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ABSTRACT 

Process behavior can change with time. In this study an attempt was made to discover 

whether the Six Sigma™ claim of changes in the process mean stayed within +/-1.5 sigma units. 

Several process groups were examined for a particular firm that made metal castings, machined 

parts, tested major components and assembled these into a vehicle that was a product sold to 

the customer. As the assembly progressed, deficiencies were identified and recorded. Analyses 

employed cumulative sum (CUSUM) sequence charts, Autoregressive Integrated Moving 

Average (ARIMA) time series analyses, minimum mean square error (MMSE) exponentially 

weighted moving average (EWMA), Shewhart control charts and Analysis of Variance (ANOVA) 

to identify the shift in the process mean, M/sw, the duration of the shift, A,B, and the proper choice 

of EWMA smoothing coefficient, A.EWMA- Kruskal-Wallis analysis of the relationship of these 

measures to process group (assembly, foundry, heat treatment, machining, shaving, test 

machine, grinding, turning, warranty and yield) was also performed. The method used was 

generally applicable for all these processes. The process group and the ARIMA type also 

influenced the measurement of M/sw, A.B, and XEWMA-
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CHAPTER I 

INTRODUCTION 

In this introductory chapter historical background, statements of the problem and the 

purpose of this investigation, as well as the need for this study and the justification for it are 

introduced. As in most scientific work, the hypotheses, research questions, assumptions, 

delimitations, limitations and definition of terms are addressed in order to prepare the reader for 

ensuing chapters. Internal validity of this study and a description of statistical methods and other 

analyses employed close the chapter. 

Background 

In the summer of 1980 an NBC broadcast, "If Japan Can... Why Can't We?" awakened 

America to the fact that Japan was taking over U.S. markets with products that had superior 

quality. Citing the works of Americans like Dr. W. Edwards Deming and Dr. Joseph M. Juran the 

broadcast proposed that the Japanese were taking market share from American companies using 

American ideas (Box, 2006; Reuven, 1980). Leaders of corporate America today are aware that 

Japan continues to compete successfully using the methods identified 29 years earlier. At the 

root of the quality issue was variation. The Japanese products were seen as superior in quality • 

level and consistent from one item to another. 

In 1987 the United States Department of Commerce announced an American award for 

quality, the Malcolm Baldrige Award. An early recipient of this award was Motorola, Inc. who 

demonstrated superior product quality through a program it called Six Sigma™. Soon corporate 

giants like Honeywell (now Allied Signal), General Electric, Raytheon and others adopted Six 

Sigma™ (iSixsigma, 2004). DuPont (2002) the oldest American company touted the benefits of 

Six Sigma™ in their annual report. Hahn, Doganaksoy, and Hoerl (2000) and Folaron (2003) 

trace the evolution of Six Sigma™ and conclude that Six Sigma™, with a focus on continuous 

and unending improvement, will endure. 

Motorola established a training institute, Motorola University, to handle the demand from 

other American businesses to share the method and teach them how to develop skill levels within 
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individuals who would lead their improvement efforts. At first this was quality focused, but Van 

Tiem (2004) and Barney (2002) report that the second generation of Motorola Six Sigma™ is now 

a business improvement strategy. Six Sigma™ is also used to design new products and 

processes (Treichler, Carmichael, Kusmanoff, Lewis, & Berthiez, 2002; Watson, 2005). 

The American educational system has not done a good job of meeting business needs 

for trained people, even in the basic skills required to use standard control charts (Alwan & 

Radson, 1995), While many companies send their managers to Motorola to become trained as 

Six Sigma Black Belts, those who manage projects using the Six Sigma™ methods, educators 

and quality professionals offer guidance to those who feel they can educate themselves 

(Abraham & Mackay, 2001; Bailey, 2001; Breyfogle, Enck & Meadows, 2001; Hill, 2001; Hoerl, 

2001a, 2001b; Montgomery, Lawson, Molnau & Elias, 2001; Pyzdek, 2001; Snee, 2000, 2001, 

2006). Consultants have made lucrative incomes posing as masters of Black Belt methods. A 

search on the World Wide Web site, Monster.com for Black Belt returns 154 postings for the time 

period June 2008 through July 2008. Many positions offer salaries in excess of $150,000 per 

year. 

According to Praveen Gupta (2006), Motorola engineer Bill Smith is responsible for the 

Six Sigma™ concept. He also incorporated the 1.5 sigma shift in the model, but Gupta is not 

certain how the value was derived. He reports that it was associated with control charts and 

argues that a subgroup of 4 will detect a mean shift or drift in the process at 3*sigma/sqrt(4) 

which is equal to 1.5 sigma. The ability of a process to satisfy specifications was advanced by 

Kane in 1986 when he introduced the Cp and Cpk calculations. Cp was taken as the tolerance 

range divided by the process spread of 6 sigma. Sigma was calculated from the sample of 30 

units gathered from a process that was in statistical control. A process was able to produce 

within specification if the Cpk were at least one. Many businesses, following the ideas of Juran, 

Gryna and Bingham (1974) opted for a minimum Cpk of 1.33 to allow for shifts and drifts over 

time. Six Sigma™ moved that value to 1.5 (Harry & Stewart, 1988). 

http://Monster.com
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Deming (1942) identified the purpose of data as information for action. He found it useful 

to distinguish between two types of problems that confront the statistician in his job of making 

predictions. Type A problems in which action is based on a prediction regarding future 

measurements of a product already in existence. Type B problems in which action is based on a 

prediction regarding future measurements of a product not yet subject to measurement. Six 

Sigma™ methods today are tailored for Type A problems with DMAIC (Define, Measure, Analyze, 

Improve and Control) methods and tools. Type B problems are treated with DMADV (Define, 

Measure, Analyze, Design and Verify) phases and gates to create new products or services. 

Each is focused on identification of variation and its minimization. 

Tadikamella (1994), Lucas (2002), and Gnibus (2000) illustrate the prediction calculations 

applied to Six Sigma™. The calculation includes a 1.5 sigma allowance for drift in the mean. 

This allowance, first described by Harry and Stewart (1988) at Motorola, Inc. has been a point of 

confusion and controversy since its introduction. No process studies are cited to justify the 1.5 

sigma in the formula. 

Burns (2006, 2007) challenges the whole premise of Six Sigma™. He believes that 

processes should be distinguished from customer needs and sigma is a measure of process 

variation. He is especially wary of the calculations of sigma and the justification for six of them. 

He argues that processes vary within plus and minus three sigma limits if normally distributed. 

His communication with Michael Harry, principal founder of Motorola University and now head of 

Six Sigma Academy, identifies the other three sigmas from the drift in the process mean over a 

long period of time. The mean can drift plus or minus 1.5 sigma from the original position. Harry 

and Stewart (1988) have never produced any scientific studies for this value, but most 

practitioners agree that some drift happens and 1.5 sigma is reasonable. In 1998 Harry wrote 

that "In fact, research has shown that a typical process is likely to deviate from its natural 

centering condition," but cites no studies. As early as 1970, Juran and Gryna had proposed 

capability analysis of processes and recommended a capability ratio, Cr, of 0.67 for new 
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machines and 0.75 for older ones. Today the common practice is to use the reciprocal of this 

value, Cp, which is 1.5. 

Statement of the Problem 

The problem of this study is to determine whether the process mean shifts within a 1.5 

sigma distance about a target. 

Statement of Purpose 

The purpose of this study was to identify the magnitude of the drift in the process mean 

relative to the inherent variation in the process. This study determined how processes collectively 

behave relative to the shifts and drifts in the mean over time. The important conclusion was 

whether the value of the shifts and drifts were less than 1.5 times the common cause variation in 

the process. Four methods were employed depending on the nature of the process as depicted 

in its data: 1. Shewhart control charts for processes with data that show a stationary mean with 

random variation and constant sigma, 2. Analysis of Variance for stationary processes with shifts 

in the mean with random variation and constant sigma, 3. CUSUM and EWMA control charts to 

analyze stationary processes with slowly shifting and drifting independent means with large 

random variation and constant sigma and 4. Autoregressive Integrated Moving Average on non-

stationary processes with auto correlated means with random variation and constant sigma. 

Statement of Need/Justification 

The need / justification for the study are based on the following factors: 

1. American businesses in the last quarter of the 20th century were losing market share 

to Japanese companies (Reuven, 1980) due to competition through quality. 

2. The United States government responded to this challenge by instituting the Malcolm 

Baldrige National Quality award to encourage businesses to improve quality. 

3. Motorola, Inc. created the Six Sigma™ program to improve their quality and capture 

the Baldrige Quality Award in 1987. A key premise of this method is allowance of 1.5 sigma for 

the shift and drift in the process mean. 
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4. Methods to analyze process variation and shifts and drifts in the mean were created 

in the early part of the 20th century. Control charts, Analysis of Variance, and regression analysis 

were widely known by the 1950s. In the 1950s the Cumulative sum and exponentially weighted 

moving average methods were developed. The most recent development in analysis tools was 

the time series analysis using Autoregressive Integrated Moving Average to separate common 

cause from total process variation. 

5. By 1994 Box and Lucefio (1994, 1995) wrote about statistical methods of process 

monitoring and engineering methods of process control and explained how ARIMA modeling 

could monitor and PID could control processes. 

6. In 1995, Jack Welch, president and CEO of General Electric, stated that the use of 

Six Sigma tools accounted for the dramatic increase in sales and profits at GE (Welch, 2000). 

7. By 1997, Box and Lucefio published their work describing how to use statistical 

control methods of ARIMA to monitor and feedback control information. They related this to six 

sigma in 2000 (Box & Lucefio, 2000) 

8. Beginning in June 2001, the American Society for Quality offered a certification for 

Six Sigma Black Belts as those knowledgeable in the use of Six Sigma tools were called. 

9. In 2007 quality leaders recognized that time series analysis of processes was 

necessary in order to understand process behavior and control its parameters with traditional 

EWMA and Shewhart control charts (Hunter, 2007a; 2007b). 

This study characterized process mean location over time using the statistical methods of 

control charts, ANOVA, CUSUM, EWMA and ARIMA. Conventional wisdom would predict that 

the process mean drifts within a band of 1.5 sigma units above and below the process target. 

Hypotheses/Research Questions 

The hypotheses employed in this study were: 

1. The process mean shifts less than 1.5 sigma units from its target during normal 

operation. The alternative hypothesis is that the mean drifts more than 1.5 sigma 

units in at least one process. 
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2. No process measurements are related to others over time. The alternative 

hypothesis is that at least one process parameter measurement is related to itself 

over time. 

3. The autoregressive coefficients are zero for all processes. The alternative 

hypothesis is that the autoregressive coefficients are not zero for at least one 

process. 

4. Likewise, the moving average coefficients are zero for all processes. The alternative 

hypothesis is that the moving average coefficients are not zero for at least one 

process. 

5. The autoregressive and moving average coefficients are simultaneously zero for all 

processes. The alternative hypothesis is that these coefficients are not equal to zero 

for at least one process. 

6. ARIMA time series analysis separates the drift in the process average from the 

common cause variation inherent in the process. The size of the drift would be less 

than or equal to 1.5 sigma units where sigma is the common cause process variation. 

Assumptions • 

The following assumptions were made in pursuit of this study: 

1. All processes exhibit variation. This variation is composed of variation due to drifts in 

the mean, unexplained common cause variation and special cause variation due for 

instance to effects like seasonal variation, and multiple machines performing the 

same work. Well-intended, but uninformed process control people can increase the 

variation of the process by adjusting the process when it is exhibiting only common 

cause variation. 

2. Six Sigma processes have at most a 1.5 sigma shift in the process mean. 

3. No single analysis method is appropriate for all processes. 

4. Process means can be separated from common cause variation using the proper 

statistical methods. 



5. Some processes exhibit stationary mean location, uncorrelated measurements over 

time, and random variation. 

6. Other processes have stationary means but show sudden shifts in the mean, 

uncorrelated measurements over time and random variation. 

7. Additional processes are not stationary, but are uncorrelated over time and have 

random variation. 

8. A few processes will be dominated by large inherent variation making necessary the 

detection of the change in mean location with CUSUM or EWMA methods to 

separate the shifts and drifts in the mean from the process random variation. 

9. Time series analysis is appropriate for the analysis of process mean shifts. 

10. The Autoregressive Integrated Moving Average methods effectively separate the 

process mean from the white noise variation. 

11. The residuals from the ARIMA model are normally distributed, uncorrelated, random 

variables with zero mean and process sigma. 

12. The Exponentially Weighted Moving Average control chart used in conjunction with 

the Individual X control chart can effectively identify drifts in the mean, special cause 

and common cause variation. 

13. Quality policy of the firm is consistent across all processes. 

14. The ARIMA model reflects behavior of the physical process within acceptable error. 

15. A sample comprising a fraction of the total processes can represent all the processes 

for a particular firm. 

Delimitations 

A delimitation is a boundary, a self-imposed limit on the study. This study will be 

conducted in view of the following delimitations: 

1. A single manufacturing and assembly organization selling off-highway mechanical 

vehicles in the Midwestern United States. 
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2. The organization has continuous processes, turning processes, boring processes 

and assembly processes. 

3. Processes to be selected for the study will have at least 100 measurements recorded 

over at least a six month representative period of time. 

4. Process measurements are either continuous or discrete. 

5. Data analysis will be done using personal computers. 

6. One method will be used to identify the drift in the process average and another will 

be used to identify the process sigma. 

Limitations 

Limitations are weaknesses of the study that would limit its generalization. This study will 

be conducted in view of the following limitations: 

1. Continuous flow processes such as used in the chemical process industries are not 

included in this study. 

2. Service or product support activities which are largely procedural in nature are 

excluded from this study. 

3. This study is not conducted with a large group of manufacturers, it is limited to a 

single manufacturer with a diverse group of processes to make and assemble parts. 

4. Only one firm is included in this study, making it more likely that the influence of 

quality philosophies would have little difference from process to process. 

5. Processes with insufficient data or data gathered for too short an interval of time are 

excluded from this study. 

6. Measurements in this study are for the most part made manually by skilled 

employees and not continuously recorded by automated equipment. 

Definition of Terms 

The following terms are defined to clarify their use in the context of the study: 

1. Analysis of Variance, ANOVA. A technique for comparing means of normal 

populations assuming the populations have the same variance (NIST, 2006, 7.4.2). 
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2. Autocorrelation Function, ACF. A plot of the serial correlation coefficients of a time 

series (Bisgaard & Kulahci, 2005b, p. 481). 

3. Autocorrelation. Serial correlation. Correlation of a variable with itself when the 

measurements are lagged (Bisgaard & Kulahci, 2005b, p. 481). 

4. AutoRegressive Integrated Moving Average, ARIMA. A class of time series models 

for which the dth difference is a stationary mixed autoregressive - moving average 

series (Box, Jenkins & Reinsel, 1994, p. 89). 

5. Autoregressive. A series that can be expressed as a finite, linear aggregate of 

previous values of the series and a random shock (Box et al., 1994, p. 9). 

6. Common cause variation. Variation in observations that are embedded in the system 

or process itself (Montgomery, 2009, p. 52). 

7. Control. The basis for a process being in statistical control is that its joint probability 

distribution is stationary. It is not, as some mistakenly may think, that the 

observations are independent (Bisgaard & Kulahci, 2005c, p. 483). 

8. CUSUM sequence. Cumulative Sum of the observation deviations from the grand 

mean of the series. (Lucas, 1985, p. 129). 

9. EWMA. Exponentially Weighted Moving Average. A type of moving average in 

which the entire history of measurements is assigned weights, with weights 

decreasing as a geometric progression from the most recent point back to the first 

(Roberts, 1959). 

10. F. The distribution of the ratio of sample variances. Named in honor of Sir Ronald A. 

Fisher geneticist and statistician who lived in the first half of the 20th Century 

(Snedecor& Cochran, 1980, p. 221). 

11. Minimum Mean Square Error, MMSE. The minimum of the squared difference 

between the predicted value and the observed value. (Box & Paniagua-Quinones, 

2007, p. 98). 
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12. Monitor. A continuous screen process for detecting assignable (or special) causes of 

variation (Box et al., 1994, p. 5). A method to describe process management as 

opposed to controlling the process. 

13. Moving average. A time series that is composed of a weighted sum of a finite 

number of previous random shocks. The series is built from a weighting a finite 

number of previous errors between the predicted and observed values of the series 

(Boxetal., 1994, p. 10). 

14. Normal probability. The distribution of a random variable with probability density, p(x) 

= (27ry1/2(G2yU2e~(x-ij)1/2'jl (Boxetal., 1994, p. 280). 

15. p. The order of an autoregressive series (Box et al., 1994, p. 9). 

16. Partial Autocorrelation Function, PACF. Measures the correlation between z, and zM 

not accounted for by zt.i, z,_2, ...zt.k+i(Box et al., 1994, p. 66). 

17. PID. Proportional Integral Derivative. The PID controller receives signals from 

sensors and computes corrective action to the actuators from a computation based 

on the error (proportional), the sum of all previous errors (integral) and the rate of 

change of the error (derivative; Box & Luceno, 1997, p. 135). 

18. q. The order of a moving average series (Box et al., 1994, p. 10). 

19. s-control chart. A Shewhart chart of the standard deviations of the sub-groups of 

process data (NIST, 2006, 6.3.2.1). 

20. Smoothing coefficient, AEWMA- A constant that determines the depth of memory of the 

EWMA (Hunter, 1986, p. 206). 

21. SPC. Statistical Process Control. A continuous effort to keep processes centered at 

their target values while maintaining the spread at prescribed values (Ott, Schilling & 

Neubauer, 2005, p. 195). 
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22. Special cause variation. Causes of variation that arise from sources that are external 

to the system or process itself (Montgomery, 2009, p. 52). Special causes are also 

referred to as assignable causes. 

23. Stationary. A process is stationary if it is in equilibrium about a constant mean level 

(Boxetal., 1994, p. 7). 

24. Time series. A time oriented or chronological sequence of observations on a variable 

of interest (Montgomery, Jennings, & Kulahci, 2008, p. 2). 

25. White noise. Denote a sequence {at,} of independent identically distributed random 

variables that are, to an adequate approximation, normally distributed having mean 0 

and variance aa
2. The individual at's are sometimes called innovations and aa

2 the 

innovation variance (Box & Kramer, 1992). 

Internal Validity 

Internal validity, the degree to which observed differences on the dependent variable 

(1.5 sigma shift) are directly related to the independent variable (type of process), not to some 

other (uncontrolled) variable, was low in this method. A particular process may exhibit many 

forms of variation over time causing shifts and drifts in its process mean. 

1. Qualified data, both amount and time interval reflected in the values was a constraint 

that had to be discussed with the manufacturer. 

2. An indication of the organization of the collected data for analysis. The data were 

arranged in a table with the columns representing the variables and the rows the time 

sequence of the measurements. The process generating the measurements was 

recorded in the title of the table. 

Statistical or Other Analysis of the Data 

The key analysis of this investigation utilized descriptive statistics of mean, standard 

deviation, and variance. In order to separate variances, ANOVA, control charts: Shewhart, 

GUSUM, EWMA, and Individuals were employed. In addition, ARIMA time series analysis to 

separate white noise from process variation was employed. 
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CHAPTER II 

REVIEW OF LITERATURE 

This chapter reviews the literature on the application of time series analysis to model 

autocorrelation, application of deadbands to minimize the condition known as "hunting" or over-

adjusting causing instability, alternative models for process variation, autocorrelation effects on 

process capability and the effect of changing location of the mean on the process capability. The 

importance of the assumption of independence of process measures is reviewed followed by a 

conclusion of the literature review that guided the method of this investigation. 

Autocorrelation as Time Series Analysis 

Hunter (2007a) challenges Black Belts and Quality Engineers to study time series to 

detect location of the process mean. Shewhart process control charts assume a constant mean 

with random variation between measurements. The ^ error epsilon is declared to be Gaussian 

white noise—in other words, normally distributed, independent with expected value Efo ) = 0 and 

constant variance Var(ei) = a2. The shifts and drifts in the process mean need to be studied as a 

time series with normality, independence and constant variance as criteria to meet before the 

sigma of the process can be determined. Hunter goes on to illustrate how to use the 

Exponentially Weighted Moving Average (EWMA) to judge the drift in the mean and identify the 

sigma of the process (Hunter, 2007a, 2007b). Others have also advocated the EWMA to detect 

small drifts in the mean (Alwan & Radson, 1995; Brown, Meyer & D'Escpo, 1961; Hunter, 1986, 

1998; MacGregor,2001; Montgomery & Mastrangelo, 1991). Hunter (1986) points out that the 

Shewhart chart is one extreme of the EWMA with the smoothing constant equal to 1 and the 

Cumulative Sum (CUSUM) chart is the other extreme with the constant at zero. 

The EWMA is not always a good estimator of the location of the process mean. Faltin 

and Woodall (1991) point out the limitation of EWMA if the process shows autoregressive 

dependence of the order of phi, <|>, less than 0.33. The coefficient, phi, is the autocorrelation 

coefficient of the time series lagged by one interval. Just like correlation of two variables, the 
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autocorrelation uses the lagged value of the series for the second variable. Box, Jenkins, and 

Reinsel (1994) show how the autocorrelation of time series can be identified, modeled and used 

to separate the white noise variation from the process variation. Barnard (1959) showed that 

processes could be thought of as a series of random disturbances, distributed as Poisson that 

influenced the level of a process. Some of these disturbances had enduring influence and 

changed the level of the process while others were fleeting and their effect died after a number of 

intervals depending on the process. Montgomery, Jennings and Kulahci (2008) and del Castillo 

(2002) explain time series analysis for process control. These models are termed ARIMA for 

Autoregressive Integrated Moving Average models because the change in the process mean 

location can be a result of an autoregressive drift which returns to a stable and constant mean, a 

drifting, almost linear change in the mean or a moving average where the mean will not return to 

its previous value unless the process has an intervention by a controller or operator adjustment. 

Monitoring and Control with Deadbands 

Box and Kramer (1992) showed how to use statistical process monitoring for feedback 

control. Thus the mean was modeled over time and the feedback was given to either a human 

for adjustment or a controller to intervene with the process input to control the process output. In 

a series of articles and finally a book, Box and Luceno (1994, 1995, 1997, 2000) illustrate the 

similarity between process monitoring with statistical methods and process control with 

engineering PID, Proportional Integral Derivative, controllers. O'Shaughnessy and Haugh (2002) 

show the use of EWMA for process monitoring and bounded adjustment to prevent over-

adjusting. This control is only effective if the time series can be modeled and predicted. Box and 

Paniagua-Quinones (2007) showed how to construct two control charts, one for the shift and drift 

in the mean using EWMA with minimum mean square error and a traditional Shewhart chart for 

the residuals from this model to identify special causes. Lucas (1982) had advocated for the use 

of two control charts, one a CUSUM and the other a Shewhart chart to detect process shifts and 

drifts and special causes with few false signals but rapid response. Therefore the 1.5 sigma drift 

can be controlled within boundaries with use of ARIMA models or PID controllers. 
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In order to help the Black Belt, Bisgaard and Kulahci (2005a, 2005b, 2005c, 2006a, 

2006b, 2007a, 2007b, 2007c, 2007d, 2008) have written a series of articles for the identification 

and characterization of time series models for process control. In one of these articles, the 

authors speak of regime changes (Bisgaard & Kulahci, 2007a) which are behavioral changes in 

the process, a departure from its previous behavior. A separate ARIMA model is needed for each 

of the regimes. Saniga, Davis and Lucas (2009) provide a simple graphical technique to detect 

change points. 

Alternative Models for Process Variation 

What emerges from this discussion is a picture of the process mean changing over time 

in one of five ways. First, the Shewhart model of constant mean and uniform variation. Second, 

shifts in the mean with uniform variation and constant variation like we find in Analysis of 

Variance (ANOVA). The third model would be a process with a continual drift of the mean and 

uniform and constant variation such as found in regression models. Another variant, the fourth, 

would be a model of the mean drifting slowly and with a variation much smaller than the common 

variation underlying the process, modeled best by either a CUSUM or EWMA model. The fifth 

model would incorporate the ARIMA behavior of the process, some having autoregressive, some 

moving average, some stationary and some not stationary requiring an integration term to 

separate the process variation from the white noise variation. 

Autocorrelation Effect on Process Capability 

Kotz and Johnson (2002a, 2002b) updated an earlier study of process capability indices 

(PCIs) that are predicated on the Shewhart model of constant mean with random variation about 

it. In discussion of this article, Bothe (2002) points out weaknesses in current indices that 

appraise the capability of processes to identify the capability to meet specifications for processes 

having: inherent tool wear; variation in setup between runs; limited data due to short production 

runs; autocorrelation; and features with geometric dimensioning and tolerancing. Boyles (2002) 

also addresses autocorrelation in his discussion: we cannot rule out autocorrelation in our 

measurements—for example, this would rule out virtually all high-tech manufacturing. If we 
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restrict applications of PCIs to processes in the narrowly-defined state of statistical control, we 

are essentially saying that PCIs are never applicable." While process capability studies could be 

used for setting goals, the identification of processes in control with constant mean and random 

variation is considered to be a small portion of all processes familiar to the authors and 

discussants (Bothe, 2002; Boyles, 2002; Hubele, 2002; Kotz & Johnson, 2002a, 2002b; Lu & 

Rudy, 2002; Ramberg, 2002; Rodriguez, 2002; Spiring, Cheng, Yeung & Leung, 2002; Vannan, 

2002). 

In the second instance of constant variance and shifts in the process mean, de Mast and 

Roes (2004) propose to discern, apart from outliers, one generic pattern that the control chart 

should detect, namely shifts in the mean. They argue the importance of this pattern is 

acknowledged by the extensive literature on CUSUM and EWMA charts. Their procedure would 

have the investigator follow three steps: (1) estimate the locations of possible shifts and test 

significance of these shifts, (2) estimate (using robust estimators) the means of the intervals 

between successive shifts, and (3) based on these estimates determine separate control limits for 

each interval. They state that the F distribution can be used to identify whether the interval 

means are statistically different. While they derive a mathematical method to identify the shift 

points, Saniga, Davis and Lucas (2009) propose a simple graphical method that most 

practitioners would be able to use. Albin, Kang and Shea (1997) indicate that CUSUM and 

EWMA charts in conjunction with Shewhart X charts can identify shift points in the mean even 

when the variation is large in comparison. Deleryd (1998) identifies difficulties with the shape of 

the distribution of the measures of the process, especially those which are skewed, to summarize 

with a typical PCI value. An F statistic assumes normally distributed values about the interval 

means so a transformation is often required before deciding the process capability. 

Changing Location of the Mean 

Spiring (1991) proposed a method to judge processes subject to continually changing 

locations in the mean, such as a machining operation with tool wear. He proposes a dynamic 

model for the PCI with lower bounds established based on the process variation to protect the 
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consumer from defectives. This is the third condition mentioned above. Spiring fits a regression 

line to interval data and uses the Mean Square Error of regression adjusted for degrees of 

freedom in the Cpm calculation. Vander Weil (1996) proposes modeling the process as an 

Integrated Moving Average, IMA(1,1), using regression with a deterministic term to fit the process 

data. He argues that many industrial processes are controlled with PI (proportional, integral) 

controllers in a wide range of applications. Braun and Park (2008) examine the effect of 

contaminated data, undetected shifts or drifts, with a process that has a constant mean and 

variance. Their examination of 10 ways to determine sigma for an individuals chart lead them to 

conclude that the method of de Mast and Roes (2004) is a reasonable method of estimating the 

sigma of the individuals control chart. The method is to test robustly for the significant shift in the 

mean and estimate sigma for intervals incorporating the mean of the interval in the sigma 

calculation. 

Detecting slowly drifting process means where the process variation is relatively large 

can be achieved using CUSUM or EWMA control charts to locate the mean with a Shewhart chart 

to judge occurrence of special causes (Baxley, 1990; Lucas & Saccucci, 1990; Roberts, 1959). 

Ryan (1991) states that CUSUM and EWMA procedures quickly detect a shift in the mean without 

many false signals when data are independent. Borrow, Champ, and Rigdon (1998) show the 

use of the EWMA for Poisson data. They compute the average run length (ARL) using Markov 

chain simulation for selected lambda and control chart factors. Knowing the ARL the control chart 

factor for upper and lower control lines can be established. They argue that this permits signaling 

when the defect level falls significantly below the average when a process improvement occurs. 

The traditional c chart would not signal under these circumstances due to a lower control limit that 

is an impossible negative number. Crowder (1989) gives methods for constructing EWMA control 

charts for selected ARLs. Once the ARL is decided, the proper lambda and K, control chart 

constant for detecting the drifts in the process mean with acceptable alpha and beta risks of false 

alarms (alpha) and lack of response (beta) when the mean has drifted. Hunter (1986, 1998) 
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shows the similarity of the EWMA monitoring and the PID controlling of the process. He also 

proposes that a dead band interval may be used to prevent over-adjusting. 

Measures that are not Independent 

Wardell, Moskowitz and Plante (1992) point out that the restriction of independence of 

process measures is not true for many processes, specifically machining and forging operations 

For this reason, more complicated models accounting for autocorrelation are needed for process 

control. Thus, the fifth type of process variation, time series behavior of the process, differs from 

those above by replacing the idea of smoothing the series to identify the shift and drift of the 

independent mean with the ARIMA model incorporating the auto correlated behavior in the 

model. This method is used for data that show autocorrelation, previously assumed nonexistent. 

The shifts and drifts are then isolated with the time series variation and the sigma of the residuals 

is treated separately. Jiang, Tsui and Woodhall (2000) propose an ARMA chart instead of the 

EWMA chart. This chart uses the ARIMA coefficients directly instead of the EWMA smoothing 

coefficient for predicting the period-ahead value of the process. The ARMA is superior to the 

EWMA for autoregressive moving average processes. Jones (2002) addresses the issue of chart 

design, suggesting that ARL be the criteria for smoothing parameter selection. Box and 

Paniagua-Quihones (2007) suggest using the smoothing constant that gives minimum mean 

square error of the period-ahead prediction. Lu and Reynolds (1999a, 1999b) investigate the 

behavior of the mean and standard deviation with an ARMA process. While no optimal 

performance exists across a wide variety of situations, they recommend an EWMA chart of 

observations used with a Shewhart chart of the residuals for process monitoring and control. 

Therefore the consensus of these authors is to track the shift and drift in the process mean using 

EWMA methods and identify the common cause variation of the residuals as the sigma as 

referred to in Six Sigma™. MacGregor (1991) suggests using engineering feedback control, 

similar to ARIMA process monitoring, and applying SPC charts to the residuals of this control. 
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Summary of Literature Recommendations 

To distill the literature, an approach that would satisfy the cautions of the various authors 

would be a method of fitting an ARIMA model, using a method to identify the shift points in the 

series, confirming the location of the shift points with either CUSUM or EWMA methods, 

identifying separate control limits for each regime identified, and then employing Shewhart charts 

to the residuals to detect special causes that may need to be investigated and removed from the 

model. The relative shift of the mean compared to the variation of the process could be 

determined from ANOVA using the shift points to group the series. The ratio of the variation of 

the between group means to the process sigma would be the same as the mean square between 

to mean square error. 
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CHAPTER III 

METHODOLOGY 

In this chapter the methodology for this study is explained. The explanation begins with a 

description of the sample selection by giving the reader reasons for selection of the particular 

sample from the alternative methods available. The reasoning behind the purposive selection the 

study within a process and the systematic nature of recording observations for analysis is 

presented. A flow chart of the method is used to explain how the analysis was performed. 

Following a description of the method an example of an assembly process study is presented. 

Sample Selection 

The procedure for this study was as follows: 

The design of this study was quantitative research in the causal comparative group of 

designs. The researcher attempted to determine the cause, or reason, for pre-existing 

differences in groups. It is sometimes called an "ex post facto" study because both the effect and 

the alleged cause have already occurred and must be studied in retrospect. These studies 

usually involve two (or more) groups, one independent variable and involve making comparisons. 

Subjects are not randomly selected but selected because they belong to groups. The researcher 

cannot manipulate the independent variable. The independent variable has already occurred and 

cannot be manipulated. The random sample was selected from already-existing populations. 

The researcher used a variety of descriptive and inferential statistics (Fraenkel & Wallen, 2003). 

In this study, the causal comparative experiment examined the type of manufacturing process 

and the time series models for explanation of the size of the shift or drift in the process mean over 

time. 

The response was the magnitude of the process shift compared to the inherent, common 

cause, process variation. The processes studied are shown in Table 1. The choice of a sample 

depended on the research question. A completely random sample was not used in this research. 

In this investigation the research question was focused on a single company trying to identify the 
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sigma shift in its processes. While a random sample would represent the mix of processes by 

count, the investigation would probably miss some small, but very important processes. 

An alternative to random sampling, stratified sampling, was chosen because the 

investigator wanted to make certain each strata or process was represented in the investigation. 

Consistent with this method is the assurance that the count of these processes in the company 

would not be as consequential to the research as having a representation of all processes. 

Table 1. Processes to be studied for the 1.5 sigma mean shift and drift. 
Process Studies 
Assembly 18 
Foundry 6 
Heat Treatment 3 
Machining 10 
Matching 1 
Shaving 14 
Test Machine 5 
Grinding 4 
Turning 57 
Warranty 4 
Yield 3 

A sample is taken in order to gather information on a population. Most research is based 

on a sample because a population is broad in scope, spread geographically or incomplete in the 

sense that more members are being added to the population as the research is being conducted. 

For instance, a company making product on a continuing basis would be generating more product 

while the research is being conducted on the sample. 

In order to decide upon the proper sample, the population must be defined. In this study, 

a company that makes off-highway vehicles was studied to evaluate whether the processes 

important to its success have shifts and drifts in the mean equal to one and a half times the 

variation of the process. This is referred to as the 1.5 sigma shift in terms used by Six Sigma 

practitioners. So the investigator defined this population as those processes that were important 

to the commercial success of the company that produced off-highway vehicles. The processes 
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that this company believed were important to its success were grouped from least to most value 

added: primary metal casting, machining of gears and shafts, machining of casings and housings, 

post-machining processing, testing and assembly. Key business metrics such as customer 

experience while the product is covered by warranty, warranty costs per vehicle and first pass 

yield were also key business processes. 

Fraenkel and Wallen (2003) refer to the target population, the population to which the 

researcher wishes to generalize, and the accessible population, the population to which the 

researcher is able to generalize. The target population would be the ideal choice, the accessible 

would be the researcher's realistic choice. This study would ideally apply to all processes used in 

the world. A more realistic population for this research is all processes used in the United States 

of America. Still more realistic would be processes measured with interval data. A still more 

realistic is a single company that has a variety of processes measured with interval data. While 

this investigator realized the differences between the ideal and the accessible population, the 

value of the research was not diminished. No studies have been reported on a large company 

with a diverse set of processes (the accessible population) measured with interval data. 

Another expectation of sampling is that the sample will be representative of the 

accessible population. The company made discrete parts and purchased others for assembly, 

test, evaluation and sale. The economics of the processes led to several reasons that the 

measurements for process control were not interval data. Some processes were not measured. 

These processes were controlled by tool geometry or tool size. For instance, a broach that 

produced an internally splined hub was ground to a specific size. As the broach wore the spline 

size grew. Appearance of the spline surface and the power required to produce the spline were 

indicators that it was time to sharpen the broach. Interval values of the spline size were not 

economic to gather. The 1.5 sigma shift is of no interest to the company because economy of 

operation dictated when to sharpen the tool. The same considerations applied to other processes 

when a part feature changed size with tool wear. The economic behavior was not to rotate the 

insert to maintain a targeted size, but rather utilize the insert for the maximum number of pieces 
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by setting the minimum size on an external feature or maximum size on an internal feature so that 

the total allowed size range was obtained before rotation of the insert. For these reasons, a 

stratified sample was used in this investigation. 

For the reasons just listed the investigator did not draw a random sample within each 

strata or process. The investigator considered obtaining representative samples within each 

strata by gathering either systematic, convenience or purposive samples. A combination of these 

sampling methods was used in this study. A purposive sample was used to select the process for 

study within each strata because it more appropriately fit the purpose of the investigation. Within 

a process the samples were drawn by operators of the processes for quality control at equally 

spaced intervals. Typically a sample was taken at equal time spacing with a rational grouping 

that was to minimize short term variation while maximizing the ability to identify the long term 

variation. This concept was inherent in the Six Sigma method by allowing for the 1.5 sigma shift 

between samples while controlling within variation to plus or minus three sigma. 

A word about why convenience samples were not used in this study. Convenience 

sampling selects subjects to be sampled when conveniently available. These samples have very 

restrictive generalizability. In industry, product opinions were often gathered where customers • 

come into contact with the sales group. Market forecasts have been made based on "customer 

feedback" that often came from those who recently purchased the product. All potential buyers 

were not surveyed so companies' products tended to be more attractive to current customers 

rather than to competitors' customers. The convenience sampling method was therefore 

inappropriate for this investigation. 

This investigation drew a purposive sample of the processes used within the company 

with systematic recording of observations while the processes were running.. Fraenkel and 

Wallen (2003) report that purposive samples were based on previous knowledge of the 

population and the purpose of the research employing the investigator's personal judgment to 

gather the sample. Purposive sampling was different than convenience sampling because 

researchers did not study whoever was available, but used their judgment to select a sample that 
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they believed, based on prior information, would provide the data they needed. Of course, the 

disadvantage was the possibility of bias in the sample that could affect the generalizability of the 

results. 

To address the issue of bias, the investigator in this study assembled a group of 

company experts who represented operations, manufacturing engineering and processing, quality 

engineering and measurement systems. The investigator acquainted the group with the intended 

purpose of the research and solicited suggestions on the strata to include in the sample and the 

measurements to be studied. In this manner the knowledge of the population was represented by 

the participants who were recognized by the company as most knowledgeable in the processes it 

used. Additionally, managers of the company participated in selection of the key performance 

metrics to be studied. They believed the methods used in this study would permit them to employ 

the results in similar operations they managed. They based this opinion on their knowledge of 

similar processes at other employers and other facilities familiar to them within the company. If 

the groupings they identified had not been included in the study, they felt that the results would be 

too specialized to be of good use to their company. 
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Figure 1. Process flow diagram used to identify cases for the purposive sample. 
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Figure 2 shows the groupings of the processes which aided in selection of the specific 

cases for this study. 

(^ Start, Material ^) 

X 
Steel Forging 

Gears 

Turned 

Shafts 

Drilled, Bored 

"V 
/ 

• 

Housings 

i 
Nodular and 

Grey Iron 

Mill 

• 

Cases 

(̂  Ship End~") 

Figure 2. Grouping of processes into strata for case selection. 

Method of Analysis 

The analysis of process data in this study followed the flow shown in Figure 3. After a 

purposeful sample of the process was gathered there followed a systematic recording of 

observations over a representative period of time. The investigator plotted the data on a normal 
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probability scale to judge whether the data were reasonably normal. If the data passed through 

this review, a plot of the data in time order was constructed. This gave the investigator an 

appreciation of the behavior of the process data over time. Trends and cycles were sometimes 

evident in this review. 

Time Series Model 

A series was considered stationary if there were no upward or downward drifts in the 

plotted series. If there appeared to be a drift in the series, the model was constructed with a first 

order difference, d, value equal to unity. A further check was made at the time the 

Autocorrelation Function (ACF) plot was made. Box, Jenkins and Reinsel (1994) recommend 15 

lags were sufficient to judge the time-variant behavior of the process. A plot of the first 15 lags of 

the ACF was made and examined for appearance of autoregressive or moving average behavior. 

Once the ACF plot was examined, a Partial Autocorrelation Function (PACF) plot was made. 

This permitted the investigator to determine whether the model should be constructed as an 

autoregressive (AR) only or a moving average (MA) or a combination of ARMA. The model order 

for AR is designated p and for moving average, q. The AutoRegressive Integrated Moving 

Average (ARIMA) model was now tentatively described as ARIMA(p,d,q) and ready for the 

examination for seasonal or cyclical patterns in the residuals. 
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Figure 3. Flow of analysis activities for process data. (figure continues) 
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Figure 3. Flow of analysis activities for process data. 

Seasonality in the Series 

Beginning on the second page of Figure 3, the residuals of the preliminary ARIMA model 

were examined for periodic significance in the ACF and PACF of the residuals. When the plots 

suggested seasonality the appropriate seasonal AR or MA orders were added to the model. Re­

examining the residuals from the revised model would confirm that the model order terms were 

complete. Capital letters were used to designate the seasonal terms, P, D, Q with the periodicity 

of the pattern designated by S. ARIMA(0,1,1)(0,1,1)4 was a time series that was first difference, 

moving average with a repeating cycle every fourth observation that had a first difference with 
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moving average on these quarterly observations superimposed. Residuals from this proposed 

model were then examined for centering around zero, normal distribution of values, lack of 

autocorrelation and constant variance. Once this examination was complete, the parameters 

were recorded. The time series was specified and recorded. 

Change Points in the Mean 

Beginning on the third page of Figure 3, the CUSUM sequence plot of Lucas (1985) and 

later Saniga, Davis and Lucas (2009) was constructed in order to identify change points in 

location of the process mean. This was a manual activity using a straight edge and eyeball. 

Whether the correct points had been identified would be confirmed later with the Exponentially 

Weighted Moving Average (EWMA) plot. The Minimum Mean Square Error (MMSE) was now 

found by doing a grid search that changed the smoothing coefficient, A, in uniform increments and 

judged whether the average squared difference between the smoothed value and the observed 

value was the smallest of all those calculated. This value was used as the coefficient for the 

EWMA plot. After plotting the EWMA with the MMSE lambda, the plot was examined for any 

evidence of shifts in the mean. When signals were found, the shift point location was revised and 

the EWMA regenerated. While the change points were now believed to be correct, the Analysis 

of Variance (ANOVA), needed to be performed to ensure the changes in the mean were 

statistically significant. 

Variation in the Process Average 

As shown on the concluding page of Figure 3, the ANOVA was performed and the 

residuals from that analysis were examined for average of zero, normal distribution, and constant 

variance. Bartlett and Levene tests were conducted on the variances of the sub-groups identified 

in the CUSUM sequence plots. If the Bartlett and Levene tests indicated non-constant variance 

then an s-control chart was constructed to identify which variances were unusual. The unusual 

variances were removed and the overall variance recomputed. If the recomputed variances 

altered the results from the ANOVA analysis, the new value for the within variance was used. In 

no cases were the results altered by the recomputed variances. The analysis was performed to 
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generate the relative variation, in sigma units, in the process mean compared to the sigma or 

process variation. In this manner the two differing sigma were compared. The ANOVA analysis 

yielded ratio of the between group variances to the within group variances. 

Sigma for the Six Sigma Evaluation 

During these analyses, other estimates of process sigma were gathered. The root mean 

square error of the fitted ARIMA model was an independent estimate of sigma. Using the 

residuals from the ARIMA model a Shewhart chart was constructed giving a second estimate of 

sigma from the ARIMA model. A third estimate was the root mean square error of the MMSE of 

the exponentially smoothed series. In all, four estimates of sigma were obtained: two from the 

ARIMA model, one from the MMSE of the exponentially smoothed series and one from the 

ANOVA. These estimates were very close in value for the processes in this study. 

A1.1 as an Example 

To illustrate the method, we will show the analysis steps for the A1.1 Assembly. These 

data are deficiencies on a machine that either need to be remedied or reviewed, cataloged and 

evaluated for corrective action. The data are counts of deficiencies per machine. In all, 129 

machines were in this study. 
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Figure 4 shows a pattern in the normal probability plot suggesting a transformation of the 

measurement units was needed. A logarithmic transformation was performed. 

Normal Probability Plot: A1 
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Figure 4. Normal probability plot of A1.1 in original measurement units. 
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Normal Probability Plot: A1 
ln(x) 
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Figure 5. Normal probability plot after logarithmic transformation of A1.1. 

A time series model was then created to fit the behavior of the A1.1 data. 
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Autocorrelation Function 

A.1 : ln(x) 

(Standard errors are white-noise estimates) 
Q P 

6 5 . 2 1 .0000 

1 3 0 . 5 0 . 0 0 0 

1 9 1 . 9 0 . 0 0 0 

2 4 3 . 0 0 . 0 0 0 

2 9 6 . 7 0 . 0 0 0 

3 4 1 . 3 0 . 0 0 0 

3 8 3 . 7 0 . 0 0 0 

4 2 5 . 3 0 . 0 0 0 

4 5 8 . 4 0 . 0 0 0 

4 9 0 . 8 0 . 0 0 0 

5 1 6 . 2 0 . 0 0 0 

5 4 2 . 4 0 . 0 0 0 

5 7 0 . 8 0 . 0 0 0 

5 9 3 . 4 0 . 0 0 0 

6 1 6 . 3 0 . 0 0 0 

0 Conf. Limit 

Figure 6. Autocorrelation Function for transformed A1.1 measurements. 

The slow decay in the value of the autocorrelation function indicated that the series was 

not stationary. So a first order difference was included in the model. 
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A1 : ln(x) 

(Standard errors assume AR order of k-1) 
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Figure 7. Partial Autocorrelation Function for transformed A1.1 measurements. 

The partial autocorrelation function showed that three terms could possibly be in the 

model. It also suggested that a moving average order should be in the model due to the rapid 

drop in the value of the coefficients for each of the initial three lags. The first difference was 

applied to A1.1 data and a moving average of order one was included in the model. 
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Autocorrelation Function 
Ai : ARIMA (0,1,1) residuals; 

(Standard errors are white-noise estimates) 
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Figure 8. Autocorrelation Function of residuals after fitting the ARIMA model to the transformed 
Al.ldata,-
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Partial Autocorrelation Function 

A1 : ARIMA (0,1,1) residuals; 

(Standard errors assume AR order of k-1) 
Corr. 
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Figure 9. Partial Autocorrelation Function of residuals after fitting the ARIMA model to the 
transformed data. 

The ARIMA(0,1,1) model residuals indicate no remaining autocorrelation. This was a 

good indication the model fit the data well. The model coefficients and their statistical confidence 

intervals are in Table 2. The equations converting the ARIMA parameters to original 

measurement units follows the table. 

Table 2. Parameters of the ARIMA model for A1.1 transformed data. 
Input: A1.1 
Transformations: ln(x),D(1) 
Model:(0,1,1) MS ResiduaN .09391 

Paramet. Param. Asympt. 
Std.Err. 

Asympt. 
t( 127) 

Lower 
95% Conf 

Upper 
95% Conf 

q(1) 0.688248 0.057067 12.06040 0.000000 0.575323 0.801173 
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The method was to first transform the data into logarithmic units, take the difference 

between neighboring values, then fit the time series order. Once the order was known, the 

coefficients were calculated. The equations are shown here for A1.1 example. 

z = ln(x) 

\n(xl) = \n(xt_l) + at-8,at_l 

ln(jc,) = Hxt_l) + a, -0.688248a,_] 
v _ v _«,-0.688248a,_, 
•*/ — ^ _ j t ; 

The variance is converted from logarithmic units to measurement units by this formula: 

<Tx =//>*«*> -1) 

The partial autocorrelation of the ARIMA(0,1,1) model indicated good model fit. The ACF 

of the residuals showed no correlation at any lag period and the same was true for the PACF of 

the residuals. The residuals were examined for centering on zero and normal distribution. These 

were assumptions that the model would have errors that were as much above the true value as 

below it. The expectation of normality stemmed from the assumption that the prediction errors 

were clustered close to zero, but random errors would contribute to normality in the error 

distribution. Box, Jenkins and Reinsel (1994) give a more complete explanation. 
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X Chart; variable: ARIMA(0,1,1) Resids 
X: -.06522 (-.06522); Sigma; .28799 (.28799); n: 1. 
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Figure 10. Shewhart control chart of ARIMA residuals from the ARIMA model of A1.1 data. 

The Shewhart chart indicated that two observations did not fit the model well. These 

were observations 120 and 129. When this happened it was taken as a signal from the chart that 

special causes were present and needed to be investigated. 
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Histogram; variable: A1 
ARIMA (0,1,1) residuals; 

— Expected Normal 

-2.0 -1.8 -1 .0 -0.8-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

Upper Boundaries (x<=boundary) 

Figure 11. Histogram of A1.1 ARIMA model residuals. Verification of zero mean and reasonably 
normal shape. Note the location of observation 129 at -1.5. 
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Figure 12. Normal probability plot of A1.1 ARIMA model residuals. Additional check of 
distribution of the residuals. Points 120 (-1.0) and 129 (-1.5) appear unusual and poorly fit the 
distribution. 
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Exponential smoothing: SD=2.714 
No trend.no season; Alpha= .348 

A1 : ln(x) 

-10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

— A1 trnsfrrnd (L) ---- Smoothed Series (L) Resids (R) 

Figure 13. Exponential smoothing of logarithmic transformation of A1.1 data. Transformed, 
smoothed and residuals shown on plot. 

The minimum mean square error was determined by preparing an exponentially weighted 

moving average chart and searching the smoothing coefficients through a grid search of values in 

order to find the value that yielded the minimum mean square error. The value of 0.348 reported 

for alpha is the same value identified as lambda for the EWMA chart. 

http://trend.no
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X Chart; variable: ES Resids 

X: -.02347 (-.02347); Sigma: .29945 (.29945); n: 1. 
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Figure 14. Shewhart chart of the exponentially smoothed residuals for the transformed A1.1 data. 

There were three points identified by the exponential smoothing algorithm: 1, 120 and 

129. The first is due to the start up of the model. The initial value is often used as the average, 

target or simply the first observation. After a few calculations the initial conditions have no effect. 

For this reason reading one would not be considered to have a special cause. 
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Figure 15. Transformed A1.1 plot in time order. The first observation of the series is much larger 
than expected. Also, observations 120 and 129 are much smaller than expected. 
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Plot of variable: A1 

ln(x);-M=2.714;l(-1)(lead:A1) 
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Figure 16. CUSUM sequence plot of transformed A1.1 data to detect shift points in the mean. 
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EWMA X Chart; variable: Ln A1 
EWMAX: 1.9443(1.9443); Sigma: .49139(49139); n: 1. 
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Figure 17. EWMA of transformed A1.1 data confirming the shift point locations 

Table 3. ANOVA of transformed A1.1 means in CUSUM sequence groups. 
Univariate Tests of Significance for A1.1 
Sigma-restricted parameterization 
Effective hypothesis decomposition 

Effect SS Degr. of 
Freedom 

MS 

Intercept 711.6477 
A1.1 Group 32.6034 
Error 8.8157 

1 711.6477 9686.978 0.00 
8 4.0754 55.475 0.00 

120 0.0735 0.2710 

The ANOVA indicates significant differences in the process group means for the 

transformed A1.1 data. The 0.2710 value was compared to the other estimates of sigma using 

the ARIMA(0,1,1)fit, the ARIMA(0,1,1) model error residuals and the exponential smoothing fit 
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residuals. In this example those values were 5.4097, 5.0360, 5.2688 and 4.6968 after converting 

to original measurement units from the logarithmic units used in the analysis. 

The value of M/sw can be calculated using the following formula and the data from Table 

4. Since M/sw is the maximum movement in the mean from its target, M, divided by the root 

mean square error, sw, calculation proceeded as follows: 

M = Maximum\xi - x01 

Table 4 Descriptive Statistics for Ln A1.1 
Level of 
Factor 

Group 
0 
1 
2 
3 
4 
5 
6 
7 
8 

N 

129 
5 
8 
13 
31 
35 
9 
9 
7 
12 

LnA1.1 
Mean 

2.714 
3.959 
3.580 
3.314 
2.906 
2.401 
2.583 
2.223 
2.554 
1.944 

LnA1.1 
Std.Dev. 

0.569 
0.293 
0.093 
0.149 
0.218 
0.277 
0.191 
0.232 
0.160 
0.543 

LnA1.1 
Std.Err 

0.050 
0.131 
0.033 
0.041 
0.039 
0.047 
0.064 
0.077 
0.061 
0.157 

LnA1.1 
-95.00% 

2.615 
3.596 
3.502 
3.224 
2.826 
2.306 
2.437 
2.044 
2.406 
1.600 

LnA1.1 
+95.00% 

2.813 
4.323 
3.657 
3.404 
2.986 
2.496 
2.730 
2.401 
2.703 
2.289 

M/sw = Max{Abs(3.959-2.714), Abs(1.944 - 2.714)}/ 0.2710= 

Max{1.245, 0.770}/0.2710 = 1.245/0.2710 = 4.595 

The initial value of M/swwas recorded for comparison to a revised value pending the 

verification of the assumption of constant variance for the ANOVA. 
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A1 Group; LS Means 
Current effect: F(8,120)=55.475, p=0.0000 

Effective hypothesis decomposition 
Vertical bars denote 0.95 confidence intervals 
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Figure 18. Plot of transformed A1.1 group means showing 95% confidence intervals. This plot 
illustrates the non-stationary behavior of the process. A first difference was used in the model to 
remove this trend. 
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Figure 19. Normal probability plot of transformed A1.1 residuals from ANOVA groups. Plots are 
within group deviations from group average. This verifies that the within groupobservations are 
normally distributed. 
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Means vs. Variances: Ln A1 

Effect: MA1 Group" 
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Figure 20. Plot of variance of transformed A1.1 data by CUSUM group. Checking assumption of 
uniform variance of the transformed A1.1 grouped data. The spread is greater for small means 
due to the effect of observations 120 and 129. 

Table 5 and Table 6 show that the assumption of equal variances is not true for these 

data. An investigation of the variances was then conducted to identify the impact of unequal 

variance on the analysis. 

Table 5. Tests for homogeneity of variances of transformed A1.1 CUSUM sequence groups 

Tests of Homogeneity of Variances 
Effect: "A1.1 Group" 
Hartley 
F-max 

Cochran 
C 

Bartlett 
Chi-Sqr. 

df 

LnA1.1 34.36802 0.452289 37.86794 8 0.000008 
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Table 6. Levene's test for homogeneity of variances of transformed A1.1 CUSUM sequence 
groups. A second check for constant variance assumption of ANOVA. 

Levene's Test for Homogeneity of Variances 
Effect: "A1.1 Group" 
Degrees of freedom for all F's: 8,120 _ ^ 
MS 
Effect 

MS 
Error 

LnA1.1 0.113207 0.024249 4.668606 0.000054 

S Chart; variable: Ln A1 
Std.Dv.: .24171 (.24171); Sigma: .18736 (.04723); n: 14.333 
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Figure 21. Shewhart s-chart showing control limits for transformed A1.1 CUSUM sequence group 
standard deviations. This is done to identify which variances were different from the others. 

The s chart shows that Group 9 variance is larger than the others. After removing Group 

9 from the calculations, Group 2 was then much smaller than the others. Therefore, both Group 2 

and 9 were removed and the calculation of M/swwas repeated. 
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S Chart; variable: Ln A1 
Std.Dv.: .21985 (.21985); Sigma: .16833 (.04106); n: 15.571 
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Figure 22. Shewhart s-chart after removing the largest and smallest standard deviations in A1.1 
Groups 9 and 2 respectively. 
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Figure 23. Variance versus mean for the revised analysis of the transformed A1.1 CUSUM 
sequence groups. Variances appeared more uniform so the ANOVA was repeated without 
Groups 2 and 9. 

The revised estimate of sw was now 0.2326 as shown in Table 7. Table 8 and Table 9 

confirm the variances are reasonably equal. 

Table 7. Revised ANOVA with highest and lowest variance groups excluded. 
Univariate Tests of Significance for Ln A1.1 
Sigma-restricted parameterization 
Effective hypothesis decomposition 
Exclude condition: 'A1.1 Group'=2 or 'A1.1 Group'=9 

Effect SS Degr. of 
Freedom 

MS 

Intercept 565.7289 1 565.7289 10458.95 0.00 
A1.1 Group 19.4506 6 3.2418 59.93 0.00 
Error 5.5172 102 0.0541 0.2326 



Table 8. Variances are judged to be homogeneous after excluding Groups 2 and 9. 
Tests of Homogeneity of Variances 
Effect: "A1.1 Group" 
Exclude condition: 'A1.1 Group'=2 or 'A1.1 Group'=9 
Hartley Cochran Bartlett df p 
F-max C Chi-Sqr. 

LnA1.1 3.861572 0.246005 8.143495 6 0.227778 

Table 9. Levene's test revised for the exclusion of Groups 2 and 9 from the analysis also fails to 
reject the hypothesis of equal variances for the CUSUM sequence groups. ^ _ ^ _ _ ^ _ 

Levene's Test for Homogeneity of Variances 
Effect: "A1.1 Group" 
Degrees of freedom for all F's: 6, 102 
Exclude condition: 'A1.1 Group'=2 or 'A1.1 Group'=9 
MS MS F 

Effect Error • 
LnA1.1" 0.033437 0.016710 2.001101 0.072278 

The repeated analysis now indicated that the assumptions required for a valid analysis of 

variance were valid. All tests, Hartley's, Cochran's, Bartlett's and Levene's failed to reject the null 

hypothesis of equality of variances. 

Using sw = 0.2326 and the values for the group averages in Table 10 the movement of 

the process mean in units of the root mean square error was re-computed as shown here. 

M/sw = Max{Abs(3.959-2.735), Abs(2.554 - 2.735)}/ 0.2326 = 

Max{1.224, 0.181 J/0.2326 = 1.224/0.2326 = 5.262 

Table 10 Descriptive Statistics for Ln A1.1 without Groups 2 and 9. 

Level of 
Factor 

Group 
1 
3 
4 
5 
6 
7 
8 

N 

129 
5 
13 
31 
35 
9 
9 
7 

LnA1.1 
Mean 

2.714 
3.959 
3.314 
2.906 
2.401 
2.583 
2.223 
2.554 

LnA1.1 
Std.Dev. 

0.569 
0.293 
0.149 
0.218 
0.277 
0.191 
0.232 
0.160 

LnA1.1 
Std.Err 

0.050 
0.131 
0.041 
0.039 
0.047 
0.064 
0.077 
0.061 

LnA1.1 
-95.00% 

2.615 
3.596 
3.224 
2.826 
2.306 
2.437 
2.044 
2.406 

LnA1.1 
+95.00% 

2.813 
4.323 
3.404 
2.986 
2.496 
2.730 
2.401 
2.703 
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This difference, 0.667 (5.262 - 4.595), was considered to be essentially zero for these 

two values. The question was whether the shift in the mean exceeded 1.5 sw and clearly this was 

the case regardless which value was used. Because the original value utilized the spread in all 

the averages, and it was more conservative than the 5.262 ratio, the 4.595 value was reported in 

Table A3. 

The remaining 124 analyses were done in the same manner as this one. In order to 

conserve space, only the summary of the results will be used for the remainder of this report. 
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CHAPTER IV 

RESULTS 

The studies of this investigation are summarized in the tables in the appendix. This was 

done in order to make the manuscript more readable. After describing the studies, time series 

analysis and its application to these studies is summarized. The estimates of sigma are 

summarized by time series model and process. Duration of the mean shift is summarized and 

compared by process and time series model. The smoothing coefficient, XEWMA- closes the 

chapter with its distribution and relationships to process and time series model. With all 

measures the Kruskal-Wallis nonparametric analysis was performed in order to decide whether 

relationships were statistically significant. 

Description of the Studies 

The studies were conducted at different times and later organized into Table A1. As the 

reader will notice, there are several studies on product, four groups with different counts of 

studies within the group. Most of these studies required a transformation of the data due to the 

underlying behavior of count data as not normal but easily transformed with either the square root 

(SqrRt) or logarithm (Ln) of the counts. Assembly is followed by foundry where two identical 

machines were measured for three properties each. There were no (None) transformations or 

groupings to these data prior to analysis. The heat treatment studies were done with sub-

grouped data. Two had subgroup sizes of seven (SG7) and one with size three (SG3). 

Machining dimensions, generally linear distances from a reference surface or location followed in 

the listing. The same dimensional distance was generated on the machine but the part geometry 

changed so the studies are listed as M4.1 through M4.5 to distinguish the studies from one 

another. Machine dimension M5 was studied for an unusually long interval with 1011 total 

observations. The measure of fit in the MM1 study involved mounting two mating parts on a 

machine and spinning the parts while moving the position of one part closer to the back of the 

other. A good fit was judged when the vibration of the machine was minimal. This value was 
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then recorded and marked on the parts for later use by the product assemblers. As an 

amusement a study was conducted on the reference data set supplied by the Automotive Industry 

Action Group, AIAG, for capability study analysis. This was done to see if the data from an 

external process appeared any differently than a data set gathered in this study. The conclusion 

was that it fit nicely with the other data in this study. However, the study on the reference data 

was not included in analysis reported in this paper. Shaved gears were studied for dimensions 

on different parts and different dimensions on the different parts. Study S5 was continued for 

4743 observations to judge whether there would be more terms needed in the model as a result 

of greater opportunity for special causes to exhibit themselves. A few shaved gear studies 

required transformations of logarithm and grouping to normalize the values for the study. 

A form of gauge analysis was performed on the test machine, TM, studies. A sample of 

five of the more than 100 values taken on each major component examined by the machine were 

studied. These were key characteristics of the component. In this study, the same test machine 

with the same component was studied over an extended period of time. The cycle time for 

gathering the data was approximately twenty minutes. Each shift, approximately two per day, 

would connect the same component to the test stand. The belief was that the differences in the 

measured values would be due to the behavior of the test stand and the connection to the test 

machine as well as instrumentation drift. Each time the component was connected, the test 

machine went through a calibration routine. Following the calibration, the machine commanded 

pressures and flows that would result in desired behavior of the component. Energy, time, and 

pressures were gathered and recorded. Those recordings were then used in this study. A total 

of 106 repeated measures were made for each of the five key characteristics. 

Grinding operations are often subject to lobing due to the turning of the wheel while 

removing material from the part surface. For this reason, these operations often have multiple 

measurements made on a part feature with data being recorded in sub-group format. Turning 

operations provided a variety of options for this study. For study TU3.1 through 5.3 three 

dimensions were measured three different part numbers, same machine and same operator. In 
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studies TU6 through TU10 the same machine, operators and part geometry were used and the 

dimensions were the same. Only one measurement was made per part, but several dimensions 

were recorded. Each dimension became a separate study for this investigation. 

Beginning with TU19 studies were done by stratifying the data by operator. The reason 

for this study developed while performing the analysis on the turned dimension. During 

construction of the normal probability plot, the data pattern appeared very unusual with two cross 

over points on the graph. Upon further investigation, the researcher discovered that the 

information stream was not just one stream but the confluence of three streams, one from each 

operator. By stratifying by operator number, the data were found to be three normal distributions 

with slightly different means, but greatly different standard deviations. The differences in 

standard deviation were believed to be due to the operating philosophy of the operators. The 

operator with the largest standard deviation, unknown to the operator, operated the machine 

without adjustment in order to get the maximum number of pieces before adjusting the process. 

Operator two believed in holding as close to the mean as possible by adjusting frequently, almost 

as often as a difference could be discerned with either measurement or visual examination. 

Operator three was between the other two, adjusting more often than operator one but not as 

often as operator two. The data reflected their philosophies because the probability plots were 

consistently ordered by standard deviation by operator. 

In studies TU24.0 through TU25.3 the data required further stratification. A sequential 

plot of the data showed changes in the process regime as Bisgaard and Kulahci (2007a) refer to 

changes in the behavior of a process from one time period to another. In TU24.1 and TU24.2 

only one regime change was noticed. In TU25.1.1 through TU25.1.3 two regime changes were 

noted and the analysis was divided by sequence number of the data. 

Important measures for management are often gathered from the customer or customer 

experience is recorded through a warranty or product return policy. For the business in this study 

product is warranted for a specific use period. Expenses made to correct problems within this 

period are recorded and management analyzes these data to discover trends or pockets of 



60 

unusual behavior. This process differs from a manufacturing process because there are few 

responses that can be taken ahead of time to prevent the occurrence. In a machining operation 

an examination of trends and previous product leads to an adjustment before the product is out of 

specification. In a warranty environment the trend of analysis lasts through months and years 

with few known inputs that need to be "adjusted" before the next month's report. The product is 

produced one month, waits a period of months before being put into service, then has to 

accumulate some wear before the defect becomes evident. This large lag would be reflected in 

the time series of the data. One would expect higher order coefficients in the ARIMA models and 

greater smoothing coefficients for the EWMA since there are few measurements but large time 

between measurements. 

The last studies listed in Table A1 are for internal assembly efficiency called Yield. The 

value is the number of units produced divided by the number scheduled. This gives management 

an idea of how the system is performing. When fewer than expected are produced an 

investigation is launched. Seldom were more than expected produced because the parts for the 

assembly would generally not be available. 

Time Series Analysis 

Table A2 can be thought of as an extension of columns in Table A1. The studies were 

listed by code from Table A1. The ARIMA, autoregressive integrated moving average, model 

coefficients were listed in the format ARIMA(p, d, q)(P, D, Q)S. The population parameters 

associated with these values are generally listed as ARIMA(<(), V, 0)(O, V, 6)S so these symbols 

are shown in the headings as well. In all cases, only sample values were available to estimate 

the population parameters. For that reason, the table contains only ARIMA(p, d, q)(P, D, Q)S 

values. As one might expect, the parameter values were specific to each analysis. No general 

value could describe any one process. The intended use of Table A2 is to permit the reader to 

view the variety of the values and compare processes for similarities and differences. Also, if 

another study is contemplated by the reader, the values may serve as a guide for reasonableness 

of results. 



None of the studies were higher order than order two. This was stated by Box, Jenkins, 

and Reinsel (1994), Montgomery, Jennings and Kulahci (2008) and Box and Luceno (1997) who 

indicated that most series were of first order and rarely above third order. Three studies had 

more than 1000 observations: M5(1011), S5 (4743) and Y3 (1706). The order of these studies 

was 2, 2 and 1 respectively. In all, there were seven studies of order two: M4.1, M5, S2.5, S5, 

G2.2, TU10andTU17. 

Estimates of Sigma 

Table A3 lists the value for the exponentially weighted moving average, EWMA, 

smoothing coefficient, four estimates of sigma and the mean shift in sigma units. The EWMA 

smoothing coefficient ranged from zero to 0.601 for W1 study. Generally the values were below 

0.300. The larger the constant the greater the emphasis on current values. When a smoothing 

coefficient was zero, a CUSUM chart was used to verify the shift points in the process mean. If 

the smoothing coefficient had been equal to one a Shewhart control chart would have been used. 

The estimates of sigma were done from four sources. The first one listed is s'a which is 

computed from the square root of the mean square error of the ARIMA model. The value sa is a 

close likeness to s'a because it is calculated by using the Shewhart range chart to calculate the 

average nearest neighbor range and divide by the d2 factor 1.128 using the residuals from the 

ARIMA model. The third estimate listed is sEs which is the sigma from the exponential smoothing 

of the series. It is also found by using the d2 factor with the nearest neighbor range. The last 

estimate of sigma was calculated from the analysis of variance, ANOVA, of the shifted mean 

groups. It is the root mean square error of the ANOVA. There is generally good agreement 

among the sigma estimates. Where there were large differences it was primarily with either a 

poor measurement resolution such as count data which is in whole numbers or complex time 

series models where the EWMA is a poor approximation to the time series behavior of the 

process. 

The last column gives the process mean shift in sigma units. This is the number that is at 

the heart of this investigation. This number is shown as M/sw because it is calculated from the 
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mean square error from the ANOVA. The value in the table is the absolute value of the difference 

of the largest sub-group mean and the overall process average divided by the root mean square 

error from the ANOVA to put it in units of sigma. The ratio was generally small, however, the 

MM1 process was unusually large due to the nature of the process of matching two parts and 

relying on machine vibration at its minimum to identify the proper fit. The M/sw for this process 

was 5.241. We were looking for values less than 1.5 if the mean varied within the +/-1.5 sigma 

limits specified in the Six Sigma™ philosophy. 

Process Groupings 

The last table with summary information is Table A4. This table was created to help with 

the analysis and grouping of influencing factors that the investigator could possibly contribute to 

the differences in mean shift magnitude, Barnards lambda or the EWMA smoothing constant. 

The table is created in order of the codes used for the studies listed in the other three tables 

discussed above. The description is repeated to assist the reader to remember what the code 

referred to. The ARIMA model is listed in ARIMA(p, d, q)(P, D, Q)S notation to help identify the 

order of the model and to assist with assessing its complexity. The ARIMA type is a textual 

description of the ARIMA model. If there is a non-zero value for d or D, the series was non-

stationary. If P, D, Q and S were all zero, the ARIMA type was non-seasonal. If all the ARIMA 

values were zero, the series was said to be constant as Shewhart assumed in his model of 

constant mean with random disturbances and constant variance. 

Following the identification of the ARIMA type, the process group was listed. This is the 

general grouping of the study and follows the alphabetic character in the code designation of the 

study. These designations were later used to obtain relationships in the results as well as to refer 

to the process as data were being collected. 

The remaining parts of this chapter will focus on the results as related to the mean shift, 

M/sw, the Barnard lambda, A,B and the EWMA smoothing constant, A.EWMA. 
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Shifts of the Mean in Sigma Units, M/Sw 

A histogram of the mean shift sizes for the studies in this investigation is shown in Figure 

24. The majority of the studies are shown to be below three which means that the process mean 

generally moves less than three sigma or +/-1.5 sigma from its set point. 

Histogram of sb/s, 

J3 

o 

Figure 24. Distribution of mean shifts, M/sw. 

The values were found to group into three sizes: less than 1.5, between 1.5 and 2.25 and 

more than 2.25. This was found by using the normal probability plot of Figure 25. These were 

natural break points in the plot and were selected on the basis of this behavior. 
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Normal Probability Plot of St/Sw 
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Figure 25. Normal probability plot of mean shift, M/sWl showing three natural groups: less than 
1.5, 1.5 to 2.25 and beyond 2.25 

gives more information on the values of the graph above. Listed in the table are the group title 

indicating the amount of movement in the mean, the number of studies in the category and the 

25th quantile, the median and the 75th quantile. The bottom row summarizes the investigation 

values. 

Table 11. Breakdown Table of Descript 

M/sw Groups 

Less than 1.5 
1.51 to 2.25 
Greater than 2.25 

M/sw 

Means 
1.024 
1.757 
3.287 

ve Statistics for mean 
M/sw 

N 
78 
28 
18 

M/sw 

Q25 
0.811 
1.608 
2.495 

shift M/sw 

M/sw 

Median 
1.060 
1.748 
2.943 

M/sw 

Q75 
1.271 
1.825 
4.023 

All Grps 1.518 124 0.959 1.336 1.754 
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The investigator verified that the categories were not overlapping by constructing Figure 

26. This shows how much the medians of the three groups differ and also gives an indication of 

the spread of the values in the three groups. 

Boxplot by Group 
Variable: M/SW 

M/sw 

0.00-1.50 

° I 

1.51-2.25 

Sigma Group 

Figure 26. Mean shift, M/sw, separation by group. 

>2.25 

n Median 
• 25%-75% 
I Min-Max 

Table 12. Relationship between smallest and medium mean shifts, M/sw. No relationship 
between medium and largest. 

Depend.: M/sw 

Multiple Comparisons p values (2-tailed); M/sw 

Independent (grouping) variable: Sigma Groups 
Kruskal-Wallis test: H ( 2, N= 124) =90.59923 p =0.000 
Less than 1.5 1.51 to 2.25 Greater than 2.25 

Less than 1.5 
1.51 to 2.25 
Greater than 2.25 

0.00 
0.00 

0.00 

0.10 

0.00 
0.10 
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The values in Table 12 indicate that there is no relationship between the values of the 

less than 1.5 and the 1.51 to 2.25 mean shift or the greater than 2.25 groups. The 1.51 to 2.25 

and greater than 2.25 groups are not independent. This would indicate that perhaps there are 

statistically two groups, below 1.5 and above 1.5. 

The question now in most minds is whether the process type might influence the 

movement of the mean. The graphic of Figure 27 and the data of Table 13 were constructed to 

answer that question. 

Table 13. Breakdown Table of Descriptive Statistics for M/sw 

P r n r P ^ f i r n n n M / S w M / S w M / S w M / S w M / S w 

process ^.roup M e g n s N Q 2 5 Median Q75 
Assembly 
Foundry 
Heat Treatment 
Machining 
Shaving 
Test Machine 
Grinding 
Turning 
Warranty 
Yield 

1.577 
1.726 
1.314 
2.140 
2.777 
1.201 
1.252 
1.195 
3.258 
1.936 

18 
6 
4 
3 
10 
14 
5 
57 
4 
3 

0.975 
1.381 
1.170 
1.095 
1.707 
0.796 
1.244 
0.864 
2.698 
1.656 

1.406 
1.609 
1.350 
2.552 
2.121 
1.231 
1.334 
1.110 
3.348 
1.756 

1.778 
2.338 
1.458 
2.773 
4.839 
1.491 
1.371 
1.522 
3.819 
2.396 

All Grps 1.518 124 0.959 1.336 1.754 
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Figure 27. Boxplot of sigma of mean shift,M/sw, for each process group. 

Table 13 shows the average value for each process type. Also shown are the number 

and the lower, median and upper quartile values to give an indication of the spread in the 

summarized values. Figure 27 gives a graphic representation of that information. 

A fair way to evaluate the difference among groups that are not necessarily expected to 

be normally distributed is to use a non-parametric method of Kruskal and Wallis that is similar to 

ANOVA but works with ranks rather than measurements and makes no assumptions about 

constant variance. The Kruskal-Wallis table is shown as Table 14. This table is the p-value for 

the comparison of each process to the others. The p-value of 0.0002 indicates that a significant 

difference exists for shifts in the mean between processes. Processes in this investigation had a 

i 
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behavior that lead to greater variability. A p-value below 0.05 is conventionally taken to be 

significant. 

Table 14. P values for Kruskal-Wallis test showing that classification by process significantly 
relates to mean shift, M/sw. No two processes compared to each other are different. 

Depend. :M/sw 

Multiple Comparisons p values (2-tailed); M/sw (ARIMA) 
Independent (grouping) variable: Process Group 
Kruskal-Wallis test: H ( 9, N= 124) =32.61482 p =.0002 

Assembly 
Foundry 
Grinding 
Heat 
Treatment 
Machining 
Shaving 
Test 
Machine 
Turning 
Warranty 
Yield 

Asmbly 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
0.49 
1.00 

Fdry 

1.00 

1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

Grind 

1.00 
1.00 

1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

Heat 
Treat 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

Mach 

1.00 
1.00 
1.00 
1.00 

0.11 
1.00 

0.01 
1.00 
1.00 

Shaving 

1.00 
1.00 
1.00 
1.00 

0.11 

1.00 

1.00 
0.07 
1.00 

Test 
Machine 
1.00 
1.00 
1.00 
1.00 

1.00 
1.00 

1.00 
0.55 
1.00 

Turning 

1.00 
1.00 
1.00 
1.00 

0.01 
1.00 
1.00 

0.02 
1.00 

Warranty 

0.49 
1.00 
1.00 
1.00 

1.00 
0.07 
0.55 

0.02 

1.00 

Yield 

1.00 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 

Values less than 0.05 are shown in Table 14 in boldface type. The relationship between 

the column and row processes are significantly different if the p value falls below 0.05. Turning, 

machining and warranty are therefore significantly different in the amount of movement of the 

mean in sigma units. So process influences shifts in the mean and certain processes differ from 

one another in a significant manner. 
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The ARIMA type was next examined for explanation of shifts in the mean. Again a table 

of the values, Table 15, was created to compare. Again the average value for the mean shift is 

listed and the count, lower quartile, median and upper quartile are shown. A visual 

representation that gives a fairer visualization of the spread about these values is in Figure 28. 

Here we note that the non-stationary ARIMA types show much more spread than the constant or 

stationary series. In other words, we are less certain about the size of the mean shifts once we 

realize the ARIMA type is non-stationary. 

Table 15. Breakdown Table of Descriptive Statistics of mean 

ARIMA Type 

Non-stationary, Non-
seasonal 
Non-stationary, Seasonal 
Non-stationary AR(2) 
Non-stationary D(2) 
Constant (Shewhart) 
Stationary, Non-seasonal 
Stationary, Seasonal 
All Grps 

M/sw M/sw 

Means N 
1.650 47 

1.815 35 
1.933 5 
1.745 1 
0.974 25 
1.208 6 
0.828 5 
1.518 124 

shift, M/sW! 

M/sw 

Q25 
1.075 

1.254 
1.751 
1.745 
0.788 
1.086 
0.537 
0.959 

, by ARIMA Type. 
M/sw 

Median 
1.430 

1.556 
1.948 
1.745 
0.907 
1.217 
0.731 
1.336 

M/sw 

Q75 
2.207 

1.813 
1.969 
1.745 
1.166 
1.251 
0.938 
1.754 

One could argue that the mean shift is close to 1.50 (actually 1.518 in this investigation) 

and so the Six Sigma prescription of 1.5 holds well. As stated in our introduction, these studies 

were not randomly selected and may be biased toward the interest of the management to 

improve as well as control processes. Since this is an early study into these behaviors one must 

proceed with caution and not generalize to too broad a conclusion concerning the mean shift and 

the process behavior. 
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Figure 28. Size of mean shift by ARIMA type classification. Non-stationary series exhibit greater 
movement in the mean. 

In Table 16 an attempt was made to employ the Kruskal-Wallis non-parametric ANOVA 

to test whether ARIMA type influenced the mean shift. The p-value is 0.0000 which is well below 

the conventional 0.05 to declare the effect significant. When looking at the table a little closer, we 

notice that the constant (Shewhart) differs significantly from the three non-stationary 

classifications. No other significant results were found. 
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Table 16. P values for the relationship between the mean shift size and the ARIMA type. The 
Constant (Shewhart) mean shifts differ significantly from the Non-stationary series. 

Depend. 
M/Sw 

Non-
stationary, 
Non-
seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary 
AR(2) 
Non-
stationary 
D(2) 
Constant 
(Shewhart) 
Stationary, 
Non-
seasonal 
Stationary, 
Seasonal 

Multiple Comparisons p values (2-tailed) 
Independent (grouping) variable: ARIMA 
Kruskal-Wallis test: H ( 6, 

Non-
stationary, 
Non-
seasonal 

1.00 

1.00 

1.00 

0.00 

1.00 

0.38 

Non-
stationary, 
Seasonal 

1.00 

1.00 

1.00 

0.00 

1.00 

0.14 

; M/sw 

Type 
N= 126) =43.53060 p =.0000 

Non-
stationary 
AR(2) 

1.00 

1.00 

1.00 

0.01 

1.00 

0.08 

Non-
stationary 
D(2) 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

Constant 
(Shewhart) 

0.00 

0.00 

0.01 

1.00 

1.00 

1.00 

Stationary, 
Non-
seasonal 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

Stationary, 
Seasonal 

0.38 

0.14 

0.08 

1.00 

1.00 

1.00 

Duration of Mean Shifts, Barnard's Lambda, 1R 

Similar results to the mean shift, M/sw, will now be presented for the duration of the shift 

in the process mean. This was first proposed by Barnard (1959) so the investigator refers to 

Barnard's lambda although he never created that title for this behavior. 

A histogram of the mean shift sizes for the studies in this investigation is shown in Figure 

29. The majority of the studies are shown to be below twenty which means that the process 

mean shift lasts typically less than 20 sampling intervals. The shape of the distribution also 

cautions the reader that these data are very right skewed and the average is not an entirely 

trustworthy characterization of these results. 
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Figure 29. Distribution of Barnard's lambda, A,B 

The values were found to group into three sizes: less than 11, between 11 and 23 and 

more than 23. This was found by using the normal probability plot of Figure 30. These were 

natural break points in the plot and were selected on the basis of this behavior. 
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Figure 30. Three groups for Barnard's lambda. One less than 11, the second from 11 to 23 with 
the last above 23 intervals. 

Table 17 gives more information on the values of the graph above. Listed in the table are 

the group title indicating the amount of movement in the mean, the number of studies in the 

category and the 25 th quantile, the median and the 75 th quantile. The bottom row summarizes the 

investigation values. 

Table 17. Breakdown Table of Descriptive 

XB Group 

Less than 11 
11 to 23 
Greater than 23 

^B 

Means 
8.6 
15.6 
38.3 

XB 

N 
30 
64 
30 

Statistics for Barnard's lambda, 

A-B 
Q25 
7.8 
12.5 
27.3 

A,B 

Median 
9.1 
15.8 
33.6 

A\B 

XB 

Q75 
9.6 
17.7 
44.7 

AIIGrps 19.4 124 11.3 15.8 22.2 
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The investigator verified that the categories were not overlapping by constructing Figure 

31. The values in Table 18 indicate that there is no relationship between the values of any of the 

classifications of Barnard's lambda. These are three distinct categories and there is not overlap. 

Table 18. Kruskal-Wallis test for relationship between Groups for A,B. Table shows that each 
group is independent of the other. 

Depend. :\B 

Less than 11 
11 to 23 
Greater than 23 

Multiple Comparisons p values (2-tailed); A,B 

Independent (grouping) variable: XB Group 
Kruskal-Wallis test: H ( 2, N= 124) =102.6152 p 
Less than 11 11 to 23 

0.00 
0.00 
0.00 0.00 

=0.000 
Greater than 23 
0.00 
0.00 
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Figure 31. Separation of Barnard's lambda. This is the average number of sampling intervals for 
each mean shift of the process. 
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Figure 31 shows how much the medians of the three groups differ and also gives an indication of 

the spread of the values in the three groups. 

Does the process influence the duration of the mean shift? To answer this question we 

first summarized the Barnard lambda values for each process group. This was done in Table 19. 

It gives the means for each process type, the number in the group and the first, median and 

fourth quartile values. The table gives the impression that the duration of the mean shifts is fairly 

consistent about an overall median value of 16. 

Table 19. Breakdown Table of Descriptive Statistics for \B 

Process Group 

Assembly 
Foundry 
Heat Treatment 
Machining 
Shaving 
Test Machine 
Grinding 
Turning 
Warranty 
Yield 
All Grps 

^ B 

Means 

25 
17 
18 
21 
19 
11 
26 
18 
8 
23 
19 

^B 

N 

18 
6 
3 
10 
14 
5 
4 
57 
4 
3 
124 

^ B 

Q25 

16 
15 
14 
11 
9 
10 
19 
10 
7 
15 
11 

^ B 

Median 

18 
17 
16 
17 
12 
12 
22 
15 
8 
25 
16 

^ B 

Q75 

34 
17 
24 
21 
19 
12 
34 
21 
9 
30 
22 

The graphic of Figure 32 displays these same data but also gives the reader an 

appreciation for the spread of the values around the median. Now one sees that the variation for 

the shaving operation is much greater than for the warranty process. The interval length for these 

two processes is not equal. The shaving process interval is measured in hours whereas the 

warranty interval is months. 
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Figure 32. Boxplot of Barnard's average duration of mean shift for each process group. 

The plots of Figure 33 show that the median value varies by assembly group. The long 

whiskers of assembly, machining, shaving and turning show that median can be as much as an 

order of magnitude within the classification. For this reason conclusions drawn on A,B by process 

grouping must be done cautiously. The investigator should not expect a specific value for these 

processes but should understand process behavior before concluding a value for Barnard's 

lambda. 
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Figure 33. Boxplot of Barnard's average duration of mean shift for each process group. 

The Kruskal-Wallis table is shown as Table 20. This table is the p-value for the 

comparison of each process to the others. The p-value of 0.0018 indicates that a significant 

difference exists for duration in mean shift between processes. While the process group does 

significantly influence the duration of the mean shift, the investigator also wanted to know if there 

were differences between processes. Table 20 indicates that the warranty process differs from 

assembly and grinding but no other process groups were different from any others. A median 

value could be a fairly good characterization of the duration of the mean shift for most processes 

except assembly, grinding and warranty. This information would lead a quality engineer to plan 

the frequency of sampling to capture the expected frequency of mean shifts and to space the 
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sampling far enough apart to decrease the autoregressive behavior of the data taken at narrow 

sampling intervals. 

Table 20. P values for Kruskal-Waliis test showing that classification by process significantly 
relates to Barnard's lambda, XB. Warranty differs from assembly and grinding. Others do not 
differ. 

Multiple Comparisons p values (2-tailed); XB 
Independent (grouping) variable: Process Group 
Kruskal-Waliis test: H ( 9, N= 124) =26.37593 p =.0018 

Assembly 
Foundry 
Grinding 
Heat 
Treatment 
Machining 
Shaving 
Test 
Machine 
Turning 
Warranty 
Yield 

Asmbly 

1.00 
1.00 
1.00 

1.00 
0.35 
0.16 

0.42 
0.01 
1.00 

Fdry 

1.00 

1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
0.50 
1.00 

Grind 

1.00 
1.00 

1.00 

1.00 
1.00 
0.38 

1.00 
0.04 
1.00 

Heat 
Treat 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

Mach 

1.00 
1.00 
1.00 
1.00 

1.00 
1.00 

1.00 
0.27 
1.00 

Shaving 

0.35 
1.00 
1.00 
1.00 

1.00 

1.00 

1.00 
1.00 
1.00 

Test 
Machine 
0.16 
1.00 
0.38 
1.00 

1.00 
1.00 

1.00 
1.00 
1.00 

Turning 

0.42 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 . 

0.36 
1.00 

Warranty 

0.01 
0.50 
0.04 
1.00 

0.27 
1.00 
1.00 

0.36 

0.22 

Yield 

1.00 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
0.22 

There could be a relationship between the number of shifts in the mean, the inverse of 

the duration of the mean shift, and the size of the movement in the mean. To better understand if 

there is a relationship, Kruskal-Waliis analysis was performed on the M/sw and XB values. The 

results are shown in Table 21. If there were a relationship between the size of the mean shift and 

the duration of that shift, then one would expect that the Kruskal-Waliis non-parametric analysis 

to be significant. Table 21 summarizes the Barnard lambda values by mean shift groups, M/sw 

Groups. Generally we see that the smaller mean shift group is also the smaller ^B mean or 

median. 
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Table 21. Breakdown Table of Descriptive Statistics for Barnard's lambda, AB 

M/sw Groups 

0.00-1.50 
1.51-2.25 
>2.25 
All Grps 

AB 

Means 
19.67 
21.71 
14.29 
19.35 

AB 

N 
78 
28 
18 
124 

AB 

Q25 
11.78 
10.95 
7.85 
11.26 

A.B 

Median 
16.46 
15.99 
13.37 
15.84 

AB 

Q75 
21.61 
26.14 
16.13 
21.47 

The Kruskal-Wailis results are in Table 22. While the summary table led us to believe 

that there may be a relationship between the size of the mean shift and the duration, the 

differences were not statistically significant. The p-value was 0.0707, very close to 0.05. 

Table 22. No relationship between Barnard's lambda, AB,for mean shift groups. 

M/sw Groups 

0.00-1.50 
1.51-2.25 
>2.25 

Multiple Comparisons p values (2-tailed); A.B 

Independent (grouping) variable: S/M/L Groups 
Kruskal-Wailis test: H ( 2, N= 124) =5.297900 p = 
Less than 3.0 3.0 to 4.5 

1.00 
1.00 
0.07 0.18 

=.0707 
Greater than 4.5 
0.07 
0.18 
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The box plots by sigma group in Figure 34 also show the variability about the median 

value for each group. The groups are less than 1.5, 1.51 to 2.25 and greater than 2.25. Their 

plots appear almost identical. 
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• 25%-75% 
X Min-Max 

Figure 34. No change in Barnard's lambda, duration of a mean shift, with level of mean shift. 
The two measures are independent. 

We next examine the behavior of the duration of the mean shift, XB and the ARIMA type. 

The values in Table 23 are the results of the Kruskal-Wallis analysis using the ARIMA type as the 

grouping variable. We quickly see that the p-value for the test is 0.1280 meaning that there is no 

statistically valid relationship between the various time series models and the duration of the shift 

in the mean of the processes in this study. 
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Table 23. P values for the relationship between Barnard's lambda and the ARIMA type. No 
significant differences were found. 

Multiple Comparisons p values (2-tailed); XB 

Independent (grouping) variable: ARIMA Type 
Kruskal-Wallis test: H ( 6, N= 124) =9.921321 p =.1280 

Depend.: 
Non- Non- Non-stationary, " " ' ! ""',! . .." Constant .. ^ ' Stationary, 
Non- I ^ I T ' S ^ ' ° n a r y ^ ' ° n a r y (Shewhart) ^ o n g | Seasonal 
seasonal S e a s o n a l A R < 2 > D(2) 

Non-
stationary, 
Non-
seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary 
AR(2) 
Non-
stationary 
D(2) 
Constant 
(Shewhart) 
Stationary, 
Non-
seasonal 
Stationary, 
Seasonal 

1.00 

1.00 

1.00 1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

0.07 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

0.07 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

Exponentially Weighted Moving Average Smoothing Coefficient 

In this study it was possible to identify the EWMA smoothing coefficient value because 

the minimum mean square error sigma was desired in order to compare to other estimates of 

sigma for the inherent process variability. The XEWMA values are shown in the form of a histogram 

in Figure 35. For the studies in this investigation many values were zero. These were values 

typical of the constant mean model of the Shewhart series. 
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Figure 35. Histogram of exponential smoothing constant for EWMA, XEWMA 

The EWMA smoothing coefficients showed similar behavior to the other measures of 

mean shifts, M/sw and A,B with three natural groups suggested by a normal probability plot. The 

plot is shown as Figure 36. 
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Figure 36. Natural breaks for EWMA coefficient. Break points are zero, less than 0.190 and 
above 0.190. 

Box and Paniagua-Quinones (2007) and Hunter (2007a) suggest a smoothing constant of 

0.2 as a good value if no other information is available on the process. This would be reasonable 

in this investigation because outside the zero values a good break between the middle and higher 

values is 0.190 which is very close to 0.20. 

A boxplot of these groupings is shown in Figure 37. We note that the groups appear to 

have good separation indicating that they may be independent. Also, since zero is a separate 

group in this study no variation is shown in the plot for that group. 
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Figure 37. Natural groups for EWMA smoothing coefficient, A.EWMA-

In Table 24 we see a breakdown of the values for the EWMA coefficient. There are equal 

numbers of zero and 0.000 to 0.190 suggesting that the 0.110 value may be a good estimate for 

the EWMA smoothing coefficient for the firm whose data are provided in this investigation. As we 

have done for the other response parameters in this investigation, the values were stratified by 

Table 24. Breakdown Table of Descriptive Statistics for EWMA coefficient, XEWMA by size group. 

\-EWMA Group ^-EWMA 

Means 
A-EWMA 

N 
A-EWMA 

Q25 
A-EWMA 

Median 
A-EWMA 

Q75 
Equals Zero 0.000 49 
0.000 to 0.190 0.095 49 
Greater than 0.190 0.344 26 

0.000 
0.060 
0.224 

0.000 
0.088 
0.319 

0.000 
.0.125 
0.436 

All Grps 0.110 124 0.000 0.062 0.152 

file:///-EWMA
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process group and examined for differences between groups. Table 25 shows the breakdown 

listing the average, group size, and first, median and third quartile values. 

Table 25. Breakdown Table of Descriptive Statistics for A.EWMA 

Process Group 

Assembly 
Foundry 
Heat Treatment 
Machining 
Shaving 
Test Machine 
Grinding 
Turning 
Warranty 
Yield 
All Grps 

^-EWMA 

Means 

0.088 
0.120 
0.117 
0.255 
0.084 
0.027 
0.010 
0.079 
0.496 
0.139 
0.110 

A-EWMA 

N 

18 
6 
3 
10 
14 
5 
4 
57 
4 
3 
124 

A-EWMA 

Q25 

0.000 
0.051 
0.000 
0.051 
0.000 
0.000 
0.000 
0.000 
0.400 
0.077 
0.000 

^•EWMA 

Median 

0.068 
0.130 
0.133 
0.294 
0.022 
0.000 
0.000 
0.027 
0.549 
0.149 
0.062 

^-EWMA 

Q75 

0.120 
0.182 
0.218 
0.422 
0.192 
0.000 
0.020 
0.116 
0.591 
0.191 
0.155 

Figure 38 gives a graphic representation to enable the reader to examine the uncertainty 

in the median values reported. Machining appears to have a very long range of values, Turning 

shows a long tail and Warranty shows a high median value with a moderate tail toward smaller 

values. As shown in Table 26 warranty differs from grinding, test machine and turning. Others 

do not differ. 



86 

LU 

Boxplot by Group 
Variable: AEWMA 

D Median 
Assembly Grinding Machining Test Machine Warranty r-i 25%-75% 

Foundry Heat Treatment Shaving Turning Yield T Min-Max 
Process Group 

Figure 38. Boxplot of EWMA smoothing coefficient for each process group. 

Table 26. P values for Kruskal-Wallis test showing that classification by process significantly 
relates to EWMA coefficient, A-EWMA- Warranty differs from grinding, test machine and turning. 
Others do not differ. 

Assembly 
Foundry 
Grinding 
Heat 
Treatment 
Machining 
Shaving 
Test 
Machine 
Turning 
Warranty 
Yield 

Multiple Comparisons p values (2-tailed); .̂EWMA 
Independent (grouping) variable: 
Kruskal-Wallis test: H ( S 

Asmbly 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
0.16 
1.00 

Fdry 

1.00 

1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

Grind 

1.00 
1.00 

1.00 

0.22 
1.00 
1.00 

1.00 
0.03 
1.00 

Process Group 
. N= 124) =28.37851 p =. 

Heat 
Treat 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

Mach 

1.00 
1.00 
0.22 
1.00 

0.84 
0.27 

0.16 
1.00 
1.00 

Shav. 

1.00 
1.00 
1.00 
1.00 

0.84 

1.00 

1.00 
0.10 
1.00 

0008 

Test 
Machine 
1.00 
1.00 
1.00 
1.00 

0.27 
1.00 

1.00 
0.03 
1.00 

Turning 

1.00 
1.00 
1.00 
1.00 

0.16 
1.00 
1.00 

0.03 
1.00 

War­
ranty 
0.16 
1.00 
0.03 
1.00 

1.00 
0.10 
0.03 

0.03 

1.00 

Yield 

1.00 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
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The EWMA smoothing constant was evaluated relative to the size of the mean shift groupings 

discussed earlier. 

Table 27 shows this comparison and Figure 39 gives a graphical representation. It 

appears that the EWMA coefficient and the size of the mean shift may be related to one another. 

To verify the separation of the groupings Table 28 was created. This table indicates that the 

A-EWMA values are significantly different if the M/sw ratio is less than 1.50 or 1.51 to 2.25. The 

Greater than 2.25 M/sw group had A.EWMA values that were also significant for the Less than 1.5 

and also different than the 1.51 to 2.25 XEWMA values. 

Table 27. Breakdown Table of Descriptive Statistics for EWMA constant, A,EWMA 

M/sw Groups 

0.00-1.50 
1.51-2.25 
>2.25 
All Grps 

A-EWMA 

Means 
0.038 
0.149 
0.349 
0.109 

A.EWMA 

N 
78 
28 
18 
124 

A-EWMA 

Q25 
0.000 
0.075 
0.191 
0.000 

A-EWMA 

Median 
0.000 
0.123 
0.371 
0.062 

A-EWMA 

Q75 
0.071 
0.209 
0.467 
0.152 
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Figure 39. Change in EWMA smoothing coefficient, A.EWMA. with change in size of the mean shift. 
Middle and large shifts in the mean show about the same level of smoothing coefficient. Small 
mean changes, Group 1, also appeared to have small smoothing coefficients. 

Table 28. Comparison of EWMA smoothing constants by mean shift level. No relationship 

between medium and largest for A-EWMA-

Multiple Comparisons p values (2-tailed); A-EWMA 
Independent (grouping) variable: S/M/L Groups 
Kruskal-Wallis test: H ( 2, N= 124) =60.22471 p =.0000 

Depend.: A-EWMA Less than 1.50 1.51 to 2.25 Greater than 2.25 
Less than 1.50 
1.51 to 2.25 
Greater than 2.25 

0.00 
0.00 

0.00 

0.03 

0.00 
0.03 



89 

The stratification of the A.EWMA by ARIMA type is shown in Table 29. Only three of the 

constant (Shewhart) group had non-zero XEWMA: S2.2, S2.4 and TU21.1. So for stationary or 

constant means we would expect the A.EWMA to be zero. This would also lead us to believe a 

relationship exists between A-EWMA and ARIMA type. The spread in the values by ARIMA type is 

shown in Figure 40. 

Table 29. Breakdown Table of Descriptive Statistics of EWMA smoothing constant, A-EWMAD by 
ARIMA Type. 

ARIMA Type -̂EWMA 

Means 
A-EWMA 

N 
A-EWMA 

Q25 
A-EWMA 

Median 
A€WMA 

Q75 
Non-stationary, Non-
seasonal 
Non-stationary, Seasonal 
Non-stationary AR(2) 
Non-stationary D(2) 
Constant (Shewhart) 
Stationary, Non-seasonal 
Stationary, Seasonal 

0.135 47 0.000 0.096 0.193 

0.148 
0.217 
0.000 
0.009 
0.052 
0.058 

35 
5 
1 

25 
6 
5 

0.027 
0.116 
0.000 
0.000 
0.000 
0.000 

0.099 
0.194 
0.000 
0.000 
0.000 
0.047 

0.191 
0.231 
0.000 
0.000 
0.082 
0.069 

All Grps 0.109 124 0.000 0.062 0.152 
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Figure 40. Variation in EWMA smoothing constant with ARIMA type. Greater values relate to 
more emphasis on recent observations. The greater values were seen for non-stationary series. 

The non-stationary D(2) category had only one member which explains its lack of 

variation. The constant (Shewhart) group as explained earlier had few non-zero values. The 

non-stationary ARIMA types showed considerably more variation in the ^EWMA- Consistent with 

these observations are the Kruskal-Wallis analysis in Table 30 which shows a difference in A-EWMA 

due to the ARIMA type grouping. There was a significant difference between the constant 

(Shewhart) and the non-stationary series. 
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Table 30. P values for the relationship between EWMA smoothing constant, A,EWMA. and the 
ARIMA type. The Constant (Shewhart) types differed from the Non-stationary series. 

Multiple Comparisons p values (2-tailed); A,EWMA 

Independent (grouping) variable: ARIMA Type 
Kruskal-Wallis test: H ( 6, N= 126) =34.40174 p =.0000 

Depend. 
-̂EWMA 

Non-
stationary, 
Non-

Non- Non- Non-
stationary, station, station. 

, Seasonal AR(2) D(2) seasonal v ' v ' 

Stationa 
Constant ry, Non- Station., 
(Shewhart) seasona Season. 

Non-
stationary, 
Non-
seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary 
AR(2) 
Non-
stationary 
D(2) 
Constant 
(Shewhart) 
Stationary, 
Non-
seasonal 
Stationary, 
Seasonal 

1.00 

1.00 

1.00 

0.00 

1.00 

1.00 

1.00 1.00 1.00 

1.00 1.00 

1.00 1.00 

1.00 1.00 

0.00 0.03 1.00 

1.00 1.00 1.00 

1.00 1.00 1.00 

0.00 

0.00 

0.03 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 
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CHAPTER V 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Control charts were first introduced by Walter A. Shewhart in 1924 at the Western 

Electric Hawthorne Works in Chicago, Illinois. His argument was economic, not statistical. 

Control limits were established on samples of logical subgroups of data. He assumed that the 

process average was constant and measurements were independent, randomly occurring, 

normally distributed and centered on the average. In 1959, S. W. Roberts at Bell Labs introduced 

the geometric moving average chart, now called the Exponentially Weighted Moving Average, to 

enable more recent observations to carry greater weight for decision making. 

If the measurement was beyond the control limits, then Shewhart's assumptions no 

longer held. Assuming the process was subjected to random shocks with the interval between 

shocks distributed exponentially the duration of the shocks would be Poisson distributed random 

events. Barnard (1959) first described this behavior. Montgomery and Mastrangelo (1991) 

recommended two control charts to monitor the process. The residuals from the EWMA were to 

be treated with a Shewhart chart analysis. This way Shewhart's assumptions would be valid and 

gradual, as well as rapid, changes in the mean would be signaled quickly. Jones (2002) 

confirmed this recommendation as did Lu and Reynolds (1999a, 1999b). Lucas (1985) and 

Saniga, Davis and Lucas (2009) offered a simple method to detect shifts in the mean. 

Caulcutt (1995) indicated that the standard procedure to produce a usable control chart 

did not always work. Control charts failed to work and shook management's confidence. A new 

approach was needed. Alwan and Radson (1995) recommended using time-series modeling with 

Statistical Process Control. Alwan and Roberts (1995) identified autocorrelation as a reason that 

control chart limits were misplaced and suggested time series analysis to properly place the 

limits. They stated that 86% of control charts in the literature had undetected autocorrelation. 

Albin, Kang and Shea (1997) evaluated the Average Run Length to false alarm and to 

small shifts in the process mean. They recommended the EWMA and X charts due to few false 

alarms and to rapid signaling of sudden shifts in the mean. Lu and Reynolds (1999b) based their 
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recommendation on both statistical properties and ease of interpretation to use Shewhart chart of 

residuals with an EWMA of the observations to control low to moderate autocorrelation 

processes, de Mast and Roes (2004) distinguished isolated assignable causes from persistent 

assignable causes and linked these to the Shewhart-type control chart for the first type and charts 

that accumulate information from successive measurements (CUSUM, EWMA) for the second. 

Hunter (1986) showed that the EWMA was the general form of process monitoring charts 

with CUSUM at one extreme when A-EWMA = 0, and the Shewhart chart at the other extreme 

when A,EWMA = 1- Jones, Champ and Rigdon (2001) and Jones (2002) advocated for modification 

of sample sizes to obtain the proper ARL when parameters for the EWMA had to be estimated 

from process data. 

Lucas' CUSUM sequence chart is recommended to detect the process mean shifts 

before deploying the EWMA. Two control charts are recommended. Exponentially Weighted 

Moving Average with the smoothing coefficient, A.EWMA. chosen to minimize the mean square error 

of the EWMA prediction and the actual measurement. This chart detects a gradual change in the 

process mean behavior. A Shewhart chart of the residuals of the EWMA. This chart detects a 

sudden change in the process quickly especially if the change is large. A signal from either chart 

indicates an out-of-control condition. 

Summary and Conclusions for 1.5 Sigma Shift 

In general, the analysis of process data requires the use of many analysis tools in a 

sophisticated sequence. This investigation demonstrated the use of many commonly used 

analysis tools in a structured manner to gain insight into the nature of process variation. The 

hypotheses and conclusions of this study were: 

1. The process mean shifts less than 1.5 sigma units from its target during normal 

operation. The alternative hypothesis is that the mean drifts more than 1.5 sigma 

units in at least one process. We reject the null hypothesis. In this study we found 
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that while the average was within the +/-1.5 sigma shift data we showed there were 

three groups of M/sw: less than 1.5, 1.51 to 2.25 and greater than 2.25. 

2. No process measurements are related to others over time. The alternative 

hypothesis is that at least one process parameter measurement is related to itself 

over time. The ARIMA types showed that the non-stationary processes out 

numbered the constant (Shewhart) and stationary processes. Therefore we reject 

the null hypothesis. 

3. The autoregressive coefficients are zero for all processes. The alternative 

hypothesis is that the autoregressive coefficients are not zero for at least one 

process. Only the constant (Shewhart) ARIMA type behaved with zero coefficients. 

The majority of the processes in this study had autoregressive coefficients that were 

non-zero. The null hypothesis was rejected. 

4. Likewise, the moving average coefficients are zero for all processes. The alternative 

hypothesis is that the moving average coefficients are not zero for at least one 

process. Again we reject the null hypothesis based on the ARIMA type that had the 

general form (p, d, non-zero q). The null hypothesis was rejected. 

5. The autoregressive and moving average coefficients are simultaneously zero for all 

processes. The alternative hypothesis is that these coefficients are not equal to zero 

for at least one process. While few process had both a p and q component in the 

ARIMA type, we reject the null hypothesis that all processes are not combinations of 

autoregressive and moving average behavior. We reject the null hypothesis. 

6. ARIMA time series analysis separates the drift in the process average from the 

common cause variation inherent in the process. The size of the drift would be less 

than or equal to 1.5 sigma units where sigma is the common cause process 

variation. The ARIMA time series permitted us to calculate s'a and sa as the 
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common cause variation inherent in the process. As we concluded in hypothesis 1, 

there were many time series studies with multiples of s'a or sa that were beyond 1.5. 

For that reason, we reject the null hypothesis. 

Assumptions 

The following assumptions were made in pursuit of this study: 

1. All processes exhibit variation. This variation is composed of variation due to drifts in 

the mean, unexplained common cause variation and special cause variation due for 

instance to effects like seasonal variation, and multiple machines performing the 

same work. Well-intended, but uninformed process control people can increase the 

variation of the process by adjusting the process when it is exhibiting only common 

cause variation. In our studies we found that there were differences in ARIMA type 

for machines, time, operators and parts as well as the dimension. Tables A1 through 

A4 list the processes and the values for s'a, sa, sEs and sw that are non-zero and 

consistent with this assumption. This assumption was valid for the studies in this 

investigation. 

2. Six Sigma processes have at most a 1.5 sigma shift in the process mean. With three 

groupings of process variation ratios, M/sw, we showed that the designation of the 

process as a Six Sigma process is more a choice of the tolerance than an inherent 

characteristic of the process group. We compared averages, first, median and third 

quartiles to show that processes influenced the level of M/sw, but no process was 

consistently below 3.0. With the proper choice of tolerance, this assumption held. 

3. No single analysis method is appropriate for all processes. The method employed in 

this investigation was appropriate for all the processes. However, the method of time 

series analysis would be preferred in some cases because of its inherent 

accommodation of the process movement with additional terms for autoregression, 
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moving average, and seasonal patterns. A simpler model using only the 

Exponentially Weighted Moving Average was not able to provide as good a model. 

The ARIMA modeling is more complex than needed in some cases so we found no 

universally appropriate method suitable for all processes. This assumption was 

valid. 

4. Process means can be separated from common cause variation using the proper 

statistical methods. Using the CUSUM sequence and MMSE EWMA combined, we 

were able to separate shifts in the means. From the ARIMA and MMSE analysis we 

generated residuals that could identify occurrence of special causes from common 

causes. This assumption was valid. 

5. Some processes exhibit stationary mean location, uncorrelated measurements over 

time, and random variation. This assumption held for the constant (Shewhart) 

studies. This assumption was therefore validated for that case. 

6. Other processes have stationary means but show sudden shifts in the mean, 

uncorrelated measurements over time and random variation. This assumption held 

for all but the constant (Shewhart) ARIMA types. 

7. Additional processes are not stationary, but are uncorrelated over time and have 

random variation. We found many examples of non-stationary, seasonal and non-

seasonal behavior. We validated this assumption. 

8. A few processes will be dominated by large inherent variation making necessary the 

detection of the change in mean location with CUSUM or EWMA methods to 

separate the shifts and drifts in the mean from the process random variation. Almost 

all process had sufficiently large shifts in the mean to cause us to use these methods. 

This assumption was validated. 
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9. Time series analysis is appropriate for the analysis of process mean shifts. Time 

series analysis is appropriate for the analysis of process behavior. The mean shifts 

are more easily detected using the CUSUM sequence plots than the ARIMA models. 

Simpler models using only the EWMA were appropriate for many studies. This 

assumption was not valid. 

10. The Autoregressive Integrated Moving Average methods effectively separate the 

process mean from the white noise variation. More appropriately, the white noise 

variation was separated from the movement of the process means using the ARIMA 

analysis. This assumption was validated. 

11. The residuals from the ARIMA model are normally distributed, uncorrelated, random 

variables with zero mean and process sigma. The residuals behaved as normally 

distributed, uncorrelated random variables with zero mean and constant variance. 

We did not prove this in our investigation, but there was no evidence to doubt this 

either. This assumption held. 

12. The Exponentially Weighted Moving Average control chart used in conjunction with 

the Individual X control chart can effectively identify drifts in the mean, special cause 

and common cause variation. We used this method repeatedly. With the MMSE 

lambda for the EWMA we were able to verify locations of mean shifts after using the 

CUSUM sequence method. This assumption was valid. 

13. Quality policy of the firm is consistent across all processes. The process groups we 

studied behaved consistent with this assumption. We were able to detect a 

philosophical difference in operator control behavior, but no policy differences were 

evident when other departments were engaged in the studies. This assumption was 

believed valid due to lack of evidence to the contrary. 



14. The ARIMA model reflects behavior of the physical process within acceptable error. 

The ARIMA model yielded sigma estimates that were consistent with other 

independent estimates of sigma. When there were differences it was usually due to 

the precision of the measurement (counts in whole units for instance and the sigma 

differences in tenths of a count) or the presence of the seasonal cycle that single 

parameter models could not capture. 

15. A sample comprising a fraction of the total processes can represent all the processes 

for a particular firm. Caution needs to be taken here. The findings in our study were 

from purposeful samples on key characteristics. While we believe we can describe 

the behavior of the processes within the firm, no general statement could be made 

about a process group's behavior without performing a study as done here. The 

results were valid, but the generalizability by process group is limited. Sampling has 

little validity in these studies for generalizing to the behavior of the population. 

Recommendations 

For future studies: Sample selection be done on a narrower scope, perhaps a battery of 

machines, with part features selected at random. Employ Lucas' CUSUM sequence plot and the 

EWMA to the shift points. Using ANOVA on these groups, identify the mean shift, M/sw, the 

duration of the mean shift, XB, and the sw. Using sw as the estimate of the process sigma, 

compare to specifications. Establish control charts to detect M/sw size shift in the mean. 

Compare machine batteries to one another to identify the best and poorest battery sigmas. Work 

with the process engineers to route parts requiring special tolerance accordingly. 

This investigation was conducted at a part manufacturing and assembly firm. Continuous 

processes would be expected to behave in a similar manner, but the sampling, data recording, 

frequency of sampling and cost of measurement would be different. The values of M/sw, A,B, and 
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sw could be used to establish engineering control, automated Proportional, Integral and Derivative 

(PID) control. 

In these studies we found that operator philosophy could affect the behavior of the time 

series. A study to quantify the effects and economics of alternatives could be conducted. This 

would be done by setting the three conditions of large variation due to few adjustments, small 

variation due to frequent adjustment but more costs of adjusting and an intermediate that would 

be a compromise of the other two. The cost structure would differ for different firms and perhaps 

processes within the firm, but a pattern may exist that would permit the firm to establish 

adjustment frequencies based on the more economic method as well as the minimum variation. 

Where tolerances are broad relative to process variation, sw, develop bounded 

adjustment rules advocated by Box and Luceno (1997), Box and Paniagua-Quinones (2007) and 

Hunter (1998). Current rules of thumb could be used as a comparison to judge the effect on the 

sw. 

Where PID control is already in place, use the ARIMA(p,d,q)(P,D,Q)S models to compare 

to the parameters in the controller. Often the controllers are set up with judgment and not to 

minimum variation targets. This feedback could improve product control and reduce variation 

potentially increasing satisfaction and reducing costs. 

This study could be broadened by the firm to include all processes. There was not 

enough time and resource to study all the processes. However, the method was shown effective 

in all those studies made. This would give insight into the process behavior with the ARIMA type 

and the sigmas could be compared. A comparison of sigma estimates would help identify the 

behavior of complex models that are the result of sampling practices leading to frequent 

adjustments and high autocorrelation, poor measurement that increases the white noise level and 

hence the moving average component and seasonal behavior due to special causes undetected 

and not remedied. 
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Table A1. Summary of results for XB. Columns are C/M which is Count or Measured, 
Transformation of data, sample size, number of shifts in the mean, Barnard's average duration of 
mean shift, AB. 

Code 

A1.1 
A1.2 
A1.3 
A1.4 
A1.5 
A2.1 
A2.2 
A2.3 
A2.4 
A2.5 
A2.6 
A2.7 
A3.1 
A3.2 
A3.3 
A3.4 
A3.5 
A4 

Description 

Deficiencies count product group 1 
Deficiencies count product group 1 
Deficiencies count product group 1 
Deficiencies count product group 1 
Deficiencies count product group 1 
Deficiencies count product group 2 
Deficiencies count product group 2 
Deficiencies count product group 2 
Deficiencies count product group 2 
Deficiencies count product group 2 
Deficiencies count product group 2 
Deficiencies count product group 2 
Deficiencies count product group 3 
Deficiencies count product group 3 
Deficiencies count product group 3 
Deficiencies count product group 3 
Deficiencies count product group 3 
Deficiencies count major component 

C/ 
M 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

Transform 

Ln 
SqrRt 

Ln 
Ln 

SqrRt 
SqrRt 
SqrRt 
SqrRt 
SqrRt 
SqrRt 
SqrRt 
SqrRt 
SqrRt 
SqrRt 
SqrRt 
SqrRt 
SqrRt 

Ln 

n, 
Number 

129 
153 
191 
279 
198 
197 
167 
269 
269 
184 
240 
159 
436 
582 
292 
183 
151 
179 

k, 
Shifts 

9 
11 
7 
6 
3 

11 
9 
8 

15 
14 
10 
10 
13 
16 
11 
14 
11 
11 

AB 

14.3 
13.9 
27.3 
46.5 
66.0 
17.9 
18.6 
33.6 
17.9 
13.1 
24.0 
15.9 
33.5 
36.4 
26.5 
13.1 
13.7 
16.3 

F1.1 Foundry property 1, line 1 
F1.2 Foundry property 1, line 2 
F2.1 Foundry property 2, line 1 
F2.2 Foundry property 2, line 2 
F3.1 Foundry property 3, line 1 
F3.2 Foundry property 3, line 2 
H1 Heat Treatment Harness, part 1 
H2 Heat Treatment Harness, part 2 
H3 Heat Treatment Harness, part 3 
M1 Machine dimension 1 
M2 Machine dimension 2 
M3 Machine dimension 3 
M4.1 Machine dimension 4, part 1 
M4.2 Machine dimension 4, part 2 
M4.3 Machine dimension 4, part 3 
M4.4 Machine dimension 4, part 4 
M4.5 Machine dimension 4, part 5 
M5 Machine dimension 5 
M6 Machine dimension 6 
MM1 Measure of fit, assembly 1 
R AIAG capability data set 
51.1 Shaved dimension 1, part 1 
51.2 Shaved dimension 1, part 2 
52.1 Shaved dimension 2, part 1 
52.2 Shaved dimension 2, part 2 
52.3 Shaved dimension 2, part 3 
52.4 Shaved dimension 2, part 4 
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Code 

S2.5 
S3.1 
S3.2 
S3.3 
S4.1 
S4.2 
S5 
S6 
TM1 
TM2 
TM3 
TM4 
TM5 
G1.1 
G1.2 
G2.1 
G2.2 
TU1 
TU2 

TU3.1 
TU3.2 
TU3.3 
TU4.1 
TU4.2 
TU4.3 
TU5.1 
TU5.2 
TU5.3 
TU6.1 
TU7 
TU8 
TU9 
TU10 
TU11.1 
TU11.2 
TU12.1 
TU12.2 
TU13.1 
TU13.2 
TU14.1 
TU14.2 
TU15 
TU16 
TU17 
TU18 
TU19.0 
TU19.1 

Description 

Shaved dimension 2, part 5 
Shaved dimension 3, part 1 
Shaved dimension 3, part 2 
Shaved dimension 3, part 3 
Shaved dimension 4, part 1 
Shaved dimension 4, part 2 
Shaved dimension 5 
Shaved dimension 6 
Test machine dimension 1 
Test machine dimension 2 
Test machine dimension 3 
Test machine dimension 4 
Test machine dimension 5 
Ground dimension 1, machine 1 
Ground dimension 1, machine 2 
Ground dimension 2, machine 1 
Ground dimension 2, machine 2 
Turned dimension 1 
Turned dimension 2 

Turned dimension 3, part 1 
Turned dimension 3, part 2 
Turned dimension 3, part 3 
Turned dimension 4, part 1 
Turned dimension 4, part 2 
Turned dimension 4, part 3 
Turned dimension 5, part 1 
Turned dimension 5, part 2 
Turned dimension 5, part 3 
Turned dimension 6 
Turned dimension 7 
Turned dimension 8 
Turned dimension 9 
Turned dimension 10 
Turned dimension 11, part 1 
Turned dimension 11, part 2 
Turned dimension 12, part 1 
Turned dimension 12, part 2 
Turned dimension 13, part 1 
Turned dimension 13, part 2 
Turned dimension 14, part 1 
Turned dimension 14, part 2 
Turned dimension 15 
Turned dimension 16 
Turned dimension 17 
Turned dimension 18 
Turned dimension 19, all operators 
Turned dimension 19, operator 1 

C/ 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 

M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 

Transform 

SG3 
None 
None 

Ln 
SG4 
SG4 

None 
SG3 

Ln 
None 
None 
None 
None 
SG4 
SG4 
SG4 
SG4 
SG3 

SqrRt, 
SG3 
SG3 
SG3 
SG3 
SG3 
SG3 
SG3 
SG3 
SG3 
SG3 

None 
None 
None 
SG2 

None 
None 
None 
None 
None 
None 
None 
None 

Ln(x+60) 
None 
None 
SG5 

None 
SG5 
SG5 

n, 
Number 

102 
110 
228 
146 
187 
330 

4743 
169 
106 
106 
106 
106 
106 
669 
664 
482 
661 
138 
100 

95 
134 
95 
95 

134 
95 
95 

134 
94 

204 
203 
202 
760 
188 
449 
390 
447 
391 
449 
389 
447 
391 
183 
132 
50 

133 
172 
55 

Shifts 
12 
9 

14 
12 
10 
12 
51 
10 
11 
9 
9 

11 
9 

28 
33 
27 
15 
12 
10 

8 
8 
2 
8 

11 
6 

11 
14 
8 

26 
20 
11 
17 
20 
13 
24 
10 
8 

19 
18 
21 
23 

6 
11 
3 
8 

11 
6 

XB 

8.5 
12.2 
16.3 
12.2 
18.7 
27.5 
93.0 
16.9 
9.6 

11.8 
11.8 
9.6 

11.8 
23.9 
20.1 
17.9 
44.1 
11.5 
10.0 

11.9 
16.8 
47.5 
11.9 
12.2 
15.8 
8.6 
9.6 

11.8 
7.8 

10.2 
18.4 
44.7 

9.4 
34.5 
16.3 
44.7 
48.9 
23.6 
21.6 
21.3 
17.0 
30.5 
12.0 
16.7 
16.6 
15.6 
9.2 

(table continues) 
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Table A3. Summary of results for M/sw. Exponential smoothing constant, sigma from ARIMA, 
ARIMA residuals, Exponential Smoothing, ANOVA within, and sigma of mean shifts. 
Code 
A1.1 
A1.2 
A1.3 
A1.4 
A1.5 
A2.1 
A2.2 
A2.3 
A2.4 
A2.5 
A2.6 
A2.7 
A3.1 
A3.2 
A3.3 
A3.4 
A3.5 
A4 
F1.1 
F1.2 
F2.1 
F2.2 
F3.1 
F3.2 
H1 
H2 
H3 
M1 
M2 
M3 
M4.1 
M4.2 
M4.3 
M4.4 
M4.5 
M5 
M6 
MM1 
R 
S1.1 
S1.2 
S2.1 
S2.2 
S2.3 
S2.4 
S2.5 
S3.1 
S3.2 

-̂EWMA 

0.348 
0.118 
0.120 
0.129 
0.096 
0.149 
0.049 
0.071 
0.000 
0.073 
0.064 
0.048 
0.000 
0.000 
0.000 
0.000 
0.000 
0.316 
0.125 
0.051 
0.182 
0.135 
0.000 
0.224 
0.218 
0.133 
0.000 
0.000 
0.407 
0.394 
0.051 
0.175 
0.021 
0.427 
0.462 
0.194 
0.422 
0.436 
0.000 
0.331 
0.192 
0.000 
0.076 
0.000 
0.044 
0.000 
0.000 
0.000 

s'a 
5.4097 
2.3823 
3.4004 
2.7610 
2.6444 
2.1702 
2.4504 
2.3280 
2.2306 
2.4809 
2.5608 
2.9807 
1.7751 
1.8099 
2.0551 
2.4150 
2.0812 
0.3881 
1.9200 
2.3748 
0.1402 
0.1620 
0.3305 
0.3245 
0.6647 
0.7275 
1.3808 
0.0138 
0.0077 
0.0107 
0.0107 
0.0159 
0.0171 
0.0037 
0.0039 
0.0062 
0.0021 
0.0710 
0.1964 
0.0164 
0.0159 
0.0094 
0.0072 
0.0088 
0.0110 
0.0081 
0.0147 
0.0167 

sa 
5.0360 
2.3796 
3.3942 
2.6514 
2.6783 
2.1864 
2.3564 
2.3937 
2.1878 
2.6241 
2.4697 
2.9131 
1.7974 
1.7899 
2.0496 
2.5111 
1.8764 
0.3509 
1.9058 
2.1583 
0.1283 
0.1420 
0.3108 
0.3042 
0.6393 
0.6326 
1.3386 
0.0127 
0.0075 
0.0088 
0.0099 
0.0150 
0.0160 
0.0030 
0.0037 
0.0059 
0.0019 
0.0527 
0.1830 
0.0164 
0.0140 
0.0094 
0.0068 
0.0070 
0.0098 
0.0074 
0.0147 
0.0172 

sEs 
5.2688 
2.3959 
3.5639 
2.6033 
2.5929 
2.1335 
2.2362 
2.3790 
2.0768 
2.5434 
2.4476 
2.8967 
1.7307 
1.7432 
1.9293 
1.8819 
1.8166 
0.3458 
1.8834 
2.1201 
0.1201 
0.1327 
0.2634 
0.2890 
0.6528 
0.6292 
1.2182 
0.0115 
0.0072 
0.0093 
0.0088 
0.0137 
0.0135 
0.0029 
0.0036 
0.0055 
0.0019 
0.0536 
0.1697 
0.0170 
0.0140 
0.0094 
0.0072 
0.0068 
0.0101 
0.0064 
0.0147 
0.0172 

sw 

4.6968 
2.1169 
3.0536 
2.5186 
2.4763 
1.9814 
2.2274 
2.1309 
1.9538 
2.1933 
2.2965 
2.6378 
1.6792 
1.7422 
1.9213 
1.7307 
1.8192 
0.3339 
1.7427 
2.2066 
0.1320 
0.1484 
0.3153 
0.2926 
0.6016 
0.6311 
1.2760 
0.0128 
0.0067 
0.0088 
0.0098 
0.0150 
0.0175 
0.0029 
0.0037 
0.0057 
0.0017 
0.0543 
0.1725 
0.0127 
0.0135 
0.0097 
0.0064 
0.0076 
0.0105 
0.0070 
0.0141 
0.0161 

M/sw 

4.595 
1.075 
1.673 
3.249 
1.210 
1.476 
0.975 
1.474 
1.239 
1.778 
1.559 
0.962 
0.528 
0.695 
0.859 
1.801 
1.338 
1.902 
1.381 
0.921 
2.338 
2.495 
1.438 
1.780 
1.086 
1.446 
1.470 
1.254 
2.773 
2.552 
1.095 
1.436 
2.859 
4.989 
1.707 
2.057 
0.643 
4.839 
2.185 
1.969 
5.087 
5.241 
0.947 
1.762 
1.735 
0.903 
1.271 
1.353 

(table continues) 
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Table A4. Summary of ARIMA and process classifications for each study. 

Code 

A1.1 

A1.2 

A1.3 

A1.4 

A1.5 

A2.1 

A2.2 

A2.3 

A2.4 

A2.5 

A2.6 

A2.7 

A3.1 

A3.2 

A3.3 

A3.4 

Description 

Deficiencies count 
product group 1 

Deficiencies count 
product group 1 

Deficiencies count 
product group 1 

Deficiencies count 
product group 1 

Deficiencies count 
product group 1 

Deficiencies count 
product group 2 

Deficiencies count 
product group 2 

Deficiencies count 
product group 2 

Deficiencies count 
product group 2 

Deficiencies count 
product group 2 

Deficiencies count 
product group 2 

Deficiencies count 
product group 2 

Deficiencies count 
product group 3 

Deficiencies count 
product group 3 

Deficiencies count 
product group 3 

Deficiencies count 

ARIMA 

(0,1,1) 

(0,1,1) 

(0,1,1)(0,0,1)14 

(0,1,1) 

(0,1,1) 

(0,1,1) 

(0,1,1) 

(0,1,1) 

(0,1,1) 

•.(0,1,1) 

(0,1,1) 

(0,1,1)(1,0,0)3 

(0,1,1) 

(0,1,1)(1,0,0)4 

(0,1,1) 

(0,1,1)(1,1,0)8 

ARIMA Type 

Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Non-seasonal 
Non-

Process 
Group 
Assembly 

Assembly 

Assembly 

Assembly 

Assembly 

Assembly 

Assembly 

Assembly 

Assembly 

Assembly 

Assembly 

Assembly 

Assembly 

Assembly 

Assembly 

Assembly 
product group 3 stationary, 

Seasonal 
(table continues) 
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Code 

A3.5 

A4 

F1.1 

F1.2 

F2.1 

F2.2 

F3.1 

F3.2 

H1 

H2 

H3 

M1 

M2 

M3 

M4.1 

M4.2 

Description 

Deficiencies count 
product group 3 

Deficiencies count 
major component 

Foundry property 1, 
line 1 

Foundry property 1, 
line 2 

Foundry property 2, 
line 1 

Foundry property 2, 
line 2 

Foundry property 3, 
line 1 

Foundry property 3, 
line 2 

Heat Treatment 
Harness, part 1 

Heat Treatment 
Harness, part 2 

Heat Treatment 
Harness, part 3 

Machine dimension 1 

Machine dimension 2 

Machine dimension 3 

Machine dimension 4, 
part 1 

Machine dimension 4, 
part 2 

ARIMA 

(0,1,1) 

(0,1,1)(0,0,1)14 

(0,1,1)(0,0,1)9 

(0,1,1) 

(1,1,1)(0,0,1)6 

(1,1,1) 

(1,1,1)(1,0,0)4 

(1,1,1)(0,0,1)2 

(0,1,1) 

(0,1,1) 

(1,1,1) 

(1,1,1) 

(1,1,1) 

(1,1,0)(1,0,1)2 

(2,1,1)(1,0,0)3 

(1,1,1) 

ARIMA Type 

Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, . 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Non-seasonal 

Process 
Group 
Assembly 

Assembly 

Foundry 

Foundry 

Foundry 

Foundry 

Foundry 

Foundry 

Heat 
Treatment 

Heat 
Treatment ' 

Heat 
Treatment 

Machining 

Machining 

Machining 

Machining 

Machining 

(table continues) 
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Code 

M4.3 

M4.4 

M4.5 

M5 

M6 

MM1 

R 

S1.1 

S1.2 

S2.1 

S2.2 

S2.3 

S2.4 

S2.5 

S3.1 

S3.2 

S3.3 

S4.1 

S4.2 

Description 

Machine dimension 4, 
part 3 

Machine dimension 4, 
part 4 

Machine dimension 4, 
part 5 

Machine dimension 5 

Machine dimension 6 

Measure of fit, 
assembly 1 

AIAG capability data 
set 

Shaved dimension 1, 
part 1 

Shaved dimension 1, 
part 2 

Shaved dimension 2, 
part 1 
Shaved dimension 2, 
part 2 
Shaved dimension 2, 
part 3 

Shaved dimension 2, 
part 4 
Shaved dimension 2, 
part 5 
Shaved dimension 3, 
part 1 
Shaved dimension 3, 
part 2 
Shaved dimension 3, 
part 3 
Shaved dimension 4, 
part 1 
Shaved dimension 4, 
part 2 

ARIMA 

(1,1,1) 

(1,1,1X0,0,1)3 

(1,1,0)(0,0,1)3 

(2,1,1) 

(0,1,1)(0,0, 

(1,1,1) 

(0,1,1) 

,1)4 

(0,1,1)(0,0,1)6 

(0,1,1) 

Shewhart 

Shewhart 

(0,1,1) 

Shewhart 

(2,1,0)(0,0, 

Shewhart 

Shewhart 

Shewhart 

(0,0,1) 

(0,1,1) 

1)3 

ARIMA Type 

Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Seasonal 
Non-stationary 
AR(2) 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Non-seasonal 
Constant 
(Shewhart) 
Constant 
(Shewhart) 
Non-
stationary, 
Non-seasonal 
Constant 
(Shewhart) 
Non-stationary 
AR(2) 
Constant 
(Shewhart) 
Constant 
(Shewhart) 
Constant 
(Shewhart) 
Stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 

i 

Process 
Group 
Machining 

Machining 

Machining 

Machining 

Machining 

Matching 

Reference 

Shaving 

Shaving 

Shaving 

Shaving 

Shaving 

Shaving 

Shaving 

Shaving 

Shaving 

Shaving 

Shaving 

Shaving 

(table continues) 
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Code 

S5 

S6 

TM1 

TM2 

TM3 

TM4 

TM5 

G1.1 

G1.2 

G2.1 

G2.2 

TU1 

TU2 

TU3.1 

TU3.2 

TU3.3 

TU4.1 

TU4.2 

TU4.3 

Description 

Shaved dimension 5 

Shaved dimension 6 

Test machine 
dimension 1 

Test machine 
dimension 2 

Test machine 
dimension 3 

Test machine 
dimension 4 

Test machine 
dimension 5 
Ground dimension 1, 
machine 1 
Ground dimension 1, 
machine 2 

Ground dimension 2, 
machine 1 
Ground dimension 2, 
machine 2 

Turned dimension 1 

Turned dimension 2 

Turned dimension 3, 
part 1 
Turned dimension 3, 
part 2 

Turned dimension 3, 
part 3 

Turned dimension 4, 
part 1 
Turned dimension 4, 
part 2 

Turned dimension 4, 
part 3 

ARIMA 

(2,1,2X0,0, 

Shewhart 

(0,1,1)(0,0, 

(0,1,1) 

(0,1,1) 

,1) 

,1)7 

(0,1,1)(1,0,0)5 

(1,0,1) 

(1,0,0) 

(0,1,1)(0,1, 

(1,0,0) 

(1,1,2)(0,0, 

(1,1,1) 

Shewhart 

Shewhart 

(1,1,1) 

1)4 

1)11 

(0,1,1)(1,0,0)2 

Shewhart 

(0,1,1)(0,0,1) 

Shewhart 

ARIMA Type 

Non-stationary 
AR(2) 
Constant 
(Shewhart) 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 
Stationary, 
Non-seasonal 
Stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 
Stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Non-seasonal 
Constant 
(Shewhart) 
Constant 
(Shewhart) 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 
Constant 
(Shewhart) 
Non-
stationary, 
Seasonal 
Constant 
(Shewhart) 

Process 
Group 
Shaving 

Shaving 

Test Machine 

Test Machine 

Test Machine 

Test Machine 

Test Machine 

Grinding 

Grinding 

Grinding 

Grinding 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

(table continues) 



120 

Code 

TU5.1 

TU5.2 

TU5.3 

TU6 

TU7 

TU8 

TU9 

TU10 

TU11.1 

TU11.2 

TU12.1 

TU12.2 

TU13.1 

TU13.2 

TU14.1 

TU14.2 

Description 

Turned dimension 5, 
part 1 
Turned dimension 5, 
part 2 

Turned dimension 5, 
part 3 

Turned dimension 6 

Turned dimension 7 

Turned dimension 8 

Turned dimension 9 

Turned dimension 10 

Turned dimension 11, 
part 1 

Turned dimension 11, 
part 2 

Turned dimension 12, 
part 1 

Turned dimension 12, 
part 2 

Turned dimension 13, 
part 1 

Turned dimension 13, 
part 2 

Turned dimension 14, 
part 1 

Turned dimension 14, 
part 2 

ARIMA 

Shewhart 

(1,1,1) 

(0,1,1) 

(1,1,1) 

(1,2,1) 

(1,1,1) 

(1,1,1) 

(2,1,0)(1,0 

(1,1,1) 

(1,1,1) 

(0,1,1) 

(0,1,1)(1,0 

(1,1,1X1,0 

(1,1,1) 

0)6 

0)7 

0)2 

(0,1,1)(0,0,1)8 

(1,1,1)(0,0 1)5 

ARIMA Type 

Constant 
(Shewhart) 
Non-
stationary, 
Non-seasonal 

Process 
Group 
Turning 

Turning 

(table continues) 

Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-stationary 
D(2) 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-stationary 
AR(2) 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Seasonal 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

(table continues) 
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TU15 

TU16 

TU17 

TU18 

TU19.0 

TU19.1 

TU19.2 

TU19.3 

TU20.0 

TU20.1 

TU20.2 

TU20.3 

TU21.0 

TU21.1 

TU21.2 

TU21.3 

TU22 

TU23 

TU24.0 

TU24.1 

TU24.2 

Description 

Turned dimension 15 

Turned dimension 16 

Turned dimension 17 

Turned dimension 18 

Turned dimension 19, 
all operators 
Turned dimension 19, 
operator 1 
Turned dimension 19, 
operator 2 

Turned dimension 19, 
operator 3 
Turned dimension 20, 
all operators 

Turned dimension 20, 
operator 1 
Turned dimension 20, 
operator 2 

Turned dimension 20, 
operator 3 
Turned dimension 2 1 , ' 
all operators 
Turned dimension 21, 
operator 1 
Turned dimension 21, 
operator 2 

Turned dimension 21, 
operator 3 
Turned dimension 22 

Turned dimension 23 

Turned dimension 24, 
all observations 
Turned dim 24, 
operator 1, 1-165 

Turned dim 24, 
operator 1, 166-206 

ARIMA 

Shewhart 

(0,1,1) 

(2,1,0) 

Shewhart 

Shewhart 

Shewhart 

(0,1,1) 

Shewhart 

(0,1,1) 

Shewhart 

(0,1,1) 

Shewhart 

(0,0,0)(0,0,1)8 

Shewhart 

(0,1,1) 

(0,0,0)(0,0,1)2 

(0,0,1) 

(0,0,1) 

Shewhart 

(0,1,1)(0,0,1)8 

(0,0,0)(0,0,1)7 

ARIMA Type 

Constant 
(Shewhart) 
Non-
stationary, 
Non-seasonal 
Non-stationary 
AR(2) 
Constant 
(Shewhart) 
Constant 
(Shewhart) 
Constant 
(Shewhart) 
Non-
stationary, 
Non-seasonal 
Constant 
(Shewhart) 
Non-
stationary, 
Non-seasonal 
Constant 
(Shewhart) 
Non-
stationary, 
Non-seasonal 
Constant 
(Shewhart) 
Stationary, 
Seasonal 
Constant 
(Shewhart) 
Non-
stationary, 
Non-seasonal 
Stationary, 
Seasonal 
Stationary, 
Non-seasonal 
Stationary, 
Non-seasonal 
Constant 
(Shewhart) 
Non-
stationary, 
Seasonal 
Stationary, 
Seasonal 

Group 
Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning > 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

(table continues) 
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Code 

TU24.3 

TU24.4 

TU25.0 

TU25.1.1 

TU25.1.2 

TU25.1.3 

TU25.2 

TU25.3 

TU26.0 

TU26.1 

TU26.2 

TU26.3 

W1 

W2 

W3 

W4 

Y1 

Description 

Turned dimension 24, 
operator 2 
Turned dimension 24, 
operator 3 

Turned dimension 25, 
all operators 

Turned dimension 25, 
operator 1, 1-86 
Turned dimension 25, 
operator 1, 87-160 

Turned dimension 25, 
operator 1, 161-206 
Turned dimension 25, 
operator 2 

Turned dimension 25, 
operator 3 
Turned dimension 26, 
all operators 

Turned dimension 26, 
operator 1 

Turned dimension 26, 
operator 2 
Turned dimension 26, 
operator 3 
Warranty machine 1 

Warranty machine 2 

Warranty machine 3 

Warranty machine 4 

Yield line 1 

ARIMA 

(0,0,1)(0,0,1)5 

(0,1,1) 

(0,1,1)(0,0,1)2 

Shewhart 

(0,1,1)(1,0,0)7 

Shewhart 

(0,1,1)(0,0,1) 

Shewhart 

(0,1,1X0,0,1)14 

(0,1,1)(1,0,0)7 

Shewhart 

(0,0,0)(0,0,1)10 

(0,1,1)(1,0,0)2 

(0,1,1) 

(0,1,1) 

(0,1,1) 

(0,1,1)(0,0,1)3 

ARIMA Type 

Stationary, 
Seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 
Constant 
(Shewhart) 
Non-
stationary, 
Seasonal 
Constant 
(Shewhart) 
Non-
stationary, 
Seasonal 
Constant 
(Shewhart) 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Seasonal 
Constant 
(Shewhart) 
Stationary,' 
Seasonal 
Non-
stationary, 
Seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Non-seasonal 
Non-
stationary, 
Seasonal 

Process 
Group 
Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Turning 

Warranty 

Warranty 

Warranty 

Warranty 

Yield 

(table continues) 
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Code 

Y2 

Y3 

Description 

Yield line 2 

Yield line 3 

ARIMA 

(0,1,1X0,0,1)4 

(1,1,1)(0,1,1)2 

ARIMA Type 

Non-
stationary, 
Seasonal 
Non-
stationary, 
Seasonal 

Process 
Group 
Yield 

Yield 
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