Journal of the Iowa Academy of Science: JIAS

Volume 95 | Number

Article 8

1988

Benthic Macroinvertebrate Habitat Associations of the Channelized Middle Missouri River

James B. Barnum *Iowa State University*

Roger W. Bachmann Iowa State University

Let us know how access to this document benefits you

Copyright © Copyright 1988 by the Iowa Academy of Science, Inc.

Follow this and additional works at: https://scholarworks.uni.edu/jias

Part of the Anthropology Commons, Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons

Recommended Citation

Barnum, James B. and Bachmann, Roger W. (1988) "Benthic Macroinvertebrate Habitat Associations of the Channelized Middle Missouri River," *Journal of the Iowa Academy of Science: JIAS, 95(2),* 60-65. Available at: https://scholarworks.uni.edu/jias/vol95/iss2/8

This Research is brought to you for free and open access by the IAS Journals & Newsletters at UNI ScholarWorks. It has been accepted for inclusion in Journal of the Iowa Academy of Science: JIAS by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.

Benthic Macroinvertebrate Habitat Associations of the Channelized Middle Missouri River¹

JAMES B. BARNUM² and ROGER W. BACHMANN

Department of Animal Ecology³, Iowa State University, Ames, Iowa 50011

Benthic macroinvertebrates associated with navigation structures (dikes, dike pools, revetted banks) and abandoned channels on the Missouri River at the Iowa-Nebraska border were sampled in June, August, and October 1983 to determine the invertebrate community structure of these habitats. Invertebrate densities were greatest in the abandoned channel habitat (to over $13,000/m^2$), while diversities were greatest in the dike and revetment habitats. Greater habitat diversity contributed to greater organism diversity in the dike and revetment habitats while sediment homogeneity and stability presumably contributed to greater organism densities in the abandoned channel habitat. Dike pools had turbulent eddy currents, which constantly stirred bottom sediments and provided a marginal habitat for invertebrate colonization. Burrowing aquatic worms, midges, and mayflies characterized abandoned channels, whereas dikes and revetments were dominated by clinging caddisflies, mayflies, and Hydra, although worms and midges were associated with interstitial sediments. Dike pools were depauperate areas dominated by immature worms. INDEX DESCRIPTORS: Aquatic fauna, benthos, invertebrates, Missouri River

Channelization and dam construction on the Missouri River have resulted in a shorter, narrower channel with reduced fluctuations in flow rates (Funk and Robinson 1974, Hallberg et al. 1979). Other modifications include dikes, built perpendicular to the water flow, that cut off side channels, contract channel width, and prevent bank erosion on the inside of the channel; revetments constructed on the outside of river bends parallel to the flow, that maintain channel alignment and stabilize banks; and the formation of abandoned channels that are essentially lentic habitats connected to the main channel, at least during high river discharge. Although there are few abandoned channels, most of the river shoreline supports either dike fields or revetments. Thus, the Missouri River is greatly modified by control structures from Sioux City, Iowa, to its confluence with the Mississippi River.

Before impoundment, flooding typically occurred twice a year in the river valley. Spring flooding resulted from snow-melt runoff from the Plains, whereas a "June rise" was associated with melting snow in the mountains and rain in the prairie states (Russell 1965). Impoundments now moderate the flow and contain the river within its banks to a great extent (Hallberg et al. 1979). Upstream impoundments also have reduced the high turbidities characteristic of the river preceding their construction (Berner 1951, Neel et al. 1963, Todd and Bender 1982, Kallemeyn and Novotny 1977).

Because there is so little information available on the biological communities of this modified river, this study was designed to assess macroinvertebrate communities associated with dike, revetted bank, and abandoned channel habitats on a segment of the Missouri River bordered by Iowa and Nebraska. The purpose was to provide baseline information on the river and to make comparisons with similar habitats farther downstream. Methods used were the same as those used by the U.S. Army Engineer Waterways Experiment Station (WES) in their earlier studies on the lower Mississippi River.

STUDY AREA

This study was conducted on the Missouri River between river

miles 661 and 678 near Onawa, Iowa. Two dike fields (DF) were chosen for study, one between river miles 676.5 and 678 on the west bank (DF1) and the other between river miles 670 and 673 on the east bank (DF2). DF1 consisted of 10 stonefill dikes and associated pools, with the field about 1.6 km long. DF2 consisted of 19 stonefill dikes along 3.5 km of river. Detailed maps of the sample sites are available in Atchison et al. (1986).

The dikes extended into the river various distances (4-10 m) because of the extensive filling in with sediment around them, and all had portions extending above the surface of the water. The stone fill was composed of crushed limestone ranging in size from about 5 to 50 cm in diameter.

The dike pools varied in size, depth, and water velocity. Mean current velocity ranged from 0.2 to 1.3 m/sec. Dike pools had large eddies, with near-shore currents running contrary to the direction of the main channel flow. The dike pool at DF1 was 3 to 4 m deep while depths at DF2 ranged from 5 to 10 m. Sediments were composed primarily of sand, although fine silt occasionally was found near shore, and gravel could be found in the deepest areas.

Two revetted banks (RV) were studied, with RV1 extending about 2.3 km along the east bank across from DF1 and RV2 extending about 3.5 km along the west bank across from DF2. The revetments were constructed of crushed limestone ranging in size from about 25 to 100 cm. Mean current velocity along these revetments ranged from about 1.5 to 2.9 m/sec. However, currents within the rocky habitat actually sampled were minimal. Sampling depths were about 60 cm.

Two abandoned channel habitats (AC) also were sampled, one near river mile 671 (AC1) and the other near river mile 661 (AC2). AC1 and AC2 were shallow habitats (0.5 to 3.0 m), with sediments composed of mud and with no measurable current.

SAMPLING METHODS

Water temperature, pH, dissolved oxygen, specific conductance, and redox potential were measured at two stations in each habitat by using a Hydrolab in situ water analysis system. Profiles, consisting of readings at the surface, middepth and just above the bottom, were taken at each station where depth exceeded 0.9 m (3 ft); otherwise, only surface measurements were taken. The instruments were calibrated before sampling, and all habitats were measured on the same day, once immediately after dawn and again just before dusk. This sampling procedure was carried out the first and last days of each monthly collecting period. Water transparency was measured with a Secchi disk, and water samples for turbidity from the surface and the

¹Journal Paper No. J-12638 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project 2465. Financed by a contract with the U.S. Army Corps of Engineers and the Iowa Cooperative Fishery Research Unit. The Unit is jointly supported by Iowa State University, the Iowa Department of Natural Resources, and the U.S. Fish and Wildlife Service.

²Present address: Procter and Gamble Company, Ivorydale Technical Center, Cincinnati, OH 45217

³Address for reprint requests.

bottom were collected at each of the two stations in each habitat where water-quality variables were measured. Turbidity samples were immediately chilled, and after they were returned to the shore, turbidity was measured to the nearest 1 NTU with a Hach Turbidimeter (Model 2100A).

At the same times and places that water quality samples were taken, current velocity and direction were measured with an Endeco ducted impeller current meter. Profiles (surface, middepth, and just above the bottom) were taken at each station where the depth exceeded 0.9 m. The current meter was calibrated before sampling

Table 1. Mean values for water temperature, dissolved oxygen, pH, redox potential, turbidity, specific conductance, Secchi disk depth, and current velocity measured at the surface (SS), middepth (MD), and near the bottom (BS).

		Dis.		Redox		Spec.	Secchi	Current
Month	Temp.	Oxygen		Pot.	Turb.	Cond.	Depth	Vel.
Site	(C)	(mg/1)	рН	(mv)	(NTU)	(µmho/cm)	(m)	(m/sec)
June 1983				/				
Site AC1	SS 22.0	11.3	8.3	304	21.5	996	0.34	
	MD 21.5	10.3	8.3	297		998		
	BS 20.6	8.7	8.2	299		1001		
Site AC2	SS 23.4	10.0	8.2	300	17.0	1161	0.30	
Site DF1	SS 17.8	9.9	8.4	294	15.5	1013	0.28	0.85
	MD 17.8	9.5	8.2	273		1000		
	BS 17.8	9.5	8.3	275	_	1000		
Site DF2	SS 17.8	9.7	8.4	293	16.5	1038	0.27	1.30
	MD 18.0	9.6	8.4	275		1033		
	BS 18.0	9.6	8.4	275	17.0	1033		
Site RV1	SS 17.8	9.7	8.4	295	16.5	1069	0.26	1.59
	MD 18.0	9.9	8.2	350		1050		
	BS 18.0	10.2	8.2	350		1050		
Site RV2	SS 17.8	9.7	8.4	296	22.0	1082	0.26	1.55
	MD 17.8	9.4	8.3	272		1117		
	BS 17.8	9.4	8.4	275		1117		
August 1983								
Site AC1	SS 28.5	7.5	7.7	190	17.3	805	0.28	
	MD 28.1	4.2	7.4	193		810		
	BS 28.1	4.2	7.4	194	19.7	811		
Site AC2	SS 27.5	8.4	7.8	212	24.8	854	0.27	
Site DF1	SS 27.2	7.8	8.1	174	16.3	852	0.36	0.60
	MD 27.3	6.9	8.0	172		854		
	BS 27.3	6.8	8.0	172	16.2	854		
Site DF2	SS 27.1	7.7	8.1	196	19.3	852	0.36	0.38
0	MD 27.2	7.4	8.1	194		853		
	BS 27.2	7.3	8.1	193	20.3	854		
Site RV1	SS 27.3	7.7	8.1	174	15.9	853	0.39	2.23
	MD 27.3	7.3	8.1	174		853		
	BS 27.3	7.2	8.1	174	16.4	854		
Site RV2	SS 27.2	7.8	8.1	196	17.7	852	0.38	2.86
	MD 27.3	7.4	8.0	190		853	_	
	BS 27.3	7.3	8.1	190	17.0	853		
October 1983				-				
Site AC1	SS 15-2	9.1	8.0	197	11 1	758	0.36	
Site ACT	MD 15 4	8.2	8.0	201		760	0.90	
	BS 15.3	79	79	201	20.5	760		
Site AC2	SS 14 3	97	83	172	20.5	738	0.21	
Site DE1	SS 16.3	83	8 1	200	16.0	788	0.34	0.20
Sile Di I	MD 16.2	8 1	8 1	189	10.0	790	0.91	0.20
	BS 16.2	8 1	8 1	188	17.2	790		
Site DE2	SS 16.2	85	8 1	208	17.3	789	0.33	0.48
Site 1/12	MD 16.3	8.2	8 1	200	27.5	789	0.99	0.10
	BS 16.2	8.2	81	201	16.6	789		
Site RV1	SS 16.2	86	8 1	206	16.7	788	0.33	
	MD 16.3	84	8 1	205		789	- · · · ·	
	BS 16.3	82	8 1	204	177	789		
Site RV2	SS 16.2	86	8 1	206	17.4	788	0.32	1.45
One RY2	MD 16.2	85	8 1	206	13.0	788		
	BS 16.2	8.3	8.1	204	17.1	788		

Table 2. Macroinvertebrates identified from Missouri River benthic samples.

NON-INSECTS	INSECTS	Leptophlebiidae
Acaria	Diptera	Leptophlebiidae immature
Amphipoda	Ceratopogonidae	Paralepthophlebia
Talitridae	Chaoboridae	Siphlonuridae
Hyalella azteca	Chaoborus	Isonychia
Brvozoa	Chironomidae	2
Hirudinea	Chironomidae pupae	Hemiptera
Erpobdellidae	Chironomus	Corixidae immature
Ertodella	Coelotanybus	Odonata
Piscicolidae	Cricotopus	Coenagrionidae
Hydroida	Cryptochironomus	Ischnura
Hydridae	Dicrotendities	Nebalennia
Hydra	Glyptotendibes	Corduliidae
Isopoda	Hydrobaenus	Neurocordulia
Ascellidae	Larsia	Gomphidae
A sellus	Nanocladius	Gombhus
Nematoda	Natarsia	Libellulidae
Oligochaeta	Orthocladius	Ladona
Naididae	Parachironomus	
Dem digitata	Polytedilum	Plecoptera
Pristing osborni	Procladius	Plecoptera immature
Tubificidae	Rheotanytarsus	Perlidae
Branchiura souverbyi	Robackia	Acroneuria
Ilvadrilus templetani	Tanyony	Perlodidae
Limnodrilus	Tanytansus	Isoberla
I. cominy	Thienemannimyia group	
I. clapoandianus	Thienemanniella	Trichoptera
I. haffmeisteri	Empididae	Hydropsychidae immature
L. maumeensis	Dubae	Cheumatotsyche
L. profundicola	Hemrodromia	Hydropsyche
I. udekemianus	Simuliidae	Potamvia
Tubificidae + cs (capilliform setae)	Ephemeroptera	Hydroptilidae
Tubificidae-cs	Baetidae	Hydroptila
Pelecypoda	Baetidae immature	Ochotrichia
Sphaeridae	Baetis	Leptoceridae
Sthaerium	Caenidae	Ceraclea
Pulmonata	Branchycercus	Nectonsyche
Physidae	Caenis	Polycentropidae
Physa	Ephemeridae	Neureclipsis
Planorbidae	Hexagenia	
Planorhula	Heptageniidae	
	Heptageniidae immature	
Tricladida	Anebeorus	
Planariidae	Hebtagenia	
Dugesia	Stenonema	
Phagocata	Stenacron	

efforts.

Grain size of sediments, taken in conjunction with benthic macroinvertebrate samples from each habitat, were visually classified. The categories included: gravel; coarse sand; medium sand; fine sand; mud and fine sand; mud and coarse sand; silt; mud; mud and silt; mud and clay; clay; and clay and fine sand.

Invertebrates were sampled during three periods: 3-7 June, 8-12 August, and 6-9 October, 1983. Two dike structures in each of the two dike fields were selected for invertebrate sampling. An upstream and downstream station located near the middle of the selected dikes was sampled by using a square quadrat 0.5 m on a side with attached mesh bag (0.5-mm mesh opening). The sampler was positioned at a depth of about 60 cm; rocks within the square frame were removed to a depth of 27 cm, placed into a large metal tub, carefully brushed to remove clinging organisms, and discarded. The resulting material, along with materials captured in the bag net, were sieved and preserved. A similar sampling technique was used to collect invertebrates along the two revetted banks. Four stations along each revetted bank were sampled.

Four stations within each of four dike pools were sampled with a petite Ponar grab sampler $(15.2 \times 15.2 \text{ cm})$. The same dredge was used to sample invertebrates in the two abandoned channels using four equally spaced stations on each of four transects.

Benthic samples were sieved in the field through 0.5-mm mesh sieves and preserved in 10% buffered formalin. In the laboratory, samples were transferred to 70% ethanol and rose bengal solution for at least 48 h before sorting. Samples were later rinsed in tap water and sorted using Circline magnifying lamps (3X power). Oligochaetes and midges were mounted on microscope slides and identified under magnification to 1000X. All other invertebrates were identified with a stereomicroscopre to 100X. A reference collection of all taxa was maintained, and identification was to the lowest practical taxon (genus and species where possible).

RESULTS

General Physical and Chemical Variables

Average values for water temperature, dissolved oxygen, pH, redox potential, turbidity, specific conductance, Secchi depth, and current velocity for the various sites, depths, and months (Table 1) confirm previous observations on the Missouri River. First, the water is always turbid; turbidity measurements were usually greater than 15 NTU, and the maximum Secchi disk reading was only 0.39 m. Second, the Missouri River has high current velocities. In August average velocities were 2.23 and 2.86 m/sec near the two revetted bank stations. Velocities were 2.23 and 2.86 m/sec near the two revetted bank stations. Velocities were lower in the more protected dike fields, and the abandoned channels had no measurable currents. Dike fields and revetted bank sites were part of a well-mixed system, as shown by the almost uniform values for average temperature, dissolved oxygen, pH, redox potential, specific conductance, and turbidity. The abandoned channels were similar to the main river, but had some small differences. In June and August the specific conductance values in the abandoned channels were slightly lower than those in the other two habitats, indicating a difference in dissolved solids content. There was also some vertical chemical stratification, as shown by the dissolved oxygen measurements at site AC1 during August while site AC2 (0.5 m) was not stratified.

Bottom substrates differed among the four habitats. In the lentic abandoned channels, 81% of the samples were mud, and 13% were mud and clay. Coarse sand with mud made up another 4%. In the dike pools where currents were greater, coarser substrates were more important. Fine sand dominated in 60% of the samples. Coarse sand made up 18%; mud with fine sand 5%; silt 5%; mud 4%; and various mixtures of clay, silt, fine sand, and gravel made up an additional 5%. The samples from dikes and revetments were dominated by large rocks with various amounts of fine interstitial sediments.

Invertebrate Habitat Associations

Eighty-five taxa of aquatic invertebrates (Table 2) were identified in the four habitats sampled during the three sampling periods, a total of 192 quadrat and 48 Ponar dredge samples. A complete listing of the data are available in the report by Atchison et al. (1986). The invertebrate habitat associations were similar to those found by other researchers (Russell 1965, Morris et al. 1968, McMahon et al. 1972, Burress et al. 1982). Those taxa having average densities greater than 100 organisms/m² for each habitat are listed in Table 3. Table 4 lists the five most abundant taxa at each location for each monthly sampling period. The results of an analysis of variance test of total invertebrate densities in each location and month are presented in Table 5.

Abandoned Channel Habitats

The greatest densities of organisms were found in the abandoned channel habitats. The shallower site, AC2, consistently had greater densities of organisms than the deeper site. This might be related to the lower dissolved oxygen values sometimes found at site AC1. Although only 43 different taxa were found, this habitat had the greatest number of taxa with densities of $100/m^2$ or greater (11). Oligochaetes and midges were most important in this habitat, while Beckett et at. (1983) found a dominance of *Chaoborus* in similar habitats on the lower Mississippi River.

Dike Pool Habitats

Current velocities within the dike pools were variable. June current

velocity averages in DF1 and DF2 were 0.85 and 1.30 m/sec respectively. In August they were 0.60 and 0.38 m/sec and in October 0.20 and 0.48 m/sec. The interdike pools, characterized by turbulent eddy currents, distributed sediments unevenly across the bottom areas. Total densities of organisms in the interdike pools were always less than in the abandoned channels but usually were not significantly different from those in the other habitats. This was the only habitat in which any samples contained no organisms. In DF1, 10 of 48 had no invertebrates present. Like the abandoned channels, there was only one taxon (Tubificidae-cs) with an average density exceeding 100/m². None of the other habitats had so few abundant taxa. Presumably, the combination of higher current velocities and unstable sand subtrates produces an environment less favorable for benthic organisms.

Twenty-nine samples in fine sand and 10 in coarse sand contained the most abundant taxa, all members of the Tubificidae. Sixteen samples in fine sand and 4 in coarse sand had no organisms. Chi square tests showed that these ratios are not different than would be expected on the basis of a random distribution between the two sediment types. There were 14 different taxa ranked in the five most abundant taxa found in the two locations over the three sampling periods.

Dike Structure Habitats

The dike structure samples contained significant fine interstitial sediments, providing an additional habitat component. Although current velocities were not measured near the dike faces, the sampling sites were protected from all but minor currents, as evidenced by the deposition of fine sediments on rocky surfaces. Total numbers of organisms found in this habitat also were lower than those found in

Table 3. Taxa sampled in the four habitats whose average densities exceeded 100 organisms/m²

Taxa	Number per square meter
Abando	ned Channels
Tubificidae-cs	4962
Dero digitata	1032
Pristina osborni	752
Tanypus	678
Chaoborus	506
Coelotanypus	304
Chironomus	235
Branchiura sowerbyi	189
Limnodrilus cervix	149
Ceratopogonidae	135
Limnodrilus maumeensis	112
Di	ke Pools
Tubificidae-cs	736
Dike	Structures
Hydra	980
Hydropsychidae Imm.	219
Stenonema	214
Potamyia	185
Dero digitata	141
Caenis	132
Isonychia	130
Heptageniidae Imm.	112
Tubificidae-cs	111
Re	vetments
Hydra	567
Dero digitata	189
Stenonema	124
Potamyia	111
Isonychia	107

Locatio	n	June	August		October	
AC1	Taxa Dem divitata	Density 2271	<i>Taxa</i> Tubificidae-cs	Density 3590	<i>Taxa</i> Tubificidae-cs	Density 3501
	Tubificidae-cs	503	Chaoborus	1846	Pristina osborni	2414
	Chironomus	458	Dero digitata	1163	Dero digitata	1041
	Tanypus	312	Pristina osborni	1047	Chaoborus	//3
	Pristina osborni	180	Tanypus	697	Chironomus	525
AC2	Tubificidae-cs	3385	Tubificidae-cs	9701	Tubificidae-cs	9093
	Tanypus	1811	Tanypus	1211	Coelotanypus	529
	Dero digitata	705	Dero digitata) 30 425	Limnoarilus maumeensis))) / 76
	Limnodrilus cervix	393	Branchiura sowerbyi	42)	Dero alguata Dristing osborni	366
_	Pristina osborni	24)		420		1940
DF1	Tubificidae-cs	129	Tubiticidae-cs	430	Iudificidae-cs	1849
	Polypedilum	49	Limnodrilus cervix	49	Dero alguata Rohachia	289
	Lanypus Developedation a	27	KODAURIA Hamagonia	24	Ceratopogonidae	14
	Faraciaaopeima Croptochironomus	24 19	Branchwercus	14	Cryptochironomus	11
DEC	T-Lifeidee co	07	Tubificidae.cr	928	Tubificidae-cs	983
Dr2	Hardnetterche	97 27	Limnodrilus cervix	162	Dero digitata	24
	Cryptochironomus st	14	Robackia	30	Pristina osborni	19
	Dem divitata	11	Hvdra	22	Ilyodrilus templetoni	16
	Limnodrilus cervix	11	Hydropsychidae Imm.	16	Robackia	8
DFA	Hydra	1936	Hvdra	611	Dugesia	110
2-11	Isonychia	228	Hydropsyche	606	Potamyia	80
	Stenonema	206	Caenis	434	Thienemannimyia group	68
	Hydropsyche	121	Potamyia	386	Hydropsychidae Imm.	56
	Heptageniidae Imm.	111	Stenonema	198	Tanytarsus	41
DFB	Hydra	3331	Hydropsychidae Imm.	506	Dero digitata	596
	Stenonema	591	Potamyia	405	Tubificidae-cs	308
	Isonychia	436	Caenis	334	Stenonema	109
	Heptageniidae lmm.	278	Tubificidae-cs	183	Uchtrotrichta	91
	Orthocladius	242	Neureclipsis	159	Nanociaatus	/0
RV1	Hydra	359	Caenis	102	Dero digitata	882
	Orthocladius	252	Tubificidae-cs	/8	Stenonema TubiCailta an	1)/
	Heptageniidae Imm.	206	Stenonema Buzzahizutza anazartari	/0	Ruanchiuna souwhui	106
	Stenonema Dot amuia	191 177	Hudropsychidae Imm	26	Pristing osborni	53
DUO	r utamyta	1//	Potamvia	382	TabiGaidag an	102
KV2	Hydra Isomuchia	5040 450	Hydropsychidae Imm.	325	Duratia	105 85
	Isonycota Heptageniidae Imm	4)9 2/17	Caenis	152	Stenonema	70
	Orthocladius	202	Dugesia	89	Dero digitata	55
	Stenonema	168	Neureclipsis	71	Hydropsychidae Imm.	35
		100	-			

Table 4. The five most abundant taxa found at each location for each monthly sampling period and their densities in organisms/m².

the abandoned channels but were comparable to those found in the dike pools and revetments (Table 5). There were no consistent differences between densities found on the upstream (DFA) and downstream (DFB) faces of the dikes.

The most taxa (N = 75) were collected in the dike structures. There were nine taxa with average densities greater than $100/m^2$, making this habitat second only to the abandoned channels in this measure. Some of the most important invertebrate groups included *Hydra*, which peaked in June, caddisflies (*Hydropsyche, Potamyia*), and may-flies (*Stenonema*).

Both the dike and revetment habitats had the largest numbers of taxa found in comparison with the sediment substrates, although the densities were less than those found in the abandoned channels. This is consistent with the findings of Burress et al. (1982) on the Missouri River in North Dakota. On the other hand Mathis et al. (1981) found that the dike structures on the Lower Mississippi River had greater

Revetment Habitats

macroinvertebrate communities.

Although water velocities were rapid alongside the revetments, microhabitat velocities among the rocks were barely perceptible. The total organisms' densities in the revetments were always lower than those in the abandoned channels and were generally similar to those in the other habitats (dike field pools and pools). Diversity was high,

organism densities than did the abandoned channels. In another study on the Lower Mississippi River, Mathis et al. (1982) found that

organism densities on dike structures were on the order of 100,000/ m². These values are much larger than ours, which ranged from about 1000 to 4000 organisms/m². There may be differences in basic

primary productivity between these stretches of river, or perhaps the combination of high current and high turbidity found in the Missouri

River is unfavorable for the development of the dike structure

Table 5. Analysis of variance statistics for the effects of sampling (7,72 d.f.) on invertebrate group mean densities (organisms/m²) and Duncan's multiple range test of significance. Groups with the same letter are not significantly different.

Month	F	P	Ν	Mean	Location	Group
June	9.09	0.0001	16	7 2 14	AC2	Α
			4	5848	DFB	Α
			16	4176	AC1	AB
			4	4003	RV2	AB
			4	3476	DFA	ABC
			4	2070	RV1	BC
			16	328	DF1	С
			16	248	DF2	С
August	25.82	0.0001	16	13331	AC2	Α
-			16	9682	AC1	Α
			4	2774	DFA	В
			4	2152	DFB	В
			4	1394	RV2	В
			16	1192	DF2	В
			16	613	DF1	В
			4	466	RV1	В
October	11.76	0.0001	16	12624	AC2	Α
			16	9585	AC1	Α
			16	2177	DF1	В
			4	1746	RV1	В
			4	1719	DFB	В
			16	1058	DF2	В
			4	691	RV2	В
			4	676	DFA	В

with 64 different taxa found, although only five taxa had average densities exceeding $100/m^2$. Fifteen different taxa were found in the lists of the five most abundant taxa for each of the two locations and three sampling periods. *Hydra* dominated this habitat in June, although caddisflies (*Potamyia*), mayflies (*Stenonema, Isonychia*), and worms (*Dero digitata*) became important during other periods.

Comparisons Among Habitats

There were a number of differences in the taxa found in the different habitats. Of the dipterans, Chironomus, Coelotanypus, Procladius, Tanypus, Ceratopogonidae, and Chaoborus were found predominantly in the abandoned channel habitats. Chironomidae pupae, Nanocladius, Orthocladius, Tanytarsus, members of the Thienemannimyia group, and Thienemiella were found almost exclusively in the large rock structures of the dikes and revetments. The midge, Robackia, was found almost entirely in the dike pools. Trichopterans were found almost exclusively in the large rock habitats, as were plecopterans. The Ephemeroptera were most frequently collected in the dikes and revetments with the exception of representatives of the sprawler and burrower genera Caenis and Hexagenia that were found in the habitats with softer sediments as well. Most oligochaete taxa were abundant in fine sediments of the abandoned channels; but Dero digitata was generally found in all habitats and immature Tubificidae were often quite abundant in all habitats. The flatworm Dugesia sp. was most abundant in those same habitats in June. Other taxa had densities too low to generalize on their distributions.

ACKNOWLEDGEMENTS

We acknowledge the field and laboratory assistance from Kenneth Kortge, Thomas Robertson, Mark Sandheinrich, and Burt Shephard. Ralph Brinkhurst and Rex Bingham confirmed our identification of oligochaetes. Funds were provided by the Environmental and Water Quality Operational Studies Program sponsored by the Office, Chief of Engineers, and managed by the U.S. Army Engineer Waterways Experiment Station.

REFERENCES

- ATCHISON, G.J., BACHMANN, R.W., NICKUM, J.G., BARNUM, J.B., and SANDHEINRICH, M.B. 1986. Aquatic biota associated with channel stabilization structures and abandoned channels in the middle Missouri River. Technical Report E-86-6, U.S. Army Engineer Waterways Experiment Station, CE, Vicksburg, MS
- BECKETT, D.C., BINGHAM, C.R., SANDERS, L.G., MATHIS, D.B. and MCLEMORE, E.M. 1983. Benthic macroinvertebrates of selected aquatic habitats of the lower Mississippi River. Technical Report E-83-10, U.S. Army Engineer Waterways Experiment Station, CE, Vicksburg, MS.
- BERNER, L.M. 1951. Limnology of the lower Mississippi River. Ecology 32:1-12.
- BURRESS, R.M., KRIEGER, D.A., and PENNINGTON, C.H. 1982. Aquatic biota of bank stabilization structures on the Missouri River, North Dakota. Technical Report E-82-6, U.S. Army Engineer Waterways Experiment Station, CE, Vicksburg, MS
- FUNK, J.L., and ROBINSON, J.W. 1974. Changes in the channel of the lower Mississippi River and effects on fish and wildlife. Missouri Dept. Cons., Aquatic Series 11. 52 pp.
- HALLBERG, G.R., HARBOUGH, J.M., and WITINOK, P.M. 1979. Changes in the channel areas of the Missouri River in Iowa from 1879 to 1976. Iowa Geological Survey Special Report Series No. 1, 32 pp.
- KALLEMEYN, L.W., and NOVOTNY, J.F. 1977. Fish and food organisms in various habitats of the Missouri River in South Dakota, Nebraska, and Iowa. OBS National Stream Alteration Team, Columbia, MO. Report. FWS/OBS-77/25.
- MATHIS, D.B., COBB, S.P., SANDERS, L.G., MAGOUN, A.D., and BINGHAM, C.R. 1981. Aquatic habitat studies on the lower Mississippi River, river mile 480 to 530. Technical Report E-80-1, U.S. Army Engineer Waterways Experiment Station, CE, Vicksburg, MS.
- MATHIS, D.B., BINGHAM, C.R., and SANDERS, L.G. 1982. Assessment of implanted substrate samplers for macroinvertebrates inhabiting stone dikes of the lower Mississippi River. Technical Report E-82-1, U.S. Army Engineer Waterways Experiment Station, CE, Vicksburg, MS. MCMAHON, J., WOLF, J., and DIGGINS, M. 1972. Chironomidae,
- MCMAHON, J., WOLF, J., and DIGGINS, M. 1972. Chironomidae, Ephemeroptera, and Trichoptera in the benthos of unchannelized and channelized portions of the Missouri River. Proc. S.D. Acad. Sci. 51:168-181.
- MORRIS, L.A., LANGEMEIER, R.N., RUSSELL, T. R. and WITT, A. JR. 1968. Effects of main stem impoundments and channelization upon the limnology of the Missouri River, Nebraska. Trans. Am. Fish Soc. 97:380-388.
- NEEL, J.K. NICHOLSON, H.P., and HIRSCH, A. 1963. Main stem reservoir effects of water quality in the central Missouri River 1952-1957. U.S. Depr. Health Educ. Welfare, Publ. Health Serv. Region VI, Water Supply and Pollution Control, Kansas City, MO. 112 pp.
- RUSSELL, T.R. 1965. Age, growth, and food habits of the channel catfish in unchannelized and channelized portions of the Missouri River, Nebraska, with notes on limnological observations. M.A. Thesis, University of Missouri, Columbia, MO. 166 pp.
- TODD, R.D., and BENDER, J.F. 1982. Water quality characteristics of the Missouri River near Fort Calhoun and Cooper nuclear stations. pp 39-68 In HESSE, L.W., HERGENRADER, G.L., LEWIS, H.S., REETZ, S.D., and SCHLESINGER, A.E. (eds.). The middle Missouri River. The Missouri River Study Group. Norfolk, NE.