An NSTA Position Statement: Science-Technology-Society: Science Education for the 1980s

Glenn D. Berkheimer
Michigan State University

Rodger W. Bybee
Carleton College

Kathleen M. Donnellan
Springfield Public Schools

Paul DeHart Hurd

Donald E. Maxwell
Oakland Schools

See next page for additional authors

Follow this and additional works at: https://scholarworks.uni.edu/istj

Part of the Science and Mathematics Education Commons

Let us know how access to this document benefits you

Copyright © Copyright 1983 by the Iowa Academy of Science

Recommended Citation

This Article is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Iowa Science Teachers Journal by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
An NSTA Position Statement: Science-Technology-Society: Science Education for the 1980s

Authors
Glenn D. Berkheimer, Rodger W. Bybee, Kathleen M. Donnellan, Paul DeHart Hurd, Donald E. Maxwell, Rita Peterson, and Harold Pratt

This article is available in Iowa Science Teachers Journal: https://scholarworks.uni.edu/istj/vol20/iss2/11
Preamble

Science and technology influence every aspect of our lives. They are central to our welfare as individuals and to the welfare of our society. All around us are examples of the importance of science and technology for production of food, shelter, clothing, medicines, transportation, and various sources of energy. There are an increasing number of science- and technology-related societal problems as well as increasing societal benefits. Science and technology are central to our personal and cultural welfare and to many societal problems. We must insure appropriate science education for all citizens.

However, the quantity and quality of science education for all people are not commensurate with the status of science and technology in society. When one would expect budgets, time spent on science-related subjects, and support for science education to be increasing, they are decreasing. At the same time these factors are declining, societal problems continue to require an understanding of science and technology. The burden of response rests heavily upon the shoulders of all persons associated with science endeavors — scientists, engineers, classroom teachers, other educators, and school administrators. Many of the problems we face today can be solved only by persons educated in the ideas and processes of science and technology. A scientific literacy is basic for living, working, and decision making in the 1980s and beyond.

There is a crisis in science education. The following science-technology-society problems demand immediate attention:

- understanding of science and technology are central to our personal and national welfare, yet public appreciation of science education has declined;
- increasing number of individual and societal problems which have an impact on the quality of life are related to science-generated technology;
- as the impact of science and technology on society has increased, the support for science education has decreased;
- compared to its recent past the United States has fallen behind in the production of scientific and technological goods and services; and
- women, minorities, and handicapped persons are under-represented in nearly all professional and technical roles in science and technology.

Declaration

The goal of science education during the 1980s is to develop scientifically literate individuals who understand how science, technology, and society influence one another and who are able to use this knowledge in their everyday decision-making. The scientifically literate person has a substantial knowledge base of facts, concepts, conceptual networks, and process skills which enable the individual to continue to learn and think logically. This individual both appreciates the value of science and technology in society and understands their limitations.
The attributes listed below help to describe a scientifically literate person. Each attribute should be thought of as describing a continuum along which the individual may progress. The progress of the individual's science education should be equated with progress along this continuum.

The scientifically and technologically literate person:
- uses science concepts, process skills, and values in making responsible everyday decisions;
- understands how society influences science and technology as well as how science and technology influence society;
- understands that society controls science and technology through the allocation of resources;
- recognizes the limitations as well as the usefulness of science and technology in advancing human welfare;
- knows the major concepts, hypotheses, and theories of science and is able to use them;
- appreciates science and technology for the intellectual stimulus they provide;
- understands that the generation of scientific knowledge depends upon the inquiry process and upon conceptual theories;
- distinguishes between scientific evidence and personal opinion;
- recognizes the origin of science and understands that scientific knowledge is tentative, and subject to change as evidence accumulates;
- understands the applications of technology and the decisions entailed in the use of technology;
- has sufficient knowledge and experience to appreciate the worthiness of research and technological development;
- has a richer and more exciting view of the world as the result of science education; and
- knows reliable sources of scientific and technological information and uses these sources in the process of decision making.

Recommendations for K-12 Grade Levels

Elementary School Science

Science should be an integral part of the elementary school program. It should be used to integrate, reinforce, and enhance the other basic curricular areas so as to make learning more meaningful for children.

A carefully planned and articulated elementary science curriculum should provide daily opportunities for the sequential development of basic physical and life science concepts, along with the development of science process and inquiry skills.

Elementary science should provide opportunities for nurturing children's natural curiosity. This helps them to develop confidence to question and seek answers based upon evidence and independent thinking. Children should be given an opportunity to explore and investigate their world using a hands-on approach, with instructional materials readily available.

The focus of the elementary science program should be on fostering in children an understanding of, an interest in, and an appreciation of the world in which they live.
Middle/Junior High School Science

The middle/junior high school science curriculum should be designed to accommodate the needs and learning styles of the early adolescent. Students should be provided with daily opportunities to explore science through reading, discussion, and direct learning experiences in the classroom, laboratory, and field.

Middle/junior high school science should contribute to the development of scientifically literate persons and not simply prepare them for the next science course. National studies have shown that often middle/junior high school science is designed to prepare students for high school biology with no emphasis on physical science. In addition, studies show that fewer than one half of the junior high students going on to high school take chemistry and physics. Therefore, it is imperative that an important thrust of middle/junior high school science be toward the physical and earth sciences.

Middle/junior high school students should continue to develop science process skills and content. Middle/junior high school science should emphasize the application of both skills and content to the students’ personal life situations and enable students to begin examining societal issues that have a scientific and technological basis. Middle/junior high school students need to apply what they have learned soon after their instruction to insure the lasting value of the experience.

High School Science

The high school science curriculum should enable students to further develop their scientific and technological literacy. Courses incorporating well-designed laboratory and field work help to meet this need.

A balanced core of two years of science should be required of all students, consisting of one year of life science and one year of physical science — both taught in a science-technology-society context. The courses should provide students with opportunities to develop skills in identifying science-based societal problems and in making decisions about their resolution.

Students interested in exploring or preparing for careers in science, engineering, or technical fields should have the opportunity to take additional discipline-based courses in advanced biology, chemistry, physics, and earth sciences. These courses should be planned and sequenced to take advantage of the students’ increasing command of mathematics.

Time of science learning

- Lower elementary level (grades K-3): a minimum of 1½ hours/week of science should be required.
- Upper elementary level (grades 4-6): a minimum of 2½ hours/week of science should be required.
- Middle/junior high school level (grades 7-9): a minimum of 1 hour/day for at least 2 full years of science should be required of all students.
- Senior high school level (grades 10-12): a minimum of 1 hour per day for 2 full years of science should be required. The courses should represent a balance of physical and life sciences.
Emphasis on programs for all students
- In elementary, middle, junior high, and senior high school grades, science education programs should provide basic concepts for all students. Opportunities should be available for students with diverse interests and commitments, including students with exceptional interests and talents in science.

Emphasis on science education for the adult general population
- Schools should provide educational opportunities in science for all the adult population in their community.
- Colleges, universities, and national organizations should increase emphasis on science education for adults through public lectures and seminars.
- The important contributions of out-of-school education programs such as museums, TV, planetariums, and zoos, should be recognized and utilized by all those involved.

Emphasis on the professional development of science teachers through inservice opportunities.
- Colleges, universities, and other agencies should develop teacher education and inservice education programs that are consistent with this policy statement.
- School districts should provide opportunities, encouragement, and recognition for teachers who maintain a high level of professional competence.

Emphasis of laboratory and field activities
- Elementary level laboratory and field activities should stress the development of basic inquiry skills.
- Middle/junior high school level laboratory and field activities should stress the application and extension of inquiry skills as a means of obtaining knowledge and resolving problems.
- High school level laboratory and field activities should emphasize not only the acquisition of knowledge, but also problem solving and decision making.

Science instruction matches students' cognitive, physical, social, and emotional development
- Schools should provide objectives, content, and instructional strategies that are appropriate to the student's stage of mental, moral, and physical development.
- Varying strategies and materials should be provided at all grades to accommodate students with various levels of learning skills and mental development.

Emphasis on science-related societal issues
- Elementary level: a minimum of 5 percent of science instruction should be directed toward science-related societal issues.
- Middle/junior high school level: a minimum of 15 percent of science instruction should be directed toward science-related societal issues.
- Senior high school level: a minimum of 20 percent of science instruction should be directed toward science-related societal issues.
The Committee to Develop the NSTA Position Statement
SCIENCE-TECHNOLOGY-SOCIETY:
SCIENCE EDUCATION FOR THE 1980s

Glenn D. Berkheimer
Michigan State University
346 Erickson Hall
East Lansing, MI 48824

Rodger W. Bybee
Department of Education
Carleton College
Northfield, MN 55057

Kathleen M. Donnellan
Elementary Science Resource Teacher
Springfield Public Schools
195 State Street
Springfield, MA 01103

Paul DeHart Hurd
549 Hilbar Lane
Palo Alto, CA 94303

Donald E. Maxwell
Oakland Schools
2100 Pontiac Lake Road
Pontiac, MI 48054

Rita Peterson
Director of Teacher Education
University of California
Irvine, CA 92717

Harold Pratt
Science Supervisor
Jefferson County Public Schools
Lakewood, CO 80226

HISTORY OF SCIENCE CROSSWORD PUZZLE ANSWERS

<table>
<thead>
<tr>
<th>ACROSS</th>
<th></th>
<th>DOWN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Euclid</td>
<td>42. Brahe</td>
<td>16. Darwin</td>
<td>40. Bacon</td>
</tr>
<tr>
<td>19. Aristotle</td>
<td>43. Pasteur</td>
<td>17. Ptolemy</td>
<td>41. Bruno</td>
</tr>
<tr>
<td>23. Fleming</td>
<td>47. Plato</td>
<td>24. Galileo</td>
<td></td>
</tr>
<tr>
<td>26. Mendel</td>
<td>49. Lavoisier</td>
<td>27. Newton</td>
<td></td>
</tr>
</tbody>
</table>