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ABSTRACT

This experimental research focused on four areas: (a) 
the design of a new procedure for imitating the dynamic 
behavior of an electronic base plate on a radar mast 
system; (b) determination of a reasonable oscillation modal 
state; (c) avoidance of the destruction of the ability of 
the radar on the mast of a ship to receive and analyze 
incoming signals; and (d) design of a vibration absorber 
and vibration isolator based on an oscillation frequency.
An adapted design for the vibration absorber and vibration 
isolator contributed to the prevention of excessive 
amplitude being produced by random forces acting upon a 
radar system equipped on the mast of a ship.

In this research, finite element analysis was used to 
analyze the natural frequency and the modal state of the 
ship's mast in order to establish the reasonable finite 
element analysis model. This technique became the basis 
for the design of the adapted vibration isolator and the 
vibration absorber. In designing the adapted dynamic 
vibration absorber and vibration isolator, the Lagrange's 
engineering mathematical equation was used to study the 
system movement equation under differing random forces.
This system movement equation led to the converted function 
between the radar replacement alteration and the random
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force. By use of a Lagrange's optimum value method, the 
researcher obtained the optimum frequency modulation ratio 
and the optimum damping ratio of the dynamic vibration 
absorber so that the radar displacement alteration reached 
the minimum value. The optimum mass ratio between the 
vibration absorber and the radar base plate was located by 
studying the radar displacement alteration under its 
optimum dynamic absorber. The optimum frequency modulation 
ratio and the optimum damp ratio were determined by 
studying the effect of the spring constants of the 
vibration isolator, the damp ratio, and the position of the 
random force. The radar oscillation before and after 
installing the optimum dynamic absorber were compared to 
illustrate the accuracy of the field test for sea travel.
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CHAPTER I 
INTRODUCTION

When a ship navigates on the sea, the electronic 
equipment is the eyes or ears of the ship. The radar system 
is the largest piece of the electronic equipment, and the 
radar antenna is located on top of the mast. The radar 
system is used to find the correct direction and locate 
external objects. The signals received by the radar system
are transferred to the control room for analysis.

A mast system is composed mainly of supporting frames, 
a circular base plate, radar, and an antenna. The base 
plate is stiffened by six aluminum tubes that are fixed on 
the supporting frames. The supporting frames are fixed on 
the upper deck of the ship. The radar and antenna are fixed 
on top of the base plate. The weight of the radar and 
antenna is supported by the base plate. Sometimes, there is 
an antenna frame to hold the antenna. This frame is sitting 
between the base plate and the antenna. The searching radar 
and the antenna are responsible for searching signals, 
therefore, they should be in a higher position. The
supporting frames, in general, are very tall.

Ship structure vibration is caused by external forces 
such as waves, wind, and the rotation of the main engines, 
therefore, the vibration amplitude of the antenna can be
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severed (Wang, Shao, 1992) . The mast system can transfer 
vibration displacement and force to the radar base plate. 
This can influence the accuracy of the signals that the 
radar system receives and may produce wrong analysis results 
in the control room leading to incorrect radar searching, 
tracking, and navigation.

It is very important that the signal transmission is 
free from noise. Due to the fact that the radar system is 
mounted on a ship mast, the oscillation frequency of the 
mast and the displacement of the radar plate should be 
within certain ranges, so the signal received by the radar 
system will be free from interference. Since oscillation of 
the mast is unavoidable, reducing the oscillation 
displacement of the mast and the radar base plate is the 
best approach to maintaining the accuracy of the radar 
system.

There are two commonly used methods to decrease the mast 
system oscillation. The first one is to add an isolator 
inside the equipment or between the base plate and the 
equipment. The major function of an isolator is to decrease 
the oscillation from the base plate to the equipment, and 
decrease the force transferred from the main body of the 
ship to the base plate. The disadvantage of the isolator is 
that it can only reduce the oscillation in one direction.
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There are two connecting methods for a traditional isolator. 
One is elastic-connection and the other is rigid-connection.

The second method for decreasing oscillation is to 
insert a dynamic absorber in addition to an isolator. The 
main function of an absorber is to damp out the oscillation 
energy of the equipment (hence, decrease the oscillation) 
and to compensate for the disadvantages of an isolator. The 
absorber surrounds and holds the mast bolts in place. There 
are two kinds of damping instruments; one is a sticky damp, 
which is a liquid chemical encased in a hard material such 
as rubber and the other damping instrument is a damping pad, 
which is a rubber pad with holes throughout (Wang, Haung, & 
Hu, 1990).

The characteristics of an isolator or absorber for a 
structure should be determined by the vibration 
characteristics of the structure (Racca, 1982). Therefore, 
a systematic way to analyze the structure of the mast of a 
ship and to determine the design characteristics for optimal 
vibration isolators and absorbers is needed.

Statement of the Problem 
The major engineering problem to be addressed in this 

research was how to improve the design of the radar base 
plate and mast for radar on an ocean vessel. The radar on 
the improved design of the mast should have higher
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precision, and the radar signal interference created by ship 
oscillation should be within an acceptable range. The scope 
of this research includes imitating the dynamic behavior of 
the ship mast structure, determining oscillation modal 
states, and designing the optimal vibration absorber and 
vibration isolator.

Purpose of the Study 
The purpose of this research was to improve the 

precision of the radar system by reducing the vibration 
amplitude of the base plate caused by unavoidable ship 
structural oscillation. The ship structural oscillation is 
produced by stormy waves, wind loads, and the motion of main 
engine components. However, the influence of oscillation 
can be reduced by adding isolators and absorbers. In this 
research, optimal vibration absorbers and vibration 
isolators were designed, based on the results of oscillation 
analysis of the mast system. Once the vibration absorbers 
and isolators were mounted in the radar mast structure, it 
was believed that the amplitude of the radar vibration would 
be reduced.
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Research Questions
Research questions in this study included:
1. What is the reasonable finite element analysis model 

to analyze the dynamic behavior of the mast, including the 
natural oscillation frequencies and the oscillation states 
of the mast structure?

2. With the addition of a dynamic vibration absorber 
and isolator, will the vibration amplitude of the radar on 
the base plate be within the prescribed maximum of 0.2 
milli-radians when the ship is subject to stormy waves and 
wind load?

Limitations
This research had the following limitations:
1. This investigation was applicable to gas-turbine 

driven ocean vessels with a length under 400 feet.
2. The mast system considered contained only a radar 

system, satellite antenna, electronic communication 
equipment, and flag shelf line.

3. The height of the mast system was a maximum of 3 5 
feet or less.

4. The material of the mast structure component was 
aluminum-alloy.

5. An impact hammer was used to produce oscillation 
on the metal tubes.
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Assumptions
The following assumptions were made the study:
1. The aluminum tubes of the mast system were welded 

and the mast material was homogeneous.
2. The vibration of a mast structure can be 

characterized and simulated by natural frequencies and 
oscillation activity.

3. The mast design was flexible and anti-vibrating.
4. In the aluminum mast system, the resistance of the 

isolator and spring can be fixed to minimize the 
longitudinal displacement of the radar.

5. In the aluminum mast system, the mass ratio between 
the isolator and the radar is a given constant (k = 25).

6. The mast was considered to be a static structure, 
which is made up of radar plates and hundreds of tubes.

Definition of Terms
The definitions of the following terms used in this 

document.
1. Mast: A long pole of steel or wood usually circular 

in section, one or more of which are located, in an upright 
position, on the center line of a ship. Or it is a slender 
vertical structure which is not self-supporting and is 
required to be held in position by guy-ropes or electronic 
equipment antenna.
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2. Aluminum mast: A mast which is composed of aluminum 

alloy tubes whose diameter ranges from 5 inches to 3 
inches. It is located on top of the main deck of a ship, 
and its height is under 25 feet.

3. Hammer: The hammer used in this research is an
impact hammer for structural behavior testing and modal 
analysis. Max. Force: 5000N.

4. Intensity: Basically the sound power (or pressure 
level) per unit area.

5. Natural Frequency: The frequency of free oscillation 
of a system.

6. Beam Element: A long piece of heavy, often squared, 
timber suitable for use in construction (Vibration and shock 
in damped mechanical systems, 1986, p. 286).

7. SMAW: Shielded Metal Arc Welding (SMAW) is an arc 
welding process in which coalescence of metals is produced 
by heat from an electric arc that is maintained between the 
tip of a covered electrode and the surface of the base metal
in the joint being welded (Welding handbook, 1978, p. 44).

8. Resonant Vibration: The frequency at which resonant 
response is produced.

9. Viscous Damping: A damping system with asymptotic 
characteristics, the damping force being proportional to the 
velocity and acting in a direction opposite to the velocity.

10. Wavelength: The spatial separation of successive 
compression and rarefaction in wave form.
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11. Damping: The dissipation of energy with time or 
distance.

12. Damped Natural Frequency: The frequency of free 
vibration of a damped linear system.

13. Oscillation: The variation, usually with time, of
the magnitude of a quantity with respect to a specified 
reference when the magnitude is alternately greater and 
smaller than the reference.

14. Isolators: Known as "machinery mounts" to 
differentiate this family of isolators from those which 
might be designed, as components, into the internal 
structure of machinery.

15. Absorbers: When a primary system is excited by a
force or displacement that has a constant frequency, or in
some cases by an exciting force that is a constant multiple 
of a rotational speed, then it is possible to modify the 
vibration pattern and to reduce its amplitude significantly 
by the use of an auxiliary mass on a spring tuned to the 
frequency of the excitation. Then the auxiliary mass system 
has as little damping as possible. This is called an 
absorber.

16. The finite element analysis: A recent approach that 
is commonly used. One begins the analysis by approximating 
the region of interest by subdividing it into a number of
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non-uniform finite elements that are connected to associated 
nodes.

17. 2.5g accelerate loading: The inertial loads of 2.5g 
each were placed in the longitudinal, the transverse, the 
vertical directions, for analysis while the ship is in 
motion. The results were used to analyze the vibration and 
the displacement of the ship1s mast.

Research Design
Laboratory tests and field tests were two major 

components of the research activities in this study. Their 
procedures are outlined below:
Laboratory Tests

1. Compare the differences in vibration characteristics 
between welded aluminum-alloy tubes and homogeneous 
aluminum-alloy tubes, to see if the influence of welding on 
dynamic behavior should be considered.

2. Establish a mast simulation model considering the 
basic vibration characteristics of aluminum-alloy tubes, in 
order to determine the free vibration and the natural 
frequencies.

3. Develop finite element models for the mast to 
analyze the free vibration and the natural frequencies.
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4. Analyze the displacement of the radar base plate at 
the top of the mast by applying the following loading cases 
in the mast finite element analysis:

a. wind loads applied on the ship
b. sea state loads applied on the ship
c. inertial loads with magnitude 2.5 times of 

gravitational acceleration (2.5g).
5. Determine the optimal frequency modulation ratio for 

isolators and absorbers to keep the vibration amplitude of 
radar base plate less than 0.2 milli-radians displacement 
and 50 Hz natural frequency to maintain the accuracy of the 
radar signal.
Field Tests

Compare the radar oscillation for the cases with and 
without optimal absorbers and isolators in sea travel.
The following conditions were used in the field tests:

1. Mast without isolator and absorber at general 
speed (15 knots).

2. Mast with isolator and absorber at general speed (15 
knots).

3. Mast without isolator and absorber at critical speed 
(18 knots).

4. Field test with isolator and absorber at critical 
speed (18 knots).
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5. Field test without isolator and absorber at economic 
speed (22 knots).

6. Field test with isolator and absorber at economic 
speed (22 knots).

7. Field test without isolator and absorber at high 
speed (30 knots).

8. Field test with isolator and absorber at high speed 
(3 0 knots).

Subsequent Chapters
This dissertation contains five chapters. Chapter two 

involves a review of the literature related to research 
methodology. The research procedures of this study are 
included in chapter three. Chapter four reports the data 
analysis and findings of the study. The summary, 
conclusions, and recommendations are contained in chapter 
five.
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CHAPTER II 
REVIEW OF THE LITERATURE

This review of literature focuses on the design and 
construction of a radar mast system. Specifically, 
information presented in this chapter concerns (a) a 
historical perspective of the ship mast, (b) research on 
ship mast characteristic and radar quality, (c) general 
studies on the ship mast, and (d) summary.

A Historical Perspective of the Ship Mast
In the beginning of the history of the development of 

the ship mast, the mast was a part of the main power source 
of early sailing ships. The Dictionary of Business and 
Industry (Schwartz, 1954) indicated that a mast is a long 
pole of steel or wood usually circular in composition, one 
or more of which is located, in an upright position, on the 
center line of a ship (p. 320). Another view was noted in 
Chambers Science and Technical Dictionary (Walker, 1988) 
which noted that a mast is a slender vertical structure 
which is not self-supporting and is required to be held in 
position by guy-ropes (p. 529).

In recent years, the mast power source, the sail, was 
displaced by the power engine. The mast then evolved into a 
radar mast system to get correct location and direction.
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The mast system on a ship is a frame, fixed on the ship's 
bridge, which supports the weight of the tracking radar and 
the tracking radar antenna. The searching radar and the 
searching antenna are responsible for detecting for signals, 
therefore they should be mounted at a higher level. The 
ship's mast is fixed at the deck; the radar system receives 
outside signals and transfers them with a controlling 
circuit to the control room for analysis (Mayne, 1980).

In 1960, The United States Navy designed a four-legged 
mast, sometimes referred to as a quadruped or a lattice-type 
mast, which consists of four essentially vertical members, 
joined together by horizontal and diagonal bracing. The 
four trusses formed by these members provide fairly rigid 
support at each panel point. Such a structure is suitable 
for carrying radar antennas and other equipment which cannot 
be concentrated within a small area. The advantage of a 
four-legged mast over a pole mast or tripod is that the 
principal forces and moments, including torsion effects, are 
resisted by axial reactions of the members. Bending moments 
are substantially eliminated. But because stresses in most 
members are determined by the moments on the mast as a 
whole, the analysis is similar in some respects to that of 
an unseated pole mast (US Navy, 1985).
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Research on Ship Mast Characteristics and Radar Quality 
The development of the design of the traditional 

dynamic absorber began with Den Hartong (1956) who was the 
first to study a dynamic instrument with a free undamped 
primary system. Warburton (1981) applied the theory 
developed by Den Hartong to a two-freedom undamped primary 
system. Lewis (1980) then applied the theory of Den Hartong 
to the N-freedom system. Lee-Glauser, Juang, and Sulla 
(1995) studied the optimum frequency ratio and the optimum 
damp ratio of a dynamic absorber with the damp system on the 
main body. In some forced oscillation systems, the 
frequency of an outside force is not a fixed value. 
Therefore, in recent years, some people have used the 
dynamic absorber of a random oscillation system instead of a 
traditional dynamic absorber. A useful technique for the 
elimination of undesirable vibration in problems of 
structural dynamics and machinery dynamics has been the 
application of one or more dynamic vibration absorbers. The 
first application of such a device was the application of a 
previously tuned u-shaped column of water to arrest the 
rolling motions of ships (Den Hartog, 1956). Another recent 
application was to damp wind induced oscillations in 
electronic transmission lines (Stefanides, 1984).

Optimum absorber parameters are determined numerically 
for cylindrical shells and compared with results for beams
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in flexure and single degree-of-freedom systems. The 
exciting force has a constant spectral density up to a cut­
off frequency and the main system is hysterically damped. 
There is a close agreement between optimum parameters for 
single degree-of-freedom systems and beams, while those for 
shells diverge from the others. Thus the pattern of 
behavior for random and harmonic excitation is shown to be 
similar; that is, the single mode approach is adequate for 
structures with well-spaced natural frequencies.
Minimizing Structural Vibrations With Absorbers

Ayorinde and Warburton (1980) mentioned that for 
harmonic vibrations, the optimized parameters for a viscous 
damped tuned absorber, which is attached to a single degree- 
of -freedom system, apply also for an absorber attached to an 
elastic body, provided that it is permissible to represent 
the response of the body by a single mode. When 
optimization of the response in the vicinity of the 
fundamental resonance is specified, this is the fundamental 
mode of the body without attachments. The concept was an 
extension of an earlier work by Jacquot (1978) for an 
absorber which is attached to a beam; it depends upon the 
introduction of an effective mass for the elastic body.
This mass, which had been used previously by Warburton 
(1981), was selected to give equality of kinetic energy for
(a) the elastic body without attachments when vibrating in
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the relevant mode and (b) the lumped effective mass which is 
placed at the absorber attachment point and has the 
displacement of that point of the body in the same mode. 
Provided that an effective mass ratio, which is the ratio of 
the absorber mass to the effective mass of the body, is 
used, values of optimum absorber tuning and damping ratios 
from the classical absorber problem can be used directly for 
the elastic body problem. For a chosen absorber mass these 
ratios yield the optimum values of the absorber stiffness 
and damping for the elastic body problem. The optimized 
response of the elastic body can be generated simply from 
the optimized dynamic magnification factor for the classical 
absorber problem. This was achieved by Liu and Gorman 
(19 93) when they introduced a response factor R, where the 
displacement at the point in the body for which optimization 
is required equals the triple product of the modal function 
evaluated at this point, the modal function evaluated at the 
point of application of the harmonic excitation force and 
the factor.

The validity of this approach was demonstrated by 
Ayorinde and Warburton (1980) presenting results for simply 
supported beams and quoting results from the literature for 
bars in extension, beams in flexure and rectangular and 
circular plates. In these comparative results the optimized 
absorber parameters and optimum response of the elastic body

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

had been determined from either a closed form solution or a 
converged multi-mode expansion for the response. Some 
divergence of the true results from the standard curves of 
classical absorber theory was noted for (a) a rectangular 
plate of aspect ratio 1/3, for which the frequency ratio of 
the lowest neglected relevant mode to the fundamental mode 
was 1.8 and this ratio was lower than comparable values for 
the other elastic bodies considered, and (b) a cantilever 
beam when optimization was applied to the response at the 
third resonance. The main function of this optimum absorber 
design is to determine optimized absorber parameters for 
elastic bodies by appropriate changes of geometry. The 
frequency spacing can be changed. The relatively high modal 
density is typical of many practical structures, but an 
analytical solution is relatively simple. By using the 
format of Ayorinde and Warburton (1980) for the presentation 
of the results the increasing divergence of optimized 
absorber parameters from those of the classical problem, as 
frequency spacing is reduced, is demonstrated.

A cylindrical shell with closely spaced natural 
frequencies optimization, which is based on narrow and broad 
frequency bands, is likely to yield different results. In 
broad band optimization minimization is applied to all the 
resonant peaks within the frequency band. This topic is 
considered briefly by Ayorinde and Warburton (1980) who
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mentioned that optimum absorber parameters are determined 
for structures which are subjected to harmonic excitation. 
However, optimized parameters for other types of excitation, 
particularly random, are of practical importance. Studies 
of single and multi degree-of-freedom systems with attached 
absorbers exist (Jacquot & Hoppe, 1973; Luongo, 1995; Shi, 
Lee, & Mei, 1997).

Although the final optimum design of the mass structure 
radar system involves results for cylindrical shells under 
random excitation which complement those for harmonic 
excitation, the single degree-of-freedom system is 
considered initially. For ample noise excitation, explicit 
expressions for the random response of the main mass are 
given by Jacquot and Hoppe (1973) and by Luongo (1995) .
The researcher used these expressions to neglect damping in 
the main system and generate simple expressions for optimum 
absorber damping and tuning ratio response of the main 
system for the following cases: (a) force applied to the
main mass and optimization with respect to the displacement 
response of that mass, (b) acceleration applied to the base 
or frame of the system and optimization with respect to the 
relative displacement response of the main mass, and (c) 
acceleration applied to the base and optimization with 
respect to the acceleration of the main mass. As expected 
from the form of the basic equations, cases (a) and (c) give
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identical expressions. These expressions are of similar 
form to those for the classical absorber problem with 
harmonic excitation.
Optimum Absorber Design for a Radar System

A vibration absorber could help to prevent excessive 
amplitude produced by random forces acting upon the mast of 
a ship equipped with a radar system. This system could 
contain damping. Although absorbers are likely to be added 
only to lightly damped systems, the effect of including 
damping in the main system on optimum absorber design is of 
importance and has been studied by several authors.
Important contributions have been made recently by Lee- 
Glauser et al. (1995), who determined correction factors for
the absorber parameters in terms of the main system damping, 
and by Sepulveda and Thomas (1995), who presented design 
charts for the optimum absorber parameters.

There has been considerable interest in the application 
of damped vibration absorbers to simple elastic mast 
structure radar systems, such as rods in extension, beams in 
flexure, plates and cylindrical shells, etc. In most of 
this work the concept of the invariant points of the 
classical problem has been used to determine optimum 
parameters for absorbers which are attached to elastic 
bodies. The effect of vibration absorbers upon the response 
of cylindrical shells showed the variation of the optimum
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turning ratio, i.e., the ratio of the absorber natural 
frequency to the fundamental natural frequency of the main 
system, against the effective mass ratio. The effective 
mass of the main system is determined by equating the 
kinetic energy of the main system in the mode of vibration 
under consideration to that of a lumped mass which is 
located at the point of attachment of the absorber and has 
the same direction constraints as the point of attachment. 
Expressions for effective masses of such bodies as beams in 
flexure are quite simple. With the introduction of the 
concept of the effective mass ratio it was shown that the 
curves of optimum turning ratio versus effective mass ratio 
for some elastic bodies were very similar. However, there 
were major departures from that latter curve when absorbers 
were applied to a cylindrical shell.

A major step in our understanding of the relations 
between the classical problem and that of the absorber 
attached to an elastic body was made in a paper by Jacquot 
(1978). He considered viscous, and also hysteretically, 
damped absorbers attached to an undamped beam, which is 
vibrating in flexure and subjected to a harmonic force.
He showed that if the beam response was approximated by the 
fundamental mode, invariant points exist as in the classical 
problem and expressions for optimum turning ratio, optimum 
damping ratio and the corresponding maximum response of the
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beam were similar to those in the classical problem. The 
researcher obtained standard curves for optimum turning and 
damping ratios and optimum maximum response when plotted 
against the effective mass ratio.

An immediate result of the introduction of damping into 
the main radar system is the disappearance of the invariant 
points, whether the classical single degree-of-freedom 
system or an elastic body. It should be noted that the 
absorbers to be considered here consist of a mass, which is 
connected to the main system through a parallel spring and 
viscous damper. The importance of these results is that for 
specified damping in the main system they provide standard 
curves, which can be used with elastic bodies, provided 
Jacquot1s assumption of a single mode shape is used. 
Specifically, standard curves are generated for the 
optimized response of a main radar system which has light 
hysteretic damping, as this facilitates comparison with 
hysteretically damped elastic bodies. Additionally, 
numerical results for main systems with viscous damping show 
very close agreement with the recently developed expressions 
for optimum parameters of Lee-Glauser et al. (1995) .

General Studies On the Ship Mast
Design of structures to achieve static deflection and 

stress constraints are generally considered in terms of an
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optimal design. In such cases the objective of the design 
is to obtain the minimum mass structure, subject to limits 
on the displacements and stresses. In recent years the 
subject of optimal structural design has become fairly well 
defined as evidenced by several writers (Haug & Arora, 1979; 
Kirsch, 1981).

Approaches to solve the optimal structural design 
problem vary; however, they have been categorized as either 
direct or indirect methods (Schmit, 1984). Direct methods 
are based on mathematical programming, while indirect 
methods are based on optimal criteria.

Direct or mathematical programming methods solve the 
optimum structural design problem by numerical search 
techniques. Methods such as sequential unconstrained 
minimization techniques (Fiacco & McCormich, 1968) and 
sequential linear programming (Segalman, Dohrmann, & Slavin, 
1996) are commonly used. Gradient projection methods, which 
require derivatives of structural response quantities with 
respect to design variables, are also used (Fletcher & 
Reeves, 1964; Rosen, 1961). Calculation of these 
derivatives can be performed using the state space method 
(Haug & Arora, 1979) or design space method (Fox, 1965; 
Schmit Sc Miura, 1976) .

Indirect methods are those which are based on optimal 
criteria. In such methods, the criteria for the optimal
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design are obtained by applying the Kuhn-Tucher necessary 
condition to adapt to the baseline design. Typical criteria 
are the fully stressed design (Gallagher, 1973) and the 
uniform strain density design (Venkayya, 1971). A 
comprehensive discussion of optimal criteria methods can be 
found in Knot and Berke (1984).

Few authors have addressed the problem of an optimal 
design for an aluminum mast radar system. The optimal 
design arises after a baseline structure is analyzed and the 
resulting response characteristics are determined to be 
unacceptable. In such cases it is desirable to determine 
the mass structural system modifications required to achieve 
acceptable response characteristics of the radar control 
system. In many instances several candidate designs exist 
which meet the response objectives. These are considered to 
be optimal design problems concerning the mass radar system.

To solve the optimal design problem of mass radar 
control systems with deflection constraints, Spillers and 
Funaro (1975) developed an iterative procedure. For 
statistically determinate optimal designs their procedure 
modified the stiffness and joint load matrices in each 
redesign cycle. When statically indeterminate radar system 
structures were considered, the procedure required the 
allowable stress to be modified. Schmit (1984) proposed the 
use of design sensitivity analysis for the optimal design
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problem. Using design derivatives, changes in the mass 
radar system to meet the design objectives are determined. 
Dynamic Design of a Mast Structure

The optimal mast design problem is not a new one. In 
1946, Brack proposed a method to solve the problem of 
optimal design of mass radar systems with a wire stretched 
between two points to achieve a desired natural frequency 
(Brack 1946). Frequency-only problems were typically the 
first to be considered. More recently Taylor (1968) 
proposed a method where the free vibration equations were 
considered as equality constraints and handled using La- 
Grange multipliers. Bhat, Singh, and Mundkur (1993) solved 
the problem for an axially vibrating bar by minimizing the 
total energy of the system using Hamilton's principle. In 
an extension of his work, Taylor (1968) introduced 
inequality constraints on the cross-sectional area of the 
bar in addition to the total mass constraint. This new 
constraint was included in the problem by means of a 
continuous larger range multiplier. Sheu (1968) extended 
the work of Taylor to situations where the number of 
constant stiffness segments was specified, but the 
boundaries and specific stiffness values of the segments 
were design variables in the minimum bar weight problem. 
Sippel and Warner (1973) considered similar problems using a 
variation method to derive the minimum mass optimality
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criterion. Structural systems composed of N-element 
sandwich-type structures supporting non-structural mass were 
considered.

McCart (1970) used an iterative process to solve the 
minimum mass problem applied to portal frames. The boundary 
value nature of the free vibration equations was used in 
conjunction with a steepest descent method. Rubin (1970) 
used a two-step process in which he assumed the optimal 
design laid on a frequency constraint. The first step was a 
frequency modification mode where separate gradient 
equations were developed to achieve the natural frequency 
goal. In the second step, he used the method of steepest 
descent to find the minimum weight structure for the 
specified natural frequency. Armand (1971) developed the 
problem as an optimal control problem with distributed 
parameters. The method is powerful for simple structures 
and was demonstrated on a plate-like structure. For a more 
detailed review of many of these earlier methods the reader 
is referred to the survey by Pierson (1972).

In more recent work, Taylor (1977) investigated the 
frequency only constrained problem in terms of model 
correction. A procedure was developed to scale an existing 
structural model to meet experimentally measured natural 
frequencies. The modification scheme was based on the first 
order terms of a Taylor series expansion about the baseline

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

model. Bellagamba and Yang (1981) employed an exterior 
penalty function technique based on the first derivatives of 
the violated constraints. Additional constraints are 
imposed on static displacements and element stresses. The 
combined natural frequency and mode shape constrained 
problem has lately received considerable attention in terms 
of perturbation based solution techniques. Stetson (1975) 
proposed a first order perturbation method based on the 
assumption chat the new mode shapes could be expressed as 
admixtures of the baseline mode shapes. In subsequent 
works, the technique was cast in terms of finite elements 
and applied to several problems (Shi, Lee, & Mei 1997). 
Stetson's procedure, however, used a method of specifying 
mode shape constraints based on admixture coefficients which 
had no obvious physical interpretation. Sandstrom developed 
first order equations which are similar to Stetson's but 
provided a method for specifying mode shape constraints 
based on physical quantities (Sandstrom, 1979) . Kim, 
Anderson and Sandstrom formulated the problem using 
complete nonlinear dynamic equilibrium perturbation 
equations. They employed a penalty function method where 
the objective function was a minimum weight or minimum mass 
condition and the penalty term was a set of residual force 
errors. Their method is theoretically exact, but may not 
achieve the desired solution since nonlinear numerical
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search techniques are employed during the equation solution. 
For large problems Kim and Anderson derived the method in 
terms of dynamic condensation since their original procedure 
was prohibitively expensive (Kim, Anderson, & Sandstrom 
1983) .

Summary
A review of literature germane to the research of the 

radar mast was discussed in this chapter. It is evident 
that methods of vibration control in a radar system may be 
grouped into three broad categories:

1. Reduction at the Source
a. Balancing of the Moving Mast: Where the 

vibration organizes in rotating or reciprocating members, 
the magnitude of a vibrator force frequently can be reduced 
or possibly eliminated by balancing or counterbalancing.

b. Balancing of Magnetic Forces: Vibrator forces 
arising in magnetic effects of electrical machinery 
sometimes can be reduced by modification of the magnetic 
path.

c. Control of Clearances: Vibration and shock 
frequently result from impact involved in the operation of 
machinery. In some instances, impact results from inferior 
design or manufacture.

2. Isolation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

a. Isolation of Source: When a machine creates 
significant shock or vibration during its normal operation, 
it may be supported upon isolators to protect other 
machinery and personnel from shock and vibration.

b. Isolation of Sensitive Equipment: Equipment 
often is required to operate in an environment characterized 
by severe shock or vibration. The equipment may be 
protected from these environmental influences by mounting it 
on isolators.

3. Reduction of the Response
a. Alteration of Natural Frequency: If the natural 

frequency of the structure of a piece of equipment coincides 
with the frequency of the applied vibration, the vibration 
may be made much worse as a result of resonance. Under such 
circumstances, if the frequency of the excitation is 
substantially constant, it often is possible to alleviate 
the vibration by changing the natural frequency of the 
structure.

b. Energy Dissipation: If the vibration frequency 
is not constant or if the vibration involves a large number 
of frequencies, the desired reduction of vibration may not 
be attainable by altering the natural frequency of the 
responding system. It may be possible to achieve equivalent 
results by the dissipation of energy to eliminate the severe 
effects of resonance.
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c. Auxiliary Mass: Another method of reducing the 
vibration of the responding system is to attach an auxiliary 
mass to the system by a spring; with proper tuning the mass 
vibrates and reduces the vibration of the system to which it 
is attached.
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CHAPTER III 
METHODOLOGY

The purpose of this research was to develop a 
methodology to analyze and design the vibration isolator and 
absorber of a ship's mast to reduce the signal error of the 
radar mounted on the mast. Two aspects of the research to 
be completed included (a) laboratory experiments to simulate 
the dynamic behavior of the aluminum tubes of a ship's mast 
and to design an optimum vibration absorber and isolator and
(b) to compare the responses of the mast with and without 
the optimal vibration absorber and isolator in field tests 
at sea.

This chapter describes the methodology and contains the 
following five sections: (a) the overall design of the
research; (b) the determination of the analysis model of 
mast tubes; (c) the design of the mast to obtain oscillation 
states, sea state loads, and wind loads; (d) the design of 
the experiment for an optimal isolator and the absorber; and 
(e) field tests to compare the difference in mast vibration 
due to the isolator and absorber.

The Overall Design of This Research
In this research, finite element analysis (Pegg, 1985J 

has been used to analyze the natural frequency and vibration
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displacements of a ship's mast. If the radar base plate 
displacements are greater than the acceptable range, the 
vibration must be reduced by adding vibration isolators and 
absorbers.

An optimization program was used to design the optimal 
vibration isolator and absorber. In the optimal design of 
the vibration isolator and absorber, the following factors 
were considered: the effect of the spring constant of the 
isolator, the damping ratio of the absorber, the position of 
the applied external force, the optimal frequency modulation 
ratio, and the optimal damping ratio of the radar mast.
When minimizing the radar displacement, the optimal 
frequency modulation ratio and resistance ratio of the 
dynamic isolator can be obtained. At the same time, the 
optimal mass ratio between the absorber and the radar can be 
determined.

In the field test, radar vibration before and after the 
installation of the optimal dynamic absorber were compared 
to illustrate the accuracy of the radar signal improved by 
the methodology developed in this research.

Analysis Model of Mast Tubes
A mast structure is a complicated spatial beam that is 

composed of many aluminum-alloy tubes welded together.
Before applying traditional beam theory (Haug & Arora,
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1979), the influences or errors that can be caused by two 
features of an aluminum-tube mast are analyzed. First, the 
aluminum tubes are hollow which is different than a solid 
beam. Second, these aluminum-alloy tubes are welded 
together. The heat treatment on the original material and 
the added welding material may make the mast different than 
a structure made by homogeneous aluminum tubes.

Hence, it is necessary to analyze the influences of 
these welding constants on the behavior of the structures.
To determine the difference in structural behavior between a 
tube and a solid beam element, the finite element analysis 
method was used to analyze the oscillation state. To 
clarify the influence of welding on the mechanical 
properties of aluminum alloys, aluminum alloy tubes were 
separated into two groups: original and welded tubes. The 
natural frequency of these two groups was analyzed by the 
finite element method and compared.

The Design of the Experiment of Pipe Elements 
In the experiment conducted in this research, three 

aluminum alloy tubes (6061-T6) were used. The length of the 
longer tube was twice that of the other two tubes. The two 
shorter tubes were welded together according to the welding 
method of shielded metal arc welding. Hence, the
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longer Cube and the welded one had the same length, as shown 
in Figure 1.

The mast was made of aluminum alloy 6061-T6. The 
mechanical property of this type of material was as 
follows:

E = 10 x 106 lb/in2 (Young Modules)
u = 0.35 (Poisson ratio)

err = 40 lb/in2 (bending stress)
c = 45 lb/in (broken stress)

P = 2.70 g/cm3 (density)

Prior to initiating the experiment, the following were 
decided:(a) the locations and the directions of the 
measurement, (b) the installation method of the tested 
components, (c) the method to produce oscillation and (d) 
the equipment for the experiment. Redarding the location 
and the direction of the measurement, the positions of the 
measuring points needed to be fully based on the geometry 
characteristics of the structure to be measured. It was 
necessary to measure only the longitudinal oscillation 
because the tested components were axis-symmetrical, and the 
focus of this experiment was to find the wind oscillation.

The installation method of the tested components was 
determined. First, the aluminum tubes were clamped with a
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three-foot clamp, as shown in Figure 2. With the tube base 
clamped, the tube was considered a cantilever beam.

In most structural vibration experiments, oscillations 
are made by: (i) a shaker that produces Sine, Random, Pseudo
Random, or Periodic impulses; and (ii) a hammer that 
produces impulses. Within the limitations of the available 
equipment in the laboratory, an impact hammer was used to 
produce oscillation, as shown in Figure 3. The advantages 
of this oscillation excitation method was simple equipment, 
ease of operation and efficiency.

The equipment for the experiment was as follows(Figure
4) :

Computers and peripherals:
(i) HP (Hewelett-Packard) 9000/350C workstation.

(ii) HP2227B printing machine.
(iii) HP7475A drawing machine (A3 / A4 Size, 6-pen) 
Frequency band analysis machine:

B & K (B & K Corporation) 2032 Dual Channel 
Signal Analyzer.

Induction machine:
(i) Electric accelerator B & K 4371 

(0.1-12600 Hz).
(ii) The converter of dynamic B & K 8200 

(0-5000N).
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The situation of fixed tested
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Impulse hammer:
(i) Impact Hammer B & K 8202. The characterist 

of the impact hammer are shown in Table 1. 
The signal amplifiers:

(i) Amplifiers B & K 2635, 2644.

Table 1
Characteristics of Impact Hammer

Impact
Hammer

Force
Range
(N)

Duration
Range
(ms)

Approx.
Frequency
Range
( -lOdB, Hz)

Rubber
Tip

100-700 5-1.5 0-500

Plastic
Tip

300-1000 1-0.5 0-2000

Steel
Tip

500-5000 0.25-0.2 0-7000

The procedure of the experiment is illustrated in Figure 
5 :
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Figure 3 . The shaking situation

Fiaure 4 . The layout of the experiment
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Amplifier

B  & K  2635 
Amplifier

HP 7475A 
Plotter

Pipe element 
of test

B  &  K  4371
Electric
Accelerator

8202
Impact Hammer

B  &  K  2032 
Dual Channel 
Signal Analyzer

Figure 5 . The layout figure of the equipment for the 
experiment.

The following steps was followed in testing the pipe 
elements:

Step 1. A 3.5 inch aluminum alloy tube was fixed with 
a three-foot clamp to simulate a fixed-end beam.

Step 2. The aluminum alloy tube was struck with the 
impact hammer. The following four kinds of oscillating 
signal were produced: (i) sine signal (ii) random signal
(iii) pseudo random signal (iv) periodic impulse signal
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Step 3. The oscillating signals were manipulated by
the following two approaches: (i) The signals were amplified
by a B & K 2644 amplifier. (ii) The signals were 
accelerated by a B & K 4371 electronic accelerator prior to 
being sent to B & K 2635 amplifier.

Step 4. The amplified signals were sent to a B & K
2032 dual channel signal analyzer separately to analyze and 
compare.

Step 5. The frequency responses were plotted by an HP 
7475 plotter.

The Design of the Mast for Experimentation
Finite element analysis was used to design the model 

mast, and is shown in Figure 6. The mast structure was 
modeled by 110 structural elements and 40 nodal points.
Among the 110 elements, there was a circular plate element 
at the top of the mast. The rest were space beam elements. 
The circular plate element has four nodal points, which are 
points 1 to 4.

Figure 7 shows the assembly of the radar and the base 
plate. The volumes and the masses of the searching radar 
and antenna were small (relative to the mast), therefore, 
these two masses were assumed to be concentrated on a mass 
center that is above the middle of the circular base plate. 
Figure 8 shows the finite element model plus the center
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Figure 6. The finite element analysis model of mast

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



41

IY///A '/ / / / / ^ / / / / / / / / / / / / / / / / / / / a w ZTX^ ISOLATOR
ABSORBER

////

RADAR BASE-PLATFORM

Fiaure 7 . Radar and mast base plate.
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Figure 8 . The finite element analysis model
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point (point 5) of the radar base plate, the mass center of 
the radar (point 6), and the ship's deck.

A simulation of the loadings applied on real ships was 
used. These loadings included wind load, sea state load, as 
well as 2.5 g inertial loads in longitudinal, transverse, 
and vertical directions. The results were used to analyze 
the vibration and displacement of the ship's mast (see 
Appendix A). The experiment and design were as follows:
Wind Load

Typical wind loading was calculated considering the 
mast structure area, wind velocity, air density, and wind 
pressure. In this research, the wind load was estimated by 
an empirical formula, as follows:

Fw = Pw x A = l/2cpV2
Fw = Wind loading
Pw = Wind pressure (lbs/ft)
A = Wind application area (ft2 } 
p = Air density (slug/ft2 )
V = Wind speed (ft/sec)
C = Constant 

In this experiment, the following data were used:
Front (longitudinal) wind speed = 70 mile/hr, 
Side (transverse) wind speed = 50 mile/hr,
Air density = 0.00238 slug/ft2 ,
Constant = 1.28.
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Sea State Load
The sea state load is a dynamic loading factor for ship 

movement. Sea conditions directly influence the motion of a 
ship and determine the dynamic loading of ship movement (Roy 
and Craig, 1981). Dynamic loadings can be divided into 
longitudinal(X), transverse(Y), and vertical(Z) directions 
(Clough and Peuzien, 1975). According to ship motion and 
attitude (U.S. Navy 1985), the seventh sea state is an 
adverse sea condition, in which wave height can reach 19.7 
to 2 9.5 feet as shown in Table 2. The load caused by sea 
states can be estimated by the following formula:

4 TT*" 4
A ,  =  A +  g * S i n 0 n  +  -4-  & X +  0 „ Z.1 \ O p y-»7 p J>2 P

P P

1 4/r A tt 4;r
A t =  g * S i n 0 + - - ^ r 0 X + ^ r 0 r 2 Y  +  - ^ 0 r Zi o p T  T

A ’ A 1
A . = g ± ( A h + ^ r 0 p X  +  j r 0 r Y )

In the formula to estimate the load in Z direction, the 
positive sign in Az is downward, the negative sign is 
upward.

g Gravity Acceleration
er = Maximum Roll Angle
0p = Maximum Pitch Angle

Tr = Rolling Period
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Tp = Pitch Period
= Heave Acceleration 

As = Surge Acceleration
X = Distance between the Center of Gravity of the

ship and the Longitudinal Axis (fore and aft)
of the ship on the deck 

Y = Distance between the Center of Gravity of the
ship and the Horizontal Axis (port side and
starboard side) of the ship on the deck 

Z = Distance between the Center of Gravity of the
ship and the vertical direction (top and 
bottom) of the ship on the deck 

Ax = Sea state load in X Direction
Ay = Sea state load in Y Direction
Az = Sea state load in Z Direction

Table 2 shows the wave heights of different sea states.
The seventh stage of the sea state load was adopted in 

this research. The following parameter values for sea state 
load calculation were recorded on the ship under sea stage 7 
and were used in this experiment:

9p = 0.0873 radian, Tp = 6.0 sec
0r = 0.4 9 radian, Tr = 8.0 sec
Aĵ  = 0 . 3g, Ag = 0 .15g
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Table 2
Sea State

Sea State Number Wave Height (ft.)

0-1 0.0-0.3
2 0.3-1.6
3 1.6-4 .1
4 4.1-8.2
5 8.2-13.1
6 13.1-19.7
7 19.7-29.5
8 29.5-45.5

>8 >45.5

The Experimental Procedure for the Mast Base Plate
Displacement of the radar base plate was determined

using the steps below:
1. Estimate the wind load magnitude. Load in the 

following situations was applied in the experiment:
(a) front wind speed was 70 miles per hour.
(b) side wind speed was 50 miles per hour.

2. Estimate the sea state load Ax, Ay, and Az.
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3. Check if the displacement at each of the six 

points on the radar base plate was less than 0.2 
milliradians under stage 7 sea load and wind loads.

4. Examine if the displacement at each of the six 
points on the radar base plate was less than 0.2 
milliradians under stage 7 sea load, wind load and 2. 5g 
acceleration loads in Ax, Ay, and Az directions.

The Mathematical Model of the Isolator and Absorber on the
Radar Base Plate

The two commonly used approaches to reduce the 
vibration of ship radar systems are as follows:

1. Put an isolator between the radar and the base plate 
as shown in Figure 9. The main function of the isolator is 
to reduce the radar vibration that is transferred from the 
base plates. Additionally, the isolators can damp out the 
force which is transferred from the radar to the base plate.

2. Link a dynamic absorber with the radar as shown in 
Figure 10. The main purpose of the absorbers is to sponge 
the energy of vibration, to reduce the vibration of the 
radar and increase the isolation.

The equations of motion for the mast system with an 
isolator were as follows:

1. The equation for an isolator was:
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RADAR

Figure 9 . An isolator between the radar and the base plate.

RADAR

Figure 10. An added absorber with the isolator and the 
radar and base plate.
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mx + cx + kx = 0
2. The equation for the combination of an isolator and 

an absorber was:
k2/kl = ml.m2/(ml+m2)2 
Constant for isolator.
Constant for absorber.
Mass of radar.
Mass of absorber.
Constant for isolator.
Amplitude at middle of the radar base plate 
of the isolator.
Velocity at middle of the radar base plate. 
Acceleration at middle of the radar base 
plate.

The optimum design of the radar was obtained when the 
above two equations were used in the finite element 
analysis. The constraints used in the optimization were (1) 
the displacement at the middle of the base plate is less 
than 0.2 milliradian and (2) the frequency is less than 50 
Hz .

The major purpose of this experiment was to determine 
the optimum frequency modulation ratio (K2/K1 in equation 2) 
of a combined absorber and isolator and the optimum 
resistance ratio (k in equation 1) of the absorber when the

kl
k2
m, ml 
m2 
c 
x

x
X
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radar displacement was minimized. The goal was to increase 
the stability and accuracy of the radar.

Field Test (on a Ship at the Sea)
The main purpose of the field test was to verify the 

effect of the isolator and the absorber in reducing radar 
vibration. The following conditions were used in the field 
tests on a ship at sea.

1. Mast without isolator and absorber at general 
speed (15 knots).

2. Mast with isolator and absorber at general speed (15 
knots).

3. Mast without isolator and absorber at critical speed 
(18 knots) .

4. Field test with isolator and absorber at critical 
speed (18 knots).

5. Field test without isolator and absorber at economic 
speed (22 knots).

6. Field test with isolator and absorber at economic 
speed (22 knots).

7. Field test without isolator and absorber at high 
speed (30 knots).

8. Field test with isolator and absorber at high speed 
(30 knots).
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Critical speed for a ship is the speed at which 
resonance vibrations occurs. Economic speed is also called 
normal speed during which noise and vibration are smallest. 
High speed is one at which the engine rotational speed is 
very close to its upper limits.
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CHAPTER IV 
PRESENTATION AND DATA ANALYSIS

The results of the data analysis and experiment 
described in the previous chapter are presented in this 
chapter. The purpose of the data analysis and experiment 
was to determine the reasonable oscillation model state to 
design the optimum vibration absorber and vibration 
isolator.

Data Analysis
Research question one: What is the reasonable finite 

element analysis model to analyze the dynamic behavior of 
the mast, including the natural oscillation frequencies and 
the oscillation states of the mast structure?

A series of laboratory experiments were conducted in 
order to answer research question one. These experiments 
included an aluminum alloy tube experiment, a pipe element 
experiment, and a finite element analysis experiment. In 
addition, to make the experiments complete, a mast structure 
simulation of an oscillation state was conducted and the 
natural frequency was measured. The data in Figures 11 and 
12 show the two free vibration models of aluminum alloy 
tubes. The results shown in these figures were needed for
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Figure 11. The result of the experiment of the non-welding 
conduit model state.
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Figure 12. The result of the experiment of the welding 
conduit model state.
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selecting pipe elements for data analysis, for determining 
pipe elements for analysis, and for design of the pipe 
elements. The data in Figure 11 illustrates the frequency 
responses of an aluminum tube. Figure 12 shows the 
frequency responses of a welded aluminum tube. The 
frequencies of an aluminum alloy tube obtained from the 
experiments are shown in Table 3. There were no significant 
differences in natural frequencies between welded tubes and 
continuous tubes. In other words, the difference in 
mechanical properties of welded aluminum tubes and 
continuous aluminum tubes were very limited.

Table 3
Table of Natural Frequencies

Item Number Tubes Welded Tubes

1 48 52
2 324 332
3 808 844
4 920 924
5 1032 1028
6 1144 1180
7 1384 1396
8 1648 1664

The following observations were derived from the 
previous results:

1. Welding had no obvious influence on the mechanical 
properties of mast structure.
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2. The aluminum alloy tubes welded with good quality 
(6061-T6) can be considered as rigidly fixed. The welded 
aluminum alloy tube structure can be considered as a beam 
structure. Each beam element i.e., an aluminum alloy tube, 
could sustain external forces and displacements of six 
degrees of freedom in X, Y, and Z directions.

3. The vibration modes of aluminum alloy tubes (6061- 
T6) were the same as that of a beam element.
The Analysis Element of a Tube

According to the sizes of the tested components, the 
investigator set up a finite element analysis model by the 
use of shell and beam elements. The integrated software 
SUPERTAB and SAP6 were adapted to analyze oscillation.
SUPERTAB was used to build an analysis model and displace
the analysis results. SAP6 was used to construct a system 
of equations and solve the equations. The results are shown 
in Tables 4 and 5. Figure 13 to Figure 17 are graphs of 
each oscillation type. For the bending and longitudinal 
oscillation types, there was no difference in using either a 
shell element or a beam element for analysis. The shell 
element model, however, was more effective for detecting 
wrist and radial oscillation (Figures 18 and 19).
In other words, the beam element model does not have this 
function.
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Figure 13. The first bending oscillation (a) beam element
(b) shell element.
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Figure 14. The second bending oscillation (a) beam element 
(b) shell element.
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Figure 15. The third bending oscillation (a) beam element 
(b) shell element.
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Figure 16. The fourth bending oscillation (a) beam element 
(b) shell element.
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Piaure 17. Longitudinal mode.
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Figure 18. Torsion radial.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

Figure 19. Radial vibration of mast tube.
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(Figure 19 continues)
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Table 4
The Result of Beam Elements Analysis

Type of 
Oscillation

Natural
Frequencies

Model

1 . 64 . 9 1st Bending
2 . 391.5 2nd Bending
3 . 808 .2 Torsion or Radial
4 . 1040.2 3rd Bending
5 . 1303 .1 1st Longitudinal
6 . 1915 .1 4th Bending

Vibration Analvsis of Mast Structure
A finite element analysis model of the mast was used to 

analyze the natural oscillation frequency and the 
oscillation state of the mast structure. The illustration 
in Figure 2 0 shows the finite element model of the mast 
structure. The structure model has 40 nodal points and 110 
elements, including 110 Linear Space Beam Element and one 
Circular Plate Element.

Usually any kind of instrument or equipment will 
experience some oscillation when it is placed on either an 
airplane or a ship. Serious oscillation can lead to damage 
to the equipment, and less serious oscillation can affect
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Table 5
The Result of Shell Elements Analysis

Type of 
Oscillation

Natural
Frequencies

Model

1. 65.0 1st Bending
2 . 391.5 2nd Bending
3 . 791. 0 Torsion + Radial
4 . 918 .4 1st Radial
5 . 942 .4 2nd Radial
6 . 1003 . 0 3rd Radial
7 . 1037 . 7 3rd Bending + Radial
8 . 1171. 2 4th Radial
9 . 1303 . 1 Longitudinal

10 . 1473.9 5th Radial
11. 1900 . 0 4th Bending
12 . 1965 .4 4th Bending + Radial

the function of the equipment. Therefore, finding ways to 
decrease the oscillation of a system has become a very 
important task in the field of ship engineering.

As mentioned before, SAP6 was used as the oscillation 
analysis package. In SAP6, there were 460 simultaneous 
equations in structural analysis. The first frequencies
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of the oscillation of the mast structure are shown in Table 
6 .

Table 6
The First Five Frequency Oscillations

Type of 
Oscillation

Frequencies 
in rad/sec

Frequencies 
in cycle/sec

1 113 .7 18.09
2 217 . 9 34.69
3 252 . 5 40 .18
4 259.4 41.28
5 344 .7 54 .87

Types of oscillation in the finite element analysis are 
shown in Figure 21 to 25. In these figures, solid lines are 
used to indicate the original mast structure and dotted 
lines indicate the mode of oscillation. These figures also 
present the types of mast structure oscillation, main 
elements of displacement, displacement directions, and 
indicate the joint positions of the largest displacement in 
X, Y, and Z directions which are indicated by symbols.

Regarding oscillation at the lowest frequency, Figure 
21 shows that the mast structure oscillation has taken place
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Figure 20. Finite Element Model of Mast Structure.
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on the top of the structure. The main oscillation direction 
was in the X direction. The largest oscillation 
displacement of the circular radar system was also in the X 
direction, while the main structure was small.

The illustration in Figure 22 shows the main 
oscillation of the mast structure in the Z direction (second 
frequency). The presence of primary damping in the mast 
significantly affected the optimum damping required for the 
absorber, when the absorber mass was about half of the mass 
of the mast. This was shown in the X direction and Z 
direction.

The illustration in Figure 23 shows the main 
oscillation of the mast structure in the Y direction (third 
frequency) of the radar base plate. It was clearly observed 
that rotation occurred because of damping in the Y 
direction. This was also shown for the absorbers, however, 
the effect was mild because their mass is very small 
compared with main mass.

The illustration in Figure 24 shows the main 
oscillation in the X direction (fourth frequency). The main 
displacement of the circular radar base plate was also in 
the X direction, while the middle part of the main structure 
had a large displacement.

As shown in Figure 25 (fifth frequency), the main 
oscillation of the mast structure is in the X and Z
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directions of the radar base plate, and the Y direction 
displacement at the bottom of the structure was large. This 
was also shown in the absorbers, on which this effect was 
mild because their mass is very small compared with the main 
mass.

Based on the above observations, one can determine that 
the aluminum alloy tubes of the mast structure can be 
considered as space beam elements. This conclusion was the 
basis for establishing the finite element analysis model.

Research question two: With the addition of a dynamic 
vibration absorber and isolator, will the vibration 
amplitude of the radar on the base plate be within the 
prescribed maximum of 0.2 milli-radians when the ship is 
subject to stormy waves and wind load?

In this experiment, it was found that an aluminum alloy 
tube of the mast structure can be considered as an element 
for the finite element analysis model shown in Figure 26.

The following sea states and wind conditions were used 
in the finite element analysis:

Front direction wind speed = 70 mile/hr,
Side direction wind speed = 50 mile/hr,
Air density = 0.00238 slug/ft2 ,
Sea state number = 7 ,
Constant = 1.28.
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.Figure 21. Model of the Finite Element in Mast Structure 
(Oscillation of the lowest frequency).
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o m a x . X DISPLACEMENT
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x —  m a x - Z DISPLACEMENT

Figure 22. Model of the Finite Element in Mast Structure 
(Oscillation of the second frequency).
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o  MAX• X DISPLACEMENT
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Figure 23. Model of the Finite Element in Mast Structure 
(Oscillation of the third frequency).
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Figure 24. Model of the Finite Element in Mast Structure 
(Oscillation of the forth frequency).
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Figure 25. Modal of the Finite Element in Mast Structure 
(Oscillation of the fifth frequency).
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0r =0.49 radian (Maximum Roll Angle)
0p = 0.0873 radian (Maximum Pitch Angle)
Tr = 8 . 0  seconds (Rolling Period)
Tp = 6 . 0  seconds (Pitch Period)
Ah = 0.3g (Heave Acceleration)
As = 0.15g (Surge)
Ax = Sea state load in X Direction
Ay = Sea state load in Y Direction
Az = Sea state load in Z Direction
g = Gravity Acceleration
X = Distance between the Center of Gravity of

the ship and the Longitudinal Axis (fore and 
aft) of the ship on the deck 

Y = Distance between the Center of Gravity of
the ship and the Horizontal Axis (port side 
and starboard side) of the ship on the deck 

Z = Distance between the Center of Gravity of
the ship and the vertical direction (top and 
bottom) of the ship on the deck
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Figure 26. Radar base plate element in finite element 
analysis model.
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Under the above conditions, the displacements(Ax, Ay, 
Az) and angular displacements (AQ) for four points on the 
base-plate, are shown in Table 7, while their locations are 
shown in the circular plate on Figure 27.

Figure 27. Radar Base Plate.

The most important data to be considered is the angular 
displacement at the location where the radar is mounted.
This location is the middle point of the radar base plate. 
The angular displacement at this location can be calculated 
as the average of the angular displacement of the above four 
points. Under the assumed wind and sea state conditions, 
the calculated angular displacement at the middle of the
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Table 7
The Displacement and Angular Displacement

POSITION AX (in) AY(in) AZ(in) AQ(milliradian)

1 -.0586 . 0080 . 0028 . 1447
2 -.0568 . 0081 . 0027 .1404
3 -.0566 . 0059 . 0016 . 1390
4 -.0589 . 0061 . 0018 . 1447

Table 8
The Displacement and Angular Displacement (under Super 
Imposed Loads)

POSITION A X (in) A Y (in) A Z (in) A Q (milliradian)

1 -.1124 . 1193 .0018 .4008
2 - . 1110 .1186 . 0059 .3974
3 -.1106 .1209 . 0069 .4010
4 -.1126 . 1203 . 0030 .4030
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radar base-plate is less than 0.2 milliradians the 
acceptable range of angular displacement.

The displacements of these four points under the super 
imposed loadings (2.5g, wind 70 miles/hr, and sea state 7) 
are in Table 8.

From the above displacement information, the average of 
angular displacement at the radar base-plate is .4005 
milliradians. This value is higher than the acceptable 
value which is 0.2 milliradians. Hence, the vibration of 
the mast needs to be reduced.
Analysis of the Radar Base Plate

The analysis of the radar base plate is described 
below. Further details may be found in Appendix B.

The data in Figure 28 and Figure 2 9 show the 
relationships between the radar displacement alteration H 2 , 

the mass ratio at2 between the vibration absorbing 
instrument and radar p.2' and the resistance ratio of the 
vibration separating instrument Ci when the spring constant 
of the isolator (k) is 25. In Figure 28 the base plate 
thickness is 1 inch. In Figure 29 the base plate thickness 
is 1.5 inches. According to the figures, the following 
conclusions can be made:
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1. When JJ-2 is less than or equals 0.1, the slope of the 
radar displacement alteration a^2 rapidly decreases when (i2 
increases.

2. When ^2 is greater than 0.1, the slope of the radar 
displacement alteration at2 changes mildly when H 2 

increases.
3. The decreases when C , i increases.
4. When comparing Figures 4-18 and 4-19, it was found 

that the value of at2 increases when the base plate 
thickness increases. Based on the above results, one can 
conclude that the size increase of the base plate does not 
decrease the angular displacement amplitude at the middle 
point of the radar base plate when random force is applied 
to the radar directly.

The data in Figure 3 0 shows that radar displacement 
alteration increased when the spring constant K1 of the 
vibration separating instrument increased and the following 
two parameters reached their optimal values: (a) resistance
ratio/mass ratio of the radar and, (b) frequency modulation 
ratio/mass ratio of the radar.

The data in Figures 31 and 32 show the relationship 
between the optimum resistance ratio and the ratio of
the frequency modulation ratio W0pt to mass ratio 1̂ 2 - 
obtained from the optimization analysis for different a 
values under the following conditions:
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Figure 28. The relationship between the radar displacement 
alteration, the mass ratio between the vibration absorbing 
instrument and radar, and the resistance ratio of the 
vibration separating instrument when the base plate 
thickness is one inch.
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Figure 29. The relationship between the radar displacement 
alteration, the mass ratio between the vibration absorbing 
instrument and radar, and the resistance ratio of the 
vibration separating instrument when the base plate 
thickness is 1.5 inches.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

4000

3500

3000

2500

2000

1500

000

600

0. 00 0.05 0 . 10  0.15- 0.20 0.25 0.30 0.35 0.<0

Figure 30. The relationship between the radar displacement 
alteration, the mass ratio between the vibration absorbing 
instrument and radar, and the spring constant K1 of the 
vibration separating instrument when the base plate 
thickness is one inch.
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1. The base plate is 1 inch.
2. The spring constant of vibration absorbing 

instrument K1 is 25.
The following findings were obtained from the data in 

Figures 41 and 42:
1. The optimal resistance ratio <̂0pt increased when 

mass ratio p-2 increased.
2. The optimum resistance ratio ^Qpt did not change 

with the resistance ratio of the vibration absorbing 
instrument C ,i _

3. The value of the frequency modulation ratio W0pt 
decreased gradually when the mass ratio P2 increased.

4. The optimum frequency modulation ratio W0pt 
decreased slightly when the resistance ratio of the 
vibration absorbing instrument increased.

5. The frequency modulation ratio W0pt was less than 1 
consistently. This means that the natural frequency of the 
optimal dynamic vibration absorbing instrument was always 
less than the natural frequency of the whole system.

The data in Figures 43 and 44 show the relationship 
between the optimal resistance ratio u0pt, the optimal 
frequency modulation ratio W0pt , and the spring constant K1 
of the vibration separating instrument when <̂1 = 0.01.
The conclusions made from these figures are as follows:
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Figure 31. The relationship between the optimum frequency 
modulation ratio W, the mass ratio between the vibration 
absorbing instrument and radar, and the resistance ratio of 
the vibration separating instrument when the base plate 
thickness is one inch.
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Figure 32. The relationship between the optimum resistance 
ratio, the mass ratio between the vibration absorbing 
instrument and radar, and the resistance ratio of the 
vibration separating instrument when the base plate 
thickness is one inch.
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Figure 34. The relationship between the optimum frequency 
modulation ratio, the mass ratio between the vibration 
absorbing instrument and radar, and the spring constant K1 
of the vibration separating instrument when the base plate 
thickness is one inch.
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1. The value of optimum resistance ratio CQpt did not 
change with the spring constant K1 of the vibration 
separating instrument.

2. The optimal frequency modulation ratio W0pt 
decreased when the spring constant K1 of the vibration 
separating instrument increased.

The data in Figures 45 and 46 show the relationship 
between the optimal resistance ratio £0pt and the optimum 
frequency modulation ratio WQpt when the base plate 
thickness is 1.5 inches. From data in Figures 41, 42, 45 
and 46, it was found that the change in base plate thickness 
did not influence the optimal value of the resistance ratio 
sopt and the optimal value of frequency modulation ratio

w o p t  •

From the preceding analysis, the following conclusions 
were obtained:

1. The base plate (h), the resistance ratio of the 
vibration separating instrument ( C , ]_ ) , and the frequency 
modulation ratio (Wl) have no influence on the optimal 
resistance ratio <̂0pt' when the value of the mass ratio 
between the vibration absorbing instrument and radar (|i2 )is 
fixed.

2. The value of optimum the frequency modulation ratio 
WQpt will change with the value of and (W]_) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

0. 35 -

0 . 30  -

0.25 ~

n.©
5 0 0.20 ~

0. 05 -

0 . 00  0.05 O.tO 0.15 0.20 0.25 0.30 0.35 0.<0

P  2

Figure 35. The relationship between the optimum frequency 
modulation ratio, the mass ratio between the vibration 
absorbing instrument and radar, and the resistance ratio of 
the vibration separating instrument when the base plate 
thickness is 1.5 inches.
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Figure 36. The relationship between the optimum resistance 
ratio, the mass ratio between the vibration absorbing 
instrument and radar, and the resistance ratio of the 
vibration separating instrument when the base plate 
thickness is 1.5 inches.
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3 . The value of optimal frequency modulation ratio W0pt- 
has no relationship to the base plate.

The Results of the Field Tests
Four field tests were conducted to measure the 

frequency of the mast vibration at four different speeds: 
normal speed (15 knots), critical speed (18 knots) 
economical speed (22 knots), and high speed (30 knots). A 
knot is about 1.13 miles per hour.

The frequency of mast vibration at normal speed (15 
knots) is presented in Figures 37 and 38. The solid lines 
indicate the frequency of mast vibration when no absorber 
nor isolator was applied. The dotted lines indicate the 
frequency when both an absorber and an isolator were 
applied. The frequency of mast vibration was found to be 50 
cycles per second when no absorber or isolators was applied. 
(Figure 38). On the other hand, the frequency of mast 
vibration was found to be between 15 and 25 cycles per 
s e c o n d  when both an absorber and an isolator were applied.

The frequency of mast vibration at critical speed (18 
knots) is presented in Figures 3 9 and 40. Figure 3 9 shows 
the frequency of mast vibration when no absorber or isolator 
was applied. Under this condition the frequency of the mast 
vibration was found to be over 50 cycles per second.
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Figure 40 presents the frequency of mast vibration when both 
an absorber and an isolator were applied. Under this 
condition the frequency of the mast vibration was found to 
be below 10 cycles per second.

The frequency of mast vibration at economical speed (22 
knots) is presented in Figures 41 and 42. Figure 41 shows 
the frequency of mast vibration when no absorber or isolator 
was applied. Under this condition, the frequency of mast 
vibration was found to be between 40 to 50 cycles per 
second. The data in Figure 42 demonstrated the frequency of 
mast vibration when both an absorber and an isolator were 
applied. The frequency of mast vibration was found to be 
between 15 to 2 5 cycles per second.

The frequency of mast vibration at high speed (30 
knots) is presented in Figures 43 and 44. Figure 43 
illustrates the frequency of mast vibration when no absorber 
or isolator was applied. Under this condition the frequency 
of mast vibration was found to be over 50 cycles per second. 
The data in Figure 44 presents the frequency of mast 
vibration when both an absorber and an isolator were 
applied. Under this condition the frequency of mast 
vibration was found to be less than 25 cycles per second.
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CHAPTER V
SUMMARY, FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS

In this chapter a summary of the research is presented. 
Conclusions are based on the findings of this study. 
Recommendations for further study are also made.

Summary
The purpose of this research was to study methods for 

reducing the degree of destruction when receiving and 
analyzing signals from a radar system mounted on a ship's 
mast. An experiment was designed to imitate the static and 
dynamic behavior of a ship mast structure to determine the 
reasonable oscillation modal state, and then optimum 
vibration absorbers and vibration isolators were designed 
based on the results of oscillation analysis. The research 
focused on methods to reduce the vibration amplitude to a 
certain range. Two research questions were raised and 
answered:

1. What is the reasonable finite element analysis model 
to analyze the dynamic behavior of the mast, including the 
natural oscillation frequencies and the oscillation states 
of the mast structure?

2. With the addition of a dynamic vibration absorber 
and isolator, will the vibration amplitude of the radar on
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the base plate be within the prescribed maximum of 0.2 
milli-radians when the ship is subject to stormy waves and 
wind load?

Experimentation in this study was composed of two 
parts: (a) laboratory experiments to simulate the dynamic 
behavior of the aluminum tubes of a ship's mast and (b) 
designing the optimum vibration absorber and isolator and 
comparing the responses of the mast with and without an 
optimal vibration absorber and isolator in field tests.

The criteria for the experiments of this radar mast 
system study included: (a) the mast structure needed to be
flexible and not vibrate, (b) the radian-displacement at the 
middle of the radar base plate on top of the mast needed to 
be less than 0.2 milliradians at normal conditions, and (c) 
the natural frequency of the radar base plate needed to be 
less than 50 Hz.

Findings of This Research
1. There were no significant differences in natural 

frequencies between welded tubes and continuous tubes. 
Welding had no obvious influence on the mechanical 
properties of the mast structure. The welded aluminum alloy 
tubes were considered as rigidly fixed or perfectly 
connected.
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2. The vibration models of aluminum alloy tubes were 
the same as that of a beam element.

3. From the finite element analysis that was conducted 
in the laboratory tests to simulate the vibration of the 
mast system, the angular displacement at the middle of the 
radar base plate was less than 0.2 milliradians when the 
wind speed was 70 miles/hour and the sea state was 7.

4. From the laboratory test, the angular displacement 
at the radar base plate was 0.4005 milliradians when the 
wind speed was 70 miles/hour and the sea state was 7, and 
the magnitude of an external force was 2.5 times the ship's 
weight.

5. When radar displacement alteration was less than 
or equal to 0.1, the slope of the radar displacement 
alteration ot2 decreased rapidly when ^ 3 increased.

6. When jj-2 was greater than 0.1, the change of the 
slope of the radar displacement alteration at2 mildly 
increased when the value of j j-2 increased.

7. The value of cr̂ 2 decreased when the resistance ratio 
of the vibration separating instrument £]_ increased.

8. The value of a^2 increased when the thickness of the 
base plate increased.

9. The value of optimal resistance ratio C0pt increased 
when mass ratio fj-2 increased.
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10. The value of the optimal resistance ratio Copt 
not change when the resistance ratio of the vibration 
absorbing instrument Cl increased or decreased.

11. The value of frequency modulation ratio W0pt 
decreased gradually when mass ratio |i2 increased.

12. The value of optimal frequency modulation ratio 
WQpt decreased slightly when the resistance ratio of the 
vibration absorbing instrument Cl increased.

13. The value of optimal resistance ratio Copt not: 
change as the spring constant K1 of the vibration separating 
instrument Ciincrease<3 or decreased.

14. The value of optimum frequency modulation ratio 
WQpt decreased when the spring constant K1 of the vibration 
separating instrument Cl increased.

15. Changing the base plate thickness h, the resistance 
ratio of the vibration separating instrument Ci< anc  ̂the 
value of frequency modulation ratio (Wl) had no influence on 
the values of optimal resistance ratio Copt' when the value 
of the mass ratio between the vibration absorbing instrument 
and radar |i2 was fixed.

16. The value of optimal frequency modulation ratio 
WQpt was independent of base plate thickness.

17. At general speed (15 knots), the frequency of mast 
vibration was found to be 50 cycles per second when no 
absorbers nor isolators were applied. However, it was found
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to be between 15 to 25 cycles per second when both an 
absorber and an isolator were applied.

18. At critical speed (18 knots), the frequency of mast 
vibration was over 50 cycles per second when no absorbers 
nor isolators were applied and below 10 cycles per second 
when both an absorber and an isolator were applied.

19. At economical speed (22 knots), the frequency of 
mast vibration was found to be between 40 to 50 cycles per 
second when no absorber or isolator was applied. In 
addition, the frequency of mast vibration was found to be 
between 15 to 25 cycles per second when both an absorber and 
an isolator were applied.

20. At high speed (30 knots), the frequency of mast 
vibration was over 50 cycles per second when no absorbers 
and no isolators were applied, and below 25 cycles per 
second when both an absorber and an isolator were applied.

Conclusions
Based on the results obtained in this study, the 

following conclusions were made:
1. The aluminum alloy tubes of a mast structure can be 

considered as space beam elements.
2. The increase of base plate thickness does not 

decrease the vibration amplitude when random force is 
applied on the radar directly.
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3. The value of frequency modulation ratio W0pt is 
consistently less than 1. This means that the natural 
frequency of the optimal dynamic vibration absorbing 
instrument is always less than the natural frequency of the 
whole mast system.

4. The optimal dynamic vibration absorber is very 
effective in reducing the resonance of radar in laboratory 
tests. Hence, it can significantly increase the accuracy of 
radar signals.

5. When no absorbers and no isolators were applied in 
the field test, the frequency of mast vibration was found to 
be between 4 0 and 50 cycles per second at economical speed. 
Moreover, the frequency of mast vibration was found to be 
greater then or equal to 50 cycles per second at normal 
speed, critical speed, and high speed. However, when both 
an absorber and an isolator were applied, the frequency of 
mast vibration was found to be between 10 and 25 cycles per 
second at any of the above four speeds. In short, the use 
of the absorber and the isolator is an effective approach to 
optimize the design of the radar base plate.

Recommendation for Further Research
1. A study should be conducted to assess the effects of 

isolators and absorbers made of various materials to reduce 
the vibration of the mast systems.
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2. The laboratory test should be replicated using 
aluminum alloy tubes and tubes of other materials in order
to compare the effect of these materials.

3. A study should be conducted to determine the optimum 
design of the radar base plate of the masts of merchant 
ships that weigh more than 3000 tons.

4. A study should be conducted to assess the effects of 
isolators and absorbers on vibration reduction of the radar 
mast systems of offshore barges, offshore petroleum rigs, 
and port equipment.

5. A replication of this study should be conducted to
verify the procedure and compare the results.
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APPENDIX A
THE MATHEMATICAL MODEL OF WIND LOADING AND SEA STATE LOADING 

EFFECTS ON RADAR SYSTEM BASE PLATE DISPLACEMENT
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The Mathematical Model of Wind Loading and Sea State Loading 

Effects on Radar System Base Plate Displacemnet

The mathematical analysis of the radar system base plate 
displacement (Wang & Shao, 1992), is as follows:

(l)Wind loading formula:
Fw = Pw x A=l/2cpV2
Fw = wind loading
Pw = wind pressure (lbs/ft)
A = wind application area (ft2 ) 
p = air density (slug/ft3 )
V = wind speed (ft/sec)
C = Constant 

In this experiment, the following data were used:
Front (longitudinal) wind speed = 70 mile/hr, 
Side (transverse) wind speed = 50 mile/hr,
Air density = 0.00238 slug/ft2 ,
Constant = 1.28.
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(2)Sea state loading formula:

A - = <4, + g ^ m S f + ~ e ‘r X + ^ - $ f Z

"  l P

A , - Z ' : S ' n 9 ,  +  ] ~ r S l l X * ~ - B r 2 Y  +  i ^ - e r Z

P r 1 r

A : = g ± ( * n + ^ f - 0 n X + ^ r & r Y )

P l r

g = Gravity Acceleration
0r = Maximum Roll Angle

9p = Maximum Pitch Angle
Tr = Rolling Period

Tp = Pitch Period
Aft = Heave Acceleration
As = Surge Acceleration

X = Distance between the Center of Gravity of the
ship and the Longitudinal Axis (fore and
aft ) of the ship on the deck

Y = Distance between the Center of Gravity of the
ship and the Horizontal Axis.(port side and
starboard side) of the ship on the deck

Z = Distance between the Center of Gravity of the
ship and the vertical direction (top and 
bottom) of the ship on the deck 

Ax = Sea state load in X Direction
Ay = Sea state load in Y Direction
Az = Sea state load in Z Direction
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The folllowing parameter values for sea state load 
calculation were recorded on the ship under stage 7 and were 
used in this experiment:

0p = 0.0873 radian, Tp = 6.0 sec
0r = 0.49 radian, Tr = 8.0 sec
Ah = 0.3g, A s = 0.I5g

(3) The mathematical model of radar system base plate 
displacement:

v/ ( A x  ) 2 + ( A Y  ) 2 + ( A z  ) 
£ 0  =  —  ----------------------------

(4) The results of displacement analysis for wind loading:

KODE 
KO. ■ 
1 
2
3
4
5
6

X-TEANS

J 3 6 3 7 E - 0 1  
13586E-01 
1 3 5 5 3 E - 0 )  
1 3 6 2 1 E - 0 1  
1 3 G 6 5 E - 0 1

Y - T R A K S

- . 3 4 4  6 9 E - 01 
- . 3 4  2 8 6  E~ 01 
- . 3 4 4 S 9 E - 0 I  
- . 3 4 3 4 7 E - 01 
- . 3 4  4 0 6 E - 01

Z-TKANS

. 1 7 2 9 2 E - 02 

. 2 7 9 3 4  E - 02  

. 2 7 3 0 1 E - 02 

. 1 7 2 6 0 E - 0 Z  
•02

- . 1  3 6 7 2 E - 0 1  - . 3 5 0 3 B E t  01 - . 2 2 8 1 3 E - 0 2

X-R0TAT

3 1 G 9 1 E - 0 4  
2 8 1 8 4 E - 04 
2 7 7 4 1 E - 0 4  
3 1 - 0 0 5 E -  04 
2 3 1 7 2 E - 04 
1 4 4 1 1 E - 0 4

Y-E07 AT

. 1 3 3 0 ?  E - 04 

. £ 5 2 5 3  E - 05 

. 91 ? 24 E - 05 

. 2 8 7 1 3 E - 0 5  

. 1 0 2  I C E - 0 5  

. 4  66  20 E - 05

2-EOT AT

- .  4 2 0 0 7 E - 05 
. 7 4 8 5 S E - 05 

- . 1 9 7  S 9 E - 05 
-  . 1 1 1 5 5 E - 04 

. 27 1  £4  E - 05  

. 2 0 8 2 9 E - 0 5
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(5) The results of displacement analysis of sea state 
loading;

MODE X-TRANS Y-TRAHS Z-TRAHS X-R0TAT Y-R0TAT Z-R0TAT
HO.
1 —.15828 E-01 -.72134 E-02 .24457 E-03 .78139 E— 05 -. 1 1403E-04 .16119E-05
2 15381E-01 -.7 1302E—02 -.77697 E-04 .60909E-05 -.10959E-04 . 12675 E-04
3 -.15312E-01 -.77084 E-02 -.28024 E-03 .77671E-05 - . 1 3382E-04 .10832 E-04
4 -.15888E-01 -.76353 E—02 ..30673 E— 04 .52591E-05 - .10640E-04 .28092 E-06
5 -.15651E-01 -.73952E-02 -.16477E-04 . 76484E-05 -.4 9881E-05 .134 75 E-04
6 -.15786E-01 -.75892 E— 0 3 -.16611E-04 . 39347 E-05 . 1 9 2 60 E-05 .12S38E-04

(6) The results of displacement analysis of wind loading and

sea state loading:

NODE
ND

X-TRAN3 Y-TRAHS Z-TRANS X-R0TAT Y-ROTAT Z-R0TAT
li *J . 
1 -.294 65E-01 - .4 1682E-01 -. 14846E-02 .09505E-04 -.24704 E-04 -.25888E-05
2 -.289 68 E-01 -.41418E-01 -.28711E-02 .34275E-04 -.19484 E-04 •20161E-043 -.28365E-01 -.42198E-01 -. 3 010 3 E- 0 2 .35508E-04 -.2 25 0-1 E-04 .88550 E-05
4 -.29509E-01 -.41982E-0] .16954 E-02 .37264 E-04 -.13511E-04 -. 1 0875E-04n■ i - . 29335E-01 -.4180]E-01 -. 2 3 2 3 6 E- 0 2 . 30820E-04 -.3907 IE-05 .16194 E-046 -.29458E-01 - .4 2628E-01 -.. 22979E-02 .1834 BE-04 .65880E-05 . 14G2JE-04

(7) The results of displacement analysis of wind loading,

sea state 7 stage loading and 2 .5g accelerate loading:

NODE
itn

X-TRANS Y-TRAN3 Z-TRAN5 X-ROTAT •7-R0TAT Z-R0TAT
liU.

1 -. 1 1 2 4 6 E+00 - . 1 1933E+ 00 -.17G42E-02 .11113E-03 -.85027 E-04 -.20777E-05
2 - . 111 04 E-t 00 - . 113G9E+ 00 - .58871 E-02 .95347E-04 -.70141E-04 .53601E-04
3 - .11068E* 00 - . 1 2057E+ 00 -.G937GE-02 .10292E-03 -.82316 E-04 . 344 77 E-04
4 -.11 263E* 00 - . ] 2037E+ 00 -.30084 E-02 .1 0034 E-03 -.584 35E-04 -.1 71 04 E-04
5 -.1 1 207E+00 -.1]975E+ 00 -.45071 E-02 .90977 E-04 -.2394 1 E-04 .4 0294 E-04
6 -.11281E+ 00 - . 12220E+ 00 -.44577E-02 .62841E-04 . 27647E-05 .42488E-04
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APPENDIX B
A MATHEMATICAL MODEL FOR AN ISOLATOR AND ABSORBER OF A RADAR

SYSTEM BASE PLATE
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A Mathematical Model for an Isolator and Absorber of a Radar

System Base Plate

Method of Truncated Modal Expansion (Wang, Haung, & Hu,
1990) :

<S( t)
R= 1

Method of the mast structure and radar System without added 
absorbers:

K . E .  = ± M l t ?  +  ± ' £ { u } cr ( i n ) { u \ r q 2r

^ ^ R = l

r Q z
r - l

Method of the mast structure and radar System with added 
absorbers:

u l [ m ] u r = M s ,  r  = 1,2.m

K . E .  = ± m i T :  +  ± M s ' E  q )
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Dissipation Function:

P . E . ^ ^ K ^ - t  (ux) rqr]2 + ± M s t  ( Q'r)2q 2r
Z i Z r -1

Lagrange's Methods:

K .  E .  = —  Af, if + —  M s  £  g2 + —  Af, t  f
2 1 1 2 r=l 2 2 2

(Ul)rgr]2 + lwsf: (Q;)2gf2£ r = X ^ r*l
+ -|^2(r2-r1)2

p.p. = -|cx t^-f (ux) fgr] 2 + ̂ c 2(r2-t1)2
2 r = l 2

M s q . + M s  (Q‘) 2gJ + C1 ( u y ) . [ £ ( ux)
r = l

+ KX (uT) , [ t (u,) .g,-^] =0, J = l, 2, n + 1
J r = 1

Mast Structure:

fx + CX [ tx - f  ( ux) rgr] + ff, [ P  - t  ( u.) ,gr]
r=l r=l

+  C 2 ( t - t 2 ) =F{ t)
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Radar System:

F i t )  =F0e lQt

Dynamic Absorbers:

M2fx + C2 ( ^ - f j  +F 2 =0

System Transfer Function:

( T\, r2, q z ) = ( r10, r20, gr0) e lQc;
2 Q 1C1=C1/M 1; Q 2 = J K J W 2 -, 2 Q2 C2 = C2 /M , ;
{ W 1 , W 2 , W ' r  , W )  = (Qx, Q 2, Q*, Q) / Q [ ; M 1 / M - : ;

and

( W ] 2 - W 2 ) q j 0 +  i 2 W C > l + W 1) (Ux) [ £  (u:) rgr0-rio] =0, j =1, 2 , •••• m

Result:

[ iwl~w2*i2w1w^l) +\L2(W2+i2W2W(;2) ] T10- 
\i2 [W* + i2W2W(,2) T2q-(W?+i2W,WC,) [ f  (u,) ,g„,] = F 0r = 1

(w2 -w2+i2w2wc,2) t20 - (wi+i2w2w(;2) r10=o
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Transfer Function:

, a  , , { W 2 W 2 + i 2 W 7 W 2 A )(Wi2+i2nr1wc1) [£ (ux) r g r 0 ] =[ i w ? - w 2 + i 2 w 1 w z 1 ) - \ i 2 — \ ------ 2---— ] t 1

( W 2 - W 2 + i 2 W 2 W C 2 )

„ M ui> j r n * \ l )  l W * W * + i 2W 2 tr3 C 2 ) - W * tr _ e ,
Q-i0 ---;-- I------- ; Tio Foi ' J-i/2■ m

{ W ] 2 ~ W 2 ) ( W % - W 2 + i 2 W 2 W(l2 )

(i- (w?+i2w1wc1) [ £ ] )F0={{w?-w2+i2wlwtl)
r - l  { W ' r 2 - W 2 ^

2
1' r( W 2 W 2 + i 2 W 7 W i C 2 ) , 2 . _ % rA

(w£-w*+i2w2w{2) r=1 iw2- w 2)
(1 + H 2) (wjw2+i2W2W iC2) ~ ^ 4 j }r 

{W2 - W 2 + i2W2W(2)

Optimum Design of Dynamic Absobers:

T H E  S H I F T  O F  R A D A R  _ r :o _ H A W )
H i  W)

E X T E N E R  F O R C E  A C T  F O R  R A D A R  F 0 H 2 ( HO

W  = P R l + i  P I 1

Band-Limited White Noise Function:

P I 1  =  - 2 W , W £ ,  [ £  -—  —  ]
* * -=1 i W A - W 2 )
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ff, ( W ) = (P R A - P R B ) + i (P I A - P I B )

r, 2 2 \ w2w2-wZw4+4wiw*(;l
P R A = [ ( W 2 - W 2 )

( w i - w 2 ) 2 + 4 w i w 2 C 2 )

P R B ~ { t(1+^2) (̂ 22^2)-^4] ( W 2 W 2 - W 2 W 2 + A W l W2 ^ 2 ^ 1 C 2 )

( W l - W 2 ) 2 + A W 2 W 2 Q 22 

~ (l+^2) (4^^2^ C 2) ( C x ^ - C ^ a - W  }[g t*i(ux)r j
=̂i { w ; 2 - w 2 )

2 W, f̂ 5 C 
P I A  =  2  W W 1 Q l * \ i 2 2

i w ^ - w 2 ) 2 + a w I w 2 ( 22 )

P I B = {  (1+H2) (2^W3) ( W 2 - W 2 ) ( C l w 2 - C 2 w 1 ^ 2 w 2 ) +  

{W~2 - W 2 ) 2 + A W l w 2 t \ )

(l+ti2) (2W1W2W 2£2) (W1W^-WlW 2+AW2W 2C1C2) }[g  vl (u:) r
'=i ( w ; 2 - w 2 )

Band-Limited White Noise Function:

P R l + i P I l
H (  W )  = ■ (P R A - P R B ) +i (P I A - P I B )

( P R A - P R B ) 2 *  ( P I A - P I B )  2
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SC(W) =Sf(W) \H(W)

2C = [~SCW
J — OB

a 2r  = dW

Se(W) ={'
S Q , W ^ W ^ W U

0,

o \ = r S Q\ H m  12dW 
J w.

d o ]

W ,
=  0

d o *
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