: %ld\n", sfinfo.frames);
}

/* preparation work is done!!! */
/*breakout the transform into a separate function later on! */
/* FFTW STUFF*/

/* define necessary variables*/
/* this is a real {float) to complex transform*/
fftwf_complex *out;
float *in, *result;
fftwf_plan p;

/* humans hear in the range of 15 - 20000 Hz
this means unsimplified sample is adequate
and chunks should not be no smaller than 2940 frames

*/

/* allocate input and output arrays with fftw_malloc */

/* in is just chunk-sized*/
in= {float*) fftwf_malloc(sizeof(float) * CHUNK);

printf ("Input array allocated.\n");
out= (fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex) *

printf {"Output array allocated.\n");

/* create plan*/
/* consider other flags!

http://www.fftw.org/fftw3 doc/One 002dDimensional-DFTs-of-Real
Data.html#One 002dDimensional-DFTs-of-Real-Data

http://www.geosci.usyd.edu.au/users/jboyden/vad/index.html#chapter-fourier
*I
p = fftwf_plan_dft_r2c_ld(CHUNK, in, out, FFTW_ESTIMATE);
printf ("Plan created.\n");

/* intermediate result*/
/* allocate array for result*/
/* adjusting for flex ADV offset*/

·8

ADV) * spectrum_w);

into in*/

I*

output

pow(out[bl[ll, 2));

result= (float*) malloc(sizeof(float) * ((sfinfo.frames-CHUNK+ADV) /

printf ("Result array allocated.\n");

/* loop through data! */
/* we need n-1 of starting points*/

int f;
/* -1 because after starting point there is chunkful of bits to load

for(f=0; f < ((sfinfo.frames-CHUNK+ADV) / ADV - 1); f++)
{

}

/* populate in array by reading CHUNK into it*/
int a;
for (a=0; a< CHUNK; a++)
{

}

in[al=left_data_ptr[f*ADV+al; */
in[al=data_ptr[f*ADV+al;

/* execute plan*/
fftwf execute(p);
/* printf ("Plan executed %d: %d.\n",f,a); */

/* we got result*/
int b;
for (b=0; b < spectrum_w; b++)
{

}

/* complex modulus= sqrt(xA2 + yA2)
where xis real and y is imaginary components of the

*I

/* compute complex modulus and store result*/
result[f * spectrum_w + bl = sqrt(pow(out[bl [01, 2) +

if (result[f * spectrum_w + bl > g_max)
{

g_max = result[f * spectrum_w + bl;
}

printf ("STFT complete.\n");
printf ("Max= %f.\n", g_max);

if(make fasta(cf, result, ((sfinfo.frames-CHUNK+ADV) / ADV) *
spectrum_w, sfinfo.samplerate~ dbf) == FN SUCCESS)

{ -
/* printf("HUGE SUCCESS\n"); */

}
else
{

printf("ERROR FORMATTING FOR FASTA");
}

/*PICTURES*/
if(make_img_d(cf, result, ((sfinfo.frames-CHUNK+ADV) /ADV)*

spectrum_w, "m") -- FN_SUCCESS)

9

}

}

}
}

}
else
{

}

{
printf("HUGE SUCCESS\n");

}
else
{

printf("ERROR DRAWING SPECTRA");
}

/* destroy plan and arrays*/
fftwf_destroy_plan(p);
fftwf free(in);
fftwf= free(out); ·
g_max=0.0;

/* cleanup main stuff*/
free(data_ptr);

free (result);

printf("Error opening %s\n", cf);

sf_close (sf);

cf[0l = '\0';
t_cf[0] = '\0';

char cl[CL_LENGTH]="\0";

/* quick fix, needs to be set in PATH*/
char prepend[FNAME_LENGTH]="/usr/local/blast-2.2.17/bin/";

snprintf(cl, CL_LENGTH, "%sformatdb -i ,/db/collection.txt -p F -o F", prepend);
system(cl);

closedir(dr);
fclose(dbf);

printf("Entire process took %d\n",time(NULL)-tl);
return EXIT_SUCCESS;

/* song name, in_data, data size, bitrate */
int make fasta(char *sname, float *data, longs, int brate, FILE *dbf)
{ -

char fname[FNAME LENGTH+ 4] = "\0";
char pname[FNAME=LENGTH + 4] = "\0";
char bdesc[32] = "\0";

/* snprintf(pname, FNAME_LENGTH, "%s%s", appdir, DAT_DIR); */
/* printf("%s\n", pname); */

strncpy(fname, strrchr(sname, '/'), strlen(strrchr(sname, '/'))-4);

int y=0;
while (fname[y] != '\0')
{

}

if (fname[y] == ' ')
{

fname[y] =
}
y=y+l;

I O • ,

/* snprintf(pname, FNAME_LENGTH, "%s%s%s", appdir, DAT_DIR, fname); */
snprintf (pname, FNAME_LENGTH, "%s%s%s. txt", appdir, DAT_DIR, fname);

/* printf("%s\n", pname); */

/* snprintf(pname, FNAME_LENGTH, "%s.txt", pname); */
inti;
snprintf(bdesc, 26, "r:%06dlw:%05dll:%06d", brate, spectrum_w, s/spectrum_w);
/* print header*/
/*fprintf(dbf, ">%sl%s\n", fname,bdesc); */
int line length= 32; /*x2*/

/* 2 bit! */
char code [4] ;

code [0 l ='A' ;
code[ll='C';
code[2]='G';
code[3l='T';

FILE *out;

if (strcasestr(fname, "excerpt")== NULL)
out= dbf;

else
{

printf("%s\n", pname);
out= fopen(pname, "wb");

}

fprintf(out, ">%sl%s\n", pname,bdesc);
for (i = 0; i < spectrum_w-1; i = i + 1)
{

int j = 0;
while (j< s/spectrum_w)
{

fprintf(out, "%c", code[((int) (16 * pow(0.S*(sin(l.57 *
data[i+j*spectrum_w] / g_max) + sqrt(data[i+j*spectrum_w] / g_max)),1.0/2))) >> 2]);

fprintf(out, "%c", code[((int) (16 * pow(0.S*(sin(l.57 *
data[i+j*spectrum_w] / g_max) + sqrt(data[i+j*spectrum_w] / g_max)),1.0/2))) & 3]);

}

}

j = j + 1;
if (j%line length==0)
{ -

fprintf(out, "\n");
}

fprintf(out, "\n");

if (out != dbf)
fclose(out);

return FN_SUCCESS;

11

}

/* generates image set of spectra
mfname - mus file name
data - array of doubles
s - complete length of data
chan - channel suffix*/

int make_img_d{char *mfname, float *data, longs, char *chan)
{

}

/* make img file name out of mus file name*/
char imgf[FNAME_LENGTH] = "\0";
char imgf2[FNAME_LENGTH] = "\0";
/* for all data given*/
inti;
for {i = 0; i < s; i=i+{IMG BLOCK H * spectrum_w))
{ - -

}

strncpy{imgf, strrchr{mfname, '/'), strlen{strrchr(mfname, '/'))-4);
snprintf{imgf2, FNAME_LENGTH, "%s%s%s%09d%s.png", appdir, IMG_DIR, imgf, i, chan);

/* write img file*/
make_img_d_block{imgf2, data, s, i);
imgf[0]='\0';
imgf2[0J='\0';

return 0;

/* generates vertical image of spectrum with specified name, for specified data and
specified height

spfname - filename to use
data - pointer to datablock of doubles
s - total length of data
offset - starting point

*I
int make_img_d_block(char *spfname, float *data, longs, int offset)
{

FILE *fp;
png_structp png_ptr;
png_infop info_ptr;
png_infop end_info;

int act_height;

/* determine actual height*/
if {{s - offset) / spectrum_w < IMG_BLOCK_H)
{

act_height = (s - offset)/spectrum_w;
}
else
{

}
act_height = IMG_BLOCK_H;

/* open file*/
fp = fopen { spfname, "wb");

12

if (!fp)
{

printf("Error opening image %s\n", spfname);
return FN_FAILURE;

}

/* allocate memory for image data*/
png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING,

png_ voidp_NULL,
png_error _pt r _NULL,
png_error_ptr_NULL);

if (!png_ptr)
{

fclose(fp);
printf("Error allocating memory.\n");
return FN_FAILURE;

}

/* allocate memory for image info*/
info_ptr = png_create_info_struct(png_ptr);
if (info ptr == NULL)
{ -

fclose(fp);
png_destroy_write_struct(&png_ptr,

(png infopp)NULL);
printf("Error allocating memory-.\n");
return FN_FAILURE;

}

/* error handling*/
if (setjmp(png_jmpbuf(png_ptr)))
{

png_destroy_write_struct(&png_ptr, &info_ptr);
fclose(fp);
/* i.e. problem reading file (???) */
return FN_FAILURE;

}

/* we are using standard C streams*/
png_init_io(png_ptr, fp);

/* setting file info*/
printf("Dim: %ld x %ld.\n", spectrum_w, act_height);

png_set_IHDR(png_ptr,
info_ptr,
spectrum_w,
act_height,
4, /* 16 initially, but it is too much*/
PNG COLOR TYPE GRAY,
PNG-INTERLACE NONE,
PNG-COMPRESSION TYPE DEFAULT,
PNG=FILTER_TYPE=DEFAULT);

png_write_info(png_ptr, info_ptr);

/* we have an array of doubles*/
inti;
char r[spectrum_w/2];

for (i = offset; i <(offset+ act_height * spectrum_w); i = i + spectrum_w)

13

{
int j;
for (j=0: j < spectrum_w/2; j++)
{

char x = (uint8_t) 16 * pow(0.S*(sin(l.57 * data[i + 2*j] / g_max) +
sqrt(data[i + 2*j] / g_max)),1.0/2);

chary= (uint8_t) 16 * pow(0.S*(sin(l.57 * data[i + 2*j+l] / g_max) +
sqrt(data[i + 2*j+l] / g_max)),1.0/2);

X<<=4;
r[j] = xly:

}
png_bytep row_pointer = (png_bytep)r;
png_write_row(png_ptr, row_pointer);

}
/* printf("2 - OKAY\n"); */

/* after writing*/
/* write the rest of the file*/
png_write_end(png_ptr, info_ptr);
/* cleanup and free memory*/
png_destroy_write_struct(&png_ptr, &info_ptr);

/* close file*/
fclose(fp):
return FN_SUCCESS;

}

int convert(struct dirent *f)
{

char cl[CL LENGTH]="";
char of name [FNAME LENGTH]='"' ;
int dot; -

printf ("%s\n", f->d_name);

if (dot = strstr(f->d_name,XTO) != NULL)
{

/* assemble shell command for sox */
strncat(ofname,f->d_name,strlen(f->d_name)-3);

/* snprintf(cl, CL_LENGTH, "%s \"%s/%s\" \"%s/%s%s\"",CONVERTER,MUS_DIR,f-
>d name,WAV DIR,ofname,XTD); */

snprintf(cl, CL_LENGTH, "%s \"%s%s/%s\" -c 1
\"%s%s/%s%s\"",CONVERTER,appdir,MUS_DIR,f->d_name,appdir,WAV_DIR,ofname,XTD);

XTD); */
}
else
{

}
}

printf(">>> %s\n", cl);
system(cl);
return FN_SUCCESS;

/* system("%s %s/%s %s/%s%s", CONVERTER, MUS_DIR, dp->d_name, WAV_DIR, ofname,

return FN_NORESUL;

/* helper/testing function

14

generates image set
mfname - mus file name
data - array of floats
s - complete length of data
chan - channel suffix*/

int make img(char *mfname, float *data, longs, char *chan)
{ -

}

/* make img file name out of mus file name*/
char imgf[FNAME_LENGTH + 4] = "";
char imgf2[FNAME LENGTH+ 4] = "";
/* for all data given*/
inti;
for (i = 0; i < s; i=i+IMG_BLOCK_H)
{

}

/* remove unnecessary extension*/
strncat(imgf, mfname, strlen(mfname)-4);
/* prepend dirname to filename*/
strncpy(imgf, IMG_DIR, 5);
/* append seq num and exension to filename*/
sprintf(imgf, "%s%09d%s%s", imgf, i, chan, ".png");

/*printf("%s\n",imgf); */

/* write img file*/
make_img_block(imgf, data, s, i);
imgf[0]='\0';

return 0;

/* helper/testing function
generates vertical image with specified name, for specified data and specified height

spfname - filename to use
data - pointer to datablock
s - total length of data
offset - starting point

*I
int make img block(char *spfname, float *data, longs, int offset)
{ - -

FILE *fp;
png structp png ptr;
png=infop info_ptr;
png_infop end_info;

int act_height;

/* determine actual height*/
if (s - offset< IMG_BLOCK_H)
{

act_height = s - offset;
}
else
{

act_height = IMG_BLOCK_H;
}

15

/* open file*/
fp = fopen(spfname, "wb");
if (!fp)
{

printf("Error opening image %s\n", spfname);
return FN_FAILURE;

}

/* allocate memory for image data*/
png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING,

png_ voidp_NULL,
png_error _pt r _NULL,
png_error_ptr_NULL);

if (!png_ptr)
{

}

fclose(fp);
printf("Error allocating memory.\n");
return FN_FAILURE;

/* allocate memory for image info*/
info_ptr = png_create_info_struct(png_ptr);
if (info_ptr == NULL)
{

}

fclose(fp);
png_destroy_write_struct(&png_ptr,

(png_infopp)NULL);
printf("Error allocating memory.\n");
return FN_FAILURE;

/* error handling*/
if (setjmp(png_jmpbuf(png_ptr)))
{

png_destroy_write_struct(&png_ptr, &info_ptr);
fclose(fp);
/* i.e. problem reading file (???) */
return FN_FAILURE;

}

/* we are using standard C streams*/
png_init_io(png_ptr, fp);

/* setting file info*/
/* IMG_BLOCK_DIM is a magic number*/
png set IHDR(png ptr,

- - inf o_pt r,
IMG BLOCK W,
act-height,
16,-
PNG COLOR TYPE GRAY,
PNG-INTERLACE NONE,
PNG-COMPRESSION TYPE DEFAULT,
PNG=FILTER_TYPE=DEFAULT);

png_write_info(png_ptr, info_ptr);

/* for now, let's presume an array is made of floats*/
/* therefore, each frame translates into a line up to IMG_BLOCK_W px */
inti;
int b;

16

}

png_uint_l6 r[IMG_BLOCK_W];

for (i = offset; (i < offset + act_height); i++)
{

}

b = IMG_BLOCK_W / 2 * (data[i]+l.0); /* length of line*/

int j;
for (j=0; j<IMG_BLOCK_W; j++) {

if (b>j)
{

r[j] = (png_uint_16) 65535;
}
else
{

r[j] = (png_uint_16) 0;
}

}
png_bytep row_pointer = (png_bytep)r;
png_write_row(png_ptr, row_pointer);

/* printf("2 - OKAY\n"); */

/* after writing*/
/* write the rest of the file*/
png_write_end(png_ptr, info_ptr);
/* cleanup and free memory*/
png_destroy_write_struct(&png_ptr, &info_ptr);

/* close file*/
fclose(fp);
return FN_SUCCESS;

/* helper function
reduces size of dataset by averaging it*/

long simplify(float *in, float *out, int confactor, long l_in)
{

}

long i;
long j;
float x = 0;

for(i = 0; i*confactor < 1 in; i++)
{ -

}

j=0;
while((j < confactor) && (i*confactor+j < 1 in))
{

x = x+in[i*confactor + j];
j++;

}
X = X/ (j+l);
out[i] = x;
X = 0;

printf("%1d\n", i);

return i;

C. Postprocessor Code

17

#!/usr/bin/env ruby

require 'optparse'
require 'ostruct'

Fedor Korsakov
Undergrad research final component
2008/04/26
Analysis of MegaBLAST results

class Blaster

arl

attr_accessor :f

def initialize()
@f = ""
#@targets= Array.new

end #initialize

def parse(args)

opts= OptionParser.new do loptsl
opts.banner= "Usage: binsearch.rb [options]"

end

opts.on("-f FILE", "--file FILE", String, "Query file") do larl
@f = ar

end

#opts.on("-t ARRAY", "--targets ARRAY", Array, "Array of target files") do I

ar.each do lell
@targets<< el

end
#end

opts.on_tail("-h", "--help", "Show this message") do
puts opts
exit

end

if a rgs. empty?
puts opts
exit

end
begin

opts. parse! (args)
rescue OptionParser::InvalidOption => e

puts e
puts opts
exit

rescue OptionParser::MissingArgument => e
puts e
puts opts
exit

rescue OptionParser: :InvalidArgument => e
puts e
puts opts
exit

end

end #parse

18

def bsea rch ()
cmd string= "megablast -d db/collection.txt -i txt/#{@f} -D 0 -g T"
query_length = 0
File.open("txt/#{@f}",'r') do lqfilel

query_length = qfile.readline.slice(/(l:\d+)/).slice(/(\d+)/).to_i
end
puts "FILE = #{@f}"
puts "QUERY LENGTH= #{query_length}"
megablast_results = IO.popen(cmd_string)

make array to hold scores, it'll be an array of structs
megablast_results_parse = Array.new
file tree= Hash.new

read a line
e.g. '/Users/fedorkorsakov/Desktop/RESEARCH/code/current/thesis/txt/Solstice -

_New_Dark_Age_-_04_-_Hammer_Of_Damnation.txtlr:044100lw:02049ll:011011'=='+1_' (5168231-
20227 5168260 20256) 0

query

megablast_results.each_line do !line I
match= OpenStruct.new
match.filename= line[/(\/.+txt)/1
match.length= line[/(l:\d+)/].slice(/(\d+)/).to i #l:
match.bitrate =line[/(r:\d+)/1 .slice(/(\d+)/).to-i #selfexplanatory
match.width= line[/(w:\d+)/].slice(/(\d+)/).to I #w:
match.start= line[/(\(\d+\s)/] .slice(/(\d+)/).to i #offset in the file
match.q_start = line[/(\(\d+\s\d+\s)/].slice(/(\s\d+)/).to_i #offset in the

match.score= ((match.start/ match.length).to i - (match.q start/
query_ length). to_i) .abs - -

match.blastscore = line[/\d+\)\s\d+/].slice(/\s\d+/).to_i #blast score

store results for now ... GET RID LATER?
megablast_results_parse = megablast_results_parse.push(match)

#so we create a hash of filenames, each value corresponds to a struct that
hold the score and a list of matches

matches

if added match scored well enough (i.e. low), we increase filescore

if file tree.key?(match.filename) == false
fil-e_tree[match.filename] = OpenStruct.new
file tree[match.filename].score = 0.0
file=tree[match.filename] .mlist = Array.new #matchlist
file tree[match.filename].distr = Hash.new(0.0) #distribution of matches
file=tree[match.filename].sortd = Array.new #sorted distribution
file_tree[match.filename].dstsc = 0.0 #highest density of

file_tree[match.filename].dsloc = 0.0
matches location

#highest density of

#bit rate
#f_length

#f_length
end

file tree[match.filename].brate = match.bitrate
file=tree[match.filename] .length= match.length
file_tree[match.filename] .width= match.width

file_tree[match.filename].mlist = file_tree[match.filename].mlist.push(match)

file tree[match.filename] .score= file tree[match.filename].score +
1.0/match.length - -

file_tree[match.filename].distr[((match.start %

19

match.length)/query_length).to_i] = file tree[match.filename].distr[((match.start %
match.length)/query_length).to_i] + (1.0/(match.score + 1))*(10.0/(match.blastscore + 10))

#end
end

all output is read!
now we have array of matches megablast found, and hash of files where matches

happen

results= Array.new
file_tree.each_pair do Ikey, value!

wmatch = OpenStruct.new
wmatch.name = key
wmatch.score = value.score
results= results.push(wmatch)
#puts "#{key} SCORE=#{value.score}"

end

results.sort! {lx,yl x.score <=> y.score}

results.each {!xi puts "#{x.score} #{x.name}"}

puts
puts ""

file_tree.each_pair do Ikey, value!
value.sortd = value.distr.to a
value.sortd.sort! {lx,yl y[l] <=> x[l]}
value.dstsc = value.sortd[0][1]

end

#puts value.dstsc
value.dsloc = value.sortd[0] [0]
#puts value.dsloc

results2 = Array.new
file_tree.each_pair do Ikey, value!

wmatch = OpenStruct.new
wmatch.name = key
wmatch.score = value.dstsc
wmatch.loc = value.dsloc
results2 = results2.push(wmatch)
#puts "#{key} SCORE=#{value.score}"

end

results2.sort! {lx,yl x.score <=> y.score}

results2.each {lxl puts "#{x.score}@ #{ x.loc * query_length *
file_tree[x.name].width / file_tree[x.name] .brate} SECONDS IN #{x.name}"}

#best_match = results2.length
#results2.each do !match!
if@targets.include?(match.name)
puts match.name
best match= results2.length - results2.index(match)
end -
#end

#puts "Target found in position #{best match}"
#puts "\t#{results2[results2.length - Eest_match].name}"

20

#megablast_results_parse.each do 1ml
#m.score = ((m.start / m.length).to_i - (m.q_start / query_length).to_i).abs

puts "name= #{m.filename}, length= #{m.length}, bitrate = #{m.bitrate},
width = #{m.width}, offset = #{m.start}, q_offset = #{m.q_start} score = #{m.score}"

#end

#megablast_results_parse.sort! {lx,yl y.score <=> x.score}
#puts

#puts @f .
#megablast_results_parse.reverse_each do 1ml
puts "name= #{m.filename}, length= #{m.length}, bitrate = #{m.bitrate},

width= #{m.width}, offset= #{m.start}, q_offset = #{m.q_start} score= #{m.score} AT
#{(m.start % m.length) * m.width / m.bitrate} S"

#end
end #bsearch

end #Bin so rt

if FILE __ == $0

bs=Blaster. new()
bs.parse(ARGV)
tl = Time.now
bs.bsearch()

end

t2 = Time.now
puts""
t=t2-tl
puts "It took #{t} seconds."

21

	Application of Blast-Based Techniques For Musical Information Retrieval
	Recommended Citation

	tmp.1687984730.pdf.uQVC1

