1973

Additional Crinoid Specimens from the Shellrock Formation (Upper Devonian) of Iowa

Harrell L. Strimple
University of Iowa

C. O. Levorson
University of Iowa

Copyright ©1973 Iowa Academy of Science, Inc.
Follow this and additional works at: https://scholarworks.uni.edu/pias

Recommended Citation

This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
Additional Crinoid Specimens from the Shellrock Formation (Upper Devonian) of Iowa

HARRELL L. STRIPLE1 and C. O. LEVORSON2

Well preserved crinoids from the Shellrock Formation (Upper Devonian) of Iowa are extremely rare. Several well preserved specimens collected by one of us (Levorson) have led to new generic assignments of the species originally described as Nassociocrinus goldringae Belanski, 1928, to Glossocrinus goldringae, n. comb., and of Hexacrinus springeri Thomas to Cerasocrinus springeri, n. comb. The latter is the type species of Cerasocrinus, new genus.

Index Descriptions: Iowa Devonian Crinoids; Shellrock Formation Crinoids; Glossocrinus goldringae; Cerasocrinus springeri; Hexacrinus springeri.

SYSTEMATIC PALEONTOLOGY

Subclass INADUNATA Wachsmuth & Springer, 1855
Order CLADIDA Moore & Laurin, 1943
Suborder POTEROCRININA Jaekel, 1918
Superfamily RHENOCRINACEA Jaekel, 1918
Family RHENOCRINIDAE Jaekel, 1918
Genus GLOSSOCRINUS Goldring, 1923
CERASOCRINUS GOLDRINGAE (Belanski), Strimple and Levorson, new combination

Plate I, figures 7, 8.

Diagnosis. Crown elongate, slender, arms do not adjoin when closed. Cup tall, conically expanded; infraradials readily visible in side view of cup; radiating folds which extend from plate to plate are weak, with rays represented mainly by depressions at plate corners; radial articular facets do not completely fill distal faces (penepeluny); three anal plates in normal (primitive) arrangement. Anal sac tall, slender, median ridge formed by thick plates starting at terminal (RX) and extending length of sac; flanked by thin narrowly plicated plates on each side with plications perpendicular to axis of tube. Arms slender, uniserial, pinnular, with each brachial bearing a stout pinnule on alternating sides; one bifurcation usually takes place high in the arms with primibrachs 7-9. Proximal columns pentalobate, alternately expanded.

Discussion. Glossocrinus nalescensis Goldring, 1923, type species of the genus from the Upper Devonian of New York, has pronounced radiating ridges or folds on the cup plates.

Figure 1.

1-6. Cerasocrinus springeri (Thomas, 1924).
1-3. Holotype (SUI 3722) calyx viewed from posterior (C-D interray), DE interray and BC interray, X2.5.
4-6. Hypotype (SUI 80010) calyx viewed from CD interray, E ray and BC interray, X2.5.
7-8. Glossocrinus goldringae (Belanski, 1928).
7. Highly magnified portion of hypotype (SUI 80007) showing median ray of anal sac flanked by thin narrowly plicated sac plates, X4.45.
8. Hypotype crowns (SUI 80007a-b), that to left (a) viewed from anterior, to the right (b) young specimen viewed from C ray, with three anal plates visible to the left (albeit secundanal [anal X] almost obscured) and right side of anal sac well exposed above X4.0.

1 The University of Iowa, Iowa City, Iowa.
2 Riceville, Iowa.
a comparatively short cup, and first arm branching takes place about primibrachs 5-6. G. goldringae has a much taller cup, and the arms branch with primibrachs 7-9, both of which conditions are considered to be more primitive than G. naplesensis, G. cornellianus (Williams) is more closely related, in having a moderately tall cup and branching with primibrachs 8-9, but completely lacks radiating folds on cup plates.

As explained by Strimple and Levorson, 1969, Nassovio­crinus typically has a quadrangular primanal (radial), resulting in two anal plates in the posterior interradius, as opposed to a pentagonal primanal, resulting in three anal plates in the posterior interradius, but differs from Quantoxocrinus in having a strong median ridge composed of thick uniseral plates extending the length of the sac, which are flanked by thin narrowly plicated plates on each side. The anal sac of Quantoxocrinus is composed of equidimensional plates lacking plications.

Hypotypes. Collected by C. O. Levorson, deposited in the Levorson Collection, cat. SUI 80005, 80008, 80007, Geology Department, The University of Iowa, Iowa City.

Subclass CAMERATA Wachsmuth & Springer, 1855

Order MONOBATHRIDA Moore & Laudon, 1943

Suborder TANAOCRININA Moore, 1952

Superfamily DESMIDOCRINACEA Angelin, 1878

Family DESMIDOCRINIDAE Angelin, 1878

Genus CERASOCRINUS Strimple & Levorson, new genus

Type species. Hexacrinus springeri Thomas, 1924.

Name. From Greek Keras for mixture, with reference to the uncertain (mixed) affinities of the genus.

Description. Calyx tall, cylindrical, with 3 tall basals prominent in side view. Primanal in line with radials, followed above by 3 plates and subsequently by 4 smaller plates. Interradials of moderate size, resting in strong notches in distal portion of radials, followed above by 2 or 3 plates and joined with fixed primibrachs 1 and 2. Secondibrachs 3 appear to be the last of the fixed brachials. Radial articular facets are narrow (angustary). Column is round.

Discussion. There is small likelihood that Cerasocrinus evolved from the typically Silurian Desmidocrinus, because the basal plates are much more prominent in side view; however, there are many other characteristics indicating close relationship, such as the primanal followed by three plates, interradial area in calyx composed of few plates, and two fixed secondibrachs in each half ray. Desmidocrinus is more primitive in that interradials are larger and are lower in the cup, and fixed tertibrachs are present in all species.

Primibrachs are not incorporated in the cup to form a calyx in hexacrinoids, but they are commonly joined with interradial terminal plates. A trend toward this more advanced condition is indicated but not attained by Cerasocrinus.

Occurrence. Upper Devonian, Iowa.

CERASOCRINUS SPRINGERI (Thomas, 1924), new combination

Plate 1, Figs. 1-6.

Description. Same as for genus.

Discussion. Cerasocrinus springeri is closer to Hexacrini­tes intercostularis (Phillips, 1841), the type species of Hexacrini­tes, which is from Middle Devonian rocks of England, than to most American species assigned to the genus. However, interradial plates of the hexacrinids do not appreciably penetrate the interradial area of the cup, which is considered as a definitive feature by Ubahgs (in press, Section T, Echinodermata, Treatise on Invert. Paleo.). The illustrated steinkern of Arthrocantana granosa Goldring (1923, pl. 37, fig. 12) shows an interradial plate apparently firmly united with the radials, although it does not penetrate between the radials, as well as being joined with primibrachs 1 and 2. It appears that A. granosa does have fixed primibrachs, contrary to the familial definition.

Except for the tall basal cirlet, Cerasocrinus springeri appears to have closer affinities with the desmidocrinids than with the hexacrinids, as has been previously discussed under the generic discussion.

Hypotype. Collected by C. O. Levorson, deposited in the Levorson Collection, cat. SUI 80010, Geology Department, The University of Iowa, Iowa City.

References Cited

All cited references may be found in BASSLER, R. S., and MOODEY, M. W., 1943, Bibliographic and faunal index of Paleozoic pelmatozoan echinoderms: Geol. Soc. America Special Paper 45, 734 p., with the following exceptions:

