
University of Northern Iowa University of Northern Iowa 

UNI ScholarWorks UNI ScholarWorks 

Dissertations and Theses @ UNI Student Work 

2006 

Biomonitoring organochlorine and cholinesterase inhibiting Biomonitoring organochlorine and cholinesterase inhibiting 

insecticide in eastern Iowa streams insecticide in eastern Iowa streams 

Matthew Thomas Fisher 
University of Northern Iowa 

Let us know how access to this document benefits you 

Copyright ©2006 Matthew Thomas Fisher 

Follow this and additional works at: https://scholarworks.uni.edu/etd 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Fisher, Matthew Thomas, "Biomonitoring organochlorine and cholinesterase inhibiting insecticide in 
eastern Iowa streams" (2006). Dissertations and Theses @ UNI. 582. 
https://scholarworks.uni.edu/etd/582 

This Open Access Thesis is brought to you for free and open access by the Student Work at UNI ScholarWorks. It 
has been accepted for inclusion in Dissertations and Theses @ UNI by an authorized administrator of UNI 
ScholarWorks. For more information, please contact scholarworks@uni.edu. 

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and 
time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language. 

https://scholarworks.uni.edu/
https://scholarworks.uni.edu/etd
https://scholarworks.uni.edu/sw_gc
https://scholarworks.uni.edu/feedback_form.html
https://scholarworks.uni.edu/etd?utm_source=scholarworks.uni.edu%2Fetd%2F582&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=scholarworks.uni.edu%2Fetd%2F582&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/etd/582?utm_source=scholarworks.uni.edu%2Fetd%2F582&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uni.edu
https://scholarworks.uni.edu/offensivematerials.html


BIOMONITORING ORGANOCHLORINE AND CHOLINESTERASE 

INHIBITING INSECTICIDE IN EASTERN IOWA STREAMS 

An Abstract of a Thesis 

Submitted 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

Matthew Thomas Fisher 

University ofNorthem Iowa 

May 2006 



ABSTRACT 

The four chapters in this thesis provide results from five separate investigations. 

Chapter One describes Jsonychia bicolor acetylcholinesterase (AChE) activity in 

Northeast Iowa rivers. During 2002 and 2003 insects were collected from 10 sites during 

May, July and September, three sites on the Volga River were sampled weekly during 

May and June and one Cedar River site was sampled monthly. Also, in 2003, three sites on 

the Upper Iowa were sampled weekly in May and June. Sampling often sites yielded few 

discernable trends, however decreasing AChE activity from upstream to downstream sites 

was apparent on several occasions on the Volga and Upper Iowa Rivers. AChE activity 

decreased following a number of storm events on the Volga and Upper Iowa Rivers, 

possibly indicating exposure to insecticide runoff. No significant changes occurred during 

monthly Cedar River sampling. 

Chapter Two encompasses two studies. One study investigated the effects of body 

size on I. bicolor AChE activity. Three size classes were sampled for AChE activity 

during June and August, 2002 from the Cedar River in Cedar Falls. No significant 

differences were found among sizes in either month. Another study maintained I. bicolor 

under three photoperiod treatments in stream microcosms. Weekly sampling over three 

weeks found no significant differences among treatments. 

Chapter Three investigated the effects of the insecticide terbufos on I. bi color 

AChE activity. Stream microcosms were dosed 0.0, 2.5, 5, 10 and 20 µg/L terbufos for 

24 hours then purged with clean water. I. bicolor were sampled 24 h, 48 h and 9 d post 



exposure. AChE activity in J. bicolor exposed to ~ 1 Oµg/L terbufos rebounded to control 

activity levels in 9 d. 20µg/L terbufos for 24 h was lethal to I. bicolor within 9 d. 

Chapter Four investigated the benthic community composition of an urban trout 

stream. Periphyton samples were collected for determination of the Autotrophic Index and 

macroinvertebrates were analyzed for the pesticide chlordane. Macroinvertebrate 

communities consisted largely of Diptera and Oligochaeta, and Autotrophic Index values 

were high throughout the study indicating organic enrichment. No chlordane was found in 

macroinvertebrate samples. 
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1 

PROLOGUE 

Several methods for examining the extent of pollution in streams exist, and each has 

advantages and disadvantages. These methods include chemical analysis, biomarkers, 

toxicity testing, and biomonitoring at the community level. Chemical analysis of stream 

water may seem to be the most accurate method of monitoring stream pollution, but, 

while chemical analysis may offer a precise measurement of contaminants, it has many 

drawbacks. Often the contaminant of concern is unknown, and protocols do not exist to 

screen for all substances. Also, when protocols do exist, chemical analysis only determines 

contamination at one point in time, while levels of contamination may vary dramatically 

over time. Comprehensive chemical analyses may be cost prohibitive and do not indicate 

the bioavailability of contaminants to organisms. For example, many chemicals of concern 

are nonpolar and tend to be sequestered in organic sediments. Therefore, to find these 

substances sediment samples must be analyzed and these analyses carry their own unique 

problems and added costs. In addition, quantifying a chemical's concentration will not 

give an accurate prediction of toxicity since species differ in tolerance to a given chemical, 

and the same species may respond differently to the same concentration of a compound 

under different environmental conditions. 

Toxicity testing is the only method available to predict the hazards of various 

chemicals to ecosystems (Cairns, 1986). Extensive literature exists on toxicity testing 

methods, and a review of these procedures is far beyond the scope of this 



thesis. However, biomarkers, a relatively new category of toxicity testing endpoints, are 

important in this discussion. 

Biomarkers, or biological markers are "xenobiotically induced alterations in 

cellular or biochemical components or processes, structures, or functions that are 

measurable in a biological system or sample," (ATSDR, 1994, as cited by Kendall et al., 

1996). Typically biomarkers are measured in two ways, by measuring induction of 

detoxifying enzymes or by reduction of the activity of enzymes sensitive to inhibition by a 

specific xenobiotic (Callaghan et al., 2002). Biomarker use is well established in clinical 

diagnoses of human health issues. However, the use ofbiomarkers for ecological risk 

assessment in aquatic ecosystems is more recent, and, in most cases, poorly understood. 

2 

Use ofbiomarkers may determine sublethal effects that could adversely affect 

sensitive species. Biomarkers are more effective at illustrating bioavailability of 

contaminants than chemical analysis. However, a detailed understanding of the biological 

system in question, as well as the system's responses to natural and unnatural 

environmental fluctuations is necessary. Henderson et al. (1989) describe an ideal 

biomarker as " ... one that is chemical specific, detectable in trace quantities, ... and 

quantitatively relatable to a prior exposure regimen. An ideal biomarker of an effect or of 

a disease state is unique to the disease state in question and quantitatively relatable to the 

degree or stage of the disease." This description refers to human biomarkers of disease, 

however environmental biomarkers should meet similar criteria. 

When effective protocols exist for a biomarker, and when the natural fluctuations 



3 
of the biomarker are understood, a detailed evaluation of the extent of contamination may 

be possible. The use of acetylcholinesterase (AChE) as a biomarker for exposure to 

organophosphorus (OP) and carbamate insecticides is among the most understood 

biomarkers. 

Organophosphorus and carbamate insecticides are applied around the world and 

may enter surface waters through drift, runoff, spills or intentional application (Willis and 

McDowell, 1982; Ramade, 1987; Edwards and Fisher, 1991; Liess and Schulz, 1999). OP 

insecticides are the most widely used class of insecticides in the United States due to their 

short persistence in soil, low capacity for bioaccumulation and their wide range of activity 

(Hill, 1995). 

Carbamate and OP insecticides bind to acetylcholinesterase and inhibit hydrolysis 

of the neurotransmitter acetylcholine. Accumulation of acetylcholine in the synaptic cleft 

leads to continuous stimulation of the nervous system. This excitation can interfere with 

normal biological functions and may lead to death. Most OP insecticides must undergo an 

oxidative desulfuration step by mixed function oxidase metabolism in the fat body, 

Malpighian tubules and digestive tract of invertebrates, or the liver of vertebrates to 

become an active anti-acetylcholinesterase agent (Hill, 1995). AChE inhibition by OP's is 

considered irreversible while carbamate inhibition may be reversible. Recovery from 

irreversible inhibition can only occur through synthesis of new AChE and may take one to 

three weeks (Fleming, 1981; Fleming and Grue, 1981 ). 

Contamination by AChE inhibiting pesticides in aquatic ecosystems is typically 

brief and may be difficult to detect with chemical analyses. Carbamate and OP pesticides 



4 
hydrolyze rapidly, and metabolites with AChE inhibitory action may not be detected by 

chemical analysis. AChE inhibition is a potentially useful biomarker of OP and carbamate 

exposure because inhibition: (1) is relatively long lasting; (2) can be correlated to 

deleterious effects to the organism; (3) can indicate exposure to brief contamination 

events; and (4) shows action of undetected toxic OP and carbamate metabolites. 

Most literature about AChE inhibition involves resistance to OP's and carbamates 

in pest species and "important" nontarget organisms. However, studies on nontarget 

organisms are becoming more common. Andersen (2002) reviews the important papers 

covering AChE inhibition in aquatic, nontarget organisms. 

Effective biomarkers are useful for indicating exposure to one or a small number of 

pollutants at sublethal levels. However, their utility declines as organisms become 

exposed to greater numbers of pollutants and/or environmental concentrations that are 

acutely toxic to some species. Under these conditions community composition in streams 

may change. Detailed examination of the taxa present and their densities can be used to 

show these community-level changes. Biomonitoring does not offer the precision of 

chemical analysis or biomarkers, but it can detect alterations to community composition 

and structure. Pollution decreases the number of species present, and can create an 

environment favorable for only a few species, which may be present in large numbers. By 

comparison, in "clean" streams numerous species exist in moderate numbers (Hilsenhoff, 

1977). 

Many methods for evaluating impacted aquatic communities have been used. 

However, use ofbiomonitoring may be limited due to: (1) disagreement about accepted 
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standard methodology for quantitative measurement; (2) difficulty in establishing cause 

and effect relationships; (3) inadequate taxonomic knowledge; ( 4) lack of qualified 

manpower and money (Arthington, 1982); and (5) alteration of aquatic community, or 

loss/gain of a species does not necessarily indicate the type of pollutant (or other insult) 

involved (Benke, et al. 1981 ). Also, evaluation of disturbed streams relies on comparisons 

to the previous unimpacted state of the stream or reference sites above an impacted reach 

of stream. However, previous conditions are often unknown, and reference sites may not 

exist or adequately represent the disturbed site. 

Most methods for analyzing biomonitoring data attempt to describe the state of 

pollution in terms of a representative number. Although summing up the condition of a 

stream in this fashion may overlook many details, it makes evaluation by governing bodies 

easier. One type of evaluation is the use of biotic indices. Biotic indices designate a score 

for each species ( or taxon) relating to its tolerance to pollution. The sum or average of 

these scores ( depending on the specific index used) at each site gives an index of pollution. 

Some important examples include the HilsenhoffBiotic Index (Hilsenhoff, 1998), the 

Index of Biotic Integrity (Karr, 1981), Trent Biotic Index (Woodiwiss, 1964), and 

Chandler's Biotic Score (Chutter, 1972). Use of biotic indices are discussed in greater 

detail by Hilsenhoff (1982). 

Another form of community assessment is the use of diversity indices. A diversity 

index considers the number of species present, evenness, and proportional abundances 

(community structure). However, all diversity indices have major drawbacks. They do 

not consider the kinds of species present (i.e. "clean water insects" vs. "dirty water 
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insects") or absolute abundances (Pontasch and Brusven, 1988). Also, when diversity 

indices are used to evaluate pollution, they cannot distinguish naturally low diversity from 

pollution-related low diversity ( e.g. small, cold streams may have naturally low diversity 

values) (Hilsenhoff, 1977). 

Community comparison indices ( or similarity indices) are designed to compare 

community composition or structure between two sites. There are many ways to do this 

and many versions of this method including the Bray and Curtis index (Bray and Curtis, 

1957), Jaccard' s coefficient of similarity (Jaccard, 1902), Canberra's metric (Lance and 

Williams, 1967), Morisita index (Morisita, 1959), Simplified Morisita index, also known 

as the Morisita-Horn index (Horn, 1966), and percentage similarity (Renkonen, 1938). 

For further discussion of diversity indices and community comparison indices see Pontasch 

and Brusven (1988), Smith, et al. (1990), and Pontasch, et al. (1989). 

Objectives 

This thesis consists of two different studies of pollution in streams. The first major 

study explores the use of AChE activities in the stream mayfly Jsonychia bicolor as a 

biomarker for cholinesterase inhibiting insecticides in Northeast Iowa (and potentially 

Eastern United States) streams. This study was initiated by Andersen (2002) who first 

developed and optimized a modification of the Ellman assay (Ellman, et al. 1961) for use 

with l bicolor. Andersen then established baseline AChE activity in lab and field settings, 

temperature and nutrient effects on AChE in stream microcosms, and investigated AChE 

levels following exposure to the OP insecticide chlorpyrifos in stream microcosms. The 
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research reported in Chapters One, Two and Three of this thesis attempts to answer some 

remaining questions from Andersen's (2002) work. 

The objective of research reported in Chapter One was to determine AChE activity 

of I. bi color in four streams in Northeast Iowa throughout 2002 and 2003. The objective 

of work reported in Chapter Two was to determine the effects of photoperiod and I. 

bicolor nymph body size on baseline AChE activities The objective for Chapter Three 

was to determine the effects of the OP insecticide terbufos on AChE activity in stream 

microcosms. 

The second major study looked at McLoud Run, an urban, cold-water stream. 

The Iowa Department of Natural Resources stocks this stream with trout but it has been 

plagued with fish kills, and trout were found to contain the organochlorine insecticide 

chlordane. This study was undertaken in order to develop a better understanding of the 

insect communities in McLoud Run, their trophic dynamics and to potentially determine 

the cause(s) of fish kills. 

The objectives of the McLoud run study were: (1) to quantify and identify benthic 

macroinvertebrate taxa present at three sites in McLoud Run; (2) to determine the trophic 

status of periphytic communities by calculating the Autotrophic Index (APHA, et al. 

1989), a ratio of autotrophs (algae) to heterotrophs (organisms that consume autotrophs), 

at the three sites; and (3) to determine the amount of chlordane present in benthic macro­

invertebrates present in McLoud Run. The results of this research are reported in Chapter 

Four. 
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CHAPTER 1 

MONITORING ISONYCHIA BICOLOR (EPHEMEROPTERA: ISONYCHIIDAE) 
ACETYLCHOLINESTERASE ACTIVITY IN FOUR NORTHEAST IOWA, USA 

RIVERS 

Abstract 
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During May, July and September 2002 and 2003 Isonychia bicolor 

(Ephemeroptera: Isonychiidae) head capsule acetylcholinesterase (AChE) activity was 

determined at ten sites on four streams in northeast Iowa, USA, to determine potential 

exposure to organophosphorus insecticides. Also, in 2002, AChE activities were 

monitored weekly throughout May and June at three sites on the Volga River. Similarly, 

during 2003, three sites on both the Volga River and the Upper Iowa River were sampled 

weekly from May 21 until July 14. In addition, the Cedar River in Cedar Falls was 

sampled monthly from April to September 2002 and from April to December 2003 to 

monitor seasonal fluctuations in AChE activity. 

During 2002, weekly monitoring on the Volga River indicated relatively low AChE 

activities, and few significant (p,:S0.05) changes over time. Significant differences (p,:S0.05) 

were found among the ten sites on all sampling dates (per mg protein) and in July (per g 

tissue). Monthly sampling of the Cedar River found no significant (p>0.05) differences. 

The 2003 weekly sampling on the Volga and Upper Iowa Rivers indicated a 

significant (p,:S0.05) decrease in activities on one Volga site and two Upper Iowa sites that 

coincided with a major rainfall event between July 2 and July 14 that may have carried 
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pesticide runoff into these streams. Sampling of all ten sites in 2003 yielded no significant 

(p>0.05) differences among sites on any dates. Again, monthly sampling at Cedar Falls 

showed no significant (p>0.05) seasonal differences. 

This field study illustrates that J. bicolor AChE activity fluctuates within sites over 

time, as well as among sites within a sampling date. Such fluctuations make interpretation 

of data difficult. However, the July, 2003 rainfall event on the Volga and Upper Iowa 

Rivers may illustrate correlation between decreased AChE activities and a possible 

insecticide runoff event. 

Keywords: stream insect, acetylcholinesterase activity, organophosphorus insecticides, 
biomonitoring, biomarker 
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Introduction 

Organophosphorus (OP) insecticides are the most widely used insecticides for corn 

rootworm control in Iowa. During 1995, 2.749 million pounds of OP insecticides were 

applied to corn in Iowa (Hartzler, et al. 1997). In areas where corn is planted in 

consecutive years ( corn-on-corn planting) heavy insecticide usage may be necessary. 

Accidental spills, spray drift or runoff may expose nontarget aquatic organisms to lethal or 

sub lethal levels of OP insecticides. However, these contamination events are brief and 

may be missed by chemical sampling methods. 

OP as well as carbamate insecticides bind to acetylcholinesterase and inhibit 

hydrolysis of the neurotransmitter acetylcholine. Accumulation of acetylcholine in the 

synaptic cleft leads to repeated stimulation of neurons, which can interfere with normal 

biological functions and may lead to death. Acetylcholinesterase inhibition is a potentially 

useful biomarker of OP and carbamate exposure because inhibition: (1) is relatively long 

lasting; (2) can be correlated to deleterious effects on the organisms of interest; (3) can 

indicate exposure to brief contamination events, and; (4) indicates presence of unmeasured 

toxic OP and carbamate metabolites. 

AChE inhibition as a potential biomarker has been studied extensively in terrestrial 

wildlife. Many of these studies focused on nontarget avian species because birds tend to 

ingest OP and carbamate pesticides. Fewer studies focus on mammals and other 

vertebrates, as they seldom ingest pesticides and are therefore less likely to become 

exposed. Melancon (1995) provides a review of terrestrial vertebrate AChE inhibition 



studies. Research into insect AChE inhibition has focused on efficacy, mode of action, 

and resistance to OP and carbamate insecticides in target species. 
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Studies of AChE inhibition in aquatic systems have focused on fish (e.g., Coppage 

and Matthews, 1974; Richmonds and Dutta, 1992). However, benthic macroinvertebrates 

are better suited for such studies because of their relative immobility. AChE inhibition in 

freshwater aquatic macroinvertebrates has been investigated by a number of authors ( e.g., 

Coppage and Mathews, 1974; Galgani and Bocquene, 1990; Abdullah, et al. 1994; 

Moulton, et al. 1996; Fornstrom, et al. 1997). Several studies have measured 

macroinvertebrate AChE inhibition in the field (e.g., Parker and Callaghan, 1997; Olsen, et 

al. 2001) and in the laboratory (e.g., Beauvais, et al. 1999; Callaghan, et al. 2002). 

However, none have validated laboratory findings with field monitoring. Schulz (2004) 

stresses that the ultimate scientific goal in ecological risk assessment of pesticides is to 

understand and assess potential effects under field conditions. Schulz (2004) also suggests 

the need for studies of exposure and effect conducted in natural surface waters affected by 

normal farming practices. Most AChE biomarker field studies using aquatic invertebrates 

have focused on mollusk and crustacean species, which tend to have a limited and patchy 

geographic distribution, and often occur in low abundance. In contrast aquatic insects are 

the most abundant and species rich macroinvertebrates in most stream ecosystems and 

some species may have a wide geographic distribution. These qualities make aquatic 

insects useful for AChE biomonitoring. 

A study by Andersen (2002) established and optimized a modified version of the 
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Ellman AChE assay (Ellman, et al. 1961) for the common mayfly Isonychia bicolor 

(Ephemeroptera: Isonychiidae) using a plate reading spectrophotometer. Andersen (2002) 

also studied baseline I. bicolor AChE activities in seven streams in northeast Iowa. He 

initially determined that field populations from the Volga and Upper Iowa Rivers had 

significantly (p~0.05) lower AChE activities than that in the Cedar River when analyzed 

immediately following collection However, when insects from these streams were kept in 

artificial streams for 30 days the AChE activity increased in all groups with the Volga and 

Upper Iowa J. bicolor AChE activities increasing dramatically. In addition, the Volga and 

Cedar River activities were significantly (p~0.05) higher than those of the Upper Iowa 

after 3 0 days in the artificial stream. 

During July, September and November, 2000 Andersen (2002) sampled I. bicolor 

from fifteen sites on seven streams (Cedar, Volga, Upper Iowa, Wapsipinicon, Little 

Wapsipinicon, Turkey and Little Cedar Rivers). Results from this study indicated the 

Volga, Upper Iowa and the Little Cedar Rivers had relatively low AChE activities and the 

Cedar River was relatively high. Other streams had intermediate AChE activities. Also, 

Cedar River AChE activities were significantly (p~0.05) lower in the winter months 

compared to summer, suggesting some seasonal effects on AChE activity. 

During 2001 Andersen (2002) studied 10 sites on four rivers in northeast Iowa 

(Cedar, Little Cedar, Volga and Upper Iowa Rivers) during May, July and September. In 

addition, he sampled three sites on the Volga River weekly from May to July 2001 as well 

as immediately prior to and following three storm events in 2001. Sampling of all ten 
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sites indicated relatively low AChE activities at all sites and found no significant 

differences during May and September. However, during July the Little Cedar River had 

significantly (p~0.05) higher AChE activity than all others. The Volga River had relatively 

low AChE activities during all 2001 sampling. Andersen (2002) found no significant 

differences in AChE activity following any of the rain events. 

Andersen (2002) also preformed several laboratory-based microcosm experiments. 

The first study investigated nutrition effects on baseline AChE activity of field collected I. 

bicolor. This study utilized four treatments: (1) a periphyton slurry; (2) artificial food; (3) 

periphyton slurry and artificial food; and (4) no nutrients. No significant differences were 

found among treatments following 10 or 20 day exposures. Another study investigated the 

effects of temperature on baseline activity. In this study field collected l bi color were 

exposed to four constant temperature treatments (5, 10, 19 and 25°C) and one fluctuating 

temperature treatment (15-22°C) reflecting typical diel fluctuations in the source stream. 

It was found that AChE activities in the 19 and 25°C streams were significantly (p~0.05) 

higher than other treatments and similar to activities found in the source riffie. 

Andersen (2002) also exposed field collected J. bicolor to the OP insecticide 

chlorpyrifos for 48 h in two separate experiments. Stream microcosms were dosed with 

nominal chlorpyrifos concentrations of 0.0, 0.01, 0.1, 1.0 and 10.0 µg/L (11/2000) and 

0.0, 0.37, 1.11, 3.33 and 10.0 µg/L (9/2001). In the first study, AChE activities were 

significantly (p ~ 0. 05) inhibited after 48 h of exposure in the 10 µg/L treatments. After 

48 h streams were purged of chlorpyrifos and clean water was allowed to continuously 
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flow through the microcosms. After seven days of clean water all I. bicolor were dead in 

the 10 µg/L treatments. However, AChE activities in the other treatments rose slowly 

throughout the experiment until day 3 5 when they were near that of "normal" high 

summer activities. During the later study, AChE activities were significantly (p~0.05) 

different from controls in the 1.11 and 10. 0 µg/L treatments following 24 hr exposure. 

The 10.0 µg!L treatment was still significantly lower than the other treatments following 

48 h exposure. Again, after 48 h streams were purged of chlorpyrifos and clean water was 

allowed to continuously flow through the microcosms. After clean water for seven days, 

AChE activity in 10. 0 µg/L treatment had risen and was not significantly different from 

other treatments. 

The present study monitored I. bicolor AChE activity in four northeast Iowa, 

USA, streams. Isonychia bicolor was chosen due to the species' wide distribution, and 

abundance throughout the mid western and eastern regions of the United States 

(Kondratieff and Voshell, 1984; Pontasch and Cairns, 1989; Breneman and Pontasch, 

1994; Merritt and Cummins, 1996) and has been maintained for extended periods in 

stream microcosms (e.g., Breneman and Pontasch, 1994). Previous research with/. 

bicolor found relatively large fluctuations in AChE activity/g tissue within a sampling site 

on a given date (Andersen, 2002). This study attempted to eliminate some of this 

variability by reporting AChE activity as activity/gram tissue as well as activity/mg total 

protein. The Bradford protein assay was utilized to find the total protein of the tissue 

homogenate prepared for AChE activity. 
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Materials and Methods 

Experimental Chronology 

Isonychia bicolor were collected at ten sites in four rivers once during May, July 

and September, 2002 and 2003 for analysis of AChE activity (Ten Sites Sampling). 

During 2002 and 2003 three sites on the Volga River were sampled once weekly 

throughout May and June (Volga Intensive Sampling) and in 2003 three sites on the 

Upper Iowa River were sampled weekly in May and June (Upper Iowa Intensive 

Sampling). Also, the Cedar River in Cedar Falls, Iowa was sampled monthly from April 

to September 2002 and from April to December 2003 to monitor seasonal fluctuations in 

AChE activity (Cedar River Sampling). 

Field Site Locations 

The ten riftle sites sampled in 2002 and 2003 were located in four northeast Iowa, 

USA rivers: the Volga, Upper Iowa, Little Cedar and Cedar. Three sites were located on 

the Volga River. The farthest upstream site was located north of the confluence of the 

North and South Branches of the Volga River in the North Branch (VRNB). The second 

wass located in Twin Bridges Park (VRTB) near Randalia, Iowa and the third (VRSP) 

was located in the Volga State Recreation Area north of Fayette, Iowa. Sites on the 

Upper Iowa River (listed from upstream to downstream) were located in Kendallville, 

Iowa (UIKV), in the Chimney Rock Campground (UICR) near Bluffion, Iowa and in 

Decorah, Iowa (UIDE). One site was located on the Little Cedar River at Chickasaw Park 

(LCCP) near Ionia, Iowa. The three sites on the Cedar River (listed from upstream to 



downstream) were located in the towns of Janesville (CRJV), Cedar Falls (CRCF) and 

near Evansdale (CRED). Appendix A contains descriptions of each site, and a map of 

site locations. 

Collection and Maintenance of Test Organisms 

At each riflle site I. bicolor were collected with kick nets (mesh size~ 1mm). 

19 

Fifteen late instar nymphs were added to each of three coolers (7-L capacity) filled with 

source water for transportation back to the laboratory. During transportation from the 

Volga and Upper Iowa Rivers, or when travel times exceeded one hour, temperature and 

dissolved oxygen were maintained near ambient stream conditions by pumping air through 

a small radiator placed in a cooler of ice; the cooled air was then shunted to each cooler 

through an airstone. Transporting insects in this manner results in few, if any, mortalities 

(Pontasch and Cairns, 1989; Pontasch and Cairns, 1991; Andersen, 2002). Upon arrival at 

the laboratory each cooler was aerated for approximately 24 h and brought to 20°C. Five 

randomly selected I. bicolor were then taken from each cooler and their head capsules 

removed and homogenized for AChE analysis (see below). 

During the May, July and September "Ten Sites" sampling three Hess samples 

were also taken at each sampling location to determine I. bicolor densities. Each sample 

was preserved in 70% ethanol for later enumeration. The density data from 2002 and 2003 

are located in Appendix B. 

At each sampling site and date, standard water chemistry measurements were 

recorded and are reported in Appendix C. Dissolved oxygen, temperature, conductivity, 
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and pH were measured with a pre-calibrated SONDE 3800 Water Quality Logger (Yellow 

Springs Instruments, Inc., Ohio, USA). Hardness and alkalinity were determined with 

water quality test kits (Hach Chemical Co., Loveland, Colorado, USA). Daily hydrologic 

(streamflow) data from the U.S. Geological Survey were recorded for the "Volga 

Intensive Study" in 2002 and the Volga and Upper Iowa "intensive studies" in 2003 

These data are reported in Appendix D 

Determination of AChE activity 

Acetylcholinesterase activity was quantified using the Ellman method (Ellman, et 

al. 1961) optimized for I. bicolor by Anderson (2002). In the lab five randomly selected 

nymphs were taken from each of 3 coolers per site and decapitated. Head capsules were 

blotted with tissue paper to remove excess water and weighed. The five head capsules 

from each cooler were pooled and homogenized in a glass tissue grinder with 0.5% Triton 

X-100 detergent in Tris pH 7.4 buffer solution to give a 200: 1 dilution factor. 

Homogenate from each replicate was added to a microcentrifuge tube and centrifuged (10 

min; 14,000 rpm). Supernatant aliquots were separated into two cryovials then frozen 

(-80°C) until analyzed for AChE activity. Aliquots were separated to create a spare that 

remained frozen in case of sampling error, spillage, etc. 

AChE activity was quantified in a microplate-reading spectrophotometer 

(SpectraMAX Plus, Molecular Devices, Sunnyvale, CA, USA). Each well contained an 

aliquot of I. bicolor head capsule supernatant (30 µl), acetylthiocholine iodide (AThChI) 

solution (0.0418M; 30 µl), 5,5-dithiobis-2-nitrobenzoic acid (DTNB) colorimetric reagent 
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solution (0.442 M; 20 µl), and Tris pH 8.0 buffer solution (170 µl). Acetylthiocholine 

iodide (AThChl) is similar in structure to acetylcholine and acetylcholinesterase 

hydrolyzes AThChl in a similar manner to acetylcholine. This hydrolysis results in a 

positively charged acetate ion and a negatively charged thiocholine complex. The 

thiocholine complex reacts with DTNB to create 5-thio-2-nitrobenzoate, a stable, yellow 

colored anion that absorbs light most strongly at 412 nm. For each replicate sample, 

AChE activity was measured in triplicate as the rate of increase in absorbance at 412 nm. 

Tris buffers, AThChl and DTNB were obtained from Sigma Chemical (St. Louis, MO, 

USA). Tris buffer solutions were refrigerated at 4°C for no longer than 1 month and were 

adjusted to appropriate pH values prior to each analysis. DTNB and AThChl were 

prepared immediately prior to spectrophotometric analysis. The optimum reaction 

temperature (~32°C) was achieved by maintaining DTNB and AThChl at room 

temperature, placing thawed cryovials of tissue homogenate in ice water and heating the 

Tris pH 8.0 buffer to ~80°C before pipetting. A blank (consisting of200 µl Tris pH 8.0 

buffer solution, 30 µl AThChl solution, 20 µl DTNB solution and no tissue homogenate) 

and a check standard ( consisting of pooled homogenate supernatant from approximately 

200 I. bicolor head capsules) were also analyzed in triplicate on each plate. If the check 

standard deviated from normal values the analysis was repeated. Care was taken to 

prevent bubble formation because bubbles cause inaccurate readings by the 

spectrophotometer. 

Spectrophotometer software (SoftMAX PRO, Molecular Devices, Sunnyvale, 

CA, USA) was used to determine the highest AChE activity. Absorbance measurements 



for all trials were read in all wells every twelve seconds for five minutes after an initial 

one-minute lag time. The following formula was used to convert mOD (milli-optical 

density) output units into international units of enzyme activity: 

{ [( enzyme mOD/min)-(blank mOD/min)]/1000} x 0.817 x dilution factor= 

(µmoles AThChI hydrolyzed/min)/gram tissue 

Determination of Total Protein Content 
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In this study, AChE activity is expressed in nmoles AThChl hydrolyzed/min/mg 

protein as well as µmoles AThChI hydrolyzed/min/g tissue. Andersen (2002) expressed 

activity only as µmoles AThChI hydrolyzed/min/g tissue. In order to find the protein 

content of the AChE tissue homogenate, the Bradford protein assay was optimized for use 

with I. bicolor tissue homogenates. Quantifying AChE activity relative to total protein 

content potentially minimizes the variation caused by differing amounts of other 

substances such as chitin or fat in the head capsules. A standard curve using bovine serum 

albumin was created to quantify the amount of protein in a solution of known 

concentration. The amount of protein (µg protein/ µg tissue) in each sample was calculated 

using the formula (12{ {Bradford assay O.D.} - 0.017}/48.775). From this the AChE 

activity per mg protein was calculated. 

The Bradford assay utilized a 96 well microplate reading spectrophotometer. Each 

sample was analyzed in triplicate using 60 µl Bradford's reagent (Coomassie® Brilliant 

Blue G-250 dye; Bio Rad, Hercules, California, USA), 5 µl tissue homogenate, and 235 µl 
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twice distilled, reverse osmosis water in each well. Each sample was then mixed by 

repeated suction/expulsion through a micropipetter to ensure even mixture of the solution. 

Care was taken to prevent formation of bubbles during this process as bubbles create 

inaccurate spectrophotometric readings. Each microplate contained one blank (240 µl 

water and 60 µl Bradford reagent), and one check standard, as well as unknowns (each in 

triplicate). Microplates were allowed to sit approximately 5 minutes before analysis in the 

spectrophotometer. 

Statistical Analyses 

AChE activity data for 2002 and 2003 monitoring were statistically analyzed by a 

one-way Analysis of Variance (ANOVA) followed by Duncan's Multiple Range Test for 

the separation of means using SAS® software (SAS Institute, 1999). "Ten Sites 

Sampling" data were analyzed both within a site over time and among sites within a 

sampling period. "Intensive Sampling" data were analyzed within a sampling site over 

time. Lack of I. bicolor or high water occasionally prevented sampling. When "Ten Sites 

Sampling" locations had samples from only two dates, AChE activities were analyzed 

using at-test. Results from all statistical analyses were considered significant at the a= 

0.05 level. 

Results and Discussion 

Ten Sites Sampling 2002 

Results from the May 2002 AChE activity analyses indicated that there were no 

significant (p~0.05) differences among sites in activities per gram of tissue (Figure 1. 1), 
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but that there were significant differences among the sites in activities per mg of protein 

(Figure 1.2). At VRNB and LCCP there were not enough organisms to conduct the 

analyses. The lower activity at the CRCF site relative to the two other Cedar River sites 

may be due to sampling two weeks before the other sites when water temperatures were 

considerably lower. The relatively high activity at the downstream CRED site in May 

suggests that there are no substantial effects from the Cedar Falls-Waterloo metropolitan 

area. The activities at the two sites sampled on the Volga River were nearly identical to 

the CRCF site, which had been sampled the previous day. In May the significant 

(p~0.05) drop in activities at UICR and UIDE relative to UIKV suggests the possible 

presence of anticholinesterase agents downstream from UIKV. 

During July 2002 sampling, there were not enough organisms at CRJV and CRED 

to permit analyses. At the remaining eight sites there were significant differences among 

sites in AChE activities per g tissue (Figure 1.3) and per mg protein (Figure 1.4). As was 

the case during July, 2001 sampling (Andersen, 2002), LCCP had the highest activity 

among sites. Previous sampling by Andersen (2002) found AChE activity of~ 17 µmoles 

AThChl hydrolyzed/min/g tissue during summer months. This number was considered the 

peak natural activity rate in northeast Iowa rivers; however the true peak may, in fact, be 

higher. July, 2002 activities at VRNB and VRTB were near "peak" activity and higher 

than their July, 2001 activities per g tissue. These data mark the first time that Volga 

River sites had "peak" AChE activities in this study or that of Andersen (2002). Activities 

at the remaining sites were below "peak" activity but similar to July, 2001 activities per g 

tissue. As in May, activities per mg protein at two sites on the Upper Iowa River were 
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significantly (p~0.05) lower relative to other sites in July. However, in July activities at 

sites upstream (UIKV) and downstream (UIDE) from UICR were significantly lower than 

UICR. This pattern differs from that of May, when both downstream sites (UICR and 

UIDE) appeared impacted. 

During September, 2002 sampling, there were no significant (p>0.05) differences 

among sites in AChE activities per g tissue (Figure 1.5), but there were significant 

differences in activities per mg protein (Figure 1.6). Similar to the July results, the AChE 

activities at the Volga River sites were near "peak" activity and were, in fact, higher than 

at any other site. Once again, this is in contrast with previous research (Andersen, 2002) 

when the Volga River sites typically had the lowest activities. However, as was the case 

in both May and July, two sites on the Upper Iowa River had the lowest AChE activities. 

In September, as in May, the activities were lowest at UICR and UIDE downstream from 

UIKV. During 2002 the Cedar River sites, with the exception of CRED, were below 

"peak" activities, but they were higher than in September, 2001. The relatively higher 

activity at CRED compared to sites upstream (CRJV and CRCF) once again suggests that 

there is no "urban effect" on AChE activities below the Cedar Falls-Waterloo metropolitan 

area. Analyses of AChE activities within a site over time (Appendix E) in most cases did 

not result in significant differences over time. However, activities were usually higher in 

September compared to July and, especially, May. 

The Hess sample data show some trends in I. bicolor densities during 2002 

(Appendix B). The patchy distribution of I. bicolor within streams resulted in high 
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standard deviations for all samples. The Cedar River sites had high densities of small, 

early instar nymphs in May, but those densities decreased in July and September when 

larger organisms were collected. A study of I. bicolor voltinism by Sweeney (1978) found 

that in a Pennsylvania creek, I. bicolor was bivoltine. Sweeney (1978) found that one 

generation overwinters as relatively large nymphs that emerge, mate and oviposit in early 

June. These eggs hatch in one to four weeks. The adults of this generation emerge and 

oviposit from early August to September. Their eggs hatch through autumn and nymphs 

grow until water temperatures drop below l 5°C. 

It may be that in northeast Iowa the "winter generation" develops somewhat 

earlier than Sweeney's (1978) Pennsylvania population, hence the presence of small 

nymphs in late May. Also, few nymphs, of any size, were found in the Upper Iowa or 

Volga River sites on May 14-15. This may represent the period immediately following 

emergence of the winter generation. Following such an emergence, larvae would be too 

small to collect and large larvae would be absent. The Cedar River sites were sampled on 

May 29 and contained many "very small" nymphs. This size class is big enough to be 

sampled with a Hess sampler, but too small for capture in kick screens and use in the 

AChE assay. 

During July, I. bicolor size distribution was relatively similar at all sites. All size 

classes were present in moderate numbers at all sites. The same pattern occurred at all 

sites during September. However, at most sites more "very small" I. bicolor were present, 

indicating a fall oviposition congruent with Sweeney's (1978) work. 



12 
Q) 

~ 
~10 

"C 

[ 
e 6 -g_ 
.c 
:c 
U 4 

~ 
f/l 

..2! 2 
0 
E 
:t 

0 
CRCF CRED CRJV VRTB VRSP UICR UIDE UIKV 

May Ten Sites 

27 

Figure 1.1 Isonychia bicolor AChE activities (per g tissue) during May 2002. P value is 
from a one-way ANOV A among sites. 
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Figure 1.2 Isonychia bicolor AChE activities (per mg protein) during May 2002. P value 
is from a one-way ANOV A among sites. Bars with the same letter are not significantly 
different (p>0.05) based on Duncan's Multiple Range Test. 
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Figure 1.3 
Isonychia bicolor AChE activities (per g tissue) during July 2002. P value is from a one­
way ANOV A among sites. Bars with the same letter are not significantly different 
(p>0.05) based on Duncan's Multiple Range Test. 
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Figure 1.4 Isonychia bicolor AChE activities (per mg protein) during July 2002. P value 
is from a one-way ANOV A among sites. Bars with the same letter are not significantly 
different (p>0.05) based on Duncan's Multiple Range Test. 
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Figure 1.5 Jsonychia bicolor AChE activities (per g tissue) during September 2002. 
P value is from a one-way ANOV A among sites. 
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Figure 1.6 Isonychia bicolor AChE activities (per mg protein) during September 2002. 
P value is from a one-way ANOV A among sites. Bars with the same letter are not 
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Ten Sites Sampling 2003 

Results from the May 2003 AChE activity analyses indicated that there were no 

significant differences among sites in activity per gram of tissue (Figure 1. 7) or in activity 

per mg of protein (Figure 1.8). At VRNB, VRTB, UIKV and LCCP there were not 

enough organisms to conduct the analyses. The similar activities at CRCF and CRED 

suggest that there is no "urban effect" occurring below the Cedar Falls-Waterloo 

metropolitan area. These results are similar to those from the previous May. 

During July all ten sites were sampled, but there were no significant differences in 

AChE activities among the sites per g tissue (Figure 1.9) or per mg protein (Figure 1.10). 

As was the case during July 2001 (Andersen, 2002) and 2002 sampling LCCP had one of 

the highest activities among sites even though insufficient organisms were present in May 

at that site. July 2003 activity at UIKV was the highest among the ten sites and near 

"peak," but the AChE activity at the two downstream sites (UICR and UIDE) on the 

Upper Iowa River were the lowest among the sites. This pattern is similar to results from 

the Upper Iowa River during May 2002, and may indicate the continued presence of 

cholinesterase inhibiting agents downstream from UIKV. However it should be noted that 

mean/. bicolor densities at UIDE during July 2003 were higher than densities at any other 

site sampled during 2003. This was the result of high densities of small and "very" small 

organisms at UIDE (see Appendix B). 

A similar pattern was observed in July 2003 on the Volga River with the 

downstream VRSP site having a lower mean activity than VRNB and VRTB. Activity at 



31 
CRED was similar to that at CRCF suggesting, once again, that there is no "urban effect" 

from the Cedar Falls-Waterloo metropolitan area. It must be remembered that, overall, 

there were no significant differences in activities among the ten sites, so the above 

observations can only be considered as trends. As was the case during 2002 (see 

"Intensive Sampling" below), low flow conditions existed, with few major storms, and 

activities on the Volga and Upper Iowa Rivers were higher than those reported in July 

2001 by Andersen (2002). 

During September, 2003 sampling there were insufficient organisms at VRNB to 

conduct an analysis. Similarly, during September 2001 only five insects (one sample) 

could be collected at that site (Andersen, 2002), but during September 2002 VRNB had 

the highest activity among the ten sites. Among the other nine sites analyzed there were 

no significant (p>0.05) differences among sites in AChE activity per g tissue (Figure 1.11) 

or per mg protein (Figure 1.12). In addition, the activities were similar, at most sites, to 

those found in September 2002, but appeared higher than those found in Andersen's 

(2002) study during September 2001. However, September,2002 and September 2003 

were not compared statistically. In contrast to the July results, VRSP had a higher activity 

than VRTB, and UICR and UIDE were more similar to UIKV. However, in the latter 

case the increased similarity among sites on the Upper Iowa River was due to a slight 

decrease in activity at UIKV in combination with slightly increased (UICR) or similar 

(UIDE) activities at the downstream sites relative to July. Activities at VRSP in 

September, 2002 and 2003 were similar and relatively higher than most other sites. In 
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addition, they were approximately twice the rate of activity measured at VRSP by 

Andersen (2002) in September 2001. 

Analyses of AChE activities within a site over time (Appendix F) in most cases did 

not result in significant differences over time (an exception is VRSP). However, as was 

the case in 2002, AChE activities were typically higher in September compared to July and 

in particular, May. 

May Hess sampling resulted in few nymphs collected, especially large nymphs. 

This may indicate the post-emergent period of the winter generation. It is interesting to 

note that all sites were sampled at the end of May and few large insects were present. In 

2002, the Volga and Upper Iowa sites were sampled in the middle of May and relatively 

high numbers of large nymphs were present. This further suggests that a large proportion 

of I. bicolor may emerge in mid to late May in Northeast Iowa. In July 2003 I. bicolor 

were relatively evenly distributed across the size classes. In September, again, distribution 

was relatively even across size classes, however total numbers tended to be higher in July 

than at most sites. 
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Figure 1.7. Isonychia bicolor AChE activities (per g tissue) during May 2003. P value is 
from a one-way ANOV A. 
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Figure 1.8 Isonychia bicolor AChE activities (per mg protein) during May 2003. P value 
is from a one-way ANOV A among sites. 



Q) 
:J 
1/) 
1/) 

:;::, 
Cl -C: .E -"C 
Q) 
N 
>, 

e 
"C 
>, 

..c: 
:c 
(.) 
..c: 

~ 
1/) 
Q) 

0 
E 
::t 

14 

12 

10 

8 

6 

4 

2 

0 

p=0.3'i87 

CF.N OU CHO LCXP UKV UCR LICE \R-8 \RIB \RSP 

.llyStes 

34 

Figure 1. 9 Isonychia bi color AChE activities (per g tissue) during July 2003. P value is 
from a one-way ANOV A among sites. 
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Figure 1.10 Jsonychia bi color AChE activities (per mg protein) during July 2003. 
P value is from a one-way ANOV A among sites. 
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Figure 1.11 Isonychia bi color AChE activities (per g tissue) during September 2003. 
P value is from a one-way ANOV A among sites. 

C: 
"iii e 
c.. 
C) 

E -C: .E -"O 
Q) 

250 

200 

150 

~ 100 
0 

i 
.c 

gj 50 
0 
E 
C: 

0 

CRJV CRCF CRED LCCP UIKV UICR UIDE VRTB VRSP 

Sept Sites 

35 

Figure 1.12 Jsonychia bi color AChE activities (per mg protein) during September 2003. 
P value is from a one-way ANOV A among sites. 



36 
Volga River Intensive Sampling, 2002 

Three sites on the Volga River (from upstream: North Branch, Twin Bridges and 

State Park) were sampled weekly from May 14 through July 10, 2002. Standard 

physical/chemical water quality measurements from each sampling trip are in Appendix C. 

On several sampling trips there were insufficient organisms to conduct AChE analyses at 

one or more sites, and those dates are indicated in the figure captions for each site. 

At VRNB, AChE activities (per g tissue) were not significantly (p>0.05) different 

among June sampling dates and were below 11 peak11 rate (Figure 1.13 and 1.14). 

However, July AChE activities per g tissue and per g protein were significantly (p::::0.05) 

higher than the June dates and near 11 peak11
• No significant (p>0.05) differences in AChE 

activities per g tissue or per mg protein were found at VRTB during the intensive study 

(Figure 1. 15 and 1.16). At VRSP there were no significant differences among dates in 

AChE activities (per g tissue) during the period of intensive sampling and activities were 

well below 11 peak11 activity rate (Figure 1.17). However, AChE activities (per mg protein) 

at VRSP were significantly (p ::::0.05) different during 2002 intensive sampling. AChE 

activities (per mg of protein) peaked on 6/3/02 then decreased following a major flood 

event (see Appendix D) which occurred between 6/3/02 and 6/5/02. AChE activities 

subsequently peaked again on 7 /10/02. 
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Figure 1.13 Jsonychia bi color AChE activities (per g tissue) at VRNB during 2002 
intensive sampling. There were insufficient organisms on 5/14, 5/20, 5/28, 6/11 and 6/18. 
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significantly different (p>0.05) based on Duncan's Multiple Range Test. 
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Figure 1.14 Jsonychia bicolor AChE activities (per mg protein) at VRNB during 2002 
intensive sampling. There were insufficient organisms on 5/14, 5/20, 5/28, 6/11 and 6/18. 
P value is from a one-way ANOV A among dates. Bars with the same letter are not 
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Figure 1.15 Jsonychia bi color AChE activities (per g tissue) at VRTB during 2002 
intensive sampling. There were insufficient organisms on 5/20 and 5/28. P value is from a 
one-way ANOV A among dates. 
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Figure 1.16 Jsonychia bicolor AChE activities (per mg protein) at VRTB during 2002 
intensive sampling. There were insufficient organisms on 5/20 and 5/28. P value is from a 
one-way ANOV A among dates. 



Q) 
::, 
V) 
V) 

:;::::; 
Cl 

-"C 
Q) 

8 

~ e 4 
-g, 
..c: 
..c: 
CJ 
..c: 
~ 2 
V) 
Q) 

0 
E 
::I. 

0 

39 

5-14 5-20 6-3 6-11 6-18 7-10 

Sarrpling Dates 

Figure 1.17 Jsonychia bi color AChE activities (per g tissue) at VRSP during 2002 
intensive sampling. There were insufficient organisms on 5/28 and 6/24. P value is from a 
one-way ANOV A among dates. 
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Figure 1.18 Jsonychia bicolor AChE activities (per mg protein) at VRSP during 2002 
intensive sampling. There were insufficient organisms on 5/28 and 6/24. P value is from a 
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Volga and Upper Iowa Rivers Intensive Sampling, 2003 

Three sites on the Volga River (from upstream: VRNB, VRTB and VRSP) and 

three sites on the Upper Iowa River (from upstream: UIKV, UICR and UIDE) were 

visited weekly from May 21, 2003 through July 14, 2003. High water during the second 

week in May prevented sampling at all locations. The three sites on the Volga River were 

also sampled on April 23, 2003. Standard physical/chemical water quality measurements 

are provided in Appendix C. However, on May 21, 2003 water chemistry was not 

measured at UICR and UIDE because high water prevented sampling, and at VRNB and 

VRTB because of a lack of organisms to sample. On several other sampling trips there 

were insufficient organisms to conduct AChE analyses at one or more sites. These dates 

are noted in their respective figure captions. 

No significant (p>0.05) differences in AChE activities were found at VRNB 

(Figures 1.19 and 1.20) or at VRTB (Figures 1.21 and 1.22). However, activity rates 

were generally higher than those from the same sampling periods in 2002. At VRSP there 

were significant (p s;0.05) differences among dates in AChE activities per g tissue (Figure 

1.23) and per mg protein (Figure 1.24) during the period ofintensive sampling. Early 

samples at VRSP had low AChE activities. Although activities at VRSP increased 

significantly (p s;0.05) over time, they never reached "peak" levels, and were lower than 

those upstream at VRNB and VRTB. It is interesting to note that the significant (p 

~0.05) decrease in AChE activities between July 2 and July 14 at VRSP in AChE activity 

per mg protein was not as marked at the upstream Volga River sites. This drop in AChE 



activity may have been caused by rainfall that caused discharge in the Volga River 

(downstream from VRSP at Littleport) to rise from ~300 cfs on July 7 to~ 1600 cfs on 

July 8, preventing sampling on July 9 at all sites (see Appendix D). During periods of 

heavy rain (measured as increased discharge) field runoff may carry increased loads of 

insecticides into streams, inhibiting AChE activities. 

41 

Activities did not change significantly (p>0.05) at UIKV throughout the duration 

of the 2003 intensive study (Figures 1.25 and 1.26). Heavy rainfall between July 2 and 

July 9 sampling dates caused discharge to increase from~ 200 cfs on July 7 to ~375 cfs on 

July 9 at Decorah, Iowa. Activity at UICR showed no significant (p>0.05) change per g 

of tissue, but showed a significant (p~0.05) increase on July 2, followed by a significant (p 

~0.05) decrease on July 14 in activity per mg protein (Figures 1.27 and 1.28). This drop 

in AChE activity once again coincided with the July 7-8 rainfall event that may have 

affected AChE activities at VRSP on the Volga River (see above). Similarly, activities per 

g tissue at UIDE increased significantly (p~0.05) between June 27 and July 2 and then 

dropped significantly (p~0.05) by July 14 (Figure 1.29). Activities per mg protein 

fluctuated significantly (p~0.05) throughout the study at UIDE with a dramatic increase 

between June 27 and July 2 followed by a significant (p,:S0.05) decrease on July 14 

following the rainfall event (Figure 1.30). 
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Figure 1.19 Jsonychia bi color AChE activities (per g tissue) at VRNB during 2003 
intensive sampling. There were insufficient organisms on 5/21, 5/29, 6/6 and 6/13. P value 
is from a one-way ANOV A among dates. 
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Figure 1.20 Jsonychia bicolor AChE activities (per mg protein) at VRNB during 2003 
intensive sampling. There were insufficient organisms on 5/21, 5/29, 6/6 and 6/13. 
P value is from a one-way ANOV A among dates. 
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Figure 1.21 Isonychia bicolor AChE activities (per g tissue) at VRTB during 2003 
intensive sampling. There were insufficient organisms on 5/21, 5/29, 6/6, 6/13 and 6/19. P 
value is from a one-way ANOV A among dates. 
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Figure 1.22 Jsonychia bicolor AChE activities (per mg protein) at VRTB during 2003 
intensive sampling. There were insufficient organisms on 5/21, 5/29, 6/6, 6/13 and 6/19. P 
value is from a one-way ANOV A among dates. 
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Figure 1.23 Isonychia bicolor AChE activities (per g tissue) at VRSP during 2003 
intensive sampling. There were insufficient organisms present on 6/13. P value is from a 
one-way ANOV A among dates. Bars with the same letter are not significantly different 
(p>0.05) based on Duncan's Multiple Range Test. 
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Figure 1.24 Isonychia bicolor AChE activities (per mg protein) at VRSP during 2003 
intensive sampling. There were insufficient organisms present on 6/13. P value is from a 
one-way ANOV A among dates. Bars with the same letter are not significantly different 
(p>0.05) based on Duncan's Multiple Range Test. 
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Figure 1.25 Jsonychia bicolor AChE activities (per g tissue) at UIKV during 2003 
intensive sampling. 4/23, 5/21, 5/29, 6/6 and 6/13. P value is from a one-way ANOVA 
among dates. 
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Figure 1.26 Jsonychia bicolor AChE activities (per mg protein) at UIKV during 2003 
intensive sampling. There were insufficient organisms present on 4/23, 5/21, 5/29, 6/6 and 
6/13. P value is from a one-way ANOVA among dates. 
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Figure 1.27 Jsonychia bi color AChE activities (per g tissue) at UICR during 2003 
intensive sampling. There were insufficient organisms present on 4/23, 5/21, and 6/6. 
P value is from a one-way ANOV A among dates. 
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Figure 1.28 Jsonychia bicolor AChE activities (per mg protein) at UICR during 2003 
intensive sampling. There were insufficient organisms present on 4/23, 5/21, and 6/6. P 
value is from a one-way ANOV A among dates. Bars with the same letter are not 
significantly different (p>0.05) based on Duncan's Multiple Range Test. 
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Figure 1.29 Jsonychia bi color AChE activities (per g tissue) at UIDE during 2003 
intensive sampling. There were insufficient organisms present on 4/23 and 5/21. P value 
is from a one-way ANOV A among dates. Bars with the same letter are not significantly 
different (p>0.05) based on Duncan's Multiple Range Test. 
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Figure 1.30 Jsonychia bicolor AChE activities (per mg protein) at UIDE during 2003 
intensive sampling. There were insufficient organisms present on 4/23 and 5/21. P value is 
from a one-way ANOV A among dates. Bars with the same letter are not significantly 
different (p>0.05) based on Duncan's Multiple Range Test. 
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Cedar River Sampling, 2002 

Results from the AChE activity analyses indicated that there were no significant 

(p>0.05) differences among the seven monthly sampling dates (Figures 1.31 and 1.32), 

and that AChE activities never reached "peak" summer levels during 2002. In addition, 

the December, 2001 AChE activity appeared higher than previous winter levels 

(Andersen, 2002), however these data were not statistically analyzed. Based on water 

temperature data from this and previous years, it appears that the relatively warmer (by 

2°C) water temperature in December 2001 in combination with relatively cooler (by 4°C) 

summer water temperatures may have resulted in the lack of significant differences in 

AChE activities among dates. However, the extremely low flow conditions throughout 

spring and summer 2002 may have also been a factor. Results of the standard water 

chemistry analyses conducted on each sampling trip are provided in Appendix C. 
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Figure 1.31 Isonychia bicolor AChE activities (per gram of tissue) in the Cedar River at 
Cedar Falls during sampling December 2001- September 2002. P value is from a one-way 
ANOV A among dates. 

.5 
2 e 
C. 

Cl 
E 
C: .E 

"'Cl 
Q) 

~ e 
"'Cl 
>-.c 
:c 
(.) 
.c 
I-
~ 
C/l 
Q) 

0 
E 
C: 

180 

160 

140 

120 

100 

80 

60 

40 

20 

0 
12/2001 4/2002 5/2002 6/2002 7/2002 8/2002 9/2002 

Sampling Date 

Figure 1.32 Isonychia bicolor AChE activities (per mg of protein) in the Cedar River at 
Cedar Falls during sampling December 2001- September 2002. P value is from a one-way 
ANOV A among dates. 
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Cedar River Sampling. 2003: 

Results from the AChE activity analyses indicated that, once again, there were no 

significant (p>0.05) differences among the six Cedar River sampling dates (Figures 1.33 

and 1.34), and that AChE activities never reached "peak" summer levels during 2003. 

However, the mean AChE activity in August 2003 was the highest value obtained, and the 

water temperature was also the highest during that month. As was the case during 2002, 

the water temperature in July, 2003 was relatively cooler (by 4°C) than that in Andersen's 

(2002) study during 2001. In addition, the extremely low flow conditions throughout 

spring and summer, 2002 continued through summer 2003. These or other unknown 

variables may have caused the lack of significant differences in AChE activities during 

spring and summer, 2003, and the failure to attain what had been considered "peak" 

( ~ 17 umoles ATCI hydrolyzed/min/g tissue) summer levels. Results of the standard water 

chemistry analyses conducted on each sampling trip are provided in Appendix C. 
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Figure 1.33 Jsonychia bicolor AChE activities (per gram of tissue) in the Cedar River at 
Cedar Falls during sampling April - September 2003. P value is from a one-way ANOV A 
among dates. 
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Figure 1.34 Isonychia bicolor AChE activities (per mg of protein) in the Cedar River at 
Cedar Falls during sampling April - September 2003. P value is from a one-way ANOV A 
among dates. 
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Conclusions 

"Ten Sites" sampling in 2002 indicated few discernable trends. Likewise 2003 

sampling yielded no significant (p>0.05) differences among sites on most sampling dates. 

However, apparent decreases in AChE activities from upstream to downstream sites 

occurred on the Upper Iowa in May, 2002 and July, 2003 as well as on the Volga in 

September, 2002 and June, 2003. It is possible that OP and carbamate pesticide 

concentrations are higher at downstream sites due to increased exposure to runoff. 

Intensive sampling on the Volga River in 2002 and the Volga and Upper Iowa 

Rivers in 2003 indicated significant (p::S0.05) decreases in AChE activities which coincided 

with large rainfall events. Such events may have washed insecticides into these streams 

causing a decrease in AChE activities. However, no chemical analyses were performed at 

the time so causes of decreased activity are only speculation. The Cedar River had 

relatively stable AChE activities with no significant (p>0.05) differences in either 2002 or 

2003. 
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CHAPTER2 

ISONYCHIA BICOLOR (EPHEMEROPTERA: ISONYCHIIDAE) ACETYL­

CHOLINESTERASE ACTIVITY: INVESTIGATING THE EFFECTS OF 

PHOTOPERIOD AND LARVAL BODY SIZE ON BASELINE ACTIVITY 

Abstract 

Previous field sampling suggested that Isonychia bicolor (Ephemeroptera: 
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Isonychiidae) head capsule acetylcholinesterase (AChE) activities may naturally fluctuate 

throughout the year. In order to use AChE activity from field collected insects as a 

biomarker of organophosphorus insecticide exposure, such baseline fluctuations must be 

understood. These studies investigated the effects of larval body size and photoperiod on 

I. bicolor. During June and August, 2002, I. bicolor were sampled from the Cedar River, 

Cedar Falls, Iowa, USA. Insects were divided into three size classes: small, medium, and 

large, and analyzed for AChE activity. No significant (p>0.05) differences were found 

among size classes in either June or August. 

During July, 2002, 540 I. bicolor were sampled from the Cedar River in Cedar 

Falls. 60 insects were transferred to each of 9 stream microcosms and acclimated to one 

of three photoperiod regimes (18:6, 12:12, and 6:18 L:D). AChE activity was monitored 

weekly for three weeks. No significant (p>0.05) differences were found, suggesting 

photoperiod is not an important factor affecting AChE activity in I. bicolor. 
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Results of these studies suggest that any size I. bicolor larvae can be used for 

AChE analysis, and that photoperiod is not an important factor influencing AChE activity 

in future microcosm or field studies with I. bicolor. 

Keywords: baseline acetylcholinesterase activity, stream insects, photoperiod effects, size 

effects 
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Introduction 

The development of useful bioindicators has been hampered by inability to discern 

xenobiotic-induced effects from natural variation. Conclusive results are impossible 

without adequate understanding of natural field fluctuations. Such fluctuations may occur 

in a regular, periodic manner such as seasonal or daily rhythms or occur irregularly. 

Without knowledge of the cause and temporal scale of such variability, little 

confidence can be placed in the validity of a bioindicator. Callaghan, et al. (2002) suggest 

that "if acetylcholinesterase is to be useful as a real tool to detect low levels of 

organophosphorus pollution, it should be very specific to pesticide poisoning but relatively 

insensitive to environmental variation." Understanding natural changes in AChE activity 

in the absence of cholinesterase inhibitors is necessary to increase confidence in 

interpretation. This concept has been recognized by many authors ( e.g., Day and Scott, 

1990; Melancon, 1995; Beauvais, et al. 1999), but few studies have attempted to pinpoint 

sources of natural variation. 

Moulton, et al. (1996) and Callaghan, et al. (2002) studied naturally occurring 

factors that may affect AChE activity in aquatic organisms. Of these, the most often 

studied variable was temperature. Temperature affects larval growth by influencing rates 

of feeding, assimilation, and respiration; food conversion efficiencies; enzymatic kinetics 

and endocrine processes; or indirectly by altering the quantity and quality of available food 

material (Sweeney 1984). Moulton, et al. (1996) hypothesized that increased temperature 

can affect AChE activity in 3 ways: (1) endogenous levels increase with temperature; 



(2) increased metabolism may affect pesticide toxicity; and (3) rate ofreactivation of 

inhibited cholinesterase may be higher. 
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Moulton, et al. (1996) exposed the freshwater mussel Elliptio complanata and the 

asiatic clam Corbiculafluminea to aldicarb (a carbamate insecticide) and acephate (an 

organophosphate insectide ), assaying cholinesterase of the adductor muscle in E. 

complanata and whole bodies of C. fluminea. In two experiments they exposed E. 

complanata for 96 hours to 5 mg/L aldicarb and 5 mg/L acephate while maintaining a 

control for each. Treatments were exposed to four different temperatures (21 °C, 24 °C, 

27°C and 30°C). Analysis revealed no significant (p>0.05) differences among temperature 

treatments or in controls. 

The midge Chironomus riparius is a commonly reared toxicity test organism used 

in several laboratory and field-based studies of AChE activity (Detra and Collins 1986; 

Sturm and Hansen 1999; Beauvais et al., 1999; Fisher, et al., 2000; Callaghan, et al., 

2001; Olsen, et al., 2001; Callaghan, et al., 2002;). Callaghan, et al. (2002) looked at C. 

riparius AChE activities after exposure to the OP insecticide pirimiphos at different 

temperature, dose and time regimes. They exposed C. riparius to 0, 0.1, 1.0, and l0µg/L 

pirimiphos at 3, 12, and 22°C for 48, 72 or 96 hand found the dose response curve to be 

similar at all temperatures. Natural fluctuations in temperature occur rapidly during the 

diel cycle as well as more slowly in the yearly cycle. Unless laboratory based experiments 

attempt to duplicate these patterns, they may not adequately illustrate enzyme activity 

fluctuations. 
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Beauvais, et al. (1999) studied the effects of hypoxia on C. riparius AChE 

activity. They found no hypoxia effects on larval C. riparius AChE activity. Hypoxia is a 

condition prevalent in wetlands but seldom found in healthy streams. Hypoxia would likely 

kill most sensitive stream insects before AChE inhibition occurred. Midges of the genus 

Chironomus have oxygen binding compounds in their hemolymph that allows them to 

survive in low oxygen conditions. Such conditions are uncommon in "healthy" streams. 

However, the importance of this study is that it eliminated hypoxia as a complicating 

factor in future AChE biomarker studies using C. riparius. 

Another complicating factor affecting AChE activity is the potential for natural 

cholinesterase inhibiting compounds. Monserrat, et al. (2001) discuss the cyanobacteria 

Anabaena spiroides, which is known to produce a number of cholinesterase inhibiting 

compounds. In eutrophic conditions cyanobacteria blooms may be common. These 

cyanobactera can produce neurotoxins including the acetylcholine analog anatoxin-a, 

sodium channel blockers saxitoxin and neosaxitoxin and the acetylcholinesterase inhibitor 

anatoxin-a[ s]. Other unknown natural AChE inhibitors may be present in streams, further 

complicating the understanding of"normal" cholinesterase levels. 

Previous work using Jsonychia bicolor acetylcholinesterase (AChE) activity as a 

biomarker has shown periodic patterns of AChE activity fluctuation. Monthly sampling of 

the Cedar River, in Cedar Falls has shown a trend oflower AChE activity during winter 

months and peak activity during the summer months (Andersen, 2002). This seasonal 

effect may be due to one or a number of natural or unnatural variables. Also, previous 



research has shown greatly differing AChE activity among sites within a sampling date 

indicating substantial differences within a relatively small geographic area (Andersen, 

2002). 
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Andersen (2002) utilized field-collected I. bicolor in artificial streams to look at 

effects of different temperature and nutrition treatments on AChE activity. In the 

temperature study 60 I. bi color were added to each of fifteen artificial streams and 

acclimated to one of four constant temperature treatments (5, 20, 19, and 25°C) and one 

fluctuating temperature treatment (15-22°C) that simulated diel temperature changes in 

the source riflle. Each treatment was replicated in triplicate. Ten days after the 

acclimation temperature was reached, five randomly selected I. bicolor were removed 

from each stream and processed in the manner described below ( see Materials and 

Methods) for examination of AChE activity. Andersen (2002) found that the 19 and 25°C 

treatments were significantly (p,:S0.05) higher than the other treatments, nearing 25 µmol 

acetylthiocholine iodide (AThChI) hydrolyzed/min/g tissue, while the 10 and 5°C 

treatments were lower, near 15 and 12 µmol AThChI hydrolyzed/min/g tissue 

respectively. The 10-25°C treatment was lowest nearing 10 µmol AThChI 

hydrolyzed/min/g tissue. This illustrates the importance of temperature effects on AChE 

activity. However, these results did not account for protein content of the samples. 

Higher temperatures may have caused fat deposits to be reduced, causing AChE activity 

to appear higher than in other treatments. 
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Andersen (2002) also used field collected I. bicolor in artificial streams to examine 

the effects of four nutrition regimes on AChE activity. The treatments consisted of: (1) a 

natural periphyton ( colonized on foam cubes in a natural stream, then squeezed into 

artificial streams); (2) artificial food (ground "trout-chow", yeast and alfalfa); (3) both 

periphyton and artificial food; and ( 4) no nutrients. Nutrient treatments were added every 

72 h. He found that AChE activity was not significantly different (p>0.05) among 

treatments after 20 days. This suggests that nutrition is not an important variable affecting 

natural fluctuations in streams, and that nutrient additions are unnecessary in stream 

microcosm studies of/. bicolor AChE activity. Callaghan, et al. (2002) also found that 

food amendments had no significant (p>0.05) effect on C. riparius. 

Many papers investigating organophosphorus and carbamate insecticide exposure 

to different larval instars exist (e.g., Koziol and Witkowski, 1981; Balasubramanian and 

Balasubramanian, 1984; Christie, et al. 1991). However, most papers studied mortality or 

susceptibility of insects at different instars from an agricultural standpoint ( concerned with 

lethal dosages to an organism at a specific point in the life cycle). Few studies explore the 

AChE activity in non-target organisms. A study by Ibrahim and Ottea (1995) has shown 

that developmental stages can affect the AChE activity of insects. They found that the 

AChE activity of the adult tobacco budworm, Heliothis virescens, to be 10 to 18 times 

higher than in late instar larvae. The authors attribute this to the generalization that more 

active insects have higher AChE activity. This position is supported by Day and Scott 

(1990) who discuss the observation that insects that are physically active tend to 
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have higher AChE activity than less active species (e.g., adult houseflies vs. lepidopteran 

larvae). 

The following study attempts to clarify the effects of two variables that may affect 

AChE activity in J. bicolor, nymphal body size and photoperiod. When collecting 

throughout the year, many different sized I. bicolor nymphs are encountered. 

Occasionally only small or large individuals are available. If differences in AChE activity 

exist between different nymphal instars, results will be difficult to interpret. Similarly, 

photoperiod effects (if any) on AChE activity may confound results from nymphs collected 

at different times of the year. 

Materials and Methods 

Determination of AChE activity 

Preparation and analysis of acetylcholinesterase activity was performed using the 

methods ofEllinan, et al. (1961) optimized for I. bicolor by Anderson (2002). Head 

capsules were homogenized in a glass tissue grinder with 0.5% Triton X-100 detergent in 

Tris pH 7.4 buffer solution. For every mg of tissue, 200 µl of buffer solution was added 

resulting in a 200: 1 dilution factor. Homogenate from each replicate was added to a 

micro-centrifuge tube and centrifuged (10 min; 14,000 rpm). Supernatant aliquots were 

separated into two cryovials then frozen (-80°C) until analyzed for AChE activity. 

Aliquots are separated in order to create a spare that remained frozen in case of sampling 

error, spillage, etc. 
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Acetylcholinesterase activity was quantified in a microplate-reading 

spectrophotometer (SpectraMAX Plus, Molecular Devices, Sunnyvale, CA, USA). Each 

well contained an aliquot of I. bicolor head capsule supernatant (30µ1), acetylthiocholine 

iodide (AThChl) solution (0.0418M; 30µ1), 5,5-dithiobis-2-nitrobenzoic acid (DTNB) 

colorimetric reagent solution (0.442 M; 20 µl), and Tris pH 8.0 buffer solution (170 µl). 

Acetylthiocholine iodide (AThChl) is similar in structure to acetylcholine and 

acetylcholinesterase hydrolyzes it in a similar manner to acetylcholine. This hydrolysis 

results in a positively charged acetate ion and a negatively charged thiocholine complex. 

The thiocholine complex reacts with DTNB to create 5-thio-2-nitrobenzoate a stable, 

yellow colored anion that absorbs light most strongly at 412 nm. For each replicate 

sample, AChE activity was measured in triplicate as the rate of increase in absorbance at 

412 nm. Tris buffers, AThChl and DTNB were obtained from Sigma Chemical (St. Louis, 

MO, USA). Tris buffer solutions were refrigerated at 4°C for no longer than one month 

and were adjusted to appropriate pH values prior to each analysis. DTNB and AThChl 

were prepared immediately prior to spectrophotometric analysis. 

The optimum reaction temperature (~32°C) was achieved by maintaining DTNB 

and AThChl at room temperature, placing thawed cryovials of tissue homogenate in ice 

water and heating Tris pH 8.0 buffer to ~80°C before pipetting. A blank (consisting of 

200 µl Tris pH 8.0 buffer solution, 30 µl AThChl solution, 20 µl DTNB solution but no 

tissue homogenate), and a check standard ( consisting of pooled homogenate supernatant 

from approximately 200 I. bicolor head capsules) were also analyzed in triplicate on each 



plate. Care was taken to prevent formation of any bubbles during the entire process as 

bubbles cause inaccurate readings by the spectrophotometer. 
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Spectrophotometer software (SoftMAX PRO, Molecular Devices, Sunnyvale, CA, 

USA) was used to determine the highest AChE activity (Vmax). Absorbance 

measurements for all trials were read in all wells every twelve seconds for five minutes 

after an initial one-minute lag time. The following formula was used to convert mOD 

(milli-optical density) output units into international units of enzyme activity: 

{[(enzyme mOD/min)-(blank mOD/min)]/1000} x 0.817 x dilution factor= 

(µmoles AThChI hydrolyzed/min)/gram tissue 

Determination of Total Protein Content 

In this study, AChE activity is expressed in nmoles AThChI hydrolyzed/min/mg 

protein as well as µmoles AThChI hydrolyzed/min/g tissue. Andersen (2002) expressed 

activity only as µmoles AThChI hydrolyzed/min/g tissue. In order to find the protein 

content of the AChE tissue homogenate, the Bradford protein assay was optimized for use 

with I. bicolor tissue homogenates. Quantifying AChE activity relative to total protein 

content potentially minimizes the variation caused by differing amounts of other 

substances such as chitin or fat in the head capsules. A standard curve using bovine serum 

albumin was created to quantify the amount of protein in a solution of known 

concentration. The amount of protein (µg protein/ µg tissue) in each sample was 

calculated using the formula (12((Bradford assay O.D.)- 0.017)/48.775). From this the 

AChE activity per mg protein is calculated. 
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The Bradford assay utilized a 96 well microplate reading spectrophotometer. Each 

sample was analyzed in triplicate using 60 µ1 Bradford's reagent (Coomassie® Brilliant 

Blue G-250 dye; Bio Rad, Hercules, California, USA), 5 µ1 tissue homogenate, and 235 µl 

twice distilled, reverse osmosis water in each well. Each sample was then mixed by 

repeated suction/expulsion through a micropipetter to ensure even mixture of the solution. 

Care was taken to prevent formation of bubbles during this process as bubbles create 

inaccurate spectrophotometric readings. Each microplate contained one blank (240 µl 

water and 60 µl Bradford reagent), and one check standard, as well as unknowns (each in 

triplicate). Microplates were allowed to sit approximately 5 minutes before analysis in the 

spectrophotometer. 

Investigating Possible Differences in AChE Activities Due to Size 

On both June 20 and August 7, 2002 50 /. bicolor were taken from the Cedar 

River in Cedar Falls, Iowa, using kick-nets and transferred to each of three coolers (7-L 

capacity), containing two artificial substrates and filled with river water, for transportation 

back to the laboratory. At the laboratory, the insects were held in aerated coolers for 24 h 

and brought to the optimal temperature of 20° C. After acclimation, the organisms in each 

cooler were divided into three size classes based on their length and head capsule widths 

During the June study "large" I. bicolor nymphs had body lengths and head widths of 

2:12.5 mm and 2: 1.7 mm, respectively. The "medium" I. bicolor nymphs had body lengths 

and head widths of 7.8-l0mm and l.0-l.5mm, respectively. The "small"/. bicolor 

nymphs had body lengths and head widths of <7.8 mm and <1.2 mm, respectively. During 
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the August study, the "large" I. bicolor nymphs had body lengths and head widths of 

:::::11.0 mm and:::: 1.6 mm, respectively. The "medium" I. bicolor nymphs had body lengths 

and head widths of 8.3-<l lmm and 1.2-<l.6 mm, respectively. The "small" I. bicolor 

nymphs had body lengths and head widths of <8.3 mm and <1.2 mm, respectively. Size 

differences between June and August exist because nymphs were generally smaller in June. 

From each of the three coolers, five randomly selected head capsules from each size class 

were then homogenized (see above) with the resulting supernatants placed in cryovials and 

stored in a low temperature (-80° C) freezer for subsequent AChE analysis (see above). 

The data for each size class from each month were statistically analyzed by a one-way 

Analysis ofVariance (ANOVA). 

Photoperiod Effects on AChE Activity 

On July 23, 2002 I. bicolor (540) from the Cedar River in Cedar Falls were 

sampled with D-nets and 30 were placed in each of 18 coolers containing two rock-filled 

artificial substrates for transportation to the Ecosystem Simulation Laboratory at the 

University of Northern Iowa. The contents of two coolers (60 insects and four substrates) 

were transferred to each of 9 artificial streams and acclimated for 24 h to a temperature of 

20° C. Three photoperiods (18:6, 12:12 and 6:18 L:D) were established in triplicate using 

automatic timers connected to the daylight equivalent lights above each stream. Each 

stream was enclosed in a curtain of black plastic sheeting to prevent external light from 

entering. AChE activities were then monitored weekly for three weeks in an attempt to 



quantify any possible photoperiod effects. The weekly AChE activity data were 

statistically analyzed by a one-way Analysis of Variance (ANOVA). 

Results 

Size Effects on AChE Activities 
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Results from the June study indicated no significant (p>0.05) differences among 

the three size classes for AChE activity/g tissue (Figure 2.1) or AChE activity/mg protein 

(Figure 2.2). Similarly, results from the August study indicated no significant differences 

among the three size classes for AChE activity/g tissue (Figure 2.3) or AChE activity/mg 

protein (Figure 2.4). 

Photoperiod Effects on AChE Activities 

Samples taken one week after the experiment began (7/30/02) indicated no 

significant differences among the three treatments for AChE activity/g tissue (Figure 2.5) 

or AChE activity/mg protein (Figure 2.6). Two weeks after the experiment began 

(8/6/02) once again there were no significant differences among the three treatments for 

AChE activity/g tissue (Figure 2.7) or AChE activity/mg protein (Figure 2.8). Similarly, 

three weeks after the experiment began (8/13/02) there were no significant differences 

among the treatments (Figures 2.9 and 2.10). The experiment could not be continued 

beyond three weeks because of a lack of I. bicolor in the artificial streams. 
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Figure 2.1 Jsonychia bicolor AChE activities (per gram of tissue) during the June study 
of possible size effects. P value is from a one-way ANOV A among sizes. 
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Figure 2.2 Jsonychia bicolor AChE activities (per mg of protein) during the June study of 
possible size effects. P value is from a one-way ANOV A among sizes. 
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Figure 2.3 Isonychia bicolor AChE activities (per gram of tissue) during the August 
study of possible size effects. P value is from a one-way ANOV A among sizes. 
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Figure 2.4 Jsonychia bicolor AChE activities (per mg of protein) during the August study 
of possible size effects. P value is from a one-way ANOVA among sizes. 
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Figure 2.6 Isonychia bicolor AChE activities (per mg of protein) after a one week 
exposure to three different photoperiods. P value is from a one-way ANOV A among 
treatments. The July 23 bar represents AChE activity at time of collection from Cedar 
River and was not included in statistical analysis. 
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Figure 2. 7 Isonychia bi color AChE activities (per gram of tissue) after a two week 
exposure to three different photoperiods. P value is from a one-way ANOV A among 
treatments. 
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Figure 2.8 Isonychia bicolor AChE activities (per mg of protein) after a two week 
exposure to three different photoperiods. P value is from a one-way ANOV A among 
treatments. 
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Figure 2.9 Isonychia bicolor AChE activities (per gram of tissue) after a three week 
exposure to three different photoperiods. P value is from a one-way ANOV A among 
treatments. 
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Figure 2.10 Isonychia bi color AChE activities (per mg of protein) after a three week 
exposure to three different photoperiods. P value is from a one-way ANOV A among 
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Discussion 

In the future, Jsonychia bicolor of any size may be used in this assay because no 

significant differences were found among different sized nymphs. However, when using 

smaller larvae, limited amounts of homogenate are produced. If smaller insects are to be 

used, more nymphs may need to be pooled in order to provide enough homogenate to 

perform the AChE and Bradford assays. 

It appears that differences in photoperiod do not affect J. bicolor AChE activity. 

This allows more confidence in future microcosm studies using I. bicolor where lab 

photoperiod does not exactly match field conditions. This photoperiod study does not 

conclusively show that daylight is not an important natural factor affecting AChE activity 

patterns. Changes in photoperiod coupled with certain other seasonal cues such as 

changing temperatures may create significant changes in AChE activity. Such 

combinations of environmental changes were not part of this study. Also, diel photoperiod 

rhythms may produce significant changes in AChE activity. In this study J. bicolor were 

sampled at approximately the same time each day; if cyclical, daily changes are present, 

this study would not reveal them. 
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CHAPTER3 

ISONYCHIA BICOLOR (EPHEMEROPTERA: ISONYCHIIDAE) 

ACETYLCHOLINESTERASE ACTIVITY FOLLOWING EXPOSURE TO 

TERBUFOS 

Abstract 

Stream microcosms were used to expose late instar lsonychia bicolor 

(Ephemeroptera: Isonychiidae) to the organophosphorus insecticide terbufos for 24 h at 

nominal concentrations of 0.0, 2.5, 5.0, 10.0 and 20.0 µg/L and then purged with 200 

ml/min of clean water. Streams were sampled prior to dosing, after 24 h exposure, 24 h 

after purging and 8 d after purging. This study was conducted to correlate terbufos 

concentrations with I. bicolor acetylcholinesterae (AChE) activity inhibition. 
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Following 24 h exposure, AChE activity per g tissue in the 20 µg!L treatment was 

significantly different from the control. Fallowing 24 h purging, AChE activities per g 

tissue and per mg protein were significantly lower in the 20 µg/1 treatment. By the eighth 

day after purging, all organisms in the 20 µg!L treatment were dead, and among the 

remaining treatments there were no significant differences from the control in AChE 

activities per g tissue or per mg protein. An analysis of AChE activities within a treatment 

over time indicated that in the 10 µg!L treatment activity per g tissue was significantly 

higher (p:::0.05) on day 9 than on day 2, but the increase was not significant (p>0.05) for 

activity per mg protein. Overall the data suggest that I. bicolor AChE activities can 

rebound from exposures to 10 µg!L but not 20 µg!L. 
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This study indicated that terbufos concentrations near 20 µg/L significantly inhibit 

I. bicolor AChE activity and may lead to mortality following 24 h exposure. Also, 

I. bi color exposed to 10 µg/L or less rebounded to pre-exposure AChE activity levels 

within 9 days. 

Keywords: Stream insect, acetylcholinesterase activity, organophosphorus insecticide, 

terbufos 



Introduction 

Organophosphorus (OP) and carbamate insecticides are used extensively 

worldwide. These pesticides may enter aquatic ecosystems by aerial drift or surface 

runoff, potentially affecting non-target organisms. These contamination events may be 

brief and missed by chemical monitoring. Also, chemical analysis may be too expensive 

for regular sampling. 
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Organophosphorus insecticides kill by binding to acetylcholinesterase (AChE) thus 

preventing hydrolysis of the neurotransmitter acetylcholine. The accumulation of 

acetylcholine in the synaptic cleft causes repeated stimulation of nerves, interfering with 

normal biological functions. Binding of OP insecticides to AChE may last for many days 

following initial exposure and is typically irreversible; subsequent increases in AChE 

activity come from new enzyme synthesis (Habig and Di Giulio, 1991; Wilson, et al. 1992; 

Ecobichon, 1996). 

The insecticide terbufos (S-[[ ( 1, 1-dimethylethyl)thio ]methyl] 0, O-diethyl 

phosphorodithioate) is manufactured by American Cyanamid and sold under the trade 

names AC 92100®, Aragran®, Contraven®, Counter®, and Plydox®. Terbufos rapidly 

hydrolyzes in water (USEPA, 1999). A number of studies have dealt with terbufos 

toxicity to freshwater aquatic organisms (Mayer and Ellersieck, 1986; Howe, et al. 1994) 

and numerous fish kills have been reported (USEPA, 1999). Terbufos is considered highly 

toxic to fish and aquatic invertebrates with a 96-hour LC50 of3.1 µg/L and 0.2 µg/L in 

Daphnia magna and Gammarus psuedolimnaeus, respectively (Mayer and Ellersieck, 
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1986). Reported 96-hour LC50 values for the technical material (88% active ingredient) 

are 0.8 tol.3 µg/L in rainbow trout, 390.0 µg!L in fathead minnow and 1.7 to 2.4 µg!L in 

bluegills (Mayer and Ellersieck, 1986). 

Counter® is a clay based (15% active ingredient) or polymer based (20% active 

ingredient) granular formula applied to com, sugar beets, and sorghum crops in the United 

States (USEPA, 1999) and is used extensively in Iowa (Hartzler, et al. 1997). This 

product, when used to control soil pests of com (primarily com rootworm), constitutes 

90% ofterbufos usage (by weight) in the United States. Terbufos is typically applied once 

yearly at a rate of 1.3 lb of active ingredient per acre in field com applications when corn 

is planted in the same fields for successive years. Less terbufos is used when planting corn 

following crop rotations (0. 75 lb active ingredient/acre for "first year" corn). Terbufos is 

applied to the soil surface either at planting, on post-emergent corn, or post cultivation. 

Approximately 95% of Counter® is applied at planting and 85% of this is deposited on the 

soil surface reducing soil incorporation (USEPA, 1999). 

Hydrolysis and biodegradation are the primary modes ofterbufos dissipation in soil 

(USEPA, 1999). Volatilization may be a major route of dissipation ofTerbufos due to 

relatively high vapor pressure (3 .16 x 10·4 mm Hg). Granular application reduces 

potential for aerial drift, while increasing chances of surface runoff, especially in areas of 

high rainfall. Terbufos has a log K0 w of 4.52 and water solubility of 15 mg/L. Photolysis 

is not an important means of dissipation in fields when incorporated in the soil (USEP A, 

1999). However, photolysis may be an important means of degradation in surface water 
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where terbufos is unstable, with a half-life of one day. The terbufos metabolites terbufos 

sulfoxide and terbufos sulfone are more persistent and mobile in soil and water than 

terbufos and are assumed by the USEPA (1999) to have similar toxicity. 

Bioconcentration factors for terbufos range from 320 to 940 indicating that terbufos has a 

moderate potential for bioaccumulation (USEPA, 1999). 

Most studies investigating AChE inhibition in nontarget aquatic organisms involve 

fish (e.g., Coppage and Mathews, 1974; Coppage and Mathews, 1975; Zinkl, et al. 1987; 

Richmonds and Dutta, 1992), crustaceans (e.g., Kobayashi, et al. 1986; Bocquene and 

Galgani, 1991; Abdullah, et al. 1994; Crane, et al. 1995; Fornstrom, et al. 1997) or 

mollusks (e.g., Fleming, et al. 1995; Moulton, et al. 1996). While fish, crustaceans and 

mollusks can be used as bioindicators, they do not inhabit most interior streams in 

abundance and are not widely distributed. Also, fish may swim long distance which 

renders them useless in site-specific bioindicator studies. 

In contrast, aquatic insects are relatively abundant, have wide geographic 

distributions and tend to move less than fish. These features make aquatic insects 

potentially useful as bioindicators. A number of studies have illustrated AChE inhibition in 

stream insects following exposure to OP insecticides (Karnak and Collins, 1974; 

Flannagan, et al. 1978; Day and Scott, 1990; Detra and Collins, 1991; Ibrahim, et al. 

1998; Beauvais, et al. 1999; Fisher, et al. 2000; Callaghan, et al. 2001; and Crane, et al. 

2002) and others have shown that OP exposure can affect macroinvertebrate densities 

(Pusey, et al. 1994; Crane, et al. 1995; Fleming, et al. 1995; Van den Brink, et al. 1995). 
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A large number of studies have used Chironomus riparius as a bioindicator of OP 

exposure (Detra and Collins, 1991; Beauvais, et al. 1999; Sturm and Hansen, 1999; 

Fisher, et al. 2000; Callaghan, et al. 2001; Olsen, et al. 2001; Callaghan, et al. 2002). 

This midge is a common toxicity test organism, easily maintained and reared in the lab. 

However, C. riparius is uncommon in "healthy" streams and therefore may not be useful 

as an instream bioindicator of OP exposure in streams. 

Isonychia bi color was chosen for these experiments because of its wide 

distribution and year-round presence in most streams (Kondratieff and Voshell, 1984). 

Previous studies (Sweeney, 1978; Kondratieff and Voshell, 1984; Pontasch and Cairns, 

1989; Breneman and Pontasch, 1994; Andersen, 2002) have shown that I. bicolor can be 

maintained for extended periods in stream microcosms. 

The AChE inhibiting pesticides chlorpyrifos and terbufos are the most widely used 

insecticides in row crop applications in Iowa. Figure 3 .1 illustrates terbufos use in the 

United States. It is important to establish the AChE inhibition from OP's and carbamate 

pesticides in the laboratory, if AChE inhibition is to have a diagnostic value in the field. 

When possible test organisms should be derived from field populations of interest. A study 

by Hoffman and Fisher (1994) illustrated biochemical and fitness differences in sensitivity 

to insecticides in field and laboratory-derived populations of C. riparius. Such differences 

may complicate translation of experimental results with laboratory-derived populations to 

field studies with natural populations and vice-versa (Schulz, 2004). 
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The following research was conducted to correlate terbufos concentrations with I. 

bicolor AChE activity inhibition. Using methods similar to those of Andersen (2002), this 

research investigated: (1) I. bicolor AChE inhibition following a 24 hour exposure to 

terbufos; and (2) the changes in AChE inhibition following the 24 hour exposure. 

TERBUFOS 
ESTIMATED ANNUAL AGRICULTURAL USE 

Average use of 
Active Ingredient 

Pounds per square mile 
of county per year 

D No Estimated Use 

ED -<0.113 

Will 0.113 - 0.581 

lmJ 0.582 - 2.251 

mill! 2.252 - 8.012 

• >•8.013 

Crops 

com 
sugar beets for sugar 
sorghum 
sweetcorn 

Total 
Pounds .Applied 

6, 497, .2518 
472.-118 
181, 7Si! 
-48,SZI 

Pen:anl 
National us. 

90. 24 
El.56 
2.152 
0.67 

Figure 3.1. Terbufos use in the United States in 1998. (United States Geological Survey, 

1998) 
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Materials and Methods 

Stream Microcosms 

This laboratory study employed 15 oval artificial streams (1.7 X 0.24 X 0.13 m 

channel) constructed of molded fiberglass. A standpipe in each stream maintained depth 

at 13 cm and volume at 55 L. Dechlorinated tap water was supplied to each stream to 

provide flow through conditions. This tap water has similar physical/chemical 

characteristics to Northeast Iowa's streams. Current (25 cm/sec) was provided by paddle 

wheels attached to an iron rod (1-cm diameter) turned by a 0.25 hp electric motor. Two 

120-cm Durotest Vita-Lites® over each stream provided daylight equivalent light, and the 

photoperiod corresponded to the ambient photoperiod during the test. Each stream was 

covered by a 1.00 X 0.75 X 0.30 m emergence trap (mesh size ~1.0 mm). 

Insect Collection, Transportation and Sampling 

During September, 2003 l bicolor (900) from the Cedar River in Cedar Falls were 

collected with D-nets and 30 placed in each of 30 coolers containing two rock-filled 

artificial substrates for transportation to the Ecosystem Simulation Laboratory at the 

University of Northern Iowa. The contents of two coolers (60 insects and four substrates) 

were transferred to each of 15 artificial streams. Five insects from each of the 15 artificial 

streams were immediately analyzed for AChE activity to determine pre-exposure 

activities. Following introduction to the microcosms, l bicolor were acclimated for 48 h 

to a temperature of 20° C. 
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Technical grade terbufos was then added to the artificial streams to achieve 

triplicate nominal concentrations of 0.0, 2.5, 5, 10, and 20 ug/L terbufos. Previous 

research had suggested that I. bicolor can survive a 30 d exposure to 10 ug/L terbufos, 

but "quivering" of appendages was observed at that concentration (Smith, 1996). 

Dechlorinated tap water was shut off immediately prior to terbufos addition to prevent 

flow through conditions. AChE activities were determined from each stream 24 h after the 

initial pulse dose. Then 200 ml/min of dechlorinated tap water was continuously supplied 

to each artificial stream to purge the terbufos. AChE activities were then monitored 24 h 

after purging began and again eight days after purging. Following eight days of purging, 

there were insufficient organisms in most artificial streams for continued sampling, 

primarily because of adult emergence. 

Determination of AChE Activity 

Preparation and analysis of acetylcholinesterase activity was performed by the 

methods of Ellman, et al. (1961) optimized for I. bicolor by Anderson (2002). Each 

sample consisted of five I. bi color head capsules. Head capsules were homogenized in a 

glass tissue grinder with 0.5% Triton X-100 detergent in Tris pH 7.4 buffer solution. For 

every mg of tissue, 200 µl of buffer solution was added resulting in a 200:1 dilution factor. 

Homogenate from each replicate was added to a micro-centrifuge tube and centrifuged 

(10 min; 14,000 rpm). Supernatant aliquots were separated into two cryovials then frozen 

(-80°C) until analyzed for AChE activity. Aliquots were separated in order to create a 

spare that remains frozen in case of sampling error, spillage, etc. 
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Acetylcholinesterase activity was quantified in a microplate-reading 

spectrophotometer (SpectraMAX Plus, Molecular Devices, Sunnyvale, CA, USA). For 

each sample, AChE activity was measured in triplicate as the rate of increase in a 

absorbance at 412 nm. Each well contained an aliquot of I. bicolor head capsule 

supernatant (30 µl), acetylthiocholine iodide (AThChl) solution (0.0418 M; 30 µl), 5,5-

dithiobis-2-nitrobenzoic acid (DTNB) colorimetric reagent solution (0.442 M; 20 µl), and 

Tris pH 8.0 buffer solution (170 µl). Acetylthiocholine iodide (AThChl) is similar in 

structure to acetylcholine and acetylcholinesterase hydrolyzes AThChl in a similar manner 

to acetylcholine hydrolysis. This reaction results in a positively charged acetate ion and a 

negatively charged thiocholine complex. The thiocholine complex reacts with DTNB to 

create 5-thio-2-nitrobenzoate a stable, yellow colored anion that absorbs light most 

strongly at 412 nm. Tris buffers, AThChl and DTNB were obtained from Sigma Chemical 

(St. Louis, MO, USA). Tris buffer solutions were refrigerated at 4°C for no longer than 

one month and were adjusted to appropriate pH values prior to each analysis. DTNB and 

AThChl were prepared immediately prior to spectrophotometric analysis. 

The optimum reaction temperature (~32°C) was achieved by maintaining DTNB 

and AThChl at room temperature, placing thawed cryovials of tissue homogenate in ice 

water and heating tris 8.0 buffer to ~80°C before pipetting. A blank (consisting of200 µl 

Tris pH 8.0 buffer solution, 30 µl AThChl solution, 20 µl DTNB solution but no tissue 

homogenate) and a check standard ( consisting of pooled homogenate supernatant from 

approximately 200 I. bicolor head capsules) were also analyzed in triplicate on each plate. 
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Care was taken to prevent formation of any bubbles during the entire process as bubbles 

cause inaccurate readings by the spectrophotometer. 

Spectrophotometer software (SoftMAX PRO, Molecular Devices, Sunnyvale, CA, 

USA) was used to determine the highest AChE activity (Vmax). Absorbance 

measu~ements for all trials were read in all wells every twelve seconds for five minutes 

after an initial one-minute lag time. The following formula was used to convert mOD 

(milli-optical density) output units into international units of enzyme activity: 

{ [( enzyme mOD/min)-(blank mOD/min)]/1000} x 0. 817 x dilution factor= 

(µmoles AThChI hydrolyzed/min)/gram tissue 

Determination of Total Protein Content 

In this study, AChE activity is expressed in nrnoles AThChI hydrolyzed/min/mg 

protein as well as µmoles AThChI hydrolyzed/min/g tissue. Andersen (2002) expressed 

activity only as µmoles AThChI hydrolyzed/min/g tissue. In order to find the protein 

content of the AChE tissue homogenate, the Bradford protein assay was optimized for use 

with I. bicolor tissue homogenate. Quantifying AChE activity relative to total protein 

content potentially minimizes the variation caused by differing amounts of other 

substances such as chitin or fat in the head capsules. A standard curve using bovine serum 

albumin was created to quantify the amount of protein in a solution of known 

concentration. The amount of protein (µg protein/ µg tissue) in each sample was calculated 

using the formula (12((Bradford assay O.D.) - 0.017)/48. 775). From this the AChE 

activity per mg protein was calculated. 
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The Bradford assay utilized a 96 well microplate reading spectrophotometer. Each 

sample was analyzed in triplicate using 60 µl Bradford's reagent (Coomassie® Brilliant 

Blue G-250 dye; Bio Rad, Hercules, CA, USA), 5 µl tissue homogenate, and 235 µl twice 

distilled, reverse osmosis water in each well. Each sample was then mixed by repeated 

suction/expulsion through a micropipetter to ensure even mixture of the solution. Care 

was taken to prevent formatio11 of bubbles during this process as bubbles create inaccurate 

spectrophotometric readings. Each microplate contained one blank (240 µl water and 60 

µl Bradford reagent), and one check standard, as well as unknowns (each in triplicate). 

Microplates were allowed to sit approximately 5 minutes before analysis in the 

spectrophotometer. 

The AChE data (both µmoles AThChl hydrolyzed/ min /gram protein as well as 

µmoles AThChl hydrolyzed/min/ gram tissue) from each sampling date were statistically 

analyzed by a one-way Analysis of Variance (ANOVA) among treatments followed by 

Dunnett's Test for the comparison of means with a control. In addition, the data within 

each treatment were statistically analyzed by a one-way ANOV A among dates followed by 

Duncan's Multiple Range Test for the separation of means. 

Results and Discussion 

Water quality characteristics in the artificial stream microcosms and the Cedar 

River were similar (Table 3 .1 ). Prior to acclimation, the treatments were not significantly 

(p>0.05) different in terms of AChE activities per g tissue (Figure 3.1) or per mg protein 

(Figure 3.2). Following 24 h terbufos exposure, AChE activity per g tissue in the 20 
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µg!L treatment was significantly (p.:S 0.05) different from the control (Figure 3.3), but no 

significant (p>0.05) difference was found in AChE activity per mg protein in any treatment 

(Figure 3.4). Following 24 h purging, AChE activities (per g tissue and per mg protein) 

were significantly (p.:S 0.05) lower in the 20 µg/l treatment (Figure 3.5 and 3.6). By the 

eighth day after purging, all organisms in the 20 µg!L treatment were dead, and among the 

remaining treatments there were no significant (p>0.05) differences in AChE activities per 

g tissue (Figure 3.7) or per mg protein (Figure 3.8). An analysis of AChE activities 

within a treatment over time indicated that in the 10 µg/L treatment activity (per g tissue) 

was significantly higher (p,:S0.05) on day 9 than on day 2 (Figure 3.9), but the increase was 

not significant (p>0.05) for activity per mg protein (Figure 3.10). Overall the data suggest 

that J. bi color AChE activities can rebound from exposures to 10 µg/L but not 20 µg!L. 

Table 3 .1 Physical/Chemical characteristics of water in artificial stream microcosms and 
Cedar River. 

Measurement microcosmsa Cedar River 

Alkalinity (mg CaCO/L) 158 160 

Hardness (mg CaCO/L) 298 270 

Conductivity (mS/cm) 0.406 0.436 

pH 7.63 7.67 

Temperature (°C) 18.7 21.3 

Dissolved Oxygen (mg/L) 8.43 11.0 

a Each value represents the mean from five microcosms 
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Figure 3.2 Isonychia bicolor AChE activities (per g tissue) in artificial stream microcosms 
prior to exposure to terbufos. P value is from a one-way ANOV A among treatments. 
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Figure 3.3 Isonychia bicolor AChE activities (per mg protein) in artificial stream 
microcosms prior to exposure to terbufos. P value is from a one-way ANOV A among 
treatments. 
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Figure 3 .4 Isonychia bi color AChE activities (per g tissue) in artificial stream microcosms 
after 24 h exposure to terbufos. P value is from a one-way ANOV A among treatments. 
***significantly different (p:S0.05) from the control based on Dunnett's test 

c 600 

l 
0ll 500 

~ ·e 
~ 400 

i 
£ 300 

e 
~ 
< 200 

l 
~ 100 -~ 
·.;:, 

~ 
0 ....__ __ 

P = 0.1750 

0 2.5 5 10 20 

nominal terbufos concentration (µg/L) 

Figure 3.5 Isonychia bicolor AChE activities (per mg protein) in artificial stream 
microcosms after 24 h exposure to terbufos. P value is from a one-way ANOV A among 
treatments. 
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20 

Isonychia bi color AChE activities (per g tissue) in artificial stream microcosms exposed to 
terbufos 24 h after purging (48 h after initial exposure). P value is from a one-way 
ANOVA among treatments. ***significantly different (p:::0.05) from the control based on 
Dunnett's test. 
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Figure 3. 7 Isonychia bicolor AChE activities (per mg protein) in artificial stream 
microcosms exposed to terbufos 24 h after purging (48 h after initial exposure). P value is 
from a one-way ANOVA among treatments. ***significantly different (p:::0.05) from the 
control based on Dunnett's test. 
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Figure 3.8 Jsonychia bicolor AChE activities (per g tissue) in artificial stream microcosms 
exposed to terbufos 8 dafter purging (9 dafter initial exposure). P value is from a one­
way ANOV A among treatments. 
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Figure 3.9 Jsonychia bicolor AChE activities (per mg protein) in artificial stream 
microcosms exposed to terbufos 8 dafter purging (9 dafter initial exposure). P value is 
from a one-way ANOV A among treatments. 
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Figure 3 .10 Jsonychia bi color AChE activities (per g tissue) in artificial stream 
microcosms exposed to terbufos. P values are from a one-way ANOV A for each 
treatment among days. Bars with the same letter are not significantly different (p2:_0.05) 
based on Duncan's Multiple Range Test for the separation of means. 
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Figure 3.11 Jsonychia bicolor AChE activities (per mg protein) in artificial stream 
microcosms exposed to terbufos. P values are from a one-way ANOV A for each 
treatment among days. Bars with the same letter are not significantly different (p2:_0.05) 
based on Duncan's Multiple Range Test for the separation of means. 
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CHAPTER4 

IN-STREAM BIOASSESSMENT OF AN URBAN, COLDWATER STREAM 
POLLUTED BY CHLORDANE 

Abstract 

101 

Urban streams are subject to a wide array of anthropogenic insults. This study was 

undertaken to quantify possible impacts on the aquatic macroinvertebrate communities in 

McLoud Run, an urban, coldwater stream in Cedar Rapids, Iowa, USA. Aquatic 

macroinvertebrate communities were allowed to colonize rock-filled artificial substrates at 

three sites for one month before sampling. Sampling occurred monthly from August, 

2002 until August, 2003. Three artificial substrates from each site were preserved in 

alcohol on each date. Monthly invertebrate samples were also collected for chlordane 

analysis. Chlordane is a persistent organochlorine pesticide previously found in trout from 

McLoud Run. Periphyton samples were also collected monthly for determination of 

chlorophyll a, biomass and the Autotrophic Index. 

Invertebrate sampling indicated low numbers of"clean water" taxa such as 

Ephemeroptera, Trichoptera and Plecoptera (absent) as well as high numbers of"dirty 

water" taxa such as Chironomidae and Oligochaeta. In addition, collector/gatherers were 

predominant at all sites and mean HilsenhoffBiotic Index values ranged between 5.5 and 

6.1. These data suggest moderate organic enrichment at all sites. 

Samples for chlordane analysis were pooled due to small macroinvertebrate 

biomass. However, chlordane levels were below detection limits (50 µg/1). Periphyton 

sampling was often hindered by sedimentation and spates. One site (McLoud Place) had 
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significantly higher (p>0.05) biomass and chlorophyll a on most dates than the remaining 

sites (J Avenue and 42nd Street). Autotrophic Index values were relatively high at all sites, 

indicating a high ratio of heterotrophs to autotrophs. 

Keywords: urban streams, bioassessment, chlordane, functional feeding groups, Hilsenhoff 

Biotic Index, Autotrophic Index 
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Introduction 

Urban streams throughout the world are frequently impaired. The cause of 

impairment may be due to many factors that complicate diagnoses of problems and their 

remediation. Several important sources of urban stream degradation are ubiquitous and 

difficult to rectify. These include increased runoff from impervious surfaces, non-point 

source pollution with complex pollutant mixtures, and loss of natural riparian vegetation. 

Degradation of streams in urban areas is often due to the synergistic interaction of these 

insults. 

Streams in urban settings receive extreme volumes of runoff during rainfall events 

because impervious surfaces such as city streets, roofs and compacted soils coupled with 

efficient storm sewers and ditches cause sudden, high flows in urban streams. The amount 

of impervious surface in watersheds has been proposed as a key indicator of stream 

degradation by a number of authors. Stephenuck (2002) found that the Hilsenhoff Biotic 

Index (Hilsenhoff, 1987) increased dramatically when impervious surfaces of a watershed 

reached 8-12%. Schuler (1994) noted a sharp threshold in habitat quality existing with 

approximately 10-15% impervious surface areas. Schuler and Galli (1992; as cited by 

Schuler, 1994) found that trout and sculpin were excluded from Maryland piedmont 

streams at 10-12 % imperviousness. May, et al. (1997) found physical and biological 

measures generally changed most rapidly between 5 -10% imperviousness. Booth and 

Jackson (1997) found 10% effective imperviousness elicited demonstrable loss of aquatic 

system function. 
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With increased imperviousness, subsurface flow processes are diminished, causing 

water to quickly flow over the surface instead ofin:filtrating the soil (Booth and Jackson, 

1997). These processes change the hydrologic regime of the stream. A study by Klein 

(1979) suggested that impervious surfaces result in decreased groundwater recharges and 

decreased low flow conditions in some physiographic provinces. However, in other 

provinces, baseflow may increase. In urban settings storm events also cause floods more 

frequently. Klein (1979) found that in rural or agricultural areas bankfull flows occur 

approximately once a year, in areas of 40 percent imperviousness bankfull flows occur 3 

times yearly and in higher areas 5.6 times yearly. 

Stream channels respond to frequent flooding by increasing their cross-sectional 

area either by down cutting of the streambed, widening of banks or both, to accommodate 

higher flows. Furthermore, loss of natural riparian vegetation in urban areas results in bank 

instability intensifying changes in channel morphology (Schuler, 1994). Also, in many 

streams humans employ artificial channelization to reduce meandering, which has 

detrimental results similar to, or greater than, the natural changes. These changes increase 

the hydraulic efficiency of the channel, transmitting flood waves downstream faster (Booth 

and Jackson, 1997). Increased flow causes modified stream discharge regimes, which 

result in excessive bank erosion, altered channel morphology and base flows, changes in 

bed composition and morphology, as well as degraded aquatic habitat (Stephenuck, 2002). 

Klein (1979) suggests that flooding may have a rejuvenating effect on stream 

health. However, the resilience of stream communities may be strained as floods increase 
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in severity and frequency. Frequent flash flooding causes scouring of substrates and 

deposition of silt that can dramatically affect benthic macroinvertebrate communities and 

other aquatic life (May, et al., 1997) especially in streams less than 4 meters wide (Lenat 

and Crawford, 1994). Rushing water may dislodge or bury invertebrates in sediment, 

causing severe decreases in numbers (Minshall, 1969). Fine sediments deposited over 

larger, solid substrates such as gravel and cobble create a "seal" that prevents colonization 

and attachment by many benthic macroinvertebrates (Brusven and Praether, 1974; 

Wiederholm, 1984). In these conditions burrowing and filter-feeding macroinvertebrates 

such as Oligochaeta and Chironomidae are favored (Wiederholm, 1984). Iffine sediment 

doesn't exclude benthic insects it may affect feeding and respiration (Wiederholm, 1984). 

Furthermore, water flow to the intragravel region is reduced in the presence of silt and 

reduces intragravel dissolved oxygen (May, et al., 1997). Fish egg development 

(especially in salmonids) depends on high water flow to provide intragravel dissolved 

oxygen and remove metabolic wastes. 

Changes in the erosional-depositional characteristics of urban streams may favor 

development of a fauna adapted to extreme bed instability (Pedersen and Perkins, 1986). 

These changes may mask the effects of contamination from urban runoff. Pedersen and 

Perkins (1986) suggest that these processes may be a more fundamental determinant in the 

functioning of urban stream ecosystems than factors related to toxicity or organic loading. 

Storm water runoff also carries many toxic compounds into streams. These may 

include heavy metals, pesticides, oil, road salt, detergents, and organic matter. Benke, et 
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al. (1981) noted that "pollutants stress aquatic communities in ways that affect species 

composition, productivity, trophic pathways, species interactions, and a host of other 

structural and functional aspects of ecosystems." A study by Bryan (1972) found that 

biochemical oxygen demand (i.e. the amount of oxygen needed to break down the organic 

load in water) and suspended solids in urban runoff to be comparable to that of secondary 

wastewater treatment eftluent or even raw sewage, calling it "unsuitable dilution water for 

sewage". The biochemical oxygen demand needed for decomposition of this organic 

matter can cause anaerobic conditions that may eliminate many aquatic taxa. In these 

conditions red Chironomus spp. and Tubificidae may be the only fauna present. 

Hemoglobin in these species allows them to bind oxygen in anaerobic conditions. In cases 

where organic enrichment is less severe (i.e. when conditions aren't anaerobic) organisms 

such as grazing mayflies, Simuliidae and hydropsychid caddisflies may proliferate 

(Wiederholm 1984). 

Temperature changes are a commonly encountered problem in urban streams 

because impervious areas can have local air and ground temperatures 10 to 12°C warmer 

than the fields and forests they replace (Schuler, 1994). Therefore, precipitation is 

warmed and rapidly carried into streams. Klein (1979) adds that further heat loss and gain 

is caused by widening of streams from increased runoff that causes stream depths to 

decrease and riparian vegetation to disappear. These changes cause increased daily and 

seasonal temperature maxima, decreased daily and seasonal minima, and changes in 

diurnal, seasonal and annual patterns of temperature fluctuation (Minshall, 1969; 
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Wiederholm, 1984). Heavily canopied streams typically warm more slowly in spring and 

cool less rapidly in fall. Temperature changes may have a number of detrimental effects 

on stream biota. These may include altering developmental time, body size, fecundity, as 

well as elimination or reduction of species and premature or delayed emergence patterns. 

Loss of riparian vegetation is also a common problem in urban areas due to 

removal during development and losses from flooding and subsequent changes in stream 

morphology. Riparian vegetation has many important functions in maintaining stream 

quality, however it is difficult to ascertain how much and what type of vegetation is 

needed. May, et al. (1997) noted that not only the width of riparian corridors, but also the 

longitudinal continuity or connectivity are important factors in maintaining stream quality. 

Minshall (1969) found that the largest number of taxa existed in areas with the least 

disturbed forest nearby. Benke, et al. (1981) found that areas with >75% riparian cover 

have at least twice as many species as areas with <25% cover. May et al. (1997) also 

found that urban streams consistently had little mature riparian area (e.g., forest) and 

subsequently had little large woody debris. Large woody debris helps to dissipate flow 

energy, protects and stabilizes stream banks, provides instream cover and habitat diversity, 

and alters sediment deposition. Deep-rooted vegetation is typically replaced by grasses or 

ornamental plants that confer little resistance to stream widening (Booth and Jackson, 

1997). In addition, loss of deciduous trees reduces the volume ofleaves that enter a 

stream. Small, undisturbed streams are typically heterotrophic depending on 

allochthonous input ( e.g. leaves) as the most important source of primary production 



(Kaushik and Hynes, 1971; Wallace, et al., 1977; Vannote, et al., 1980; Wiederholm, 

1984). Elimination ofleaf packs due to loss of vegetation and frequent flooding may 

greatly change the trophic status of smaller streams. 
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McLoud Run is a small, urban, trout stream located entirely in Cedar Rapids, 

Iowa. Tissue analyses of (approximately) two year old trout from McLoud Run contained 

0.39 ppm chlordane in the edible portions and 0.48 ppm in head and gut samples during 

2001, exceeding the FDA action level of 0.3 ppm (John Olsen, Iowa Department of 

Natural Resources, personal communication), and there have been yearly trout kills during 

2000-2002 related to elevated water temperatures from summer rains. A rain event on 

August 2, 2001 raised the temperature of McLoud run by 7°C in one hour, killing rainbow 

and brook trout. In response, the Iowa Department of Natural Resources (IADNR, 

2005a) Fisheries Bureau has issued a catch and release only restriction on trout taken from 

McLoud Run. For purposes of Section 305(b) assessment, the general aquatic life uses of 

McLoud Run are considered "threatened" by the pesticide chlordane (John Olsen, IDNR, 

personal communication). 

Chlordane (2,3,4,5,6, 7,8,8-octochloro-2,3,3a,4,3, 7a-hexahydro-4, 7-

methanoindene) is an organochlorine insecticide used from 1945 until it was banned by the 

EPA in 1988. Trade names for chlordane formulations included Velsicol 1068®, Velsicol 

168®, M-410®, Belt®, Chlor-kil®, Chlortox®, Corodane®, Gold Crest C-100®, Gold 

Crest C-50®, Kilex®, Kypchlor®, Niran®, Synchlor®, Termi-ded®, Topichlor 20®, 

Chlordan®, Prentox®, and Penticklor®. Chlordane was manufactured by several 
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companies from 1945-1950, then exclusively by the Velsicol Corp. in Marshall, Illinois 

from 1951 until its use was banned. This chemical was used on row crops (especially corn) 

until 1983 and around house foundations for termite control until 1988 (ATSDR, 1994). 

Chlordane is a nerve stimulant causing hypersensitivity, hyperactivity with violent 

bursts of convulsions and finally complete prostration with convulsive movements. The 

exact biochemical mode of action is unknown, however the site of disturbances is known 

to lie in the ganglia of the central nervous system. Target sites are presumed to be on 

proteins or phospholipids in nerve or muscle membranes (Eisler, 1990). The metabolites 

oxychlordane and heptachlor epoxides are also toxic. Oxychlordane is produced by both 

plants and animals and is typically more toxic than chlordane (Sittig, 1980) 

Chlordane exists as two common isomers a-cis and ~-trans, and a number of less 

common isomers with a molecular weight of 409.8. The technical product is a brownish 

liquid that contains varying amounts of chlordane and other active, closely related 

compounds. This mixture typically consisted of24% trans-chlordane, 19% cis-chlordane, 

10% heptachlor, 7% nonachlor, 21.5% other chlordane isomers and 18.5% closely-related 

chlorinated hydrocarbon compounds (Sittig, 1980). From 1945-1950 a version of 

chlordane was produced under the trade names 1068 Chlordane® and Octa-Chlor® that 

contained an extremely toxic unreacted intermediate, hexachlorocyclopentadiene (Ingle, 

1965). 70,000 tons of chlordane was used from 1946-1991 and 25-50% was estimated to 

still exist in the environment in 1991 (Pridmore, et al. 1992). 
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Numerous studies have measured concentrations of chlordane in various 

environmental compartments (Fox et al. 1983; Wood, et al. 1986; Erstfeld, et al. 1989; 

Pridmore, et al. 1991; Erstfeld, et al. 1996; Hoople and Foster, 1996; Periera, et al. 1996; 

Wright, et al. 1996; Erstfeld, et al. 1997; Park and Erstfeld, 1999; Rostad, et al. 1999; 

Rawn, et al. 2001). Chlordane is persistent in the environment with a half-life in soil of 

3-14 years. Atmospheric transport can deliver chlordane great distances and all available 

evidence suggests that chlordane is ubiquitous in the environment (Eisler, 1990; Rawn, et 

al. 2001). A study by Stackelberg (1997) found chlordane in 80-100% of urban stream 

sediment samples and found a positive correlation between urban population and amounts 

of chlordane. Rostad, et al. (1999) also found total chlordane loads in Mississippi River 

sediment to be greatest near urban and industrialized areas. 

Chlordane has a water solubility of 9 µg!L at 3 5°C. However, when chlordane is 

found in water samples concentrations typically occur in the ng/L range. Concentrations 

in suspended solids and sediment are higher, typically between <0.03-580 ppb (ATSDR, 

1994). In water, chlordane tends to bind to biota, organic sediments or it volatilizes. 

Chlordane has an octanol/water partitioning coefficient of 6.04 (Wood, et al. 1986). 

Chemicals with octanol/water partitioning coefficients near 6 tend to bioaccumulate 

strongly in benthic biota (Oliver 1984). It appears that volatilization kinetics 

(volatilization half-life in lakes is estimated to be< 10 days) are faster than adsorption 

kinetics (ATSDR, 1994). The majority of chlordane enters water as runoff and is 

adsorbed to particulates before entry. Chlordane may desorb in the water and volatilize 
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rapidly near the surface. Wright (1996) suggests that soils with adsorbed chlordane tend 

to accumulate in depositional areas and affect Chironomidae (and potentially other 

invertebrates) there more so than those from erosional or transitional areas. 

Chlordane is highly toxic to aquatic organisms and bioconcentrates in aquatic 

species. Acute toxicity of chlordane to freshwater fish and invertebrates occurs between 3 

and 190 µg/L, with most values between 15 and 60 µg/L (Cardwell, et al. 1977). 

Cardwell, et al. (1977) found the freshwater chronic toxicity of chlordane for Daphnia 

magna and Lepomis macrochirus to be 16 and 1.6 µg/L, respectively. However, the 

fathead minnow (Pimephales promelas) test produced no significant differences (p > 0.05) 

from the control at the highest concentration tested (6.03 µg/L). A 13 month (Eisler, 

1990) exposure to 0.32 µg/L caused reduced embryo vitality in brook trout (Salvelinus 

fontinalis). Concentrations as low as 1. 7 µg/L caused mortality in Chironomus sp. in a 25 

day exposure (Eisler, 1990). 

Cardwell, et al. (1977) found technical chlordane bioconcentration factors (BCF) 

of 5,200 and 3,800 for Hyallela azteca and Daphnia magna, respectively. As technical 

chlordane is a mixture, these numbers were calculated by multiplying the arithmetic mean 

of each constituent's BCF by its percentage composition in technical chlordane then 

adding the products of each constituent. Cardwell, et al. ( 1977) also found the lipid 

normalized BCF (BCF value divided by lipid content) for Pimephales promelas to be 

4,974. In a more recent study, Hoople and Foster (1996) found that the aquatic plant 

Hydrilla verticillata concentrated chlordane by foliar uptake from the water column. 
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The following is the current draft of the Section 305(b) water quality assessment 

for McLoud Run (John Olson, Iowa DNR, 2005b ). 

SUMMARY: The general (aquatic life) uses remained assessed 
(monitored) as "partially supported" due to the occurrence of a fish kill during the 
last three years (2000-2002) and the potential for similar kills to occur in the 
future. This kill involved temperature-sensitive fish species (trout) and was 
attributed to elevated water temperatures in runoff from this stream's urban 
watershed following summer rains. Results of ambient water quality monitoring 
conducted in summer 2002 for the Cedar Rapids intensive urban monitoring 
project indicate generally good chemical water quality in this stream. 

EXPLANATION: The previous assessment of support for the general 
beneficial uses of this stream ("partially supporting" the general aquatic life uses) 
was based on the occurrence of two spill-related fish kills during the 1996-1997 
biennial assessment period (see assessment developed for the 1998 and 2000 
reporting cycles). The most recent fish kill, however, occurred on August 2, 2001 
and was due to storm water runoff from urban watershed of this stream. The 
rainfall event occurred during very warm summer weather, and the relatively warm 
runoff water raised the temperature of McLoud Run by 19 degrees Fin an hour. 
Temperature-sensitive species such as the (stocked) rainbow, brown, and brook 
trout were killed. According to DNR's assessment methodology for Section 
305(b) reporting, occurrence of a single pollution-caused fish kill within the most 
recent three-year period (1997-1999) indicates that the aquatic life uses of a 
waterbody are only "partially supported. 11 Thus, the general aquatic life uses of 
this stream remain assessed as "partially supported" due to thermal impacts from 
urban runoff. 

Results of ambient water quality monitoring conducted in summer 2002 for 
the Cedar Rapids intensive urban monitoring project indicate good chemical water 
quality in this stream. The purpose of this project is to measure the daily 
variability of water quality through time in two urban streams in the Cedar Rapids 
area - McLoud Run and Indian Creek. Both streams are monitored by the City of 
Cedar Rapids Water Pollution Control as part of their storm water monitoring 
program. The daily monitoring is designed to supplement the storm water 
monitoring being conducted on these two streams by the City of Cedar Rapids. In 
2002, sampling was conducted daily on McLoud Run from about mid-May to mid 
August. Parameters monitored include pesticides, toxic organics, conventional 
parameters (including nutrients), and bacterial indicators (e.g., fecal coliforms and 
E. coli). In general, results of this monitoring show good water quality. Although 
classified only for general uses, Iowa water quality criteria for either Class B(LR) 
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or Class B(CW) aquatic life uses were compared to results of monitoring as an 
indicator of the status of water quality in this stream. This comparison showed no 
violations of criteria for pH or ammonia in the 70+ samples collected during 
summer 2002. One of 83 samples contained a level of dissolved oxygen below the 
7.0 mg/I water quality criterion for Class B(CW) coldwater streams: the sample 
collected on June 10, 2002 contained 6.4 mg/I of dissolved oxygen. Levels of 
metals, pesticides, and other toxic organic compounds did not exceed chronic 
aquatic life criteria . The only such parameter to approach a state criterion was 
pentachlorophenol (PCP). Fifteen of the 79 samples analyzed contained detectable 
levels of PCP; five of these samples were within 1 ug/1 of the respective pH­
dependent Class B(LR) criterion. None of the 81 samples analyzed contained 
detectable levels of either chlordane (detection level= 0.05 ug/1) or any of the 
seven PCB Aroclors analyzed (including Aroclors 1248, 1254, and 1260) 
(detection level= 0.5 ug/1). Both chlordane and PCBs have been found at elevated 
levels in fish from either McLoud Run or the adjacent Cedar Lake. 

Fish tissue monitoring conducted in June 2001 following a mid-May fish 
kill showed that fillet samples of stocked trout (ages 1 and 2) contained levels of 
chlordane above the 0.300 ppm U.S. FDA action level. A second fish tissue 
sampling in July 2001 showed that levels were just below the FDA action level. In 
response, the IDNR Fisheries Bureau has issued a no-kill restriction on trout taken 
from McLoud Run. For purposes of Section 305(b) assessment, the general 
aquatic life uses of McLoud Run are considered "threatened" by the pesticide 
chlordane. 

Due to the persistent nature of chlordane and McLoud Run' s proximity to many 

older businesses and residences, aquatic macroinvertebrates may still be exposed to 

chlordane. If chlordane is present at sufficient levels, macroinvertebrate populations may 

decline, community composition may shift toward more tolerant species, and trout food 

species may become limited. Together with direct toxicity and bioaccumulation, these 

factors may contribute to a decline in trout health and, potentially, death. The objective of 

this research was to quantify macroinvertebrate population densities and chlordane levels 
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in McLoud Run. In addition, periphyton samples were taken to quantify chlorophyll a and 

biomass which were then used to calculate the Autotrophic Index 

Materials and Methods 

Study Area 

McLoud Run is a small, cold-water, first-third order stream located in Cedar 

Rapids, Iowa. Post-World War II residences and small businesses constitute most of the 

drainage. Much of the stream is channelized and a portion of the stream flows through 

culverts beneath a residential neighborhood. 

Three riffle sites were chosen for research. The upstream site is designated as 42nd 

Street, the intermediate site as McLoud Place and the downstream site as J Avenue. The 

42nd Street site is located north of 42nd Street behind a photographer's studio. The riflle 

substrate is primarily sand and cobbles (10-15 cm diameter). Most of the riflle is 

completely shaded by riparian vegetation, and leaf packs were present from October to 

April. Apparently, during times oflow flow this site has become dry. However, during 

this study the stream flowed continuously except for a period from January to mid-March 

when it was frozen solid. Subsurface sediments at this site were found to be black and 

smelled of sulfur throughout this study, suggesting anoxic conditions. 

The second site is located south of the McLoud Place bridge. This riflle is 

composed oflarge cobbles (10-30 cm diameter) embedded in sand. Little overhanging 
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riparian vegetation exists on this portion of the stream, but a small area is shaded by the 

McLoud Place bridge. 

The J Avenue riffle runs parallel to J Avenue beneath the 1-380 overpass. This 

riffle is composed of cobbles (10-40 cm diameter) embedded in sand with exposed 

bedrock in some portions. Although the overpass shades most of this riffle, grassy, 

overhanging, riparian vegetation is abundant on the north side. The south bank is rip-rap 

for erosion control. 

Macroinvertebrate Density Sampling 

Artificial substrates were used to collect insects due to the relatively small riffles in 

McLoud Run that precluded the use of Hess or Surber samplers. Also, artificial substrates 

help to reduce community composition variability caused by natural substrate differences 

among sites. Macroinvertebrate communities were colonized in rock-filled plastic 

containers (10.6 X 10.6 X 8.3 cm) with six circular holes (12 mm dia) in each side. River 

rock ( 4-6 cm dia), purchased at a sand and gravel pit, was used to fill the plastic 

containers. Seven artificial substrates were secured monthly to each of two wooden 

frames that were anchored to the stream bottom at each site with iron rods and concrete 

blocks. 

Artificial substrates were allowed to colonize for 30 days. Previous studies have 

shown that a 30 day colonization period is sufficient to ensure that macroinvertebrate 

species equilibrium has been achieved (Pontasch, 1995). After colonization a dip net was 
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placed behind each substrate during removal from the frame. The rocks from each 

substrate were then gently rubbed and rinsed to remove any attached organisms and the 

resulting slurry was rinsed through a 500 micron sieve. The contents of three randomly 

selected artificial substrates were preserved in three labeled jars containing 80% ethanol. 

Organisms captured in the dip net were added to the ethanol with the sample from each 

respective substrate. All colonized substrates were removed at the end of each sampling 

trip and replaced with new substrates. 

Organisms were identified to the lowest practical taxonomic level. Chironomidae 

(Insecta: Diptera) were identified to genus when sufficient morphological features existed 

to allow positive identification under a dissecting scope. All other Chironomidae were 

identified to the subfamily level. Macroinvertebrate taxa were considered a "core" taxon 

and analyzed statistically if they contained a mean of four or more individuals at one site, 

on at least one sampling date, during the study. Remaining taxa were not statistically 

analyzed. The density of individuals in each "core" taxon were compared among sites on 

each sampling date (Figures 4.1-4.20). The data were analyzed by a one-way analysis of 

variance (ANOVA) in conjunction with Duncan's Multiple Range Test for the separation 

of means, or, when only two sites were compared, with a t-test. 

Macroinvertebrate taxa were assigned to their respective functional feeding groups 

and these data were graphed for each site. The functional feeding group (FFG) approach 

was developed to illustrate trophic relationships in streams with greater clarity (Merritt 

and Cummins, 1996). By assigning insects to functional feeding groups researchers can 
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understand how organic matter is cycled within a stream and also the size and origin of the 

organic matter. Although these FFG data were not statistically analyzed, they help 

illustrate the trophic status of each stream reach. Also, data from this study were used to 

calculate the HilsenhoffBiotic Index (HBI) (Hilsenhoff 1977; Hilsenhoff 1982; Hilsenhoff 

1987; Hilsenhoff 1998). The HBI was developed to categorize streams according to levels 

of organic enrichment. 

Temperature, dissolved oxygen, pH, hardness, alkalinity, and conductivity were 

monitored at each site on each sampling date (Appendix G). Substrates were introduced 

into McLoud Run on 7-16-02 and were visited monthly thereafter for one year. Heavy 

rains in early August 2002 washed out most substrates at all sites. Artificial substrates 

were then reinstalled on 8-15-02 and the study was reinitiated, running until 8-18-03. 

Chlordane Analysis 

During each collection trip, at each site, two colonized artificial substrates were 

removed and placed in a cooler filled with source riffle water for transportation to the 

laboratory. Upon arrival at the laboratory, insects were narcotized with carbonated water 

and removed from substrates. Insects from each site were placed in a small Nalgene 

container and frozen until analysis at the University Hygienic Laboratory. Initially, each 

sample was to be individually tested. However, the individual samples did not contain 

enough tissue to analyze for chlordane. The samples were then pooled into one sample to 

obtain enough tissue for analysis. 
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Periphyton Sampling 

Periphyton was colonized on seven artificial substrates attached to the anchored 

macroinvertebrate substrate frames at each study site. The periphyton artificial substrates 

consisted of square ( 10. 8 X 10. 8 cm), high-density, plastic container lids roughened with 

coarse sandpaper. After the 30 d colonization, all seven periphyton substrates were 

removed and placed in a cooler filled with source riffle water for transportation to the 

laboratory. 

Upon arrival at the laboratory a sample was taken from each of the substrates by 

scraping a delimited surface area with a bristle brush and filtering the scrapings onto 

Whatman GFC filter paper. Determination of chlorophyll a concentration was made with 

one half of the filter paper, and biomass (ash-free dry weight) was determined from the 

other half (APHA, et al. 1989). From this the Autotrophic Index (AI) can be calculated: 

AI = Biomass (mg/m2
) / Chlorophyll a (mg/m2

) 

The AI is a measure used to determine the trophic status of periphytic communities (i.e. 

heterotrophs versus autotrophs). Normal values range from 50-200 and values above 200 

indicate possible organic enrichment (APHA, et al. 1989). Sedimentation at 42nd Street 

and J Avenue resulted in no more than two sites with Chlorophyll a, biomass and AI data 

on a given sampling date. Chlorophyll a, biomass and the AI values from each site were 

therefore analyzed by t-tests for comparisons between sites. 
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Results 

Macroinvertebrate Density Sampling 

Insects were the most diverse class of organisms found with 39 taxa. Sixteen of the 

twenty macroinvertebrate "core" taxa identified were from the orders Ephemeroptera, 

Trichoptera, and Diptera. The orders Hymenoptera, Hemiptera, Coleoptera, and Odonata 

were collected in numbers too low to be included in statistical analysis but are listed with 

the "core" taxa in Table 4.1. 



Table 4.1. List of taxa identified in McLoud Run. 
Insecta 

Ephemeroptera 

Caenidae 

Baetidae 

Ephemerellidae 

Caenis amica 

Baetis flavistriga 

Ephemerella sp. 

Trichoptera 

Hydropsychidae Hydropsyche bronta 

Cheumatopsyche sp. 

Hydroptila sp. 

Oxyethira sp. 

Ochrotrichia sp. 

Coleoptera 

Diptera 

Hydroptilidae 

Elmidae 

Hydrophilidae 

Dytiscidae 

Melyridae 

Stene/mis sandersoni 

Hydrobius sp. 

Agabinus sp. 

Chironomidae 

Tanypodinae 

Orthocladiinae 

Chironominae 

Chironomini 

Chironomini 

Tanytarsini 

Thienemannimyia sp. 

Larsia sp .(or Krenopelopia sp.) 

Thienemanniella sp. 

Orthocladius sp. 

Cricotopus sp. 

Cricotopus trifascia group 

Brillia sp. 

Dicrotendipes sp. 

Polypedilum sp. 

Saetheria sp. 

Phaenopsectra sp. 

Paracladopelma sp. 

Synendotendipes sp. 

Krenopsectra sp. 

Rheotanytarsus sp 

Paratanytarsus sp 
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(table continues) 



Table 4.1 (Continued). List of taxa identified in McLoud Run. 

Mollusca 

Diptera 

Simuliidae 

Empididae 

Tabanidae 

Syrphidae 

Psychodidae 

Tipulidae 

Ceratopogonidae 

Hymenoptera 

Diapriidae 

Hemiptera 

Belostomatidae 

Odonata 

Libellulidae 

Coenagrionidae 

Sphaeriidae 

Planorbidae 

Physidae 

Ancylidae 

Ilydracarina 

Crustacea 

Annelida 

Amphipoda 

Oligochaeta 

Naididae 

Tubificidae 

Hirudinea 

G!ossiphoniidae 

Erpobdellidae 

Turbellaria 

Simulium vittatum 

Simulium aureum 

Simulium tuberosum 

Silvius sp. 

Telmatoscopus sp. or Pericoma sp. 

Tipulasp. 

Culicoides sp. 

Trichopria sp. 

Abedus sp. 

Erythemis sp. 

Pisidium sp. 

Helisoma sp. 

Promenetus sp. 

Physella sp. 

Ferrissia sp. 

Sperchon sp. 

Gammarus fasciatus 

Hyalella azteca 

Sty/aria sp.? 

Limnodrilus sp.? 
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Mayflies (Ephemeroptera) included only one core taxon, Baetisflavistriga 

(Baetidae). This species was found only at 42nd Street and J Avenue and in relatively low 

numbers (Figure 4.1 ). Baetidae are not considered as sensitive to organic enrichment as 

other families ofEphemeroptera. In April two Ephemerella sp. (Ephemerellidae) were 

found; one each at both McLoud Place and J Avenue. The species Caenis amica 

(Caenidae) was also collected at 42nd Street in August 2002. However, samples from this 

date were heavily disrupted by flooding and not included in this study. 
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Fig 4 .1. Mean number of Bae tis flavistriga per artificial substrate at three sites in McLoud 
Run (Iowa, USA). P values are from one-way ANOV A for each date among sites. Bars 
with the same letter are not significantly different (P>0.05) based on Duncan's Multiple 
Range Test for the separation of means. Baetis flavistriga was not collected on dates with 
no P value. 

* 42nd Street was not sampled on these dates due to freezing so McLoud Place and J 
Avenue were compared with at-test in January. 
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The order Trichoptera contained two core taxa, Hydropsyche bronta (Hydropsychidae) 

and Cheumatopsyche sp. (Hydropsychidae ). The family Hydropsychidae is considered 

one of the least sensitive Trichoptera families (Pontasch and Cairns 1991; Garie and 

McIntosh 1986) and are often among the most abundant insects in rivers with intermediate 

organic enrichment. Jones and Clark (1987) found that Hydropsyche were restricted to 

areas of low to moderate urbanization, and were not found in highly urbanized areas in 

Maryland streams. In McLoud Run, Hydropsyche bronta was found at all sites 

throughout the study period. The mean number of H. bronta per substrate was less than 

ten on each sampling date and site except in July and August, 2003 at J Avenue when the 

mean numbers were 14.7 and 47.7, respectively (Figure 4.2). The Cheumatopsyche sp. 

numbers were highest in July and August, 2003 as well, with peak mean numbers per 

substrate of90.3 and 164.7, respectively (Figure 4.3). Jones and Clark (1987) found 

Cheumatopsyche in great numbers in low to moderate areas of urbanization in Maryland 

and high numbers in areas of high urbanization. The family Hydroptilidae was represented 

by three genera Hydroptila, Oxyethira and Ochrotrichia, none of which were "core" taxa. 
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Fig 4.2. Mean number of Hydropsyche bronta per artificial substrate at three sites in 
McLoud Run (Iowa, USA). P values are from one-way ANOV A for each date among 
sites. Bars with the same letter are not significantly different (P>0.05) based on Duncan's 
Multiple Range Test for the separation of means. Hydropsyche bronta was not collected 
on dates with no P-values 

* 42nd Street was not sampled on these dates due to freezing so McLoud Place and J 
Avenue were compared with at-test. 
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Fig 4.3. Mean number of Cheumatopsyche sp. per artificial substrate at three sites in 
McLoud Run (Iowa, USA). P values are from one-way ANOV A for each date among 
sites. Bars with the same letter are not significantly different (P>0.05) based on Duncan's 
Multiple Range Test for the separation of means. 

* 42nd Street was not sampled on these dates due to freezing so McLoud Place and J 
Avenue were compared with at-test. 
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Diptera was the most species rich insect order collected in this study and included 

13 "core" taxa. Nine of the core taxa belonged to the family Chironomidae, three to 

Simuliidae, and one to Psychodidae. 

Chironomidae were the most often collected family of Diptera at McLoud Run. 

Pedersen and Perkins (1986) suggest that chironomids maintained relatively stable 

populations in Kelsey Creek (a degraded urban stream) as compared to other groups of 

insects due to their relatively short generation time and their rapid invasion potential. 

Many Chironomidae are considered to be relatively tolerant to poor water quality. 

Members of the Chironomidae subfamily Tanypodinae were not readily distinguishable 

with a dissecting microscope and, therefore, were considered one "core" taxon. However, 

several random slide mounts ofTanypodinae head capsules were prepared to identify 

which genera were present. Of these mounts approximately 90% belonged to the genus 

Thienemannimyia. The remaining individuals were from the genera Larsia and 

Krenopelopia. Tanypodinae were found at all sites on most sampling dates. However, 

mean numbers of Tanypodinae never exceeded ten individuals per substrate at any site 

(Figure 4.4). 
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Fig 4.4. Mean number of Tanypodinae per artificial substrate at three sites in McLoud 
Run (Iowa, USA). P values are from one-way ANOV A for each date among sites. Bars 
with the same letter are not significantly different (P>0.05) based on Duncan's Multiple 
Range Test for the separation of means. 

* 42nd Street was not sampled on these dates due to freezing so McLoud Place and J 
Avenue were compared with at-test. 
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Genera of the subfamily Orthocladiinae were also difficult to differentiate with a dissecting 

microscope. Only the genus Thienemanniella was easily separated. A number of 

headmounts were prepared from the remaining Orthocladiinae to ascertain the 

predominant genera. From this sample Brillia, Orthocladius, and Cricotopus were the 

only genera found. Thienemanniella was considered one "core" taxon and the remaining 

Orthocladiinae genera were considered another. Thienemanniella was found at all sites, 

on most sampling dates. This genus never exceeded a mean number of 25 individuals per 

substrate (Figure 4.5). The other genera of Orthocladiinae were collected on all sampling 

dates at all locations with relatively high densities (Figure 4.6). A study by Jones and 

Clark (1987) found numbers of Cricotopus and Orthocladius to be positively correlated 

with urbanization. 



30 

J2 25 
----~ 
C: 
C: Q) co_, 
E ~ 20 
C: _, 
Q) Cl) ._.o 
~~ 
._ cu 15 
0--

0 l....li= Q)._ 
.0 t:::: 
E cu 
::s 1.... 10 
C Q) 

C 
cu 
Q) 

a. 

~ 5 

P=0.3467 - 42'1 Street 
v::::::,/:::::1 l'vti.oud Place 
ffitWJAverw 

P=0.2519 
P=0.1449 

P=0.1250 

P=0.1980 

P=0.0011 

A 

Sep O:f Nov Dec Ja, Feb 1\/a" Apr ~ Jun Ju Aug 

2002 2003 

130 

Fig 4.5. Mean number of Thienemanniella sp. per artificial substrate at three sites in 
McLoud Run (Iowa, USA). P values are from one-way ANOV A for each date among 
sites. Bars with the same letter are not significantly different (P>0.05) based on Duncan's 
Multiple Range Test for the separation of means. Thienemanniella sp. was not collected 
on dates with no P value. 

* 42nd Street was not sampled on these dates due to freezing so McLoud Place and J 
Avenue were compared with at-test. 
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Fig 4.6. Mean number of Orthocladiinae (excluding Thienemanniella sp.) per artificial 
substrate at three sites in McLoud Run (Iowa, USA). P values are from one-way 
ANOV A for each date among sites. Bars with the same letter are not significantly 
different (P>0.05) based on Duncan's Multiple Range Test for the separation of means. 

* 42nd Street was not sampled on these dates due to freezing so McLoud Place and J 
Avenue were compared with at-test. 
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All genera of the subfamily Chironominae were easily identified with the dissecting 

microscope. Of the six genera identified from the tribe Chironomini, Dicrotendipes, 

Polypedilum, Saetheria, and Phaenopsectra were "core" taxa. Paracladopelma and 

Synendotendipes were not analyzed statistically. Dicrotendipes was found at all locations 

on most sampling dates, however, it was typically found in low numbers (Figure 4. 7). The 

genus Polypedilum was found at all sites but in the largest numbers at 42nd Street (Figure 

4.8). Some species of Polypedilum are known to have oxygen binding proteins in their 

haemolymph (Watanabe, et al. 2002). This facilitates respiration in areas of depleted 

oxygen. The 42nd Street site appeared to have anoxic subsurface sediments and 

Polypedilum may have exploited this niche. Polypedilum are frequently found in sandy 

substrates (Barton and Smith 1984). Although they do not depend on sandy 

environments, they can utilize them when more favorable substrates are lacking (Barton 

and Smith, 1984). Saetheria also was most prevalent at 42nd Street, although it was found 

at the other sites (Figure 4.9). It is important to note that Saetheria (as well as at least 

two species of Paracladopelma) are known only from shifting-sand environments (Barton 

and Smith, 1984). The rock filled substrates utilized in this study occasionally became 

filled or partially filled with sand and silt. It is likely that all collections of these species are 

from silt laden substrates. The genus Phaenopsectra was found in limited numbers at all 

sites (Figure 4.10). Three genera from the tribe Tanytarsini were identified. Krenopsectra 

and Rheotanytarsus were "core" taxa; Paratanytarsus was not. The genus Krenopsectra 

was found at all sites in limited numbers (Figure 4.11). Rheotanytarsus was also found at 



all sites and most dates (none were collected during May at any site) but was most 

abundant at 42nd Street and J Avenue in September 2002 (Figure 4.12). 
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Fig 4. 7. Mean number of Dicrotendipes sp. per artificial substrate at three sites in 
McLoud Run (Iowa, USA). P values are from one-way ANOV A for each date among 
sites. Bars with the same letter are not significantly different (P>0.05) based on Duncan's 
Multiple Range Test for the separation of means. 

* 42nd Street was not sampled on these dates due to freezing so McLoud Place and J 
Avenue were compared with at-test. 
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Fig 4.8. Mean number of Polypedilum sp. per artificial substrate at three sites in McLoud 
Run (Iowa, USA). P values are from one-way ANOV A for each date among sites. Bars 
with the same letter are not significantly different (P>0.05) based on Duncan's Multiple 
Range Test for the separation of means. Polypedilum sp. were not collected at any site 
during February and May, 2003. 

* 42nd Street was not sampled on these dates due to freezing. McLoud Place and J 
Avenue were compared with at-test in January and March, 2003. 
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Fig 4.9 . Mean number of Saetheria sp. per artificial substrate at three sites in McLoud 
Run (Iowa, USA). P values are from one-way ANOV A for each date among sites. Bars 
with the same letter are not significantly different (P>0.05) based on Duncan's Multiple 
Range Test for the separation of means. Saetheria sp.were not collected at any site from 
January to May, 2003. 

* 42nd Street was not sampled on these dates due to freezing. 
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Fig 4 .10. Mean number of P haenopsectra sp. per artificial substrate at three sites in 
McLoud Run (Iowa, USA). P values are from one-way ANOV A for each date among 
sites. Bars with the same letter are not significantly different (P>0.05) based on Duncan's 
Multiple Range Test for the separation of means. Phaenopsectra sp.were not collected at 
any site from January to May, 2003. 

* 42nd Street was not sampled on these dates due to freezing. 
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Fig 4.11 . Mean number of Krenopsectra sp. per artificial substrate at three sites in 
McLoud Run (Iowa, USA). P values are from one-way ANOV A for each date among 
sites. Bars with the same letter are not significantly different (P>0.05) based on Duncan's 
Multiple Range Test for the separation of means. Krenopsectra sp. was not collected at 
any site from January to March 2003. 

* 42nd Street was not sampled on these dates due to freezing. 
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Fig 4.12. Mean number of Rheotanytarsus sp. per artificial substrate at three sites in 
McLoud Run (Iowa, USA). P values are from one-way ANOV A for each date among 
sites. Bars with the same letter are not significantly different (P>0.05) based on Duncan's 
Multiple Range Test for the separation of means. Rheotanytarsus sp. was not collected at 
any site in May, 2003. 

* 42nd Street was not sampled on these dates due to freezing so McLoud Place and J 
Avenue were compared with at-test. 
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The Psychodidae (Diptera) genera Telmatoscopus or Pericoma (these genera are 

indistinguishable as larvae) constituted one "core" taxon. Psychodidae were found in 

limited numbers at 42nd Street and McLoud Place (Figure 4.13). Psychodidae are 

amphineustic and therefore, can withstand low dissolved oxygen in areas of high organic 

enrichment such as wastewater treatment plant trickling filters (Wiederholm, 1984). 

However, Minshall (1969) collected Pericoma sp. in reaches of a relatively unpolluted 

stream. 

All three species of Simuliidae (Diptera) identified were considered "core" taxa. 

Simulium vittatum was the most commonly collected blackfly. This species was collected 

at all sites on all sampling dates but in the greatest numbers at McLoud Place (Figure 

4.14). Simulium aureum was found at all sites in limited numbers (Figure 4.15). Both S. 

vittatum and S. aureum were found in greatest numbers at J Avenue during August of 

2003. Simulium tuberosum was collected at J Avenue and more often at McLoud Place 

(Figure 4.16) but was not found at 42nd Street. 

Four dipteran families collected were not considered "core" taxa. One Empididae 

specimen was collected in January at J Avenue. One Syrphidae was collected during April 

at J Avenue. Tipulidae were collected in October and June at McLoud Run and during 

October at 42nd Street. Two Ceratopogonidae (Culicoides sp.) were collected; one in 

August at 42nd Street and another in September at McLoud Place. 
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Fig 4.13. Mean number of Psychodidae per artificial substrate at three sites in McLoud 
Run (Iowa, USA). P values are from one-way ANOV A for each date among sites. Bars 
with the same letter are not significantly different (P>0.05) based on Duncan's Multiple 
Range Test for the separation of means. No Psychodidae were collected on dates with no 
P value. 

* 42nd Street was not sampled on these dates due to freezing. 
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Fig 4.14. Mean number of Simulium vittatum per artificial substrate at three sites in 
McLoud Run (Iowa, USA). P values are from one-way ANOV A for each date among 
sites. Bars with the same letter are not significantly different (P>0.05) based on Duncan's 
Multiple Range Test for the separation of means. 

* 42nd Street was not sampled on these dates due to freezing so McLoud Place and J 
Avenue were compared with at-test. 
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Fig 4.15. Mean number of Simulium aureum per artificial substrate at three sites in 
McLoud Run (Iowa, USA). P values are from a one-way ANOV A for each date among 
sites. Bars with the same letter are not significantly different (P>0.05) based on Duncan's 
Multiple Range Test for the separation of means. Simulium aureum were not collected on 
dates with no P value. 

* 42nd Street was not sampled on these dates due to freezing. McLoud Place and J 
Avenue were compared with at-test in January 2002. 
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Fig 4.16. Mean number of Simulium tuberosum per artificial substrate at three sites in 
McLoud Run (Iowa, USA). P values are from a one-way ANOV A for each date among 
sites. Bars with the same letter are not significantly different (P>0.05) based on Duncan's 
Multiple Range Test for the separation of means. Simulium tuberosum was not collected 
on dates with no P value. 

* 42nd Street was not sampled on these dates due to freezing. McLoud Place and J Avenue 
were compared with at-test in January, 2003. 
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Stene/mis sandersoni (Coleoptera: Elmidae) was the only species of beetle 

collected regularly, but was not considered a "core" taxon. No adults of this species were 

collected and all other species of Coleoptera were limited to the collection of one or two 

individuals from each of the families Melyridae, Dytiscidae and Hydrophilidae. 

Oligochaetes (Annelida) were the most abundant "core" taxon collected in this 

study. However, taxonomic resolution is poor. Oligochaetes (aquatic earthworms) are 

notoriously hard to identify, requiring slide-mounting or serial dissections for lower level 

identification. Due to poor preservation in ethanol and often large numbers, adequate 

identification to lower taxonomic levels is nearly impossible and always impractical. Also, 

the macerating effect of sand can destroy posterior segmentation and separate individuals 

in the process of asexual budding, both of which are useful in taxonomic identification. 

Unfortunately, lack of taxonomic knowledge of oligochaetes ( with the exception of 

Limnodrilus species and Tubifex tubifex) reduces their utility in water quality studies 

(Goodnight and Whitley, 1960; Aston, 1973). For this study all Oligochaetes were 

considered one "core" taxon. However, a number of random individuals were slide 

mounted for further identification. Of the slide mounted specimens all belonged to 

Tubificidae (likely Bothrioneurum sp. or Limnodrilus sp.) or Naididae (likely Stylaria sp.). 

Oligochaetes were found at all sites on all sampling dates (Figure 4.17). 
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Fig 4 .17. Mean number of Oligochaeta per artificial substrate at three sites in McLoud 
Run (Iowa, USA). P values are from one-way ANOV A for each date among sites. Bars 
with the same letter are not significantly different (P>0.05) based on Duncan's Multiple 
Range Test for the separation of means. 

* 42nd Street was not sampled on these dates due to freezing so McLoud Place and J 
Avenue were compared with at-test. 
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Leeches (Annelida: Hirudinea) were considered one "core" taxon. Leeches were 

collected at 42nd Street and rarely at J Avenue. Numbers at 42nd street were highest during 

June, July and August (Figure 4.18). Most specimens belonged to the family 

Erpobdellidae. Although keys exist to further identify leeches, preservation in ethanol 

makes identification difficult. Some erpobdellids are known to be scavengers and/or 

predators on gastropods and small oligochaetes (Pennak, 1989). This species' peak 

abundance occurred with peak Physella sp. abundance (see below) suggesting they may 

have been be part of the erpobdellid diet. Two specimens of Glossiphoniidae were also 

collected at 42nd street in August. 

Bivalve molluscs were represented only by one species of Sphaeriidae (Pisidium 

sp.). All of these specimens were small and could not be identified to the species level. 

Pisidium was only found at 42nd Street in low numbers and was not considered a "core" 

taxon. 

Two families of Gastropoda (Mollusca) were present in the macroinvertebrate 

samples, Planorbidae (Helisoma sp. and Promenetus sp.) and Physidae (Physella sp.). A 

third family, Ancylidae (Ferrissia sp.) was found on rocks at J Avenue, but not in any of 

the artificial substrates. Helisoma sp. and Promenetus sp. were collected rarely at 42nd 

Street and were not considered "core" taxa. Although these species were collected only 

rarely in the artificial substrates, they were commonly encountered at 42nd Street along 

with Physella sp., beneath the substrate support frames. Although Physella was also 

occasionally collected at McLoud Place and J Avenue, it was most common at 42nd 
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Fig 4.18. Mean number ofHirudinea per artificial substrate at three sites in McLoud Run 
(Iowa, USA). P values are from one-way ANOV A for each date among sites. Bars with 
the same letter are not significantly different (P>0.05) based on Duncan's Multiple Range 
Test for the separation of means. Hirudinea were not collected on dates with no P value. 

* 42nd Street was not sampled on these dates due to freezing. 
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Street, with greatest abundance in the summer months (Figure 4.19). This genus is known 

to prefer areas of high organic enrichment and to withstand dissolved oxygen 

concentrations of <2 ppm (Pennak 1989) . 

. Two species of Amphipoda (Crustacea) were collected; neither were "core" 

taxa. Gammarus fasciatus was collected in June at McLoud Place and in April and 

September at J Avenue. Hyalella azteca was collected in December at McLoud Place and 

in November at J Avenue. Neither species was found at 42nd Street. 

Hydracarina (Arachnida) were represented by one genus, Sperchon; a "core" 

taxon. This mite was collected year round at McLoud Place and in July and August at J 

Avenue (Figure 4.20). It was not found at 42nd Street. These mites were abundant in 

some samples sorted for chlordane analysis and may be under-represented due to 

morphological similarity to sand and organic matter. 
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Fig 4.19. Mean number of Physella sp. per artificial substrate at three sites in McLoud 
Run (Iowa, USA). P values are from one-way ANOV A for each date among sites. Bars 
with the same letter are not significantly different (P>0.05) based on Duncan's Multiple 
Range Test for the separation of means. Physella sp. was not collected on dates with no P 
value. 

* 42nd Street was not sampled on these dates due to freezing. 



25 

c. 20 
en 
C: Q) o _. 
~Jg 
Q) en 15 
~-§ en 
o ro 
i....·c3 
~!E 
Et 10 
:::J ro 
C: Q) 
C: C. 
ro 
Q) 

~ 5 

- 42
rd 

Street 
[JJ]] McLoud Place 
~ JAvenue 

P=0.2263 

P=0.4219 

P=0.1847 

P=0.1747 

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug 

2002 Month 2003 

150 

Fig 4.20. Mean number of Sperchon sp. per artificial substrate at three sites in McLoud 
Run (Iowa, USA). P values are from one~way ANOV A for each date among sites. Bars 
with the same letter are not significantly different (P>0.05) based on Duncan's Multiple 
Range Test for the separation of means. Sperchon sp. was not collected on dates with no 
P value and never at 42nd Street. 

* 42nd Street was not sampled on these dates due to freezing so McLoud Place and J 
Avenue were compared with at-test. 
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Functional Feeding Groups 

In this study each taxon was assigned to a functional feeding group (FFG) using 

the classification ofMerritt and Cummins (1996). If more precise information existed 

(e.g., to genus or species), it was used. However, species level identification was often 

lacking and primary modes of feeding often change during development. When specific 

knowledge was absent the general FFG of the next highest taxonomic level was assigned. 

When the organism fit more than one FFG it was assigned to the most important or 

dominant FFG during its aquatic life cycle. 

Collector/gatherers were the most abundant FFG at all sites, on most sampling 

dates, compromising greater than 50% of the benthos on most dates (Figures 4.21-4.23). 

This group feeds on detritus and other loose material deposited on the substrate. 

Chironomidae and Oligochaeta compromised most of the collector/gatherers in this study. 

Shredders feed on coarse particulate organic matter(> 1mm diameter) such as dead leaves. 

Shredders were relatively abundant at 42nd Street but were poorly represented at McLoud 

Place and J Avenue. Most of the shredders in this study were Chironomidae, with larger 

shredders ( e.g., Plecoptera) notably absent. Collector/filterers utilize fine particulate 

organic matter (:Slmm diameter) and were relatively abundant at McLoud Place and J 

Avenue, but were uncommon at 42nd Street. In McLoud Run, Hydropsychidae and 

Simuliidae comprised most of the collector/filterers. Tanypodinae comprised the majority 

of predators collected at all sites. Piercer/herbivores were exclusively represented by 

Hydroptilidae and were seldom collected during this study. Scrapers, mostly Baetidae and 
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Gastropoda, were relatively abundant at 42nd Street and were occasionally collected in 

small numbers at J Avenue and McLoud Place. 

At 42nd Street (Figure 4.21), collector/gatherers were the most abundant 

macroinvertebrates sampled except in September 2002 and during July and August 2003 

when shredders were more abundant. Predators and shredders were most abundant during 

summer and fall months. Scrapers collected at 42nd Street were mostly Gastropods. 

Collector/filterers and piercer/herbivores were poorly represented at 42nd Street. 

At McLoud Place (Figure 4.22), collector/gatherers were the predominant FFG on 

all sampling dates. Collector/filterers were present in relatively large numbers in March, 

April and May 2003 and in smaller numbers throughout the rest of the year. Relatively 

small numbers of predators were found in September 2002 and in April and August, 2003. 

Other FFG' s were poorly represented throughout the year. 

Collector/gatherers were also the most abundant FFG at J Avenue on all sampling 

dates except in July when collector/filterers were more abundant (Figure 4.23). From 

November 2002-May 2003 collector/gatherers compromised nearly 100% of all 

macroinvertebrates sampled. In September 2002 and during June, July and August 2003 

collector/filterers were relatively well represented. Other FFG' s were seldom collected at 

J Avenue. 

It is important to note that Chironomidae were typically considered 

collector/gatherers and compromised a large percentage of collector/gatherer numbers. 
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However, it is generally accepted that chironomid feeding behavior is poorly understood 

in many species and chironomids often change feeding behavior during their life cycle. 

Also, similar morpho-behavioral mechanisms of food acquisition in different species 

( within a genus) may result in the ingestion of markedly differing food items (Merritt and 

Cummins, 1996). The role that Chironomidae play in organic matter processing is 

important, and further research is needed to accurately utilize chironomids in FFG surveys. 
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Hilsenhoff Biotic Index 

The Hilsenhoff Biotic Index (HBI) was developed as a means to categorize 

streams according to amount of organic enrichment using macroinvertebrate community 

composition. Each insect species ( or lowest possible taxon) is given a score (from 1 

"good" to 10 "poor"). This score is then multiplied by the number of that species (or 

taxa) collected. This is repeated for all taxa and then all of these numbers are summed. 

This number is then divided by the total number of insects collected to give the index value 

(Hilsenhoff 1987). In this study HBI scores were used from both Hilsenhoff (1998) and 

from the U.S. Environmental Protection Agency's Rapid Bioassessment Protocols 

(Barbour, et al. 1999). Another version (Modified HBI: Hilsenhoff 1998) uses no more 

than ten individuals of any taxon to calculate the Modified Hilsenhoff biotic index. 

Abundant species skew the original HBI and standard deviation between dates is 

increased. By utilizing a maximum of ten individuals the modified HBI provides a closer 

approximation of a site's "true" index value. 

It is important to note that: (1) the HBI and modified HBI were not intended to 

compare between sites from the same river and should not be used to compare within a 

site over time. Hilsenhoff ( 1977) suggests that diversity and species richness indices are 

more useful for comparing similar sites on the same stream or the same site from year to 

year than the HBI or Modified HBI; (2) correction for natural stream variation (substrate 

quality, streamflow, etc.) and seasonal differences (i.e. species presence/absence) do not 

exist; (3) important insects such as Cheumatopsyche, Simuliidae and Chironomidae are 
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difficult or impossible to identify to species and great variations in tolerance may exist 

within genera; ( 4) summer collection is discouraged (lower dissolved oxygen may change 

community composition and can result in "poorer" index values); and (5) Hilsenhoff 

(1977) suggests using samples with approximately 100 individuals. 

In this study both the HBI and the modified HBI were calculated despite 

inconsistencies with Hilsenhofl's (1977) original guidelines (i.e. sampling procedure, 

summer sampling). In addition, these indices were designed to classify streams where 

organic matter is the primary anthropogenic disturbance, and it is not clear how the indices 

are affected when coupled with other disturbances. The macroinvertebrate sampling 

called for year-round sampling so these data were used in calculating the HBI. However, 

the HBI and modified HBI values in summer months were not substantially different than 

other sampling dates and were therefore included in this analysis. Hilsenhoffwas 

concerned that the HBI from summer dates would be compared between seasons, 

affecting interpretation. In this study these concerns appear to be unjustified; the cold­

water nature of McLoud Run may have negated this effect to some extent. In this study 

insect numbers were often lower than 100 per sample (14 of28 samples had >100 insects 

sampled), however artificial substrates appeared to sample proportional abundance with 

relative accuracy regardless of total abundance, thereby minimizing the importance of 

large sample sizes. 

Tables 4.2- 4.4 show all HBI and modified HBI from 42nd Street, McLoud Place 

and J Avenue. Generally, the HBI and the modified HBI were similar on most sampling 
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dates within a site, but the mean modified HBI values were slightly higher than the mean 

HBI within each site. The mean HBI and mean modified HBI within-site values were 

similar at all sites and between 5.5-6.1, which indicates moderate organic enrichment. 

Table 4.2. Hilsenhoffbiotic index (HBI) and Modified Hilsenhoffbiotic index values from 
McLoud Run sampling 2002-2003 at 42nd Street site. Macroinvertebrate numbers were 
pooled from 3 replicates for calculation of biotic index. 

HBI Modified HBI 

Month Total Macroinvertebrates* BI value Total Macroinvertebrates** BI value 

Sep 721 5.71 77 5.30 

Oct 195 4.60 48 5.98 

Nov 41 5.41 30 5.63 

Dec 48 6.02 27 5.81 

Jan Site Frozen/No Sample 

Feb Site Frozen/No Sample 

Mar Site Frozen/No Sample 

Apr 18 5.89 t t 
May 11 6.36 t t 
Jun 122 4.07 54 6.39 

Jul 104 5.80 45 5.80 

Aug 318 6.28 61 6.57 

Mean= 5.57 Mean=5.97 

Range 4.07-6.36 Range 5.30-6.57 

* Total number of macroinvertebrates used for HBI analysis. This number includes only 
taxa for which index values are established. 

** Total number of macroinvertebrates used for modified HBI analysis. The Modified 
HBI utilizes only 10 members of taxa where total numbers are greater than ten. 

t No taxa contained 10 or more individuals/ Modified HBI was same as HBI. 
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Table 4.3. Hilsenhoffbiotic index (HBI) and Modified Hilsenhoffbiotic index values from 
McLoud Run sampling 2002-2003 at McLoud Place site. Macroinvertebrate numbers 
were pooled from 3 replicates for calculation of biotic index. 

HBI Modified HBI 

Month Total Macroinvertebrates* BI value Total Macroinvertebrates** BI value 

Sep 421 2.73 90 5.28 

Oct 157 5.25 62 5.44 

Nov 414 5.78 65 6.08 

Dec 207 6.76 50 6.36 

Jan 425 4.20 61 6.34 

Feb 109 6.39 29 6.24 

Mar 89 2.66 38 6.21 

Apr 44 6.09 25 6.16 

May 45 6.73 31 6.87 

Jun 340 6.19 61 6.31 

Jul 296 6.35 56 6.07 

Aug 2264 6.94 121 5.88 

Mean=5.51 Mean=6.10 

Range 2.66-6.94 Range 5.28-6.87 

* Total number of macroinvertebrates used for HBI analysis (sum of means for each taxa). 
This number includes only taxa for which index values are established. 

** Total number of macroinvertebrates used for modified HBI analysis (sum of means for 
each taxa). The Modified HBI utilizes only 10 members oftaxa where total numbers are 
greater than ten. 



Table 4.4. Hilsenhoffbiotic index and Modified Hilsenhoffbiotic index values from 
McLoud Run sampling 2002-2003 at J Avenue site. Macroinvertebrate numbers were 
pooled from 3 replicates for calculation of biotic index. 

HBI Modified HBI 

Month Total Macroinvertebrates* BI value Total Macroinvertebrates** BI value 

Sep 303 6.09 109 5.76 

Oct 35 6.00 32 6.00 

Nov 74 6.28 42 5.98 

Dec 66 3.06 37 6.03 

Jan 43 6.19 31 5.29 

Feb 39 6.07 18 6.17 

Mar 33 6.00 19 6.32 

Apr 14 5.57 14 5.57 

May 22 7.36 15 7.27 

Jun 194 6.05 71 6.25 

Jul 552 5.64 102 6.13 

Aug 1479 5.56 113 5.84 

Mean=5.82 Mean=6.05 

Range 3.06-7.36 Range 5.29-7.27 
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* Total number of macroinvertebrates used for HBI analysis (sum of means for each taxa). 
This number includes only taxa for which index values are established. 

** Total number of macroinvertebrates used for modified HBI analysis (sum of means for 
each taxa). The Modified HBI utilizes only 10 members oftaxa where total numbers are 
greater than ten. 
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Chlordane Analysis 

Initially chlordane analyses were to be performed on samples from each site and 

each date. However, insufficient quantities of insects from each site prevented individual 

analyses. Therefore, samples from all sites and dates were then pooled. No chlordane was 

found in the pooled sample. However the detection limit (50 µg/1) may be higher than 

physiologically relevant levels because 48-96 h LC50's for six macroinvertebrate species 

range from 15.0 to 50.0 µg!L. Of those species the stonefly Pteronarcys californica 

(Plecoptera: Pteronarcidae) was the most sensitive (Mayer and Ellersiek, 1986). 

Periphyton Sampling 

Sedimentation hindered periphyton sampling at 42nd Street and J Avenue 

throughout this study. At 42nd Street samples were not collected in December, 2002 and 

June, July or August 2003 because of sedimentation or in January, February and March 

2003 due to freezing of this portion of the stream. McLoud Place had higher flow over 

the substrates throughout the year and, therefore, did not have sedimentation problems. 

Throughout the study this site had lush, green-brown algal growth covering the substrates. 

Samples could not be collected at J Avenue in September and October, 2002 and 

February, March, April, May and June 2003 due sedimentation. Flow was higher in July, 

2003 and allowed increased algal growth . A high water event prevented collection of 

periphyton samples at all sites in July 2003. 



163 
McLoud Place had significantly (p:::_0.05) higher periphyton biomass on all dates 

sampled except for August 2003 (Figure 4.24). This site had little shading riparian 

vegetation and therefore was exposed to sunlight for most of the day. This likely caused 

the increased periphyton growth at McLoud Place. Periphyton growth was noticeably less 

at 42nd Street and J Avenue probably due to shading and lower current velocities which 

allowed deposition of sand and silt on the periphyton substrates. On most dates that 

periphyton was analyzed at 42nd Street and J Avenue the growth of periphyton appeared 

as a thin brown biofilm. 

McLoud Place also had the highest chlorophyll a values on all dates (Fig 4.25). 

Again, this was likely due to shade and sedimentation at 42nd Street and J Avenue. 

Chlorophyll a values at McLoud Place fluctuated in an anomalous manner throughout the 

year. Highest values were achieved in November and January and great variation was 

present throughout the year. Decreased water temperatures in November and January 

may have slowed grazing insect metabolism and allowed algal growth to exceed grazing. 

Autotrophic Index values were high at all sites and dates (Fig 4.26). This is 

indicative of high organic enrichment. The APHA, et al. (1989) state that normal values 

range from 50-200 and that values above 200 indicate possible organic enrichment. In this 

study AI values often exceeded 200. The April sample from 42nd Street exceeded 17,000; 

however it should be noted that there were large amounts of decomposing leaf packs 

present. The saprophytic microorganisms from this decomposition, coupled with 

inherently low chlorophyll a values at this site, likely caused this ratio to be biased. 
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Fig 4.24. Mean periphyton biomass at three sites in McLoud Run (Iowa, USA). P values 
are from a t-test on each date between sites. Samples were only processed from McLoud 
Place during February, March and June. No samples were processed in July, 2003. 
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Discussion 

The macroinvertebrate data indicate that McLoud Run has low numbers of"clean 

water" fauna typical of unpolluted trout streams. The so called "EPT taxa" 

(Ephemeroptera, Plecoptera and Trichoptera) are indicative of unpolluted, healthy 

streams. Baetidae, the only commonly collected Ephemeroptera family in McLoud Run, 

are considered tolerant mayflies. Pedersen and Perkins (1986) suggest that Baetidae (as 

opposed to other Ephemeroptera) are more ammenable to disruption of local habitat. 

The order Plecoptera, another "clean water" taxon was not collected in this study. 

Plecoptera (or stoneflies) are commonly collected in most Northeast Iowa rivers. 

Wiederholm (1984) noted that Plecoptera were the last to reappear after periods of 

organic enrichment. Trichoptera were collected at all sites and on most sampling dates in 

relatively high numbers. However, most Trichoptera collected belonged to the family 

Hydropsychidae, a filter-feeding family found in higher numbers in areas of increased 

organic enrichment (Wiederholm, 1984; Pontasch and Cairns, 1991). Generally, pollution 

intolerant species were uncommon in McLoud Run, while oligochaetes and tolerant 

Diptera fauna were present in large numbers. 

This pattern of decreased numbers of "EPT taxa" and large numbers ofDiptera 

and Oligochaetes is consistent with organic pollution. In classic cases of organic 

enrichment (such as below inadequately treated sewage treatment outflows); 

macroinvertebrate communities are dominated by Diptera, especially Chironomidae and 
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Simuliidae, as well as tubificid oligochaetes (Wiederholm 1984). Increased biochemical 

oxygen demand and decreased dissolved oxygen from increased organic load may 

eliminate more sensitive macroinvertebrate taxa (Hynes 1960). High organic enrichment 

may also explain the high biomass and AI values found at McLoud Run. In areas of high 

organic enrichment AI values are high due to increased heterotrophs (bacteria, saprophytic 

fungi, etc.) feeding on the carbon source. McLoud Run does not receive any apparent 

point-source inputs (i.e. wastewater treatment, manufacturing effiuent, etc.) of organic 

pollution. However, urban runoff likely contributes a high organic burden. Sources such 

as lawn clippings, petroleum products and pet waste can contribute to increased organic 

loads. Analyses of macroinvertebrate data with the HBI and modified HBI suggest only 

moderate organic impact. 

Organic pollution is one of many components of urban runoff that may be 

contributing to the degradation of McLoud Run. Urban storm runoff contains many 

substances toxic to aquatic life such as salt from roads, polycyclic aromatic hydrocarbons 

from incomplete combustion of gas, coal or wood and heavy metals such as lead, zinc, 

copper, cadmium and chromium. Ide (1967) noted that after DDT application to a 

stream, chironornid populations developed early and larger insects (especially Trichoptera) 

did not recover until four or more years had passed. Minshall (1969) also noted a similar 

phenomena after a flood. A study by Benke, et al. (1981) found that taxa with large body 

size (i.e. Plecoptera, Megaloptera) were seldom found in urban streams. The authors 



suggested this was because of their inability to recover and recolonize quickly from 

stresses. 

169 

Insecticides and herbicides may also enter McLoud Run via storm runoff This 

may be especially important in urban areas where these chemicals are applied to lawns. 

Insecticides such as organophosphates may hydrolyze quickly but may still enter urban 

streams. Persistent non-polar compounds such as chlordane may be flushed from areas of 

application and then bind to the organic fraction of stream sediments. When chlordane is 

found in solution it is typically found in the ng/L range. However, concentrations are 

usually higher (0.03-580 ppb) in suspended solids and sediments where it may be 

accumulated by benthic invertebrates (ATSDR, 1989). Unfortunately, the few studies that 

investigated chlordane toxicity reported chlordane concentrations in the ambient water 

only. No field studies have been found that looked at the significance of chlordane body 

burden in aquatic macroinvertebrates. This paucity of data renders interpretation of data 

from this study impossible. Because the detection limits for chlordane in this analysis were 

higher than physiologically relevant levels, the impact of chlordane on this stream is likely 

obscured. 

Urban runoff may also cause large amounts of sediment to be deposited into 

McLoud Run, especially from construction areas. Throughout this study silt and sediment 

tended to fill interstices and cover the artificial substrates, especially at 42nd Street and J 

Avenue. This effectively eliminates microhabitats necessary for species-rich 

macroinvertebrate communities and obscures the effects of chemical contamination 
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(Arthington, 1982). A study by Blyth (1980) found siltation (due to damming) created a 

habitat for small oligochaetes and midge larvae and excluded many previously common 

"clean water" stream insects. This is consistent with the community composition found in 

this study. 

High water flow in McLoud Run during storm events is another factor potentially 

affecting the macroinvertebrate communities in McLoud Run. Debris indicating high 

water could be found as high as 2.5 m above 42nd Street's low flow level, even after mild 

rain showers. Impervious surfaces such as parking lots and roads, coupled with storm 

sewers allow sudden, punctuated surges of water. These surges can scour 

macroinvertebrates and algae from the substrate, and as they subside, deposit fine 

sediments in riffie interstices rapidly. Also, these surges may rapidly increase 

temperatures. Many "normal" trout stream macroinvertebrates require constant cold 

temperatures. Temperature spikes may eliminate these cold stenotherms and allow other 

more tolerant species to become established. 

Conclusions 

McLoud Run is subject to a number of perturbations common to many urban 

streams. Urban runoff carries many toxic compounds directly to streams. Although 

chlordane was found in McLoud Run's trout, it was not found in the macroinvertebrates. 

However, the detection limits used in this study may have been higher than ecologically 
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relevant levels. Decreased EPT taxa and results of the HBI and Autotrophic Index suggest 

moderate organic enrichment in McLoud Run. 

During the course of this study debris indicating high water could be found 2.5 m 

above 42nd Street's low-flow level, even after relatively insignificant rainfall events. 

Frequent inundation rapidly alters the hydrology of streams, changes the temperature 

drastically, scours the substrates and deposits sediment. The effects of flooding were not 

investigated, but they also likely affect community composition in McLoud Run 

drastically. 
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EPILOGUE 

Populations of aquatic macroinvertebrates in Northeast Iowa are potentially 

exposed to organophosphorus (OP) and carbamate insecticides throughout much of the 

spring and summer. Insecticide drift and runoff may reach surface waters where intensive 

agriculture is in close proximity to streams and wetlands. Carbamate and OP insecticides 

are the most commonly used in Northeast Iowa and both are acetylcholinesterase (AChE) 

inhibitors. These insecticides can be difficult to detect with chemical analysis and methods 

to analyze some of their degradation products do not exist. 

AChE activity from field populations of aquatic macroinvertebrates could be used 

as a biomarker of exposure to OP and carbamate insecticides. In order to demonstrate 

inhibition in the field, background AChE activity fluctuations need to be clearly 

understood. Previous studies have shown that Isonychia bicolor (Ephemeroptera: 

Isonychiidae) AChE activities from Northeast Iowa streams have a great deal of variability 

both among sites and over time (Andersen, 2002). The studies described in this thesis 

expressed AChE activity both in µmoles acetylthiocholine (AThCh) hydrolyzed/min/gram 

tissue (as used in Andersen, 2002) as well as nmoles AThCh hydrolyzed/min/mg protein to 

potentially minimize variability. However, using the Bradford Assay in conjunction with 

the Ellman assay did not always clarify results. However, the assay is easy to use, 

inexpensive and sensitive. For these reasons it is suggested that future studies utilize these 

methods. Throughout this thesis AChE activity per g tissue was included to allow 
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comparison to previous studies. In future studies it may also be included, but treated as 

less accurate than the activity per mg protein. 

Research presented in Chapter One monitored AChE activity in J. bicolor field 

populations. During 2002, weekly monitoring on the Volga River indicated a significant 

(p,:S0.05) increase over time in both activity per mg protein and per g tissue at VRNB , but 

found no significant (p>0.05) changes at VRTB. At VRSP, no significant (p > 0.05) 

changes in AChE activity per g tissue were found, but AChE activity per mg protein 

increased significantly (p,:S0.05) between 5/14/02 and 6/3/02, then decreased (p,:S0.05) 

significantly by 6/18/02. This decrease coincided with a flood event that occurred 

between 6/3/02 and 6/5/02. 

Sampling at ten sites in May, 2002 indicated CRED, CRJV and UIKV had among 

the highest activities in both per g tissue and per mg protein. In addition, UICR and UIDE 

were notably lower than the upstream UIKV site. During July, 2002 the Upper Iowa 

River sites were lower than most other sites, while LCCP had the highest activity (21 

µmoles AThCh/min/g tissue) of any site reported in this thesis. During September, 2002 

upstream Upper Iowa River sites (UIKV and UICR) were significantly (p,:S0.05) higher 

than UIDE in activity per mg protien. A similar decrease was reflected in the activity per 

g tissue; however, these activities were not significantly (p>0.05) different. 

The 2003 weekly sampling on the Volga and Upper Iowa Rivers indicated a 

significant (p,:S0.05) decrease in activities at downstream sites following a major rainfall 

event between July 2 and July 14 that may have carried pesticide runoff into these streams. 
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No significant (p>0.05) differences were found among the ten sites during 2003 sampling 

in activity per g tissue or per mg protein. Similarly, monthly sampling of the Cedar River 

found no significant (p>0.05) differences in 2002 or 2003. Overall, the significant 

(p:::0.05) decreases in AChE activities on the Volga River (2002) and Volga and Upper 

Iowa Rivers (2003) following rainfall events in July, suggest an association between 

decreased AChE activities and possible insecticide runoff events. 

The studies described in Chapter Two investigated the effects of larval body size 

and photoperiod on J. bicolor AChE activity. During June and August, 2002, J. bicolor 

were sampled from the Cedar River, Cedar Falls, Iowa, USA These insects were divided 

into three size classes: small, medium, and large, and analyzed for AChE activity. No 

significant (p>0.05) differences were found among size classes in either June or August. 

During July, 2002, 540 I. bicolor were sampled from the Cedar River in Cedar 

Falls. 60 insects were transferred to each of 9 stream microcosms and acclimated to one 

of three photoperiod regimes (18:6, 12: 12, and 6: 18 L:D). AChE activity was monitored 

weekly for three weeks. No significant (p>0.05) differences were found, suggesting 

photoperiod is not an important factor affecting AChE activity in J. bicolor. Results of 

these studies suggest that any size I. bicolor larvae can be used for AChE analysis, and 

that photoperiod is not an important factor influencing AChE activity in future microcosm 

or field studies with I bicolor. 

If biomarkers are to be used to estimate environmental insecticide concentrations 

or simple exposure in the field, laboratory dose-response studies are necessary. Such 
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experiments associate AChE inhibition with dose. During research reported in Chapter 

Three, stream microcosms were used to expose late instar I. bicolor to the OP insecticide 

terbufos for 24 hat nominal concentrations of 0.0, 2.5, 5.0, 10.0 and 20.0 µg/L and then 

were purged with 200 ml/min of clean water. Streams were sampled prior to dosing, after 

24 h exposure, 24 h after purging and 8 d after purging. 

Following 24 h exposure, AChE activity (per g tissue) in the 20 µg/L treatment 

was significantly (p.::::0.05) different from the control, but AChE activity (per mg protein) 

in the 20 µg/L treatment was not significantly (p>0.05) different from the control. 

Following 24 h purging, AChE activities (per g tissue and per mg protein) were 

significantly (p.::::0.05) lower in the 20 µg!l treatment. By the eighth day after purging, all 

organisms in the 20 µg/L treatment were dead, and among the remaining treatments there 

were no significant (p>0.05) differences in AChE activities (per g tissue or per mg 

protein). An analysis of AChE activities within a treatment over time indicated that in the 

10 µg/L treatment activity per g tissue was significantly higher (p.::::0.05) on day 9 than on 

day 2, but the increase was not significant (p>0.05) for activity per mg protein. 

Overall research reported in Chapter Three, indicated that terbufos concentrations 

near 20 µg/L significantly inhibit I. bicolor AChE activity and may lead to mortality 

following 24 h exposure. In addition, I. bi color exposed to 10 µg/L or less rebounded to 

pre-exposure AChE activity levels within 9 days. 

The research reported in Chapter Four was undertaken to quantify possible 

impacts on the aquatic macroinvertebrate communities in McLoud Run, an urban, 
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coldwater stream in Cedar Rapids, Iowa, USA. Aquatic macroinvertebrate communities 

were allowed to colonize rock-filled artificial substrates at three sites for one month before 

sampling. Sampling occurred monthly from August, 2002 until August, 2003. The 

colonizers from three artificial substrates at each site were preserved in alcohol on each 

date. Also, monthly invertebrate samples were collected for chlordane analysis. Chlordane 

is a persistent organochlorine pesticide previously found in trout from McLoud Run. 

Additionally periphyton samples were collected monthly for determination of chlorophyll 

a, biomass and the Autotrophic Index. 

Invertebrate sampling indicated low numbers of"clean water" taxa such as 

Ephemeroptera, Trichoptera and Plecoptera (absent) as well as high numbers of"dirty 

water" taxa such as Chironomidae and Oligochaeta. In addition, collector/gatherers were 

predominant at all sites and mean HilsenhoffBiotic Index values ranged between 5.5 and 

6.1. These data suggest moderate organic enrichment at all sites. 

Samples for chlordane analysis were pooled due to small macroinvertebrate 

biomass. However, chlordane levels were below detection limits (50 µg/1). Periphyton 

sampling was often hindered by sedimentation and spates. One site (McLoud Place) had 

significantly (p.::::0.05) higher biomass and chlorophyll a on most dates compared to the 

remaining sites (J Avenue and 42nd Street). Autotrophic Index values were relatively high 

(i.e. a high ratio ofheterotrophs to autotrophs) at all sites, again suggesting organic 

enrichment. 
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Future AChE Research 

This study, as well as the study by Andersen (2002), have helped to illustrate some 

important details of AChE activity in I. bicolor populations. If this biomarker is to 

become a useful and accurate tool in insecticide exposure assessment a number of issues 

need to be addressed. The foremost problem with interpretation of field and laboratory 

data is from fluctuating AChE activity. If activity levels under "normal" circumstances 

remained static, interpretation would be quite easy. However, this is not the case. This 

and previous studies were the first steps of interpreting background AChE activity and its 

variability. Future studies need to look more closely at other sources of this variability. 

Although this study found no differences among photoperiod regimes, it may be 

possible that AChE activity varies at certain times of the year due to photoperiodic or 

temperature changes. Lutz (1974) stresses the importance of photoperiodic regulation of 

growth and development (i.e. synchronous larval development, emergence, mating and 

oviposition) in aquatic insects, especially near the vernal and autumnal equinox. Important 

physiological changes at these times of year may be accompanied by changes in AChE 

activity. 

AChE activity may also change daily with diel temperature or photoperiod 

changes. A study by Bauer (1976) found that the AChE activity of the locust Schistocerca 

gregaria rapidly peaked following morning temperature increases, but little change 

followed temperature decreases at night. Numerous, but less dramatic changes occurred 

following various diel temperature or photoperiod changes. While the details of this are 
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beyond the scope of this discussion, it is important to note that diel fluctuations can cause 

important shifts in AChE activity in insects. In our study, field sampling occurred 

throughout the day. If AChE activity in I. bicolor changes throughout the day, as 

suggested by Bauer (1976), great variability may be seen, despite little change in mean 

daily activity. A study with design similar to Bauer's (1976) may illustrate important diel 

changes in I. bicolor AChE activity. 

In order to better understand the role seasonal photoperiod and temperature 

changes play in AChE activity, the voltinism of I. bicolor in Iowa streams needs to be 

ascertained. Sweeney (1978) found that I. bicolor were bivoltine in Pennsylvania streams. 

If the same voltinism pattern occurs in Iowa, I. bicolor were likely sampled from both 

generations in a given year. If AChE activity patterns differ between "winter" and 

"summer" generations, this may complicate interpretation ofresults. Using Sweeney's 

(1978) methods, voltinism patterns could be established with relative ease. Also, Sweeney 

( 1978) could sex late instar nymphs just prior to emergence at certain times of the year. It 

is possible that differences exist in AChE activity between sexes, creating variability when 

head capsules of both sexes are pooled. A study to determine AChE activity of both sexes 

might demonstrate another potential source of variability. 

Sweeney ( 1978) cited a method for rearing I. bi color from eggs in the laboratory. 

Since I. bicolor are relatively easy to maintain in a laboratory, this method may reduce 

confounding results from use of field-collected test organisms in microcosm studies as 

well as in future assay optimization applications. Not only would this eliminate the 
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potential for insecticide exposure, it would utilize organisms of approximately the same 

age with a relatively homogeneous genetic makeup. While developing a method to 

produce large numbers of insects may take considerable time, the benefits of such 

homogeneity may outweigh the difficulties associated with rearing and maintenance. 

Carbamate and OP insecticides have been used for many years, and these 

compounds may enter streams regularly. Future studies may need to establish if I. bicolor 

in Northeast Iowa have become resistant to commonly used insecticides. The details of 

insect resistance to OP's and carbamates are beyond the scope of this discussion. 

However, if I. bicolor populations are resistant, that may cloud the interpretation of 

AChE inhibition studies. A number of mechanisms for resistance to OP and carbamate 

insecticides have been suggested. 

Charpentier, et al. (2000) suggest three mechanisms of resistance to OP and 

carbamate insecticides: (1) increased hydrolysis of acetylcholine (ACh) by AChE in 

resistant strains, (2) increased production of AChE, and (3) changed conformation of 

active ( or other) binding sites in resistant strains. If a population of I. bi color was 

repeatedly exposed to cholinesterase inhibitors and became resistant by producing an 

AChE enzyme with increased activity rates and/or by increased enzyme production, high 

activity in field populations might represent chronic exposure. However, with both of 

these resistance mechanisms exposure to cholinesterase inhibitors would result in 

decreased activity following exposure, despite higher baseline AChE activity. Numerous 

studies have shown increased AChE activity in resistant insect populations (e.g., Voss, 
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1980; Fournier and Mutero, 1994; Parker and Callaghan, 1997; Charpentier, et al. 2000; 

Lee, et al. 2000). If resistance is conferred by changed conformation of the enzyme's 

active site (i.e. insensitivity to inhibitors) exposure to OP or carbamate insecticides would 

cause little decrease in AChE activity following exposure. With this type of resistance, 

baseline activities could be high or low depending on the physiological state of the 

organism. However, since they are not readily inhibited by OP's or carbamates, activities 

would remain more stable than ifresistance was by other means (i.e., increased activity 

rates or increased enzyme production). 

A study by Bourget, et al. (1997) illustrated another potential mechanism of 

resistance to OP and carbamate insecticide. Choline acetyltransferase, the enzyme 

responsible for acetylcholine (ACh) production, may decrease toxicity of OP's and 

carbamates by producing lower amounts of ACh. By reducing the amount of ACh 

produced when AChE is inhibited, accumulation of ACh in the synapse is diminished. By 

exposing mosquitoes (heterozygous with resistant and sensitive AChE molecules) to the 

carbamate insecticide propoxur, Bourget, et al. (1997) found that as dose increased, 

sensitive AChE molecules were inhibited. Acetylcholine breakdown from insensitive 

molecules continued, but at levels near the minimum for survival. As doses increased, 

propoxur began to inhibit choline acetyltransferase, decreasing the release of ACh and 

reducing the continuous neural stimulation associated with OP and carbamate toxicity. 

Such resistance allows greatly depressed AChE activity, but reduces mortality. However, 

with further increasing propoxur dosages, choline acetyltransferase became completely 



187 
inhibited, resulting in mortality due to lack of ACh production. If I. bicolor were resistant 

by such a mechanism, decreased AChE activity may not result in increased mortality. It 

would be useful to know if the common insecticides terbufos or chlorpyrifos produce 

similar changes in I. bicolor biochemistry. Bourget, et. al (1997) also suggest that 

resistance may result from increased detoxification of AChE inhibitors by compounds such 

as glutathione S-transferase or cytochrome P 450. However, establishing cause/effect 

relationships of increased levels of detoxifying compounds with OP or carbamate exposure 

may be difficult since they often detoxify numerous compounds. 

Voss (1980) believed that increased carboxylesterase activity may act as a form of 

resistance, by sequestering OP's before binding to AChE. It may be useful to establish the 

activity of other cholinesterases or "pseudocholinesterases" such as butyrylcholinesterase 

(BChE), and proprionylcholinesterase (PChE) as well as nonspecific esterases to 

determine their roles in ACh hydrolysis, as well as their OP and carbamate binding 

potential. Considerable diversity exists in aquatic invertebrate cholinesterase activity in 

terms of properties such as substrate specificity, sensitivity to inhibitors, as well as 

importance of true AChE, BChE, and PChE in ACh hydrolysis (Habig and DiGuilio 

1991). Understanding the role of the pseudocholinesterases may clarify some causes of 

variability in AChE activity. 

A number oflab methods exist that may enable greater understanding of AChE 

inhibition. This study utilized a protein assay to establish AChE activity in relation to total 

protein content. Ideally, AChE activity would be expressed as amount of acetyl 
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thiocholine iodide hydrolyzed by a quantity of AChE (instead of the amount hydrolyzed by 

the amount of total protein), resulting in greater precision. However, it is difficult to 

accurately establish the amount of AChE present. A study by Charpentier, et al. (2000) 

titrated AChE in vitro with an OP to establish the amount of enzyme present. This 

method would only be useful in studies where insects were not exposed to AChE 

inhibitors. If the insects were previously exposed, AChE amounts would likely be 

underestimated. However, it may be possible to establish amounts of inhibited AChE. 

Hunt and Hooper (1993) established a number of techniques to reactivate AChE that had 

been exposed to certain inhibitors. By using the oxime 2-P AM the investigators were able 

to reactivate inhibited AChE if it had not become aged (aging is a condition where the 

inhibitor is permanently bound to AChE). While this method was only effective in 

removing OP's, many oximes exist with varying effectiveness on different OP and 

carbamate compounds (Wilson, et al. 1992). A combination of oxime treatment and 

insecticide titration may be effective in determining precise amounts of AChE in tissue 

homogenates as well as the amount of inhibited enzyme present. Most information about 

these methods exist in literature dealing with resistant strains of target organisms, and 

have seldom been utilized in analysis of non-target organisms (with the exception of Hunt 

and Hooper, 1993). While time consuming, these methods would likely aid interpretation 

of AChE activity assay results. 

It may also be useful to incorporate a commercially prepared cholinesterase control 

into the protocol used in this research that utilized a check standard prepared from/. 
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bicolor homogenate as a form of in-house control. However, a commercially prepared 

control, such as purified electric eel AChE, may be useful for inter-laboratory comparisons 

as suggested by Marden, et al. (1994). 
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APPENDIX A. Site descriptions and map of field sites from Isonychia bicolor sampling 

during 2002 and 2003. 

Volga River 

North Branch - first bridge on W25 S offHwy 93 (VRNB) (42° 49.08 N, 91° 52.78 W) 

This riffle (~40 x 10 m) was upstream from a bridge and composed of cobble (6-13 
cm) 75% embedded in pebble (1-2 cm). Substrate was covered by filamentous algae. 
Deciduous trees and grasses provided~ 10% canopy cover to this shallow (0.05-0.1 
m) riffle. 

Twin Bridges Park- W25 just S ofHwy 93 (VRTB) (42° 49.08 N, 91° 52.76 W) 

Substrate composed of cobble (13-25 cm) 25% embedded in pebble (0.2-1 cm). The 
riffle area was ~50 x 25 m and bordered by recreational area with deciduous trees 
providing ~5% canopy cover. Stream depth ranged from 0.15-0.3 m. 

Volga River State Park - N of Fayette on HWY 150 near campground (VRSP) 

(42° 51.85 N, 91° 45.42 W) Substrate composed of cobble (13-25 cm) was 
unembedded in pebble (2-6 cm) throughout the riffle area (~40 x 10 m). Deciduous 
trees and grasses made up the riparian vegetation (0% canopy cover). Approximate 
stream depth was between 0.25-0.5 m. 

Upper Iowa River 

Kendallville Park- offHwy 139-access from campground (UIKV) (43°26.50 N, 92° 02.24 
W) This riffle (~50 x 25 m) was composed of cobble (6-13 cm) 50% embedded in 
pebble (0.1-1 cm). Deciduous trees in recreational areas on both sides of the river 
provided ~25% canopy cover. Stream depth ranged from 0.25 to 0.5 m. 

Chimney Rock Park- Bluffton Road NW of Bluffton (UICR) (43° 24.94 N, 91° 56.16 W) 
This riffle consisted of separate channels composed of pebble (2-6 cm) 25% 
embedded in smaller pebble (1-2 cm) for most of the area (~75 x 15 m). Deciduous 
trees provided ~5% canopy cover. Stream depth ranged from 0.25 to 0.5 m. 

Decorah - under bridge downtown (UIDE) (43° 18.20 N, 91° 47.78 W) This larger riffle 
( ~ 70 x 25 m) was composed of cobble ( 13-25 cm) 50% embedded in smaller cobble 
(6-13 cm). Stream depth (0.25-1 m) and velocity were higher than at most other 
Upper Iowa sites. River banks were covered with grasses and deciduous trees 
provided ~5% canopy cover. 
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bi color sampling during 2002 and 2003. 

Little Cedar River 

Chickasaw Park- B57 S ofBassett (LCCP) (43°02.09 N, 92°30.27 W) 
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This riffie (~90 x 25 m) was composed of cobble (13-25 cm) and boulders(> 25 
cm) unembedded in pebble (2-6 cm). Deciduous trees made up most of the riparian 
vegetation and provided ~ 10% canopy cover. Large boulders in and around the 
riffie limited sampling to specific areas. Stream depth is less than 0. 75 m. 

Cedar River 

Evansdale - Downstream from the Hwy 20 bridge, 0.5 mile S of Evansdale. (CRED) 

(42° 27.54 N, 92° 17.63 W) The river is bordered by deciduous trees providing no 
canopy cover. Springs from the river bank flow into the river near the sampling 
site. Substrate was composed of cobble (13-25 cm) 50% embedded in pebble (1-2 
cm). Depth (~.5 to 1 m) and flow are similar to that of the Cedar River in Cedar 
Falls. 

Janesville City Park - Wend of town (CRJV) (42° 38.93 N, 92° 27.91 W) 

This riffie site was ~75 x 50 m and bordered by recreational area on one side. 
Substrate was composed of cobble (13-25 cm) 25% embedded in pebble 
(0.2-1 cm). Deciduous trees provided ~10% canopy cover. Stream depth was 
~0.5-1.0 m. 

Cedar Falls - under Hwy 57 Bridge (CRCF) (42° 32.22 N, 92° 26.33 W) 

No canopy cover was available at this riffie ( ~ 100 x 50 m). Substrate was 
composed of cobble (13-25 cm) 50% embedded in pebble (2-6 cm). Depth (~0.5-
1 m) and flow were greater than at most other sites. 
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APPENDIX B. Jsonychia bicolor densities from 2002 and 2003 "10 site" sampling. 

Hess sample densities (number/0.093 m2
) during May, July and September, 2002. Data are 

mean number of individuals (SD) for n = 3. 

Riflle Site May July September 
CRCF 247.33 (281.74) 15.67 (12.01) 5.0 (3.61) 
CRED 131.33 (168.53) 17.67 (9.07) 3.0 (1.73) 
CRJV 197.33 (189.12) 43.02 (46.11) 0.0 (0.0) 
LCCP 0.0 (0.0) 7.67 (2.89) 33.33 (16.50) 
UICR 0.67 (1.15) 142.67 (118.81) 38.00 (28.58) 
UIDE 2.33 (2.52) 14.33 (16.17) 7.67 (7.23) 
UIKV 8.67 (9.02) 59.00 (43.86) 7.02 (11.33) 
VRNB 1.33 (1.15) 32.00 (29.82) 4.33 (3.79) 
VRSP 0.33 (0.58) 26.67 (23.07) 7.33 (6.51) 
VRTB 1.67 (2.89) 9.00 (4.36) 24.67 (23.69) 

Hess sample densities (number/0.093 m2
) during May, July and September, 2003. Data are 

mean number of individuals (SD) for n = 3. 

Riflle Site 
CRCF 
CRED 
CRJV 
LCCP 
UICR 
UIDE 
UIKV 
VRNB 
VRSP 
VRTB 

May 
2.89 (6.33) 
1.00 (2.00) 
0.0 (0.0) 
0.0 (0.0) 
0.0 (0.0) 

2.52 (3.67) 
0.0 (0.0) 

0.58 (0.33) 
0.0 (0.0) 

0.58 (0.33) 

July 
7.57 (8.33) 

20.88 (36.00) 
16.7 (22.33) 
2.31 (2.33) 
2.52 (8.33) 

221.40 (233.00) 
0.58 (0.67) 
1.73 (4.00) 

12.02 (18.50) 
0.58 (2.33) 

September 
17.62 (15.67) 
2.52 (4.33) 

10.54(11.00) 
20.55 (33.67) 
69.84 (58.00) 
27.22 (46.00) 
15.62 (20.00) 
6.56 (6.00) 

38.31(26.00) 
1.41 (12.00) 
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APPENDIX C. Physical/chemical properties from Jsonychia bicolor sampling during 

2002 and 2003. 

DO 
Hard. Alk. Cond. 

Site Date Time 
Temp 

pH (mg/L (mg/L (mS/ (OC) (mg/L) 
CaC0;1} CaCOJ} cm} 

CRCF 12/19/01 10:00 a.m. 2.8 NA 8.12 210 164 0.350 

CRCF 4/8/02 12:00 p.m. 9.5 NA 11.6 184 96 0.282 

CRCF 5/13/02 1:00 p.m. 12.5 NA 8.46 254 155 0.402 

VRNB 5/14/02 12:30 p.m. 15.3 NA 8.74 253 144 0.428 

VRTB 5/14/02 11:30 a.m. 13.5 NA 8.50 289 157 0.412 

VRSP 5/14/02 9:30 a.m. 11.3 NA 8.53 331 159 0.408 

UIKV 5/15/02 10:00 a.m. 12.6 NA 7.74 295 169 0.378 

UICR 5/15/02 11:00 a.m. 13.2 NA 7.78 280 192 0.392 

UIDE 5/15/02 12:00 p.m. 15.1 NA 7.81 266 198 0.420 

LCCP 5/16/02 10:00 a.m. 15.2 NA 7.74 236 149 0.396 

VRSP 5/20/02 10:30 a.m. 13.2 NA 7.68 259 169 0.416 

VRTB 5/20/02 12:00 p.m. 14.5 NA 7.7 252 159 0.404 

VRNB 5/20/02 1:30 p.m. 14.8 NA 7.73 233 163 0.410 

VRSP 5/28/02 10:30 a.m. 20.6 NA 7.76 240 170 0.458 

VRTB 5/28/02 11:30 a.m. 21.5 NA 7.77 216 167 0.436 

VRNB 5/28/02 12:30 p.m. 21.9 NA 7.80 205 143 0.434 

CRED 5/29/02 11:00 a.m. 21.5 NA 7.84 202 160 0.440 

CRJV 5/29/02 12:00 p.m. 21.8 NA 7.86 185 114 0.364 

VRSP 6/3/02 10:45 a.m. 15.0 9.32 7.91 255 167 0.446 

VRTB 6/3/02 11:30 a.m. 14.7 9.42 7.89 250 154 0.432 

VRNB 6/3/02 12:00 p.m. 15.0 10.30 7.85 253 155 0.420 

VRTB 6/11/02 10:00 a.m. 19.9 9.70 7.87 252 155 0.486 

VRSP 6/11/02 10:45 a.m. 20.2 8.00 7.87 283 172 0.508 

VRNB 6/11/02 12:30 p.m. 20.0 9.70 7.88 257 155 0.498 

VRSP 6/18/02 10:20 a.m. 18.3 14.30 7.90 271 165 0.472 

VRTB 6/18/02 12:00 p.m. 19.2 13.75 7.90 255 150 0.464 

VRNB 6/18/02 12:30 p.m. 17.0 12.95 7.80 250 156 0.457 
Appendix continued ... 
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APPENDIX C ( continued). Physical/chemical properties from Isonychia bicolor sampling 

during 2002 and 2003. 

DO 
Hard. Alk. Cond. 

Site Date Time 
Temp pH (mg/L (mg/L (mS/ (OC) (mg/L) 

CaCOJ} CaCOJ} cm} 

CRCF 6/20/02 11:30 a.m. 20.5 8.90 7.91 247 137 0.402 

VRSP 6/24/02 10:15 a.m. 23.8 10.16 7.94 254 162 0.506 

VRTB 6/24/02 11: 15 a.m. 24.5 12.90 7.95 249 170 0.500 

VRNB 6/24/02 12:15 p.m. 24.9 11.89 7.95 246 149 0.498 

UIDE 7/8/02 10:30 a.m. 24.5 10.36 8.16 262 201 0.528 

UICR 7/8/02 11:30 a.m. 24.5 10.36 8.16 262 201 0.528 

UIKV 7/8/02 12:30 p.m. 23.7 8.94 8.17 262 210 0.508 

VRSP 7/10/02 9:30 a.m. 23.3 6.71 8.18 267 175 0.502 

VRTB 7/10/02 10:30 a.m. 22.2 7.58 8.22 224 176 0.504 

VRNB 7/10/02 11:15 a.m. 21.9 8.02 8.18 235 172 0.446 

LCCP 7/11/02 10:00 a.m. 19.0 8.73 8.19 232 163 0.384 

CRJV 7/11/02 12:00 p.m. 22.9 9.15 8.19 214 149 0.424 

CRCF 7/11/02 1:00 p.m. 22.2 10.20 8.20 231 153 0.442 

CRED 7/11/02 2:30 p.m. 22.2 10.16 8.20 219 142 0.436 

CRCF 7/23/02 10:00 a.m. 25.9 10.03 8.09 199 139 0.444 

CRCF 8/6/02 12:30 p.m. 24.5 10.43 8.23 239 151 0.480 

LCCP 9/12/02 9:15 a.m. 16.1 8.10 8.04 222 157 0.370 

CRJV 9/12/02 11:00 a.m. 20.1 6.87 8.02 220 166 0.432 

CRCF 9/12/02 1:00 p.m. 22.1 10.27 8.04 265 166 0.460 

CRED 9/12/02 2:00 p.m. 23.6 16.40 8.05 265 155 0.504 

VRSP 9/26/02 10:00 a.m. 14.4 11.10 8.26 223 180 0.400 

VRTB 9/26/02 11:15 a.m. 15.3 11.83 8.28 243 173 0.392 

VRNB 9/26/02 12:30 p.m. 15.9 10.70 8.30 244 182 0.413 

UIKV 9/29/02 11:00 a.m. 12.6 10.30 8.20 303 212 0.402 

UIDE 9/29/02 12:45 p.m. 15.6 12.25 8.24 319 216 0.438 

UICR 9/29/02 1:00 p.m. 14.2 10.04 8.28 288 239 0.430 

Appendix continued ... 
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APPENDIX C ( continued). Physical/chemical properties from Isonychia bicolor sampling 

during 2002 and 2003. 

DO 
Hard. Alk. Cond. 

Site Date Time 
Temp pH (mg/L (mg/L (mS/ (OC) (mg/L) 

CaCOJ} CaCOJ} cm} 

VRSP 4/23/03 12:00 p.m. 15.2 13.40 8.03 252 170 0.402 

VRNB 4/23/03 12:30 p.m. 15.3 13.95 8.12 261 143 0.393 

VRTB 4/23/03 1:00 p.m. 11.0 14.26 8.09 272 149 0.384 

UIKV 5/29/03 10:00 a.m. 16.3 11.09 7.68 233 150 0.414 

UICR 5/29/03 11:00 a.m. 17.2 10.94 7.76 278 190 0.430 

UIDE 5/29/03 12:00 p.m. 19.4 11.20 7.71 263 224 0.454 

VRSP 5/29/03 2:00 p.m. 21.2 10.30 7.76 248 139 0.476 

VRTB 5/29/03 3:30 p.m. 22.4 12.70 7.76 236 151 0.487 

VRNB 5/29/03 4:00 p.m. 22.4 12.70 7.74 240 155 0.477 

LCCP 5/30/03 11:30 a.m. 18.1 8.96 7.81 251 150 0.440 

CRJV 5/30/03 12:30 p.m. 20.3 13.30 7.79 273 163 0.486 

CRED 5/30/03 2:00 p.m. 21.0 10.32 7.80 297 160 0.532 

CRCF 5/30/03 3:00 p.m. 20.6 10.76 7.78 304 167 0.512 

UIKV 6/6/03 10:45 a.m. 15.1 10.45 7.76 265 182 0.410 

UICR 6/6/03 12:30 p.m. 15.7 12.10 7.79 270 182 0.481 

UIDE 6/6/03 2:30 p.m. 15.8 10.20 7.76 263 179 0.412 

VRSP 6/6/03 3:00 p.m. 16.5 9.20 7.79 266 145 0.414 

VRNB 6/6/03 4:40 p.m. 16.1 8.50 7.79 265 130 0.386 

VRTB 6/6/03 5:00 p.m. 16.0 10.90 7.80 259 133 0.414 

UIKV 6/13/03 10:00 a.m. 19.4 9.79 7.67 280 160 0.474 

UICR 6/13/03 11:00 a.m. 20.6 10.79 7.67 299 156 0.488 

UIDE 6/13/03 2:00 p.m. 22.0 8.00 7.69 294 170 0.500 

VRSP 6/13/03 3:00 p.m. 22.7 9.88 7.65 269 167 0.536 

VRTB 6/13/03 4:00 p.m. 25.3 10.79 7.73 309 147 0.570 

VRNB 6/13/03 4:30 p.m. 25.6 10.83 7.84 315 153 0.550 

UIKV 6/19/03 10:00 a.m. 19.5 8.53 7.65 259 160 0.472 

UICR 6/19/03 11:30 a.m. 21.2 9.77 7.69 289 186 0.500 

UIDE 6/19/03 12:00 p.m. 22.4 10.80 7.67 370 188 0.512 
Appendix continued ... 
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APPENDIX C ( continued). Physical/chemical properties from Isonychia bicolor sampling 

during 2002 and 2003. 

DO Hard. Alk. Cond. 

Site Date Time 
Temp pH (mg/L (mg/L (mS/ (OC) (mg/L) 

CaCOJ) CaCOJ) cm) 

VRSP 6/19/03 2:00 p.m. 25.5 10.40 7.67 271 147 0.556 

VRTB 6/19/03 4:00 p.m. 26.2 10.20 7.71 NA 152 0.510 

VRNB 6/19/03 4:30 p.m. 27.0 10.00 7.72 NA 151 0.509 

UIKV 6/27/03 10:00 a.m. 17.7 8.86 7.68 267 144 0.422 

UICR 6/27/03 10:45 a.m. 18.8 10.06 7.71 296 145 0.446 

UIDE 6/27/03 12:00 p.m. 20.1 10.06 7.73 268 242 0.494 

VRSP 6/27/03 1:30 p.m. 20.7 10.06 7.67 335 144 0.494 

VRTB 6/27/03 2:30 p.m. 22.6 9.07 7.72 212 188 0.558 

VRNB 6/27/03 3:00 p.m. 23.1 9.10 7.74 210 193 0.446 

UIKV 7/2/03 12:00 p.m. 21.6 9.10 7.67 224 163 0.500 

UICR 7/2/03 1:00 p.m. 23.1 9.75 7.66 267 171 0.516 

UIDE 7/2/03 1:30 p.m. 23.2 9.65 7.66 230 165 0.503 

VRSP 7/2/03 2:30 p.m. 26.5 11.20 7.65 256 194 0.582 

VRNB 7/2/03 3:30 p.m. 28.9 10.61 7.70 251 192 0.591 

VRTB 7/2/03 4:00 p.m. 28.9 10.59 7.69 255 190 0.575 

UIKV 7/14/03 11:30 a.m. 21.2 8.40 7.70 260 172 0.512 

UICR 7/14/03 12:30 p.m. 21.3 9.53 7.72 256 175 0.516 

UIDE 7/14/03 1:30 p.m. 22.0 10.77 7.70 246 177 0.519 

VRSP 7/14/03 2:30 p.m. 24.7 7.80 7.69 267 183 0.535 

VRTB 7/14/03 3:00 p.m. 24.1 9.12 7.71 277 175 0.521 

VRNB 7/14/03 4:00 p.m. 24.1 7.90 7.70 271 190 0.540 

LCCP 7/22/03 10:00 a.m. 20.9 9.16 7.73 262 170 0.490 

CRJV 7/22/03 11:00 a.m. 23.3 8.91 7.75 267 189 0.570 

CRCF 7/22/03 12:00 p.m. 22.5 8.78 7.60 258 203 0.780 

CRED 7/22/04 2:30 p.m. 20.9 8.08 7.74 282 171 0.534 
Appendix continued ... 
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APPENDIX C ( continued). Physical/chemical properties from Jsonychia bicolor sampling 

during 2002 and 2003. 

DO 
Hard. Alk. Cond. 

Site Date Time 
Temp 

pH (mg/L (mg/L (mS/ (OC) (mg/L) 
CaC03} CaC03} cm} 

LCCP 9/16/03 10:00 a.m. 15.9 10.05 7.63 312 181 0.374 

CRJV 9/16/03 12:00 p.m. 19.1 10.10 7.54 270 182 0.420 

CRCF 9/16/03 2:00 p.m. 21.0 9.87 7.56 258 156 0.430 

CRED 9/26/03 2:30 p.m. 22.5 10.50 7.62 244 165 0.424 

UIKV 9/26/03 9:30 a.m. 11.1 11.60 7.69 270 205 0.364 

UICR 9/26/03 10:30 a.m. 11.7 6.70 7.75 260 209 0.382 

UIDE 9/26/03 1:00 p.m. 12.8 8.60 7.73 264 205 0.378 

VRSP 9/26/03 1:30 p.m. 13.1 9.02 7.71 230 170 0.380 

VRTB 9/26/03 2:30 p.m. 13.0 10.15 7.73 222 152 0.350 

VRNB 9/26/03 3:30 p.m. 13.0 10.23 7.74 220 145 0.320 
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APPENDIX D. Streamflow data from the Volga River (2002 and 2003) and the Upper 

Iowa River (2003) during intensive sampling. 
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APPENDIX D (continued). Streamflow data from the Volga River (2002 and 2003) and 

the Upper Iowa River (2003) during intensive sampling. 
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APPENDIX D (continued). Streamflow data from the Volga River (2002 and 2003) and 

the Upper Iowa River (2003) during intensive sampling. 
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APPENDIX E. AChE activities at 10 sites from May, July and September "10 Sites 

Sampling" 2002. Bars with the same letter are not significantly different (P>0.05) 
based on Duncan's Multiple Range. Test. 
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APPENDIX E. (continued). AChE activities at 10 sites from May, July and September 

"10 Sites Sampling" 2002. Bars with the same letter are not significantly different 
(P>0.05) based on Duncan's Multiple Range. 
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APPENDIX E.(continued). AChE activities at 10 sites from May, July and September 

"10 Sites Sampling" 2002. 
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APPENDIX E. AChE activities at 10 sites from May, July and September "10 Sites 

Sampling" 2002. Bars with the same letter are not significantly different (P>0.05) 
based on Duncan's Multiple Range. 
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APPENDIX E. AChE activities at 10 sites from May, July and September "10 Sites 

Sampling" 2002. Bars with the same letter are not significantly different (P>0.05) 
based on Duncan's Multiple Range. 
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APPENDIX E. AChE activities at 10 sites from May, July and September "10 Sites 

Sampling" 2002. Bars with the same letter are not significantly different (P>0.05) 
based on Duncan's Multiple Range. 
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APPENDIX F. AChE activities at 10 sites from May, July and September "10 Sites 
Sampling" 2003. 

Ql 14 
::, 
V) 

ai 14 .!!l 
::, 

~12 
P=0.3723 

V) 
V) 

~ 12 -C: - ·E 10 
C: -·E 10 "C - is "C 
Q) 
N 8 0 

~ 
.... 

0 -g, 6 
i6 ..c: 

..c: 
..c: u 
..c: ..c: 4 
u 4 ~ ..c: 

~ V) 
2 Q) 

V) 2 0 
Q) E 0 
E 

::l 0 

::1. 0 5-29 7-14 9-23 
7-14 9-23 

UICR 
UKV 

Q) 10 P=0.7287 ::i 
V) 

~ 
Cl - 8 
C .E -"C 6 Q) 

~ 
e 
"C 
>, 4 ..c: 

..c: 
(..) 
..c: 
f-
~ 2 
V) 
Q) 

0 
E 
::!. 0 

5-29 7-14 9-26 

UIDE 

210 



211 

APPENDIX F. AChE activities at 10 sites from May, July and September "10 Sites 
Sampling" 2003. Isonychia bi color were not collected at VRNB during May or July 
sampling. Bars with the same letter are not significantly different (P>0.05) based 
on Duncan's Multiple Range. 
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APPENDIX F. AChE activities at 10 sites from May, July and September "10 Sites 
Sampling" 2003. 
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APPENDIX F. AChE activities at 10 sites from May, July and September "10 Sites 
Sampling" 2003. 
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APPENDIX F. AChE activities at 10 sites from May, July and September "10 Sites 
Sampling" 2003. 
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APPENDIX F. AChE activities at 10 sites from May, July and September "10 Sites 
Sampling" 2003. 
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APPENDIX G. Physical/Chemical characteristics at three sites on McLoud Run from 

September 2002 through August 2003. 

Date Time Temperature Dissolved pH Hardness Alkalinity Conductivity 

Site oc 02 mg/L mg/L mS/cm 

mg/L CaC03 CaC03 

8/15/02 
42nd Street 9:00 a.m. 21. l 6.75 8.16 197 128 0.400 

McLoud 10:00 a.m. 18.7 16.4 8.17 227 179 0.582 

J Avenue 11:15 a.m 16.8 11.14 8.07 367 214 0.570 

9/17/02 
42nd Street 10:00 a.m. 17.7 7.42 8.20 159 93 0.396 

McLoud 11:00 a.m. 14.7 12.7 8.19 301 217 0.530 

J Avenue 11:30 a.m. 14.0 11.9 8.20 277 196 0.490 

10/17/02 
42nd Street 11:00 a.m. 9.3 9.15 8.33 249 125 0.364 

McLoud 12:00 a.m. 11.2 11.2 8.30 338 239 0.462 

J Avenue 1:00 p.m. 10.0 11.9 8.29 330 219 0.486 

11/16/02 
42nd Street 11:45 a.m. 4.8 9.28 8.19 314 162 0.812 
McLoud 12:30 a.m. 11.0 16.6 8.20 345 205 0.482 
J Avenue 1:15 p.m. 8.0 16.22 8.22 320 198 0.458 

12/19/02 
42nd Street 9:30 a.m. 3.9 7.72 8.20 225 80 0.396 
McLoud 10:00 a.m. 4.2 9.33 8.60 356 208 0.403 
J Avenue 10:30 a.m. 4.4 10.31 8.50 300 211 0.530 

1/16/03 
42nd Street 

McLoud 11:00 a.m. 5.6 11.87 8.01 309 219 0.422 
J Avenue 12:30 p.m. 2.1 14.77 7.99 403 201 0.390 

2/18/03 
42nd Street Frozen 

McLoud 10:30 a.m. 7.2 10.37 8.07 324 217 0.468 
J Avenue 11:30 a.m. 4.0 14.04 8.08 409 219 0.506 

3/18/03 
42nd Street 11:00 a.m. 7.0 2 8.40 152 88 0.496 
McLoud 12:30 a.m. 12.6 13.3 8.03 349 194 0.550 
J Avenue 1:00 p.m. 11.9 8.09 8.02 347 214 0.547 
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APPENDIX G. (Continued) Physical/Chemical characteristics at three sites on McLoud 

Run from September 2002 through August 2003. 

Date Time Temperature Dissolved pH Hardness Alkalinity Conductivity 
Site oc 02 mg/L mg/L mS/cm 

mg!L CaC03 CaC03 

4/17/03 

42nd Street 11:00 a.m. 9.0 4.35 8.24 259 135 0.690 

McLoud 12:00 p.m. 9.7 14.9 8.11 327 209 0.494 

J Avenue 1:00 p.m. 9.7 12.56 8.09 339 218 0.530 

5/19/03 

42nd Street 10:30 a.m. 14.2 12.7 7.82 271 139 0.611 

McLoud 11:30 a.m. 13.9 13.1 7.80 301 203 0.621 

J Avenue 12.30 p.m. 14.6 12.8 7.78 322 199 0.634 

6/20/03 

42nd Street 10:00 a.m. 16.9 4.98 7.70 181 95 0.446 

McLoud 11:30 a.m. 15.4 10.21 7.67 324 211 0.564 

J Avenue 12:30 a.m. 15.2 11.42 7.67 306 179 0.570 

7/16/03 

42nd Street 11:00 a.m. 21.4 5.56 7.69 166 144 0.374 

McLoud 12:00 p.m. 15.9 12.47 7.65 292 236 0.562 

J Avenue 1:00 p.m. 15.8 11.51 7.72 232 231 0.568 

8/18/03 

42nd Street 9:30 a.m. 20.0 NA 7.62 361 261 0.728 

McLoud 1:00 p.m. 17.7 NA 7.63 339 244 0.580 

J Avenue 11:30 a.m. 17.3 NA 7.62 343 240 0.594 
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