University of Northern lowa

UNI ScholarWorks

Dissertations and Theses @ UNI Student Work

2017

The programmatic manipulation of planar diagram codes to find
an upper bound on the bridge index of prime knots

Genevieve R. Johnson
University of Northern lowa

Let us know how access to this document benefits you

Copyright ©2017 Genevieve R. Johnson
Follow this and additional works at: https://scholarworks.uni.edu/etd

0 Part of the Geometry and Topology Commons

Recommended Citation

Johnson, Genevieve R., "The programmatic manipulation of planar diagram codes to find an upper bound
on the bridge index of prime knots" (2017). Dissertations and Theses @ UNI. 462.
https://scholarworks.uni.edu/etd/462

This Open Access Thesis is brought to you for free and open access by the Student Work at UNI ScholarWorks. It
has been accepted for inclusion in Dissertations and Theses @ UNI by an authorized administrator of UNI
ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and
time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.

https://scholarworks.uni.edu/
https://scholarworks.uni.edu/etd
https://scholarworks.uni.edu/sw_gc
https://scholarworks.uni.edu/feedback_form.html
https://scholarworks.uni.edu/etd?utm_source=scholarworks.uni.edu%2Fetd%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=scholarworks.uni.edu%2Fetd%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/etd/462?utm_source=scholarworks.uni.edu%2Fetd%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uni.edu
https://scholarworks.uni.edu/offensivematerials.html

THE PROGRAMMATIC MANIPULATION OF PLANAR DIAGRAM CODES
TO FIND AN UPPER BOUND ON THE BRIDGE INDEX OF PRIME KNOTS

An Abstract of a Thesis
Submitted
in Partial Fulfillment
of the Requirement for the Degree
Master of Arts

Genevieve R. Johnson
University of Northern lowa
December 2017

ABSTRACT

The “bridge index” of a knot is the least number of maximal overpasses taken over
all diagrams of the knot. A naive method to determine the bridge index of a knot is to
perform Reidemeister moves on diagrams of the knot, and this method quickly becomes
tedious to implement by hand. In this paper, we introduce a sequence of Reidemeister
moves which we call a “drag the underpass” move and prove how planar diagram codes
change as Reidemeister moves are performed. We then use these results to programatically
perform Reidemeister moves using Python 2.7 to calculate an upper bound on the bridge
index of prime knots with three through twelve crossings. We conclude with discussions of

how our results compare to the literature and future work related to these calculations.

THE PROGRAMMATIC MANIPULATION OF PLANAR DIAGRAM CODES
TO FIND AN UPPER BOUND ON THE BRIDGE INDEX OF PRIME KNOTS

A Thesis
Submitted
in Partial Fulfillment
of the Requirement for the Degree
Master of Arts

Genevieve R. Johnson
University of Northern lowa
December 2017

ii

This Study by: Genevieve R. Johnson
Entitled: THE PROGRAMMATIC MANIPULATION OF PLANAR DIAGRAM CODES
TO FIND AN UPPER BOUND ON THE BRIDGE INDEX OF PRIME KNOTS

Has been approved as meeting the thesis requirement for the

Degree of Master of Arts.

Date Dr. Theron J. Hitchman, Chair, Thesis Committee
Date Dr. Adrienne M. Stanley, Thesis Committee Member
Date Dr. Bill Wood, Thesis Committee Member

Date Dr. Patrick Pease, Interim Dean, Graduate College

To my husband Cody. Thank you for your unconditional support and being

the best rubber duck a developer could ask for.

iii

iv
ACKNOWLEDGEMENTS

Dr. Theron Hitchman, thank you for nurturing my love of mathemtics. I will
always be grateful to you for your support and kindness.

Dr. Adrienne Stanley and Dr. Bill Wood, thank you for serving on my thesis
review committee. I greatly appreciate your support.

Dr. Radmila Sazdanovic, thank you for providing clarity when planar diagram
codes did not obviously match diagrams. The knowledge you shared helped tremendously.

Cale Beirman and Chris Dibbern, thank you for performing code reviews. Your
feedback on my programming is much appreciated.

A special thank you to my family. Mom, Dad, Charlene, Bennett, John, Cecelia,
Rosalyn, Carl, and Mariel, your unwavering support means the world to me.

And to my husband, Cody. I am forever thankful for your patience and

encouragement.

TABLE OF CONTENTS

LIST OF TABLES ..o e e e e e vii
LIST OF FIGURES . . viii
CHAPTER 1. INTRODUCTION e 1
1.1 Whatisaknot? 1
1.2 Thebridgeindex 3
1.3 Planar diagram codes 4
1.4 Reidemeister moves
1.5 “Drag the underpass” move 7
CHAPTER 2. MANIPULATING PLANAR DIAGRAM CODES 9
2.1 Identifying and simplifying Reidemeister moves of type 1. 9
2.2 Identifying and simplifying Reidemeister moves of type 2. 15
2.3 Identifying and preforming “drag the underpass” moves 24
CHAPTER 3. COMPUTING AN UPPER BOUND ON THE BRIDGE INDEX 30
3.1 Datastructures L 30
3.2 Processing a planar diagram code 31
3.3 Choosing overpasses to designate as bridges 33
3.4 Finding crossings for “drag the underpass” moves 35
3.5 Checking for bridges eliminated by Reidemeister moves 38
CHAPTER 4. RESULTS ... e e e 42
CHAPTER 5. FUTURE WORK e 43

BIBLIOGRAPHY . ..o 45

vi

APPENDIX A. ALTERATIONS TO PD CODE TUPLES (A4, B,C, D) AND (E, F,G, H)

WHEN DRAGGING AN UNDERPASS . ..o e 46
APPENDIX B. COMPUTED UPPER BOUNDS OF BRIDGE INDEXES 53
APPENDIX C. CODE USED TO COMPUTE THE BRIDGE INDEXES 83

C.1 bridge computation.py e 83

C.2 reduce_bridges.py e 87

C.3 analyze output.py e 111

3.1
3.2

B.1
B.2
B.3
B4
B.5
B.6

LIST OF TABLES

Attributes of the Knot object type L.

Attributes of the Crossing object type

Computed bridge index of prime knots with 3 through 9 crossings
Computed bridge index of prime knots with 10 crossings
Computed bridge index of alternating prime knots with 11 crossings
Computed bridge index of non-alternating prime knots with 11 crossings . .
Computed bridge index of alternating prime knots with 12 crossings

Computed bridge index of non-alternating prime knots with 12 crossings . .

vii

31
31

93
o4
56
60
62
74

viii

LIST OF FIGURES

1.1 A diagram of the unknot 1
1.2 A projection and a diagram of the trefoil oL 2
1.3 Three labelings of a diagram of the trefoil 2
1.4 An underpass, an overpass and a bridge 3
1.5 A labeled diagram of the trefoil 5
1.6 Crossings constructed froma PD code 5
1.7 Diagram constructed from a PD code 5
1.8 Reidemeister moves Lo 6
1.9 Reidemeister moves performed consecutively 6
1.10 Knot segments before and after a “drag the underpass” move 7
1.11 A “drag the underpass” move is a series of Reidemeister moves 8
2.1 Knot segments simplifiable by a Reidemeister move of type 1 10
2.2 Planar diagram codes containing at most 3 unique values 10
2.3 The merging of edges from a Reidemeister move of type 1 12

2.4 A diagram with 1 < b = 3 < m simplified by a Reidemeister move of type 1 13
2.5 A knot diagram with b = 1 naively simplified by a Reidemeister move of type 1 13

2.6 A knot diagram with b = 1 correctly simplified by a Reidemeister move of

2.7 A diagram with b = m naively simplified by a Reidemeister move of type 1 14
2.8 A diagram with b = m correctly simplified by a Reidemeister move of type 1 15
2.9 Knot segments which can be simplified by a Reidemeister move of type 2 . 16
2.10 Knot segments which can be simplified by a Reidemeister move of type 2

with a starting point in the arc forming an overpass 17
2.11 Knot segments which can be simplified by a Reidemeister move of type 2

with a starting point in the arc forming an underpass 18

2.12

2.13

2.14
2.15
2.16

2.17
2.18
2.19
2.20
2.21

3.1

3.2
3.3
3.4
3.5
3.6

3.7
3.8
3.9

Knot segment diagrams with PD codes of the form (a,~, 3,b)(3,7, ¢, d) and

(a,b,7,0)(v,e,d, B) with l[a— Bl =1

Segments simplifiable by a Reidemiester move of type 2 containing the arcs

A labeled diagram segment simplifiable by a Reidemiester move of type 2
Simplify a diagram with n; # 1 by a Reidemeister move of type 2 using h .

A diagram with n; = 1 naively simplified by a Reidemeister move of type 2

Knot segments with ac perpendicular toeg
Knot segments with ac paralleltoeg
Fdges added to a diagram when an underpass is dragged
A labeled diagram of 61

A labeled diagram of 6; after dragging an underpass

Bridges needed for new crossings to be covered by a bridge when performing
a “drag the underpass” move,
Good and poor choices of an overpass to designate as a bridge
Follow a bridge “T” stem to find a crossing todrag
Drag a free crossing under multiple bridges
A free crossing found with a drag count of 3
A free crossing eliminated with fewer “drag the underpass” moves than the
dragcounto
A knot diagram with several bridges 0oL
Bridges that become simple arcs by a Reidemeister move.

Bridges that become one by a Reidemeister move

ix

19

19
21
23

23
24
24
25
28
28

34
34
36
36
37

39

3.10 A bridge becomes a simple arc when a Reidemeister move of type 1 is performed 40

3.11

Bridges merged when a Reidemeister move of type 2 is performed

40

CHAPTER 1
INTRODUCTION

1.1 What is a knot?

Formally, a knot is a simple closed polygonal curve in R3. However, knots are usually
thought of and drawn as smooth curves. [6]
The simplest knot is the unknotted circle, pictured in Figure 1.1, which is called

the unknot or the trivial knot.

Figure 1.1: A diagram of the unknot

Common methods for depicting knots are regular projections and diagrams. In a
regular projection, a knot is mapped from R3 onto a plane such that no three points on
the knot project to the same point and no vertex projects to the same point as any other
point on the knot [6]. Sections of a knot which pass over or under each other in R? are
depicted as double points in a regular projection. In a knot diagram, the double points of
a projection are called crossings. Corresponding to each crossing of a diagram, in R?
there are two sections of the knot called an overpass and an underpass. The underpass is

broken in diagrams to indicate which section passes over the other in R3.

Figure 1.2: A projection (left) and a diagram (right) of the trefoil

A labeled diagram is a knot diagram for which the edges are sequentially labeled

with natural numbers. To create a labeled diagram:

1. Select a starting point on an edge of the diagram.
2. Label the edge containing the starting point 1.

3. Unless already specified, select a direction to travel the diagram. This direction is

the called the orientation of the knot.

4. From the starting point, traverse the diagram following the orientation of the knot
and label each edge with the natural number one greater than the label of the

preceeding edge until all of the edges have been labeled.

Note that a diagram of a knot can have different labelings depending on the

starting point selected and the orientation of the knot, as illuatrated in Figure 1.3.

Figure 1.3: Three labelings of a diagram of the trefoil

1.2 The bridge index

In a knot diagram, an underpass is a section of the knot which goes under at least one
crossing and does not go over a crossing. Conversely, an overpass is a section of the knot
which goes over at least one crossing and does not go under a crossing. A bridge, or
“maximal overpass”, is an overpass which cannot be made any longer - going further from
either end would result in traveling under a crossing. An underpass, overpass and bridge
are illustrated by the red sections in Figure 1.4. Note that each crossing in a knot diagram

must have some bridge that crosses over it.

Underpass Overpass Bridge

Figure 1.4: An underpass, an overpass and a bridge

The number of maximal overpasses in a knot diagram is the “bridge number” of
the diagram. Different diagrams of the same knot can have different bridge numbers. The
bridge index of K, denoted as b(K), is the least bridge number of all diagrams of knot
K [9]. The bridge index is sometimes refered to as the bridge number.

There is no known general method or algorithm for computing the bridge index of
an arbitrary knot. As such, various methods have been used to compute bridge indexes.
Schubert [10] introduced a projection which is now referred to as Schubert normal form
and completely classified knots with bridge index 2, which includes many knots with less
than 11 crossings. Musick [7] found the bridge index for all 11-crossing prime knots using
a combination of methods. Musick presented the knots with bridge index two in two
bridge form. For the knots with bridge index three, he notes that none of these are
rational knots and exhibit a three bridge presentation. For knots with bridge index four,

he uses a theorem which says that if a Montesinos knot K has r > 3 rational tangles,

excluding integer tangles, then K has bridge index r. While this project was in progress,
Blair et al [3] proved that the Wirtinger number of a knot equals its bridge index and used
this finding to determine the bridge index of prime knots with up to 14 crossings. The
bridge indexes from these and other sources are available in the table of knot invariants
curated by Cha and Livingston [4].

Knots with a bridge index of 2, called two-bridge knots, are arguably the most

well-understood class of knots. Below are several interesting facts about two-bridge knots:
o The two-bridge knots are exactly the rational knots [1].

o The bridge index of the composition of two knots is one less than the sum of the
bridge indexes of the two knots, i.e., b(K1#K3) = b(K1) 4+ b(K3) — 1 [10]. This

implies that all two-bridge knots are prime.
 The number of distinct two-bridge knots of n crossings is at least (272 —1)/3 [5].

Though two-bridge knots are well understood, knots for which b(K') > 2 are not
yet well understood. For example, classifying all of the knots with b(K) = 3 is an open

problem.

1.3 Planar diagram codes

A planar diagram (PD) code is a numerical representation of a knot diagram
comprised of 4-tuples. Each element of a 4-tuple corresponds to an edge in the knot
diagram and each 4-tuple corresponds to a crossing.

The set of 4-tuples of a PD code representing a given labeled knot diagram is
generated as follows. For each crossing we include the 4-tuple of edge labels involved
beginning with the incoming under-edge and proceeding counter-clockwise around the
crossing.

Note that a knot diagram may have multiple corresponding planar diagram codes

depending on the the labeling of the diagram.

Figure 1.5: A labeled diagram of the trefoil with PD code (2,6, 3,5)(4,2,5,1)(6,4,1,3)

Given a planar diagram code, we can construct a diagram of the corresponding
knot. As an example, we will construst a diagram of the trefoil from the planar diagram
code we found above in Figure 1.5, (2,6,3,5)(4,2,5,1)(6,4, 1, 3). Begin by drawing a
labeled crossing based on each tuple in the planar diagram code as in Figure 1.6. Note
that it is not necessary for the crossings to be drawn in the same order as the correspoding
tuples in the planar diagram code. Then connect the segments with matching labels as in

Figure 1.7, being careful not to cross any edges which have already been connected.

Figure 1.7: Diagram constructed from the PD code (2,6,3,5)(4,2,5,1)(6,4,1,3)

Note that we are able to determine the orientation of a knot from a planar
diagram code because the first element in each tuple corresponds to an edge that we

follow under a strand to begin an undercross.

1.4 Reidemeister moves

There are three operations (and their inverses) which can be performed on a knot diagram
without altering the corresponding knot. These operations, called Reidemeister moves,
are local changes to the knot diagram. That is, the diagram remains unchanged except for

the change depicted in Figure 1.8.

-] Q-] X=X

Type 1 Type 2 Type 3

Figure 1.8: Reidemeister moves

T XY T e T N
UEIHERUERY)

Figure 1.9: Reidemeister moves performed consecutively

As illustrated in Figure 1.9:

e a Reidemeister move of type 1 adds or removes one twist in a knot,

o a Reidemeister move of type 2 adds or removes two crossings by sliding one strand

over or under another strand, and

e a Reidemeister move of type 3 changes the organization of three adjacent crossings

by sliding a strand from one side of a crossing to the other.

Theorem 1.1. Two knot diagrams belonging to the same knot, up to planar isotopy, can

be related by a sequence of the three Reidemeister moves.

Proofs of this theorem were published independenly by Reidemeister in 1927 [8]
and by Alexander and Briggs in 1926 [2].

1.5 “Drag the underpass” move

We introduce a method of altering a knot diagram called the “drag the underpass” move.
To perform a “drag the underpass” move, drag the underpass strand of a crossing along
the overpass strand to the opposite side of an adjacent crossing as illustrated in Figure
1.10. Throughout this paper we will focus on “drag the underpass” moves for which the
overpass strand we drag the underpass along forms an overpass at the adjacent crossing,

and this will be discussed further in sections 2.3 and 3.3.

RN

drag underpass
_—

Dragging an underpass along a segment which becomes an underpass

N

drag underpass
_—

Dragging an underpass along a segment which remains an overpass

Figure 1.10: Knot segments before and after a “drag the underpass” move

The “drag the underpass” move is equivalent to a Reidemeister move of type 2

followed by a Reidemeister move of type 3, as illustrated in Figure 1.11.

-

Reidemeister

move type 2

—

Reidemeister

—

move type 3

Figure 1.11: A “drag the underpass” move is a series of Reidemeister moves

CHAPTER 2
MANIPULATING PLANAR DIAGRAM CODES

In this chapter we present how planar diagram codes change as Reidemeister
moves and “drag the underpass” moves are performed. We will begin by identifying how a
PD code is structured when a crossing can be eliminated by a Reidemeister move of type
1 and present an algorithm for altering PD codes when such a move is performed. We will
then identify how a PD code is structured when two crossings can be eliminated by a
Reidemeister move of type 2 and present an algorithm for altering PD codes when such a
move is performed. We will finish by identifying how a PD code is structured when a
“drag the underpass” move can be performed and introduce an algorithm for altering PD

codes when a “drag the underpass” move is performed.

2.1 Identifying and simplifying Reidemeister moves of type 1

A knot is said to be “simplifiable” by a Reidemeister move of type 1 if a crossing of the
knot can be eliminated by performing a Reidemeister move of type 1 as discussed in

Chapter 1.

Proposition. A planar diagram code tuple indicates that a knot can be simplified by a

Reidemeister move of type 1 if and only if the tuple contains at most three unique values.

Proof. We begin by showing that if a knot can be simplified by a Reidemeister
move of type 1, then the PD code tuple corresponding to the crossing to be eliminated
contains at most three unique values.

Consider all possible diagrams of a knot segment which can be simplified by a
Reidemeister move of type 1, which are depicted in Figure 2.1.

Note that for each of the crossings depicted in Figure 2.1, the corresponding PD

code tuple includes the value of the loop segment, b, twice.

10

b b b b
(b, a, ¢, b) (a, ¢, b, b) (c, b, b, a) (b, b, a, ¢)

Figure 2.1: Knot segments simplifiable by a Reidemeister move of type 1 and the
corresponding planar diagram code tuple

Hence if a knot can be simplified by a Reidemeister move of type 1, then the PD
code tuple corresponding to the crossing to be eliminated contains at most three unique
values.

We will finish by showing that every PD code tuple that has at most three unique
values corresponds to a crossing which can be eliminated by a Reidemeister move of type

1.

b
a # C b b
b
(a, b, ¢, b)
c
b b b, b
a
a C
\ (b, a, b, ¢)

(b7 a’? C? b)

Figure 2.2: Diagrams corresponding to planar diagram codes with at most 3 unique values

Let us consider the diagrams that correspond to PD code tuples which contain at
most three unique values, (a,b,c,b), (a,c,b,b), (b,b,a,c),(b,a,c,b), (a,b,b,c) and (b,a,b,c),
with b # a, c. Notice in Figure 2.2 that for the tuples (a,b, ¢, b) and (b, a, b, c) we cannot

connect the two segments labeled b without crossing over or under either segment a or

11

segment c¢. This indicates that these two tuples are not valid PD code tuples. All of the
other crossings can be eliminated by un-twisting motion, which is a Reidemeister move of
type 1. Hence every PD code tuple with at most three unique elements corresponds to a

crossing of a knot which can be eliminated by a Reidemeister move of type 1. U

Proposition. When a knot is simplified by a Reidemeister move of type 1, the planar

diagram code of the knot changes as follows:

1. The tuple corresponding to the crossing that is eliminated by performing the

Reidemiester move is removed from the planar diagram code.

2. Let b denote the PD code value of the edge that formed the loop which was eliminated
and let m denote the mazimum value of elements in the PD code before the

Reidemeiseter move was performed.

Apply a function to each element of every PD code tuple, where the function to apply

is determined by the value of b.

If 1 < b < m, apply the function f where f is defined as:

T r<b
f(z) =

r—2 x>0

If b =1, apply the function g where g is defined as:

r—2 x>2
g(x) =
m-—2 x=2

If b =m, apply the function h where h is defined as:

12

Proof. Note that in the definitions of f, g, and A it is not necessary to consider the
case x = b. The label of each edge in a knot diagram is included in the corresponding PD
code exactly twice, and b was included twice in the tuple which was already removed from
the PD code. Hence the case x = b never arises.

We will find how a PD code changes when a knot is simplified through a
Reidemeister move of type 1 by considering how the labels of edges change in the
corresponding knot diagrams.

Begin by recognizing that when a knot diagram is simplified by a Reidemeister
move of type 1, the edge labeled b is merged with the edges immediately before and after

it (i.e., the edges b — 1 and b+ 1), as illustrated in Figure 2.3.

b Reidemeister

move type 1
b—1

b— Ly b+ 1

Figure 2.3: The merging of edges from a Reidemeister move of type 1

We now consider how the labels change depending on the value of b so that the
resulting diagram has a valid labeling.

Case 1 < b < m. The edges which originally had a label less than b remain
unchanged and the edges which originally had a label greater than b have their labels
decreased by 2 due to the edges that were merged together. As an example, consider the

label changes in Figure 2.4.

13

Reidemeister
move type 1

Figure 2.4: A diagram with 1 < b = 3 < m simplified by a Reidemeister move of type 1

Case b = 1. If we apply the label changes discussed in the case 1 < b < m so that
z—x forall z <band z — x — 2 for all z > b, then the edge which results as a merger
of the edges originally labeled 2 and m is labeled 0 and m — 2, as illustrated in Figure 2.5.
This labeling is problematic as the least label must be 1 and each edge may only have one

label.
0& 12
6 7
Reidemeister /11—7
move type 1 5
_move type 1 | & ‘
4
9 3
2 10

Figure 2.5: A knot diagram with b = 1 naively simplified by a Reidemeister move of type 1

The labeling can be fixed by adjusting the function applied to each element of the
PD code so that 2 and m — 2 are mapped to the same value, z — x — 2 for all x > 2 and

x — m — 2 if x = 2, as illustrated in Figure 2.6.

14

12

6 7
. 3 3 Reidemeister /11—7
move type 1 b}
3 10 _ 1 8
6 4
11 g 9 3
4 12 2 10

Figure 2.6: A knot diagram with b = 1 correctly simplified by a Reidemeister move of type
1

Case b = m. Consider what happens if we apply the label changes discussed in
the case 1 < b < m so that x — x for all x < b and x — x — 2 for all > b. As illustrated
in Figure 2.7, the edge which results as a merger of the edges originally labeled 1 and
m — 1 is labeled 1 and m — 1. This is not a valid labeling as each edge may only have one

label and m — 1 is greater than the maximum allowed label, which is m — 2.

Reidemeister
move type 1

Figure 2.7: A diagram with b = m naively simplified by a Reidemeister move of type 1

15

This can be fixed by adjusting the function applied to each element of the PD code
so that 1 and m — 1 are both mapped to 1 and all other labels remain the same,

z—zforallz <m—2and x — 1 for x =m — 1, as illuatrated in Figure 2.8.

8
7

Reidemeister /12—7

move type 1 6
_— 2 9
5
10 4
3 11

Figure 2.8: A diagram with b = m correctly simplified by a Reidemeister move of type 1

2.2 Identifying and simplifying Reidemeister moves of type 2

A knot is said to be “simplifiable” by a Reidemeister move of type 2 if two crossings of the

knot can be eliminated by performing a Reidemeister move of type 2.

Proposition. A knot can be simplified by a Reidemeister move of type 2 if and only if a
pair of tuples in a planar diagram code of the knot satisfy one of the following

configurations of elements, where m is the mazximum value in the PD code:
1. (a,v,B,b) and (B,~,c,d) with |a — | =1
2. (a,b,B8,7) and (B,c,d,) with |a — 8| =1
3. (m,b,1,8) and (1,a,2,)

4. (m,B,1,b) and (1, 5,2, a)

16

Proof. We begin by showing that if a knot can be simplified by a Reidemeister

move of type 2, then the PD code tuples corresponding to the crossings to be eliminated

are of one of the four forms stated above.

First, consider the PD code tuples of a knot that can be simplified by a

Reidemeister move of type 2 which are obtained by choosing a starting point that is not in

the loop. Depending on the orientation of the knot, there are eight possible diagrams.

These are depicted in Figure 2.9, supposing that we traverse the knot from a; toward as

and then from by toward bs.

al* bo /ag
N

bl a9 b3

(a1,b1,a2,b2)(az, b3, as, ba)

as \ bo 7La1
NS

b1 as b3

(a1,b2,az,b3)(az, by, as, by)

ai by as

77N

b3 / as >fb1

(b1,as, bz, az)(ba, ay,bs, az)

al* b2 /ag *al
NS \/
b3 a9 b1
(a1,bs,az,b2)(az, by, as, ba) a1,b2,a2,b1 a27527a3,b3
aq bg as

bo
RN

bl% as \ b3 bl% ag

(b1, a2,b2,a1)(b2,az,b3,a3) (b1, a2,bs,a3)(be,az,bs,ar)

)

as bo ai

bs / ao >fb1

(b1, a1,b2,a2)(be, as, bs, az)

)

Figure 2.9: Knot segments which can be simplified by a Reidemeister move of type 2 and
the corresponding PD code tuples

17

Note that the pairs of PD code tuples corresponding to these diagram segments
have one of two forms - (a,~, 3,b) and (8,7, ¢,d), or (a,b,3,7) and (53,c,d, 7). Also note
that since a and (8 are consecutive arcs of the knot, by the construction of the PD code
B = (a+1) mod m. Also by the construction of the PD code, a1 < az and b1 < b, so
a#m. Hence f =a+1and |[a — | =1.

Second, consider the PD code tuples corresponding to the section of a knot which
can be simplified by a Reidemeister move of type 2 where the knot diagram is labeled such
that the edge labeled 1 is one of the arcs segments involved in the Reidemeister move.
There are eight such possible diagrams, and these are illustrated in Figure 2.10 and Figure

2.11, supposing that we traverse the knot from 1 toward 2 and then from b, toward bs.

m by 2 m bo 2

77N 77N

bs/ 1 \b1 bl/ 1 \b3

(b17 27 b27 1)(b27m7 b37 1) (b17 17 b27 m)(b27 17 b37 2)

2 ba m 9 by m

VR VR
bS/ 1 \bl bl/ 1 \b3
(blama bg, 1)(b27 2> b37 1) (bla 17 b2a 2)(b27 1? b37 m)

Figure 2.10: Diagrams of knot segments which can be simplified by a Reidemeister move of
type 2 with a starting point in the arc forming an overpass

Note that in the cases that the knot edge labeled 1 forms an overpass, as in Figure

2.10, the PD code tuple pairs corresponding to these knot segments have the form

(a777/37b)7 (/3?’)/707d) or (a7b7/377)7 (67C7d77) With ’a_6| = 1'

18

bl 1 b3 b3 1 bl
(17 b37 27 b2)(m7 b: 17 62) (17 b17 27 62)(m7 b37 17 62)

| |
N A N A
by 1 b3 b3 1 b1

(]-a b27 2) bl)(ma b27 17 b3) (17 b27 27 b3)(m) b27 17 bl)

Figure 2.11: Diagrams of knot segments which can be simplified by a Reidemeister move of
type 2 with a starting point in the arc forming an underpass

In the cases that the edge labeled 1 dead-ends into a strand creating an underpass,
as depicted in Figure 2.11, the PD code tuples corresponding to this segment of the knot
have the form (m,b,1,3) and (1,a,2,), or (m,5,1,b) and (1, 3,2, a), where m is the
maximum value in the PD code.

Hence if a knot can be simplified by a Reidemeister move of type 2, then the PD
code tuples corresponding to the crossings to be eliminated are of one of the following

forms, where m is the maximum value in the PD code:
1. (a,v,B,b) and (B,7,c,d) with |a — | =1
2. (a,b,B8,7) and (B, ¢,d,~) with |a — 5] =1
3. (m,b,1,5) and (1,a,2,)

4' (mﬁﬁ? 17b) and (17187 2701)

We finish by showing that every pair of PD code tuples with one of the forms
enumerated below corresponds to a segment of a knot which can be simplified by a

Reidemeister move of type 2:

L. (a,7,5,b) and (3,7,¢,d) with |a — 3| =1

19
2. (a,b,B,v) and (B,c,d,~) with |a — 8| = 1

3. (m,b,1,B) and (1,a,2, B)

4. (m,B,1,b) and (1,8,2,a)

Let us consider the diagrams that correspond to PD codes of the form

(a,7,8,b)(B,7,¢,d) and (a,b,7, B)(v, ¢,d, B) with |a — B| = 1.

c\ gl 7La al{ g /d

NS N
d I5; b b ~ c
(a)’)/mBab)(/Bar%Cad) (a)ba’Y)/B)(’Yacaduﬁ)

Figure 2.12: Knot segment diagrams with PD codes of the form (a,~,3,b)(5,7,¢c,d) and
(av b)VHB)(ﬁ)/)c? d7 ﬁ) Wlth |(I - /B‘ =]-

From inspection of Figure 2.12 we see that these knot segments can be simplified
by a Reidemeister move of type 2.

Now let us consider the diagrams the correspond to PD code tuples of the form

(m7 b) 17ﬂ)(17a72718) a‘nd (m7 /67]'Jb)(]'?/BJ 27 a)'

g N A
b 1 a a 1 b
(m7b717/6)(17a727ﬂ) (maﬁ)]wb)(]-aﬂ)Q,a)

Figure 2.13: Knot segment diagrams with consecutive PD code tuples of the form
(m7 b? 17 ﬂ)(17 CL7 27/8) a‘nd (mvﬂa 17 b)(17 57 27 CL)

We see from inspection of the diagrams in Figure 2.13 that these knot segments

can also be simplified by a Reidemeister move of type 2.

20

Therefore, two tuples in a planar diagram code indicate that the knot can be

simplified by a Reidemeister move of type 2 if and only if the tuples are of one of the forms:
1. (a,v,pB,b) and (B,7,c,d) with |a — 3| =1
2. (a,b,B,7) and (B, c,d,~y) with |a — | =1
3. (m,b,1,5) and (1,a,2,)

4. (m,3,1,b) and (1, 5,2, a)

Proposition. When a knot is simplified by a Reidemeister move of type 2, the planar

diagram code of the knot changes as follows:

1. The PD code tuples corresponding to the pair of crossings that are eliminated are

removed.

2. FEwvery element in the remaining PD code tuples is adjusted by applying g o f where

ni,ns denote the PD code values of the arcs that were eliminated from the knot with

ny < neg, f is defined by

T T <m
fla)=qx-1 z>ny,n =1

r—2 x>n;,n >1

g s defined by

z mod (m — 2) x <k

9() =9 (x—1)mod (m—2) z>kk=1

(x—=2)mod (m—2) z>kk>1

21

with

no—1 ni=1
k=

ng—2 ny>1
and m is the mazimum value of elements in the PD code tuples before this

Reidemeister move was performed.

Proof.

By definition, each tuple in a planar diagram code has a one-to-one relationship
with a crossing in the corresponding knot. Hence when two crossings are eliminated from
a knot by a Reidemeister move of type 2, the corresponding tuples are removed from the
planar diagram code.

Now consider how the labels of a knot diagram change when a Reidemeister move

of type 2 is performed.

n1—1\ N2 /n1+1

NS

Tlg—l ni n2+1

Figure 2.14: A labeled diagram segment simplifiable by a Reidemiester move of type 2

As illustrated in Figure 2.14, when a knot is simplified by a Reidemeister move of
type 2 the edges n; and n; + 1 are merged into edge n; — 1 and the edges ne and ng + 1
are merged into edge no — 1. Without loss of generality, let n; < no. Then the labels of
edges originally labeled less than n; are not affected, the labels of edges originally labeled
greater than n; + 2 decrease by 2 (since edges n; and n; + 1 are merged into edge n; — 1)
and the edges originally labeled greater than no — 1 are decreased by an additional 2

(since edges ny and ng + 1 are merged into edge ng — 1).

22

When adjusting the labels of edges, we need the resulting labeled diagram to

satisfy the following criteria:
e each edge must have exactly one label

e the edges must be labeled sequentially beginning with 1 and ending with m — 4

(which is the number of edges in the new diagram)

Case nj; # 1. Consider a knot diagram that can be simplified by a Reidemeister
move of type 2 with n; # 1.

Suppose we apply h to each label where h is defined as:

x r<n
h(z) =<z -2 n <x<no

r—4 x>ng

Note that it is not necessary to consider the cases x = n; and x = ng in the
definition of h. The label of each edge in a knot diagram is included in the corresponding
PD code exactly twice, and ny and ny were included once in both of the tuples that were
eliminated from the PD code. Hence the cases x = ny and & = ng never arise.

h(1) =1, h(m) = m — 4, and for z and = + 1 in the same case range,
hz+1)=(x+1)—y=x—y+1=(x—y)+1=h(z)+ 1. Hence h is strictly increasing
within each case range and it is easy to see that h covers [1,m — 4].

We have h(n; —1) =n; —land h(ny +1)=(n1 +1)—2=mn; — 1, so
h(ny —1) = h(ny + 1), and we have h(ng — 1) = (ng — 1) — 2 =ng — 3 and
h(ng+1) = (n2+1) —4 =ng — 3, so h(ng — 1) = h(ng + 1). Hence the labels of the edges
that are merged together map to the same value, confirming that each edge has exactly
one label.

Hence for ny # 1, h results a valid labeled diagram and PD code. This can be

verified with the example in Figure 2.15.

23

Figure 2.15: Simplify a diagram with n; # 1 by a Reidemeister move of type 2 using h

Case np = 1. If we apply h to a PD code for which ny = 1, we quickly see that
h(ny + 1) = h(2) = 0, which is not a valid label for a knot diagram. Also,
h(ny —1) = h(m) = m — 4, and so h(ny + 1) # h(n; — 1), resulting in two different labels
for the egde that is the result of edges on either side of edge n; being merged together.

This is illustrated in Figure 2.16.

4 &0

Figure 2.16: A diagram with n; = 1 naively simplified by a Reidemeister move of type 2
using h

We can fix both of these issues by defining a new function, j, such that

J(2) = h(m) and j(x) = h(z) for all = # 2. Hence j is defined as:

m—4 x=2

j@) =<2 —-2 2<x<ny

r—4 x>no

24

2.3 Identifying and preforming “drag the underpass” moves

Let (a,b,c,d) denote the crossing to be dragged and (e, f, g, h) the crossing directly before
or after (a,b, c,d) which we will drag (a, b, ¢, d) underneath.

There are eight configurations for the crossings (a, b, ¢,d) and (e, f, g, h) depending
on the orientation of the knot and which element the two tuples have in common. These
eight configurations can be sub-divied into two sets - those with the segments ac and eg
perpendicular to each other as in Figure 2.17 and those with segments ac and eg parallel

to each other as in Figure 2.18.

g g e e
h |l f h I f f 1 h f 1 h
d=e b=e d=g b=y
a C C a a C C a
b d b d

h f h f
e g g e e g g e
d=f d=h b=f b=h
a C a C C a C a
b b d d

Figure 2.18: Knot segments with ac parallel to eg

25

We perform “drag the underpass” moves only for crossings arranged such that ac
is perpendicular to eg, which as illustrated in 2.17 occurs when d =e, b=-¢,d =g or
b = g. The rational for this restriction is detailed in section 3.3, and for the remainder of
this paper we will focus our discussion on these cases.

A “drag the underpass” move adds three crossings to the knot diagram and
removes one crossing, resulting in four new edges in the diagram. This is illustrated in
Figure 2.19, where the colored portions of the diagram on the left are the sections of the

original diagram that become new edges after dragging the underpass.

forh hor f ’7“

drag underpass
R ——

a or c cora

Casesd=¢e,b=e,d=g,andb=g

Figure 2.19: Four edges added to a knot diagram by dragging (a, b, ¢, d) under (e, f, g, h)

Proposition. When performing a “drag the underpass” mowve for which the crossing
denoted by the PD code tuple (a,b,c,d) is dragged underneath the crossing denoted by the
PD code tuple (e, f,qg,h) and the crossings (a,b,c,d) and (e, f,g,h) are oriented such that
one of the following is true: d =e, b=-e, d =g, or b= g, then the change to the knot
diagram can be expressed through the PD code by altering the tuples (a,b,c,d) and

(e, f,g,h) as detailed in Appendiz A and applying the function k to each element of all the

other tuples in the PD code where the value of y is determined as discussed in the remark

26
on page 26 and k is defined as
x x < min(a,y)

k(@) =4q2+2 min(a,y) <z < maz(a,y)

x+4 x>max(a,y)

Proof. The general idea is as follows, for which we assume |f — h| = 1. When
(a,b,c,d) is dragged under (e, f, g, h), the crossing (a,b,c,d) is eliminated and three new
crossings are added to the knot resulting in four new edges, as illustrated in Figure 2.19.

The labels of edges in the diagram remain unchanged until we reach the first new
edge, so x — x for all < min(a, f, h).

We then have the first pair of new edges, labeled min(a, f,h) + 1 and
min(a, f,h) + 2. The following edge, which was originally labeled min(a, f, h) 4+ 1, is now
labeled min(a, f, h) + 3 which is equal to the original label plus 2. We continue re-labeling
the diagram by adding 1 to the label of the previous edge. Similarly, the labels of edges
after the second pair of new edges are increased by an additional 2, and so
x — x + 2 for all z satisfying min (a, f,h) < z < max (a, f,h) and
x — x+4 for all z > max (a, f,h).

Now consider how the value of min(a, f, h) affects the labels of the new pairs of
edges. If min(a, f,h) = a, then the labels of the first pair of new edges are a + 1, a + 2
and the labels of the second pair of new edges are (y +2) +1 =y + 3 and
(y+2)+2=1y+4, where y = min(f,h). If min(a, f,h) = f, then the labels of the first
pair of new edges are f + 1 and f + 2 and the labels of the second pair of new edges are
(a+2)+1=a+3and (a+2)+2=a+4. If min(a, f,h) = h, then the labels of the first
pair of new edges are h + 1 and h + 2 and the labels of the second pair of new edges are

(a+2)+1=a+3and (a+2)+2=0a+4

Remark. For the vast majority of labeled diagrams, |f — h| =1 and the label changes

described above result in a valid diagram labeling. However, if f =1 and the knot is

27

oriented such that h = m, or if f = m and the knot is oriented such that h =1 (i.e., if
|f — h| # 1), then applying the label changes exactly as described above results in an
tnvalid labeling similar to the invalid labelings considered in sections 2.1 and 2.2.

To avoid these invalid labelings, in the label changes described above we replace

min(a, f,h) with min(a,y),

min (f,h) [f —h|=1
y ==
m = #1
Careful consideration needs to be given to how the three tuples which replace
(a,b,c,d) in the PD code, which correspond to the three new crossings, are expressed and

how tuple (e, f, g, h) is changed. There are three factors to consider:

o how (a,b,c,d) and (e, f, g, h) are oriented to each other (i.e., which elements of the

(a,b,c,d) and (e, f, g, h) are equal),
e the order in which edges a, e, y are traveled, and
o the orientation of the knot.

Given these three factors, there are 48 cases to consider which are detailed in
Appendix A.

Note that 48 is the result of the combinatorial caculation 4 * 3! % 2 based on the
three factors we must consider:

4 - the number of ways (a, b, ¢, d) and (e, f, g, h) may be oriented to each other.
Recall that for this project we restrict ourselves to “drag the underpass” cases for which
one of the following is true: d=e,b=¢,d=g, or b =g,

3! - the number of ways to choose the order in which edges a, e, and y are traveled,
and

2 - the number of options for the orientation of the knot. U

28

Example 2.1. Consider the labeled diagram of 61 in Figure 2.20 which has the PD code
(1,9,2,8)(3,7,4,6)(5,10,6,11)(7,3,8,2)(9, 1,10,12)(11,4,12,5). We will drag the
underpass (a,b,c,d) = (3,7,4,6) along segment 6 underneath the overpass

(e, f,g9,h) = (5,10,6,11).

2 2 11
10
: : /_7
/_7 !
1
3 12 16
3 10 12 Q
14 5
11 6 —)7
4) 15

Figure 2.20: A labeled diagram of 6, Figur('e 2.21: A labeled diagram of 6; after
dragging an underpass

This is the case d =g, a < e <y and y = f, so from Appendiz A we have that the

tuples in the PD code change as follows:

(3,7,4,6) — (3,13,4,12)(4,8,5,7)(5, 14,6, 3)

(5,10,6,11) — (8,13,9,14)
and we apply the function k to each element of all the other tuples where k is defined as

T r<3

k(x)=q24+2 3<2<10

r+4 x>10

29

Hence the PD code after dragging the underpass is:
(1,11,2,10)(3,13,4,12)(4,8,5,7)(5, 14, 6, 15)(8, 13,9, 14)(9, 3, 10, 2) (11, 1, 12, 16)(15, 6, 16, 7),

which can be verified with the labeled knot diagram in Figure 2.21.

30

CHAPTER 3
COMPUTING AN UPPER BOUND ON THE BRIDGE INDEX

We produced a program using Python 2.7 that alters planar diagram codes to
mimic the performance of Reidemeister moves of type 1 and 2 and “drag the underpass”
moves on knot diagrams to naively find an upper bound on the bridge index of prime
knots, and in this chapter we will detail how the program works. The source code of this
program may be downloaded from https://doi.org/10.5281 /zenodo.999014 and is included

in Appendix C.

Remark. Throughout the rest of this paper we use the term “bridge” to mean a mazximal
overpass which may have crossings added to it when a sequence of “drag the underpass”
moves has been completed.

The program is restricted from performing Reidemeister moves of type 1 and 2
which would add crossings to the knot. “Drag the underpass” moves which add crossings
may be performed, but we restrict the edges to which we may add crossings. This

restriction on “drag the underpass” mowves is discussed in detail in section 3.5.

3.1 Data structures

The program handles data using two custom object types - a Knot and a Crossing. The
key attributes of the Knot object type are described in Table 3.1, and the key attributes of

the Crossing object type are described in Table 3.2.

31

Knot attribute Description

name a string to identify the knot in the output file

crossings a list of Crossing objects, one per crossing in the knot diagram
free_ crossings a list of Crossing objects corresponding to the crossings in the

knot diagram which are not covered by a bridge

bridges a dictionary of key:value pairs where keys are integers and values

are lists of the PD code label of the first and last edges of a bridge

Table 3.1: Attributes of the Knot object type

Crossing attribute | Description

bridge the key of the element in Knot.bridges which corresponds to the

bridge covering this crossing

pd__code the PD code tuple corresponding to this crossing formatted as a

list

Table 3.2: Attributes of the Crossing object type

3.2 Processing a planar diagram code

Each PD code in the input file is processed similar to a depth-first search, with the PD
code in the input file being the root and each choice of a bridge “T” a branch. The general
process is as follows:
A Xnot object is created and then simplified by Reidemiester moves of type 1 and 2
until no more moves are possible.
knot = create_knot_from_pd_code(ast.literal_eval(row['pd_notation']),

row['name'])

knot.simplify_rml_rm2_recursively ()

If there are no crossings remaining, the knot is equivalent to the unknot and the

32

program moves on to process the next PD code. Otherwise, the program continues by
creating a list of all combinations of bridge pair choices that form a “T”. Refer to section
3.3 for details about how bridges are chosen and why we restrict ourselves to selecting

bridges that form a “T”.

if knot.free_crossings != []:
base_knot_name = rowl['name']
directory = 'knot_trees/' + base_knot_name

knot.list_bridge_ts(directory, 0)

else:

write_output (knot, outfile_name)

For each choice of bridge “T”, sequences of “drag the underpass” moves and
simplifications by Reidemeister moves of type 1 and 2 are performed until no more moves
are possible. Refer to section 3.4 for an explanation of how sequences of “drag the
underpass” moves to perform are identified and completed and to section 3.5 for an
explanation of how bridges that are simplified away are handled. When no more moves
are possible, if all of the crossings are covered by a bridge then the number of bridges is
stored in an output file and the processing of this branch is complete. Otherwise, if there
is at least one crossing not covered by a bridge, then a list of bridge choices which form a
“T” with an existing bridge is created. The process of dragging underpasses, simplifying
by Reidemeister moves of types 1 and 2, and generating a list of bridge choices is repeated
until all crossings are covered by a bridge and all the combinations of bridge “T” choices
have been considered.
while knot.free_crossings != []:

try:
Drag underpasses & simplify until no moves are possible.
args = knot.find_crossing_to_drag()
knot.drag_crossing_under_bridge_resursively (xargs)
knot.simplify_rml_rm2_recursively ()

except:

break

if knot.free_crossings == []:

write_output (knot, outfile_name)

33

else:
knot.list_bridge_ts (subdir, depth + 1)

more_to_process = True
After all bridge “T” choices for the knot have been considered, the output file is
searched for the minimum number of bridges that was recorded and this number is

returned as our result.

I find_minimum_computed_bridge_index ()

3.3 Choosing overpasses to designate as bridges

As mentioned in section 2.3, the program only performs a “drag the underpass” move for
adjacent crossings (a,b,c,d) and (e, f, g, h) if one of the following is true: d =e, b=e,

d =g, or b=g. As illustrated in Figure 3.1, these are the only arrangements of (a, b, ¢, d)
and (e, f, g, h) for which performing a single “drag the underpass” move results in fewer
crossings which are not covered by a bridge. We refer to a crossing which is not covered
by a bridge as a free crossing and a crossing which is covered by a bridge a bridge
crossing.

To improve the chances to being able to perform a sequence of “drag the
underpass” moves to reduce the number of free crossings after designating a new bridge,
we designate an overpass as a bridge only if it shares a crossing with an existing bridge and
the shared crossing is not at the end of both the overpass and the bridge. This results in

selecting overpasses which form a “T” with an existing bridge, as illustrated in Figure 3.2.

34

forh hor f ’——‘

drag underpass
_

a or c Cc Oor a

Casesd=¢e,b=e,d=g,and b=g

eorg gore ’——‘

drag underpass
_—

a or c c or a

Casesd=f,b=f,d=h,and b=h

Figure 3.1: Bridge designations (denoted by red segments) necessary for new crossings to
be covered by a bridge when dragging (a, b, ¢, d) under (e, f, g, h)

Good choice: The shared Good choice: The shared Poor choice: The shared
crossing is at the end of the crossing is at the end of the crossing is at the end of the

bridge (red) but not the overpass (blue) but not the bridge (red) and the end of
end of the overpass (blue) end of the bridge (red) the overpass (blue)

Figure 3.2: Segment arrangements to consider when designating an overpass as a bridge

The method Knot.list_bridge_ts() generates a list of all “good” choices for
overpasses to designate as a bridge based on the bridges that have already been
designated. If no bridges have been designated, the list of overpasses to designate as

bridges is each pair of overpasses that intersect at a crossing.

35

for a,b in itertools.combinations(self.free_crossings, 2):
if list(set(a.pd_code) .intersection(b.pd_code)):

name = self.name + ' _tree_' + str(i) + depth_suffix
e,f,g,h = a.pd_code
pP,9,r,s = b.pd_code

bridges = {0:[f,h], 1:[q,s]}

If bridges have been designated, the list of overpasses to designate as a bridge is all free
crossings which share an edge with bridge crossing.
for a,b in itertools.product(self.bridge_crossings(),self.free_crossings):
knot_copy = copy.deepcopy(self)

if list(set(a.pd_code).intersection(b.pd_code)):

knot_copy.designate_bridge (b)

3.4 Finding crossings for “drag the underpass” moves

Once bridges have been designated for a knot, “drag the underpass” moves may be

performed. A naive approach to performing “drag the underpass” moves is to try to drag

each crossing which is not covered by a bridge. However, since our goal is to reduce the

number of free crossings and dragging crossing (a, b, ¢, d) results in fewer free crossings

only if the other crossing containing b or d is the intersection of two bridges and not the

end of both bridges (refer to section 3.3), we can more efficiently choose crossings to drag.
A free crossings which can be eliminated by performing a sequence of “drag the

underpass” moves can be found as follows, which is illustrated in Figure 3.3:

1. Beginning from the stem of a bridge “T”, travel toward the cross bar of the “T” and
continue traveling in this direction until a free crossing is reached. Let the PD code

tuple of this free crossing be denoted by (a, b, c,d).

36

2. If b or d is the edge of the free crossing reached when traveling from the “T” stem,
then crossing (a,b, ¢, d) can be dragged back along the edges traveled, under the

cross bar of the bridge “T”, stopping under the stem of the bridge “T".

follow the “T” stem
under the cross bar r —I 1
drag (a,b,c,d)
d
a c
b

Figure 3.3: Follow a bridge “T” stem to the next free crossing and drag the free crossing
back under the “T” stem

Note that a sequence of “drag the underpass” moves may be performed to drag

(a,b, ¢, d) under multiple bridges on the way to a “T” stem, as illustrated in Figure 3.4.

follow the “T” stem

under the cross bar ’7 —‘ T
|1 [I I
|1 [I I

d l drag (a,b,c,d)
a c to the “T” stem

b

Figure 3.4: Drag a free crossing under multiple bridges to a bridge “T” stem

The method in the program which finds crossings to drag,
Knot.find_crossing_to_drag(), does not necessarily find the most shortest sequence of
“drag the underpass” moves necessarily to eliminate a free crossing. For example, given

the knot segment in Figure 3.5 where the colored edges are bridges,

37

Knot.find_crossing_to_drag() may follow the blue “T” stem and find that the free
crossing can be dragged under the blue “T” stem by performing a sequence of 3 “drag the
underpass” moves - one move for each bridge crossing traveled under as the bridge “T”

stem is followed in search of a free crossing to drag. We call this number the drag count.
e

Figure 3.5: A free crossing found with a drag count of 3

However, as illustrated in Figure 3.6, only one “drag the underpass” move is
necessary to eliminate the free crossing. Hence the drag count is only an upper bound on

the number of “drag the underpass” moves necessary to eliminate a free crossing.

=
I

Figure 3.6: A free crossing eliminated with fewer “drag the underpass” moves than the drag
count

To avoid unnecessarily adding crossings, we stop dragging the crossing once it is
covered by a bridge, even if the number of “drag the underpass” moves performed is less

than the drag count.

def drag_crossing_under_bridge_resursively(self, crossing_to_drag,
adjacent_segment , drag_count):
while (drag_count > 0):
crossing_to_drag, adjacent_segment = self.drag_crossing_under_bridge (
crossing_to_drag, adjacent_segment)
drag_count -= 1

Stop if the crossing being dragged has been assigned to a bridge.

38

if crossing_to_drag.bridge:

break;

3.5 Checking for bridges eliminated by Reidemeister moves

Recall from section 3.1 that Knot.bridges is a dictionary of key:value pairs where keys are
integers and values are lists of the PD code labels of the first and last edges of a bridge.
As an example, Knot.bridges == {0:[3,4], 1:[9,10], 2:[5,7]1} for the labeled diagram
in Figure 3.7. Note that the integer used for each key is not important so long as the keys

are unique and the order of the PD code labels in each values list does not matter.

Figure 3.7: A knot diagram with several bridges (colored sections)

When a Reidemeister move of type 1 or 2 or a “drag the underpass” move is
performed, the PD code labels stored in Knot.bridges are updated just as all of the labels
in the PD code are updated. A bridge may become a simple arc (i.e., no longer pass over
other strands of the knot) as illustrated in Figure 3.8 or be merged with another bridge as
illustrated in Figure 3.9 when a Reidemeister move of type 1 or 2 is performed. We can
determine if either of these changes has occured by inspecting the elements in

Knot.bridges and then must prune the elements of Knot.bridges accrodingly.

39

—_—

A bridge (red) that becomes a simple arc by a Reidemeister move of type 1
\ / \ /
A bridge (red) that becomes a simple arc by a Reidemeister move of type 2

Figure 3.8: Bridges that become simple arcs by a Reidemeister move

Two bridges (red and blue) that become one bridge (purple) by a Reidemeister move of
type 1

P N
PN A
_—

N4

Two bridges (red and blue) that become one bridge (purple) by a Reidemeister move of
type 2

Figure 3.9: Bridges that become one by a Reidemeister move

When a bridge becomes a simple arc, both of the PD code values stored in the
corresponding element of Knot.bridges are equal. As an example, consider how the value
of Knot.bridges corresponding to the labeled diagram in Figure 3.10 changes when the
bridge covering crossing (2, 3, 3,4) is eliminated via a Reidemeister move of type 1.
Initially, Knot.bridges == {0:[3,4], 1:[9,10], 2:[5,7]1}. When the loop at crossing
(2,3,3,4) is eliminated, Knot.bridges becomes {0:[2,2], 1:[7,8], 2:[3,5]}. The PD

code values in the element corresponding to the bridge which had covered crossing

40

(2,3,3,4) are equal, indicating that the bridge has become a simple arc. Since the bridge
no longer exists, the corresponding element is removed from Knot.bridges and the value of

Knot.bridges becomes {1:[7,8], 2:[3,5]}.

Reidemeister
move type 1
5

2
Reidemeister /\
move type 2
5

Figure 3.11: Bridges merged when a Reidemeister move of type 2 is performed

When two bridges are merged together, there is a shared value in their
corresponding lists of PD code values in Knot.bridges. Continuing with the results of the
previous example, consider how the value of Knot.bridges corresponding to the labeled

diagram in Figure 3.11 changes when the red and blue bridges are merged together.

41

Initially the value of Knot.bridges is {1:[7,8], 2:[3,5]}. When edges 10 and 6
are eliminated via a Reidemeister move of type 2, Knot.bridges becomes
{1:[5,6], 2:[3,5]}. The PD code value 5 is in each element of Knot.bridges, indicating
that the bridges share an end and have been merged together. Since the bridges have been
merged together, one of the elements containing in Knot.bridges containing 5 is removed
and the value of Knot.bridges becomes {1:[3,6]}. Also, the Crossing objects for which

Crossing.bridge == 2 are updated so that Crossing.bridge ==

42

CHAPTER 4
RESULTS

The results of our program’s computation of the upper bound on the bridge index
of each prime knot with 3 through 12 crossings is given in Appendix B. These results are
equal to the values published on Knotinfo [4] for prime knots with 3 through 11 crossings,
which have been verified and accepted by the mathematics community. Our results also
verify the values of the bridge indices of prime knots with 12 crossings which were

published by Ryan Blair et al [3] while this project was in progress.

43

CHAPTER 5
FUTURE WORK

. Automatically run analyze_output.py when bridge_computation.py is run.

. Delete the csv files output by bridge_computation.py once they have been processed

by analyze_output.py.

. A combination of items 1 and 2 above, it would be ideal to run the process of
analyze_output.py and clean up the csv files output by bridge_computation.py as
each line in the input CSV file is processed to reduce the storage space necessary to

run the program.

. Return 1 as the number of bridges if Knot.bridges is empty, since by definition the

bridge index of the unknot is 1 and not 0.
. Validate the PD codes provided in the input CSV file.

. How does the output of the program for prime knots with more than 12 crossings

compare to the bridge indexes published by Ryan Blair, et al.[3] or others?

. Can it be proven (or disproven) that the number of bridges output by the program

for a particular knot is the bridge index of the knot?
. Does the program successfully process links which have more than one component?

. The program currently requires that the tuples in the PD codes input are ordered
according to the order the crossings of the knot are traversed. While it is common
practice to order the tuples in a PD code in this manner, it is not necessary. Adjust
the methods which identify if a Reidemeister move or “drag the underpass” move

can be performed to not require that the tuples be in any particular order.

44

10. We chose to designate an overpass as a bridge only if the overpass formed as “T”
with a bridge to minimize the chances of designating a bridge which later becomes a
simple arc or is merged with another bridge. For each knot diagram, what is the
maximum number of overpasses which can be designated as a bridge without

forming a “T”. Is this number meaningful in any way?

[9]

45

BIBLIOGRAPHY

Adams, Colin Conrad. The Knot Book: An Elementary Introduction to the
Mathematical Theory of Knots. 1994.

Alexander, J. W., and G. B. Briggs. “On Types of Knotted Curves.” Annals of
Mathematics, Second Series 28, no. 1/4 (1926): 562-86. doi:10.2307/1968399.

Blair, Ryan, Alexandra Kjuchukova, Roman Velazquez, and Paul Villanueva.

Wirtinger systems of generators of knot groups. (May 2017) arXiv:1705.03108v1.

Cha, J. C., and C. Livingston, KnotInfo: Table of Knot Invariants,

http://www.indiana.edu/~knotinfo, March 3, 2017.

Earnst, Charles, and D Sumners, “The growth of the number of prime knots.” Proc.

Cambridge Phil. Soc. (1987) 102:303-315.
Livingston, Charles. Knot Theory. Carus. 1993.

Musick, Chad. Minimal Bridge Projections for 11-Crossing Prime Knots. (September
2012) arXiv:1208.4233v3.

Reidemeister, Kurt. “Elementare Begriindung der Knotentheorie” Abhandlungen aus
dem Mathematischen Seminar der Universitit Hamburg 5, no. 1 (December 1927):

24-32. doi:10.1007/BF02952507.

Rolfsen, Dale. Knots and Links. Mathematics Lecture Series ; 7. 1990.

[10] Schubert, Horst. “Uber eine numerische Knoteninvariante” Mathematische Zeitschrift

(1954) 61: 245. https://doi-org.proxy.lib.uiowa.edu,/10.1007/BF01181346.

46

APPENDIX A
ALTERATIONS TO PD CODE TUPLES (4, B,C, D) AND (E, F,G, H) WHEN
DRAGGING AN UNDERPASS

Let m denote the maximum value of the elements in the planar diagram code
before the drag the underpass move is preformed, and let y denote the element f or h we
travel from toward the other assuming that we start traveling the diagram from the edge
labeled 1. If |f — h| = 1, then y = min (f, h). Otherwise min (f,h) =1 and
mazx (f,h) = m, in which case y = m.

Cased=c,a<e<y,y=f:
(a,b,c,d) = (a, f+4,a+1,(f+5) mod m)(a+1,e+2,a+2,9+2)(a+2,f+3,a+3, f+2

(e,f,g9,h) = (b+2,f+3,e+2,f+4)

Cased=—ec,a<e<y,y=h:
(a,b,c,d) = (a,h+3,a+1,h+2)(a+1,e+2,a+2,9g+2)(a+2,h+4,a+3,(h+5) mod m
(e, f.g.h) = (b+2,h+4,e+2,h+3)

Cased=e,a<y<e,y=f:
(a,b,¢c,d) = (a, f+4,a+1,(f+5) mod m)(a+1,e+4,a+2,9+4)(a+2, f+3,a+3, f+2)

Cased=e,a<y<e,y=h:
(a,b,¢c,d) = (a,h+3,a+1,h+2)(a+1,e+4,a+2,g+4)(a+2,h+4,a+3, (h+5) mod m)
(e, f.g.h) = (b+4,h+4,e+4,h+3)

Cased=e,e<a<y,y=f:
(avbac7d)_>(a’7f+47a+17(f+5) mOdm)(a+1767a+279)(a+27f+37a+37f+2)
(e;f.9:h) = (b, f +3.e,f +4)

47

Cased=e,e<a<y,y=h
(a,b,¢,d) = (a,h+3,a+1,h+2)(a+1,e,a+2,9)(a+2,h+4,a+ 3,(h +5) mod m)
(e7f7g’h)%(b’h+47e’h+3)

Cased=e,e<y<a,y=f:
(a,b,c,d) = (a+2,f+2,a+3,f+3)(a+3,e,a+4,9)(a+4,f+1,(a+5) mod m, [)

(e, fyog,h) — (b, f+1,e, f +2)

Cased=e,e<y<a, y=h:
(a,b,e,d) = (a+2,h+1,a+3,h)(a+3,e,a+4,9)(a+4,h+2,(a+5) mod m,h+ 3)
(e.f,9,h) = (b,h +2,e,h +1)

Cased=e,y<a<e, y=f:
(a,b,c,d) = (a+2,f+2,a+3,f+3)(a+3,e+4,a+4,9g+4)(a+4, f+1,(a+5) mod m, f)
(e, fr9,h) = (b+4,f+1e+4,f+2)

Cased=e,y<a<e, y=h:
(a,bye,d) = (a+2,h+1,a+3,h)(a+3,e+4,a+4,g+4)(a+4,h+2,(a+5) mod m, h+3)

(e, f.g.h) = (b+4,h+2e+4,h+1)

Cased=e,y<e<a,y=f:
(a,b,c,d) = (a+2,f+2,a+3, f+3)(a+3,e+2,a+4,9+2)(a+4, f+1,(a+5) mod m, f)
(e,f,9:h) = (b+2,f+1,e+2,f+2)

Cased=e,y<e<a,y=h
(a,b,e,d) = (a+2,h+1,a+3,h)(a+3,e+2,a+4,9+2)(a+4,h+2,(a+5) mod m, h+3)

(e, f,9.h) = (b+2,h+2,e+2,h+1)

Caseb=e,a<e<y,y=f:
(a,b,c,d) = (a, f+2,a+1, f+3)(a+1,942,a+2,e+2)(a+2,(f+5) mod m,a+3, f+4)
(e.f,9,h) = (d+2,f+3,e+2,f+4)

48

Caseb=e,a<e<y, y=h:
(a,b,¢,d) — (a,(h+5) mod m,a+1,h+4)(a+1,9g+2,a+2,e+2)(a+2,h+2,a+3,h+3)

(e, fyg,h) = (d+2,h+4,e+2,h+3)

Caseb=e,a<y<e, y=f:
(e.f,9,h) = (d+4,f+3,e+4,f+4)

Caseb=e,a<y<e,y=h:
(a,b,¢,d) — (a,(h+5) mod m,a+1,h+4)(a+1,9g+4,a+2,e+4)(a+2,h+2,a+3,h+3)

(e, fyg,h) = (d+4,h+4,e+4,h+3)

Caseb=e,e<a<y,y=f:
(a,b,c,d) = (a, f+2,a+ 1, f+3)(a+1,9,a+2,¢e)(a+2,(f +5) mod m,a+ 3, f +4)
(e7f7g7h)%(d7f+37€7f+4)

Caseb=e,e<a<y, y=h:
(a,b,¢,d) — (a,(h+5) mod m,a+1,h+4)(a+1,9,a+2,¢)(a+2,h+2,a+ 3,h + 3)
(e,f,9:h) = (d,h+4,e,h+3)

Caseb=e,e<y<a,y=f:
(a,b,c,d) = (a+2, f,a+3,f+1)(a+3,9,a+4,e)(a+4, f+3,(a+5) mod m, f+2)
(e7f7g7h)%(d7f+17€7f+2)

Caseb=e,e<y<a, y=h:
(a,b,c,d) = (a+2,h+3,a+3,h+2)(a+3,9,a+4,¢e)(a+4,h,(a+5) mod m,h+1)
(e, fyg,h) — (d,h + 2,e,h + 1)

Caseb=e,y<a<e, y=f:
(a,b,c,d) = (a+2,f,a+3, f+1)(a+3,9+4,a+4,e+4)(a+4, f+3,(a+5) mod m, f+2)
(e, frg,h) = (d+4,f+1,e+4,f+2)

49

Caseb=e,y<a<e, y=h:
(a,b,¢,d) = (a+2,h+3,a+3,h+2)(a+3,9+4,a+4,e+4)(a+4,h,(a+5) mod m,h+1)

(e, f,g,h) > (d+4,h+2,e+4,h+1)

Caseb=e,y<e<a,y=f:
(a,b,c,d) = (a+2, f,a+3, f+1)(a+3,9+2,a+4,e+2)(a+4, f+3,(a+5) mod m, f+2)
(e, frg,h) = (d+2,f+1,e+2,f+2)

Caseb=e,y<e<a, y=h:
(a,b,c,d) = (a+2,h+3,a+3,h+2)(a+3,9+2,a+4,e+2)(a+4,h,(a+5) mod m,h+1)

(e, fy,g,h) = (d+2,h+2,e+2,h+1)

Cased=g,a<e<y,y=f:
(a,b,¢,d) = (a, f+3,a+1, f+2)(a+1,9+2,a+2,e+2)(a+2, f+4,a+3,(f+5) mod m)
(e,f,9.h) = (g+2,f+3,0+2,f+4)

Cased=g,a<e<vy,y=h:
(a,b,¢,d) = (a,h+4,a+1,(h+5) mod m)(a+1,9g+2,a+2,e+2)(a+2,h+3,a+3,h+2)
(e, f.9:h) = (g +2,h+4,b+2,h+3)

Cased=g,a<y<e, y=f:
(a,b,¢,d) = (a, f+3,a+1, f+2)(a+1,9+4,a+2,e+4)(a+2, f+4,a+3,(f+5) mod m)
(e, fi9:h) = (g+4,f+3,b+4,f+4)

Cased=g,a<y<e, y=h:
(a,b,¢,d) = (a,h+4,a+1,(h+5) mod m)(a+1,9g+4,a+2,e+4)(a+2,h+3,a+3,h+2)
(e,f,9:h) = (g +4,h+4,b+4,h +3)

Cased=g,e<a<vy,y=f:
(a,b,e,d) = (a, f+3,a+ 1, f+2)(a+1,9,a+2,¢e)(a+2,f +4,a+3,(f +5) mod m)

(e, f,9:h) = (9, f +3,0,f +4)

50

Cased=g,e<a<vy,y=h:
(a,b,¢,d) = (a,h+4,a+1,(h+5) mod m)(a+1,9,a+2,¢e)(a+2,h+3,a+3,h + 2)
(e, f,9:h) = (9,h+4,b,h +3)

Cased=g,e<y<a,y=f:
(a,bye,d) = (a+2,f+1,a+3,f)(a+3,9,a+4,e)(a+4, f +2,(a+5) mod m, f + 3)

(e7f7g7h)%(g7f+17b7f+2)

Cased=g,e<y<a,y=h:
(a,b,¢,d) = (a+2,h+2,a+3,h+3)(a+3,9,a+4,e)(a+4,h+1,(a+5) mod m,h)

(e;f,9,h) = (9,h+2,b,h + 1)

Cased=g,y<a<e, y=f:
(a,b,e,d) = (a+2,f+1,a+3, f)(a+3,9+4,a+4,e+4)(a+4, f+2,(a+5) mod m, f+3)
(e,f,9,h) = (9+4,f+1,b+4,f+2)

Cased=g,y<a<e, y=h:
(a,b,c,d) = (a+2,h+2,a+3,h+3)(a+3,9+4,a+4,e+4)(a+4,h+1,(a+5) mod m, h)

(e, f,g,h) = (g +4,h+2,b+4 h+1)

Cased=g,y<e<a,y=f:
(a,b,c,d) = (a+2,f+1,a+3, f)(a+3,9+2,a+4,e+2)(a+4, f+2,(a+5) mod m, f+3)
(e,f,9,h) = (9+2,f +1,0+2,f+2)

Cased=g,y<e<a,y=h:
(a,b,¢c,d) = (a+2,h+2,a+3,h+3)(a+3,9+2,a+4,e+2)(a+4,h+1,(a+5) mod m,h)

(e,f,9.h) = (g+2,h+2,b+2,h+1)

Caseb=g,a<e<vy, y=f:
(a;b,¢,d) = (a,(f+5) mod m,a+1, f+4)(a+1,e+2,a+2,9+2)(a+2, f+2,a+3, f+3)
(e, f,9:h) = (9 +2,f+3,d+2,f +4)

o1

Caseb=g,a<e<y,y=h:
(a,b,e,d) = (a,h+2,a4+1,h+3)(a+1,e+2,a+2,g+2)(a+2,(h+5) mod m,a+3,h+4)
(e;f,9,h) = (9+2,h+4,d+2,h+3)

Caseb=g,a<y<e, y=f:
(a;b,¢,d) = (a,(f+5) mod m,a+1, f+4)(a+1le+4,a+2,9+4)(a+2, f+2,a+3, f+3)
(e,f,9,h) = (g+4,f+3,d+4,f +4)

Caseb=g,a<y<e, y=h:
(a,b,e,d) = (a,h+2,a4+1,h+3)(a+1,e+4,a+2,g+4)(a+2,(h+5) mod m,a+3,h+4)
(e,f,9:h) = (g+4,h+4,d+4,h+3)

Caseb=g,e<a<y,y=f:

(e7f7g7h)%(g7f+37d7f+4)

Caseb=g,e<a<vy,y=h:
(a,b,¢,d) = (a,h+2,a+1,h+3)(a+ 1,e,a+2,9)(a+2,(h+5) mod m,a + 3, h + 4)
(e, f,9:h) = (9,h+4,d,h + 3)

Caseb=g,e<y<a,y=f:
(a,b,c,d) = (a+2,f+3,a+3,f+2)(a+3,e,;a+4,9)(a+4, f,(a+5) mod m, f+ 1)

(e7f7g7h)%(g7f+17d7f+2)

Caseb=g,e<y<a,y=h:
(a,b,e,d) = (a+2,h,a+3,h+1)(a+3,e,a+4,9)(a+4,h+3,(a+5) mod m,h+ 2)
(e?f7g’h)%(g7h+27d7h+]‘)

Caseb=g,y<a<e, y=f:
(a,b,c,d) = (a+2,f+3,a+3, f+2)(a+3,e+4,a+4,g+4)(a+4, f,(a+5) mod m, f+1)
(e,f,9,h) = (9+4,f+1,d+4,f+2)

52

Caseb=g,y<a<e,y=h:
(a,b,e,d) = (a+2,h,a+3,h+1)(a+3,e+4,a+4,g+4)(a+4,h+3,(a+5) mod m, h+2)

(e, fr9,h) = (9 +4,h+2,d+4,h+1)

Caseb=g,y<e<a,y=f:
(a,b,c,d) = (a+2, f+3,a+3, f+2)(a+3,e+2,a+4,9+2)(a+4, f,(a+5) mod m, f+1)
(e,fr9:h) = (9+2,f+1,d+2,f+2)

Caseb=g,y<e<a,y=h:
(a,b,e,d) = (a+2,h,a+3,h+1)(a+3,e+2,a+4,9+2)(a+4,h+3,(a+5) mod m, h+2)

(e, fr9,h) = (9+2,h+2,d+2,h+1)

APPENDIX B

COMPUTED UPPER BOUNDS OF BRIDGE INDEXES

Table B.1: Computed bridge index of prime knots with 3 through 9 crossings

K b(K)
30001 2
40001
50001 2
90002 2
60001 2
60002 2
60003 2
70001 2
70002 2
70003 2
70004 2
70005 2
70006 2
70007 2
80001
80002 2
80003 2
80004 2
80005 3
80006 2
80007 2

K

S
—
~—

80008
80009
80010
80011
80012
80013
80014
80015
80016
80017
80018
80019
80020
80021
90001
90002
90003
90004
90005
90006

90007

NN NN NN W W W W W W WY NDW NN

53

K | oK) K | b(K)
90008 2 90029 3
90009 90030 3
90010 2 90031
90011 2 90032 3
90012 2 90033 3
90013 2 90034 3
90014 2 90035 3
90015 2 90036 3
90016 3 90037 3
90017 2 90038 3
90018 2 90039 3
90019 2 90040 3
90020 2 90041 3
90021 2 90042 3
90022 90043 3
90023 90044 3
90024 3 90045 3
90025 3 90046 3
90026 2 90047 3
90027 2 90048 3
90028 3 90049 3

Table B.2: Computed bridge index of prime knots with 10 crossings

S
—
~

100001
100002
100003
100004
100005
100006
100007
100008
100009
100010
100011
100012
100013
100014
100015
100016
100017
100018
100019
100020
100021
100022
100023

100024

NN NN NNN NN NN NN N NN NN NN NN

NN

54

K b(K) K b(K) K b(K)
100025 100049 3 100073 3
100026 2 100050 3 100074 3
100027 2 100051 3 100075 3
100028 2 100052 3 100076 3
100029 2 100053 3 100077 3
100030 2 100054 3 100078 3
100031 2 100055 3 100079 3
100032 2 100056 3 100030 3
100033 2 100057 3 100081 3
100034 2 100058 3 100082 3
100035 2 100059 3 100083 3
100036 2 100060 3 100084 3
100037 2 100061 3 100085 3
100038 2 100062 3 100086 3
100039 2 100063 3 100087 3
100040 2 100064 3 1000ss 3
100041 2 100065 3 100089 3
100042 2 100066 3 100090 3
100043 2 100067 3 100091 3
100044 2 100068 3 100092 3
100045 2 100069 3 100093 3
100046 3 100070 3 100094 3
100047 3 100071 3 100095 3
100048 3 100072 3 100096 3

(table continues)

K

S
—
~—

100097
100098
100099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113

100114

W W W W W W W W wwwwwwwww o w

95

K | oK) K | K) K | bK)
100115 3 100133 3 100151 3
100116 3 100134 3 100152 3
100117 3 100135 3 100153 3
100118 3 100136 3 100154 3
100119 3 100137 3 100155 3
100120 3 100138 3 100156 3
100121 3 100139 3 100157 3
100122 3 100140 3 100158 3
100123 3 100141 3 100159 3
100124 3 100142 3 100160 3
100125 3 100143 3 100161 3
100126 3 100144 3 100162 3
100127 3 100145 3 100163 3
100128 3 100146 3 100164 3
100129 3 100147 3 100165 3
100130 3 100148 3

100131 3 100149 3

100132 3 100150 3

Table B.3: Computed bridge index of alternating prime knots with 11 crossings

56

K b(K) K b(K) K b(K) K b(K)
11apoo1 3 11apo26 3 11apos1 3 11apo7e 3
11agoo2 3 11ago27 3 1Tagos2 3 11ago77 2
11agoos3 3 11lagoos 3 11agoss3 3 11agors 3
11apoo4 3 11apo29 3 11aposa 3 11apo79 3
11agoos 3 11agoso 3 1Tagoss 3 11agoso 3
11apooe 3 11apos1 3 11agose 3 11apos1 3
11aggor 3 11agos2 3 1Tagos7 4 11agos2 3
11agoos 3 11lagoss 3 11lagoss 3 11agoss 3
11apoo9 3 11apo3s 3 11agos9 2 11aposa 2
11ago10 3 11agoss 3 1Tagoeo 3 11aooss 2
11apo11 3 11apoze 3 11agoe1 3 11agose 3
11apo12 3 11aposz7 3 11agoe2 3 11agos? 3
11apo13 2 11lagoss 3 11agoss3 3 11agoss 3
11apo14 3 11apo39 3 11apoea 3 11agos 2
11apo15 3 11apoa0 3 11agoss 2 11agogo 2
11ago16 3 11apoa1 3 11apose 3 11apog1 2
11apo17 3 11apos2 3 11agos7 3 11apog2 3
11ago1s 3 11agoas 4 1Tagoes 3 11agpos3 2
11apo19 3 11apoasa 4 11agosg 3 11apoos 3
11apoz20 3 11agoss 3 11ago70 3 11agogs 2
11apo21 3 11apose 3 11ago71 3 11apo9e 2
11apo22 3 11apoar 4 11lago72 3 11apog7 3
11apozs 3 11agoss 3 11ago7s 3 11apoos 2
11apo24 3 11apoa9 3 11apo7sa 3 11apo99 3
11apozs 3 11apos0 3 11ago7s 2 11ap100 3

(table continues)

o7

K | oK) K | b(K) K | b(K) K | oK)
11ag101 3 11ap128 3 1Tag155 3 11ap1s2 2
11agi02 3 11lagi29 3 11lagis6 3 11ap1s3 2
11ap103 3 11ap130 3 11ag157 3 11ap1s4 2
11ap104 3 11ap131 3 1Tag158 3 11ap1ss 2
11ap105 3 11ap132 3 11lap1s9 2 11ap1s6 2
11ap106 3 11ap133 3 1Tag160 3 11ap1s7 3
11agi07 3 1lag134 3 11lag161 3 11agiss 2
11ap108 3 11ag13s5 3 11ag162 3 11ap1g9 3
11ap109 3 11ag136 3 1Tag163 3 11ap190 2
11ap110 2 11agp137 3 11ap164 3 11agp191 2
11ap111 2 11ag13s8 3 1Tag165 3 11ap192 2
1lapi12 3 11lapi3g 3 11lagi66 2 1lagio3 2
11lap113 3 11ap140 2 11lap167 3 11agp194 3
11lap114 3 11lap141 3 11ap16s 3 11ap195 2
11ap115 3 11api42 3 11lap169 3 11ag196 3
11ap116 3 11ap143 3 1Tag170 3 11ap197 3
1lag117 2 1lap144 2 1lagim 3 11agi98 3
11lap11s 3 11ap145 2 11lapy72 3 11ag199 3
11ap119 2 11ag146 3 1Tag173 3 11ag200 3
11lagioo 2 11lagia7 3 11lagi74 2 11lagp201 3
1lagio1 2 1lagias 3 11lagi7s 2 11ag202 3
1lagi22 3 11lag149 3 1lagi76 2 11ag203 2
11ag123 3 11ap150 3 11lagp177 2 11ap204 2
11ap124 3 11ap151 3 1Tag17s 2 11ag205 2
11ag125 3 11lap152 3 11lap179 2 11ap206 2
11ap126 3 11ag153 3 1Tag1s0 2 11ap207 2
1lagi27 3 11lagi54 2 1lagig1 3 11ag20s 2

(table continues)

o8

K | oK) K | b(K) K | b(K) K | oK)
11ag209 3 11ag236 2 1Tag2e3 4 11ag290 3
11ag210 2 11agoz7 2 11agoes 3 11agog1 3
11ap211 2 11ag23s 2 1Tag26s 3 11ag292 3
11ag212 3 11ag239 2 1Tag2e6 3 11ag293 3
1lap213 3 11ap240 1lagze7 3 11ap294 3
11ag214 3 11agasn 2 1Tag2es 3 11ag295 3
11ag215 3 1lago40 2 11lag2e9 3 11ag29s 3
11ag216 3 11ag243 2 1Tag270 3 11ap297 3
11ap217 3 11ag244 2 11ag2m1 3 11ag298 3
11ap218 3 11ap24s 2 11aga72 3 11ag299 3
11ap219 3 11ap246 2 11lap273 3 11ap300 3
11ag220 2 11lago4r 2 11agors 3 11ag301 3
11ap221 3 11ag24s 2 1Tag2rs 3 11ap302 3
11ap222 3 11ap249 2 11ap276 3 11ap303 3
11ap223 3 11ap250 2 11aga77 3 11ap304 3
11ap224 2 11apzs1 2 11lap27s 3 11ap305 3
11ag22s 2 11lagaso 2 11lagarg 3 11ap306 2
11ap226 2 11ap2s3 2 11ap2go 3 11apso07 2
11agpz27 3 11ap2s4 2 11ap2s: 3 11ap30s 2
11ap22s 3 11agoss 2 11apoge 3 11ap309 2
11ap229 2 11ap2s6 2 11ap2ss 3 11aps10 2
11ag230 2 11lagos7 2 11agogs 3 11ag311 2
11ap231 4 11ap2ss 2 11aposgs 3 11ap312 3
11ap232 3 11ap259 2 11ap2ss 3 11aps13 3
11ap233 3 11ag260 2 11agos? 3 11ap314 3
11ap234 2 11apz61 2 11aposs 3 11aps15 3
11ago3s 2 11lag2e2 3 11lagagg 3 11ap316 3

(table continues)

59

K | oK) K | b(K) K | b(K) K | oK)
11ap317 3 11ap330 3 1Tagsas 2 11ap3s6 2
11ap31s 3 11ap331 3 11ap344 3 11ag3s7 2
11ap319 3 11ag3s2 3 1Tagsas 3 11ap3ss 2
11ap320 3 11ag3sss 2 1Tagsae 3 11ap3s9 2
11aps21 3 11ap334 2 11ap3a7 3 11ap360 2
11ap322 3 11ag3ss 2 1Tagsas 3 11ap3e1 3
11ap323 3 11lapsze 2 11agzag 3 11apze2 3
11ap324 3 11ag337 2 1Tagsso0 3 1Taoses 2
11ap32s 3 11ap33s 3 11ag3s1 3 11ap364 2
11ap326 3 11ap339 2 11ap3s2 3 11apze5 2
11aps327 3 11ag340 3 1Tagsss 3 11aoses 3
11apsos 3 11lagsq1 2 11lagpssg 3 11agsg7 2
11ap329 3 11ag3a2 2 11agsss 2

Table B.4: Computed bridge index of non-alternating prime knots with 11 crossings

60

K b(K) K b(K) K b(K) K b(K)
11ngpo1 3 1110026 3 1110051 3 11ngo76 4
110002 3 11ngo27 3 11noo52 3 11ngo77 4
11ngoo3 3 11ngoos 3 11ngos3 3 11ngo7s 4
11n0po4 3 1110029 3 1110054 3 11ngo79 3
11n0005 3 11n0030 3 1110055 3 11n00s0 3
11n0po6 3 11ngp31 3 1110056 3 11ngos1 4
11ngo07 3 11n0032 3 11noos57 3 11n00s2 3
11ngoos 3 11ngo33 3 11ngoss 3 11ngos3 3
11ngpo9 3 1110034 3 1170059 3 11ngps4 3
11ngo10 3 11n0035 3 11n0060 3 11n00s5 3
11ngo11 3 1110036 3 1110061 3 11ngoge 3
11ngo12 3 11ngo37 3 110062 3 11ngos7 3
11ngo13 3 11ngoss 3 11ngoe3 3 11ngoss 3
11ngo14 3 1110039 3 1110064 3 11ngpgg 3
11ngo15 3 110040 3 11n0065 3 11n0090 3
11ngo16 3 11ngo41 3 11710066 3 11ngog1 3
11ngo17 3 11ngo42 3 110067 3 11ngpg2 3
11noo18 3 11n0043 3 11nooes 3 11n0093 3
11ngo19 3 1110044 3 110069 3 11ngpg4 3
11ngp20 3 11n0045 3 11n0070 3 11n0095 3
11ngp21 3 1110046 3 11ngo71 4 11ngpgs 3
11ngp22 3 11ngoa7 3 11ngo72 4 11ngog7 3
11no023 3 11n0048 3 11npo7s 4 11n009s8 3
11ngp24 3 1110049 3 1110074 4 11ngpgg 3
11ngp2s 3 11ngps50 3 110075 4 11np100 3

(table continues)

61

K | b(K) K | b(K) K | b(K) K | b(K)
11no101 3 11no123 3 11no145 3 11ng167 3
11ng102 3 11ng124 3 11ng146 3 11ng168 3
11n0103 3 11no125 3 11no147 3 11n0169 3
11n0104 3 11no126 3 11no148 3 11no170 3
11np105 3 11ng127 3 110149 3 11ng17 3
11n0106 3 11no128 3 11no150 3 11no172 3
11ng107 3 11ng129 3 11ng151 3 11ng173 3
11n0108 3 11n0130 3 11no152 3 11n0174 3
11no109 3 11no131 3 11no153 3 11no175 3
11np110 3 11n0132 3 1110154 3 11np176 3
11ng111 3 11n0133 3 110155 3 11ng177 3
11ng112 3 11ng134 3 11ng156 3 11ng178 3
11no113 3 11n0135 3 11no157 3 11no179 3
11ng114 3 11n0136 3 11n0158 3 11np180 3
11no115 3 11ng137 3 110159 3 11ng181 3
11np116 3 11ng138 3 11n0160 3 11np1s2 3
11ng117 3 11ng139 3 11ng161 3 11ng183 3
11np118 3 11n0140 3 11n0162 3 11np184 3
11ng119 3 11ng141 3 11n0163 3 11ng185 3
11np120 3 11n0142 3 1110164 3

11ng121 3 1110143 3 11n0165 3

11ng122 3 11ng144 3 11ng166 3

Table B.5: Computed bridge index of alternating prime knots with 12 crossings

62

K b(K) K b(K) K b(K) K b(K)
12a0001 3 12a0026 3 12a0051 3 12a0076 3
12a0002 3 12a0027 3 12a0052 3 12a0077 3
12a0003 3 12a0028 3 12a0053 3 12ap07s 3
12a0004 3 12a0029 4 12a0054 3 12a0079 3
12a0005 3 12a0030 4 12a0055 3 12a0080 3
12a0006 3 12a0031 3 12a0056 3 12a00s81 3
12ap007 3 12a0032 3 12a0057 3 12a0082 3
12a000s 3 12a0033 4 12a0058 3 12a00s3 3
12a0009 3 12a0034 3 12a0059 3 12a0084 3
12ap010 3 12a0035 3 12a0060 3 12a0085 3
12a0011 3 12a0036 4 12a0061 3 12a00s6 3
12a0012 3 12a0037 3 12a0062 3 12a0087 3
12ap013 3 12a0038 2 12a0063 3 12ap0ss 3
12a0014 3 12a0039 3 12a0064 3 12a00s9 3
12a0015 3 12a0040 3 12a0065 3 12a0090 3
12a0016 3 12a0041 3 12a0066 3 12a0091 3
12a0017 3 12a0042 3 12a0067 3 12a0092 3
12a0018 3 12a0043 3 12a0068 3 12a0093 3
12a0019 3 12a0044 3 12a0069 3 12a0094 3
12ap020 3 12a0045 3 12a0070 3 12a0095 3
12a0021 3 12a0046 3 12a0071 3 12a0096 3
12a0022 3 12a0047 3 12a0072 3 12a0097 3
12a0023 3 12a004s8 3 12a0073 3 12a0098 3
12a0024 3 12a0049 3 12a0074 3 12a0099 3
12a0025 3 12a0050 3 12a0075 3 12a0100 3

(table continues)

63

K | oK) K | b(K) K | b(K) K | oK)
12a0101 3 12a0128 3 12a0155 3 12a0182 4
12a0102 3 12a0129 3 12a0156 3 12a0183 4
12a0103 3 12a0130 3 12a0157 3 12a0184 4
12a0104 3 12a0131 3 12a0158 3 12a0185 4
12a0105 3 12a0132 3 12ap159 3 12a0186 4
12a0106 3 12a0133 3 12a0160 3 12a0187 4
12a0107 3 12a0134 3 12a0161 3 12a0183 4
12a0108 3 12a0135 3 12a0162 3 12a0189 4
12a0109 3 12a0136 3 12a0163 3 12a0190 4
12a0110 3 12a0137 3 12a0164 3 12a0191 4
12a0111 3 12a0138 3 12a0165 3 12a0192 4
12a0112 3 12a0139 3 12a0166 3 12a0193 4
12a0113 3 12a0140 3 12a0167 3 12a0194 4
12a0114 3 12a0141 3 12a0168 3 12a0195 4
12a0115 3 12a0142 3 12ap169 3 12a0196 4
12a0116 3 12a0143 3 12a0170 3 12a0197 4
12a0117 3 12a0144 3 12a0171 3 12a0198 4
12a0118 3 12a0145 3 12a0172 3 12a0199 4
12a0119 3 12a0146 3 12a0173 3 12a0200 4
12ap120 3 12a¢147 3 12a¢174 3 12ap201 4
12a0121 3 12a0148 3 12a0175 3 12a0202 4
12ap122 3 12a0149 3 12a0176 3 12a0203 4
12a0123 3 12a0150 3 12a0177 3 12a0204 4
12a0124 3 12a0151 3 12a017s 3 12a0205 4
12a0125 3 12a0152 3 12ap179 3 12a0206 4
12a0126 3 12a0153 3 12a0180 3 12ap207 4
12ag127 3 12a0154 3 12a0181 3 12a0208 4

(table continues)

64

K | oK) K | b(K) K | b(K) K | oK)
12a0209 3 12a0236 3 12a0263 3 12a0290 3
12a0210 3 12a09237 3 12a0264 3 12ag291 3
12ap211 3 12a0238 3 12a0265 3 12a0292 3
12a0212 3 12a0239 2 12a0266 3 12a0293 3
12a0213 3 12a0240 3 12a0267 3 12a0294 3
12a0214 3 12ap2411 2 12a0268 3 12a0295 3
12a9215 3 12a0242 3 12a0269 3 12a0296 3
12a0216 3 12a0243 2 12a0270 3 12ap297 3
12ap217 3 12a0244 3 12a0271 3 12a0298 3
12a0218 3 12a0245 3 12ap272 3 12a0299 3
12ap219 3 12a0246 3 12a0273 3 12a0300 3
12a0220 3 12a0247 2 12a0274 3 12a0301 3
12a0221 2 12a0248 3 12ap275 3 12a0302 3
12a0222 3 12ap249 3 12a0276 3 12a0303 3
12a0223 3 12a0250 3 12a0277 3 12a0304 3
12a0224 3 12a0251 2 12ap27s 3 12a0305 3
12ag225 3 12a0252 3 12a0279 3 12a0306 3
12a0226 2 12a0253 3 12ap280 3 12a0307 3
12a0227 3 12a0254 3 12a0281 3 12a0308 3
12a0228 3 12ap255 3 12a0282 3 12a0309 3
12ap229 3 12a0256 3 12a0283 3 12a0310 3
12a0230 3 12a09257 2 12a0984 3 12a0311 3
12a0231 3 12a0258 3 12a0285 3 12a0312 3
12ap232 3 12ap259 2 12a0286 3 12a0313 3
12a0233 3 12a0260 3 12a0287 3 12a0314 3
12a0234 3 12a0261 2 12ap28s 3 12a0315 3
12a9235 3 12a0262 3 12a0289 3 12a0316 3

(table continues)

65

K | oK) K | b(K) K | b(K) K | oK)
12a0317 3 12a0344 3 12a0371 3 12a0398 3
12a0318 3 12a0345 3 12a0372 3 12a0399 3
12a0319 3 12a0346 3 12a0373 3 12a0400 3
12a0320 3 12a0347 3 12a0374 3 12a0401 3
12a0321 3 12a0348 3 12a0375 3 12a0402 3
12a0322 3 12a0349 3 12a0376 3 12a0403 3
12a0323 3 12a0350 3 12a0377 3 12a0404 3
12a0324 3 12a0351 3 12a037s8 3 12a0405 3
12a0325 3 12a0352 3 12a0379 3 12a0406 3
12a0326 3 12a0353 3 12a0330 3 12a0407 3
12a0327 3 12a0354 3 12a03s1 3 12a0408 3
12a03928 3 12a0355 3 12a0382 3 12a0409 3
12a0329 3 12a0356 3 12a0383 3 12a0410 3
12a0330 2 12a0357 3 12a0384 3 12a0411 3
12a0331 3 12a0358 3 12a0385 3 12a0412 3
12a0332 3 12a0359 3 12a03s6 3 12a0413 3
12a0333 3 12a0360 3 12a0387 3 12a0414 3
12a0334 3 12a0361 3 12a0388 3 12a0415 3
12a0335 3 12a0362 3 12a0389 3 12a0416 3
12a0336 3 12a0363 3 12a0390 3 12a0417 3
12a0337 3 12a0364 3 12a0391 3 12a0418 3
12a0338 3 12a0365 3 12a0392 3 12a0419 3
12a0339 3 12a0366 3 12a0393 3 12a0420 3
12a0340 3 12a0367 3 12a0394 3 12a0421 3
12a0341 3 12a0368 3 12a0395 3 12a0422 3
12a0342 3 12a0369 3 12a0396 3 12a0423 3
12a0343 3 12a0370 3 12a0397 3 12ap424 3

(table continues)

66

K | oK) K | b(K) K | b(K) K | oK)
12a0425 2 12a0452 3 12a0479 3 12a0506 2
12a0426 3 12a0453 3 12a0480 3 12a9507 3
12a0427 3 12a0454 3 12a0481 3 12a0508 2
12a0428 3 12a0455 3 12a0482 2 12a0509 3
12a0429 3 12a0456 3 12a0483 3 12a0510 2
12a0430 3 12a0457 3 12a0484 3 12a0511 2
12a0431 3 12a0458 3 12a04s5 3 12a0512 2
12a0432 3 12a0459 3 12a04s6 3 12a0513 3
12a0433 3 12a0460 3 12a0487 3 12a0514 2
12a0434 3 12a0461 3 12a0488 3 12a0515 3
12a0435 3 12a0462 3 12a0489 3 12a0516 3
12a0436 3 12a0463 3 12ag490 3 12a0517 2
12a0437 2 12a0464 3 12a0491 3 12a0518 2
12a0438 3 12a0465 3 12a0492 3 12a0519 2
12a0439 3 12a0466 3 12a0493 3 12a0520 2
12a0440 3 12a0467 3 12a0494 3 12a0521 2
12a0441 3 12a0468 3 12a0495 3 12ap522 2
12a0442 3 12a0469 3 12a0496 3 12a0523 3
12a0443 3 12a0470 3 12a0497 2 12a0524 3
12a0444 3 12ap471 3 12a049s 2 12ap595 3
12a0445 3 12a0472 3 12ag499 2 12a0526 3
12a0446 3 12a0473 3 12a0500 2 12ag527 3
12a0447 2 12a0474 3 12a0501 2 12a0528 2
12a0448 3 12a0475 3 12a0502 2 12a0529 3
12a0449 3 12a0476 3 12a0503 3 12a0530 3
12a0450 3 12a0477 3 12a0504 3 12a0531 3
12a0451 3 12a0478 3 12a0505 3 12a0532 2

(table continues)

67

K | oK) K | b(K) K | b(K) K | oK)
12a0533 2 12a0560 3 12a0587 3 12a0614 3
12a0534 2 12a0561 3 12a0588 3 12a0615 3
12a0535 2 12a0562 3 12a0589 3 12a0616 3
12a0536 2 12a0563 3 12a0590 3 12a0617 3
12a0537 2 12a0564 3 12a0591 3 12a0618 3
12a0538 2 12a0565 3 12a0592 3 12a0619 3
12a0539 2 12a0566 3 12a0593 3 12a0620 3
12a0540 2 12a0567 3 12a0594 3 12a0621 3
12a0511 2 12a0568 3 12a0595 2 12a0622 3
12a0542 3 12a0569 3 12a0596 2 12a0623 3
12a0543 3 12a0570 3 12a0597 2 12a0624 3
12a0544 3 12a0571 3 12a0598 3 12a0625 3
12a0545 2 12a0572 3 12a0599 3 12a0626 3
12a0546 3 12a0573 3 12a0600 2 12ap627 3
12a0547 3 12a0574 3 12a0601 2 12a0628 3
12a0548 3 12a0575 3 12a0602 3 12a0629 3
12a0549 2 12a0576 3 12a0603 3 12a0630 3
12a0550 2 12a0577 3 12a0604 3 12a0631 3
12a0551 2 12a0578 3 12a0605 3 12a0632 3
12a0552 2 12a0579 2 12a0606 3 12a0633 3
12a0553 3 12a0580 2 12a0607 3 12a0634 3
12a0554 4 12a0581 2 12ap608 3 12a0635 3
12a0555 3 12a0582 2 12a0609 3 12a0636 3
12a0556 3 12a0583 2 12a0610 3 12a0637 3
12a0557 3 12a0584 2 12a0611 3 12a0638 3
12a0558 3 12a0585 2 12a0612 3 12a0639 3
12a0559 3 12a0586 3 12a0613 3 12a0640 3

(table continues)

68

K | oK) K | b(K) K | b(K) K | oK)
12a0641 3 12a0668 3 12a0695 3 12a0722 2
12ap642 3 12a0669 3 12a0696 3 12ag723 2
12a0643 2 12a0670 3 12a0697 3 12a0724 2
12a0644 2 12a0671 3 12a0698 3 12a0725 3
12a0645 3 12a0672 3 12a0699 3 12a0726 2
12a0646 3 12a0673 3 12ag700 3 12ap727 2
12ap647 3 12a0674 3 12a0701 3 12ag728 2
12a0648 3 12a0675 3 12ag702 3 12a0729 2
12a0649 2 12a0676 3 12ag703 3 12a0730 3
12a0650 2 12a0677 3 12a0704 3 12a0731 2
12a0651 2 12a0678 3 12a9705 3 12a0732 2
12a0652 2 12a0679 3 12ag706 3 12a0733 2
12a0653 3 12a0680 3 12a0707 3 12a0734 3
12a0654 3 12a0681 3 12ag708 3 12a0735 3
12a0655 3 12a0682 2 12a0709 3 12a0736 2
12a0656 3 12a0683 3 12a9710 3 12a0737 3
12ap657 3 12a0684 2 12a0711 3 12a9738 2
12a0658 3 12a0685 3 12a0712 3 12a0739 3
12a0659 3 12a06s6 3 12a0713 2 12a0740 2
12ap660 3 12ap6s7 3 12a9714 2 12a¢p741 3
12a0661 3 12a06s8 3 12ag715 2 12ap742 3
12ap662 3 12a0689 3 12a0716 2 12a0743 2
12a0663 3 12a0690 2 12a0717 2 12a0744 2
12a0664 3 12a0691 2 12a0718 2 12a0745 2
12a0665 3 12a0692 4 12a0719 3 12a0746 3
12a0666 3 12a0693 4 12ag720 2 12a0747 3
12ap667 3 12a0694 4 12a0721 2 12a0748 3

(table continues)

69

K | oK) K | b(K) K | b(K) K | oK)
12a0749 3 12a0776 3 12a0s803 2 12a0830 3
12a¢750 4 12a9777 3 12a0g04 3 12a0831 3
12a0751 3 12a0778 3 12a0s805 3 12a0832 3
12a0752 3 12a0779 3 12a0s806 3 12a0833 3
12a0753 3 12a07s0 3 12a0807 3 12a0834 3
12a0754 3 12a0781 3 12a0s808 3 12a0835 3
12ag755 3 12a0782 3 12a0s809 3 12a0g836 3
12a0756 3 12a07s83 3 12a0s810 3 12a0837 3
12a0757 3 12a0784 3 12a0811 3 12a0838 3
12a¢758 2 12a0785 3 12a0g12 3 12a0s39 3
12a0759 2 12a0786 3 12a0813 3 12a0840 3
12a0760 2 12ag787 3 12a0814 3 12a0841 3
12a0761 2 12a07ss 3 12a0315 3 12a0842 3
12a0762 2 12a0789 3 12a0816 3 12a0843 3
12a¢763 2 12a0790 3 12a0817 3 12a0844 3
12a0764 2 12a0791 2 12a0818 3 12a0845 3
12ag765 3 12a0792 2 12a0s819 3 12a0846 3
12a0766 3 12ap793 3 12a0320 3 12a0g47 3
12a0767 3 12a0794 3 12a0821 3 12a0848 3
12a0768 3 12a0795 3 12a0g22 3 12a0849 3
12a0769 3 12a0796 2 12a0823 3 12a0g850 3
12a0770 3 12ag797 2 12a0824 3 12a0g51 3
12a0771 3 12ap79s8 3 12a0g25 3 12a0852 3
12a9772 3 12a0799 3 12a0326 3 12a0853 3
12a¢773 2 12a0800 3 12a0g27 3 12a0854 3
12a0774 2 12a0s01 4 12a0328 3 12a0855 3
12ag775 2 12a0802 2 12a0829 3 12a0g56 3

(table continues)

70

K | oK) K | b(K) K | b(K) K | oK)
12a0857 3 12a0884 3 12a0911 3 12a0938 3
12a0g58 3 12a0s85 3 12a0912 3 12a0939 3
12a0859 3 12a0886 3 12a0913 3 12a0940 3
12a0860 3 12a0887 3 12a0914 3 12a0941 3
12a0s61 3 12a03ss 3 12a0915 3 12a0942 3
12a0862 3 12a0889 3 12a0916 3 12a0943 3
12a0863 3 12a0890 3 12a0917 3 12a0944 3
12a0864 3 12a0891 3 12a0918 3 12a0945 3
12a0865 3 12a0892 3 12a0919 3 12a0946 3
12a0s66 3 12a0893 3 12a0920 3 12a0947 3
12a0867 3 12a0894 3 12a0921 3 12a0948 3
12a0g68 3 12a0s95 3 12a0922 3 12a0949 3
12a0s69 3 12a0896 3 12a0923 3 12a0950 3
12a0870 3 12a0897 3 12a0924 3 12a0951 3
12a0s871 3 12a0g9s 3 12a0925 3 12a0952 3
12a0s72 3 12a0899 3 12a0926 3 12a0953 3
12a0873 3 12a0900 3 12a0927 3 12a0954 3
12a0874 3 12a0901 3 12a0928 3 12a0955 3
12a0s75 3 12a0902 3 12a0929 3 12a0956 3
12a0s76 3 12a0903 3 12a0930 3 12a0957 3
12a0s77 3 12a0904 3 12a0931 3 12a0958 3
12a0g78 3 12a0905 3 12a0932 3 12ag959 3
12a0s79 3 12a0906 3 12a0933 3 12a0960 3
12a08s0 3 12a0907 3 12a0934 3 12a0961 3
12a0ss1 3 12a090s8 3 12a0935 3 12a0962 3
12a0ss2 3 12ap909 3 12ap936 3 12ag963 3
12a0g8s3 3 12a0910 3 12a0937 3 12a0964 3

(table continues)

71

K | oK) K | b(K) K | b(K) K | oK)
12a0965 3 12a0992 3 12a1019 3 12a1046 3
12a0966 3 12a0993 3 12a1020 3 12a1047 3
12a0967 3 12a0994 3 12a1021 3 12a1048 3
12a0968 3 12a0995 3 12a1022 3 12a1049 3
12a0969 3 12a0996 3 12a1023 2 12a1050 3
12a0970 3 12a0997 3 12a1024 2 12a1051 3
12ag971 3 12a0998 3 12a1025 3 12a1952 3
12a0972 3 12a0999 3 12a1026 3 12a1053 3
12a0973 3 12a1000 3 12a1027 3 12a1054 3
12a0974 3 12a1001 3 12a1028 3 12a1055 3
12a0975 3 12a1002 3 12a1029 2 12a1056 3
12a0976 3 12a1003 3 12a1030 2 12a1057 3
12a0977 3 12a1004 3 12a1031 3 12a1058 3
12a0978 3 12a1005 3 12a1032 3 12a1059 3
12a0979 3 12a1006 3 12a1033 2 12a1060 3
12a0950 3 12a1007 3 12a1034 2 12a1061 3
12ag9g1 3 12a1008 3 12a1035 3 12a1062 3
12a09s2 3 12a1009 3 12a1036 3 12a1063 3
12a09s3 3 12a1010 3 12a1037 3 12a1064 3
12a0984 3 12a1011 3 12a1038 3 12a1065 3
12a0985 3 12a1012 3 12a1039 2 12a1066 3
12a0986 3 12a1013 3 12a1040 2 12a1067 3
12a09s87 3 12a1014 3 12a1041 3 12a1068 3
12a09ss 3 12a1015 3 12a1042 3 12a1069 3
12a09s9 3 12a1016 3 12a1043 3 12a1070 3
12a0990 3 12a1017 3 12a1044 3 12a1071 3
12ag991 3 12a1018 3 12a1045 3 12a1972 3

(table continues)

72

K | oK) K | oK) K | bK) K | bEK)
12a1073 3 12a1100 3 12a1127 2 12a1154 3
12a1974 3 12a1101 3 12a1198 2 12a1155 3
12a1075 3 12a1102 3 12a1129 2 12a1156 3
12a41076 3 12a1103 3 12a1130 2 12a1157 2
12a1077 3 12a1104 3 12a1131 12a1158 2
12a41078 3 12a1105 3 12a1132 2 12a1159 2
12a1979 3 12a1106 3 12a1133 2 12a1160 3
12a1080 3 12a1107 3 12a1134 2 12a1161 2
12a1081 3 12a1108 3 12a1135 2 12a1162 2
12a1082 3 12a1109 3 12a1136 2 12a1163 2
12a1083 3 12a1110 3 12a1137 3 12a1164 3
12a1084 3 12a1111 3 12a1138 2 12a1165 2
12a1085 3 12a1112 3 12a1139 2 12a1166 2
12a1086 3 12a1113 3 12a1140 2 12a1167 3
12a1087 3 12a1114 3 12a1141 3 12a1168 3
12a1088 3 12a1115 3 12a1142 3 12a1169 3
12a1089 3 12a1116 3 12a1143 3 12a1170 3
12a1090 3 12a1117 3 12a1144 3 12a1171 3
12a1091 3 12a1118 3 12a1145 2 12a1172 3
12a1092 3 12a1119 3 12a1146 2 12a1173 3
12a1093 3 12a1120 3 12a1147 3 12a1174 3
12a1994 3 12a1121 3 12a1148 2 12a1175 3
12a1095 3 12a1122 3 12a1149 2 12a1176 3
12a1096 3 12a1123 3 12a1150 3 12a1177 3
12a1097 3 12a1124 3 12a1151 3 12a1178 3
12a1098 3 12a11925 2 12a1152 3 12a1179 3
12a1999 3 12a1126 2 12a1153 3 12a1180 3

(table continues)

73

K | oK) K | oK) K | bK) K | bEK)
12a1181 3 12a1208 3 12a1235 3 12a1262 3
12a1182 3 12a1909 3 12a1236 3 12a1963 3
12a1183 3 12a1210 3 12a1237 3 12a1264 3
12a1184 3 12a1211 3 12a1238 3 12a1265 3
12a1185 3 12a1212 3 12a1239 3 12a1266 3
12a1186 3 12a1213 3 12a1240 3 12a1267 3
12a1187 3 12a1214 3 12a1941 3 12a1268 3
12a1188 3 12a1215 3 12a1242 3 12a1269 3
12a4189 3 12a1216 3 12a1243 3 12a41270 3
12a1190 3 12a1217 3 12a1244 3 12a1971 3
12a1191 3 12a1218 3 12a1245 3 12a1272 3
12a1192 3 12a1219 3 12a1246 3 12a1973 2
12a11903 3 12a1220 3 12a1247 3 12a1974 2
12a1194 3 12a1291 3 12a1248 3 12a1275 2
12a1195 3 12a1220 3 12a1249 3 12a1276¢ 2
12a1196 3 12a1223 3 12a1250 3 12a1277 2
12a1197 3 12a1924 3 12a1951 3 12a1978 2
12a1198 3 12a1225 3 12a1252 3 12a1279 2
12a1199 3 12a1226 3 12a1253 3 12a1280 3
12a1200 3 12a12927 3 12a1254 3 12a1981 2
12a1201 3 12a1208 3 12a1255 3 12a1282 2
12a1202 3 12a1929 3 12a12956 3 12a1983 3
12a1203 3 12a1230 3 12a1257 3 12a19284 3
12a1204 3 12a1231 3 12a1258 3 12a1285 3
12a1205 3 12a1232 3 12a1259 3 12a1286 3
12a1206 3 12a1233 3 12a1260 3 12a1287 2
12a1207 3 12a1934 3 12a1961 3 12a19283 3

Table B.6: Computed bridge index of non-alternating prime knots with 12 crossings

74

K b(K) K b(K) K b(K) K b(K)
1210001 3 1210026 3 1210051 3 12n0076 3
1210002 3 12n0027 3 1210052 3 12n0077 3
12n0003 3 12n0028 3 12n0053 3 12ng078 3
12n0004 3 1210029 3 1210054 3 12n0079 3
12n0005 3 1210030 3 1210055 4 1210080 3
1210006 3 1210031 3 1210056 4 1210081 3
12n0007 3 1210032 3 12n0057 4 12n0082 3
12n0008 3 12n0033 3 12n0058 4 12n0083 3
12n0009 3 1210034 3 1210059 4 12n0084 3
12n0010 3 1210035 3 1210060 4 1210085 3
12n0011 3 1210036 3 1210061 4 12n0036 3
12n0012 3 12n0037 3 1210062 4 12ngos7 3
12n0013 3 12n0038 3 12n0063 4 12n00s8 3
1210014 3 1210039 3 1210064 4 1210089 3
12n0015 3 1210040 3 1210065 3 12n0090 3
1210016 3 1210041 3 1210066 4 12n0091 3
12ng017 3 1210042 3 1210067 4 12n0092 3
12n0018 3 12n0043 3 1210068 3 12n0093 3
12n0019 3 1210044 3 1210069 3 12n0094 3
12n0020 3 1210045 3 1210070 3 12n0095 3
12n0021 3 1210046 3 1210071 3 12n0096 3
12ngp22 3 1210047 3 1210072 3 12ngo97 3
12n0023 3 1210048 3 12n0073 3 12n0098 3
12n0p24 3 1210049 3 1210074 3 12n0099 3
12n0p25 3 1210050 3 1210075 3 12n0100 3

(table continues)

75

K | b(K) K | b(K) K | b(K) K | b(K)
12n0101 3 12n0128 3 1210155 3 12n0182 3
12n0102 3 12n0129 3 12n¢156 3 12n0183 3
12n0103 3 12n0130 3 12n0157 3 12n0184 3
12n0104 3 12n0131 3 12n0158 3 12n0185 3
12n0105 3 1210132 3 1210159 3 12n0186 3
1210106 3 12n0133 3 1210160 3 12n0187 3
12ng107 3 12n0134 3 12n0161 3 12n0188 3
12n0108 3 1210135 3 12n0162 3 1210189 3
12n0109 3 12n0136 3 12n0163 3 12n0190 3
12n0110 3 12n0137 3 1210164 3 1210101 3
12n0111 3 12n0138 3 1210165 3 12n0192 3
12n0112 3 12n0139 3 12np166 3 12n0193 3
12n0113 3 1210140 3 12n0167 3 1210194 3
12n0114 3 1210141 3 1210168 3 12n0195 3
12n0115 3 1210142 3 1210169 3 12n0196 3
12n0116 3 1210143 3 1210170 3 12n9197 3
12n0117 3 12n0144 3 12np171 3 12n0198 3
12n0118 3 1210145 3 1210172 3 12n0199 3
12n0119 3 1210146 3 1210173 3 12n0200 3
12n0120 3 12n0147 3 1210174 3 1210201 3
12n0121 3 1210148 3 1210175 3 12n0202 3
12n01922 3 12n0149 3 12n9176 3 12n0203 3
12n0123 3 12n0150 3 1210177 3 12n0204 3
12n0124 3 12n0151 3 1210178 3 12n0205 3
12n0125 3 1210152 3 1210179 3 12n0206 3
12n0126 3 1210153 3 1210180 3 12ng207 3
12ng127 3 12n0154 3 12n0181 3 12n0208 3

(table continues)

76

K | b(K) K | b(K) K | b(K) K | b(K)
1210209 3 1210236 3 1210263 3 1210290 3
12n0p210 3 12ng237 3 12n0264 3 12n0p291 3
12n0211 3 1210238 3 1210265 3 1210292 3
12n0212 3 1210239 3 1210266 3 1210293 3
12n0213 3 1210240 3 1210267 3 12n0294 3
12n0214 3 12n0241 3 1210268 3 1210295 3
12n0215 3 12n0249 3 12n0269 3 12n296 3
12n0216 3 1210243 3 1210270 3 1210297 3
12n0217 3 1210244 3 12n0271 3 1210298 3
12n0218 3 1210245 3 1210272 3 12n0299 3
12n0219 4 1210246 3 1210273 3 12n0300 3
1210220 4 1210247 3 1210274 3 1210301 3
12n0221 4 1210248 3 1210275 3 12n0302 3
12np222 4 1210249 3 1210276 3 12n0303 3
12n0223 4 1210250 3 1210277 3 12n0304 3
12n0224 4 12n0251 3 1210278 3 12n0305 3
12n0295 4 12n0259 3 12np279 3 12n0306 3
12n0226 3 1210253 3 1210280 3 12n0307 3
12ng207 3 1210254 3 1210281 3 12n0308 3
12n0208 3 1210255 3 1210282 3 12n0309 3
1210229 4 1210256 3 1210283 3 1210310 3
12n0230 3 12n0257 3 12n0284 3 12n0311 3
12n0231 3 1210258 3 1210285 3 12n0312 3
12n0232 3 1210259 3 1210286 3 12n0313 3
12n0233 3 1210260 3 1210287 3 12n0314 3
12n0234 3 12n0261 4 1210288 3 12n0315 3
12n0235 3 12n0262 3 12n0289 3 12n0316 3

(table continues)

77

K | b(K) K | b(K) K | b(K) K | b(K)
12n0317 3 1210344 3 12n0371 3 1210398 3
12n0318 3 12n0345 3 12n0379 3 12n0399 3
1210319 3 1210346 3 1210373 3 1210400 3
1210320 3 12n0347 3 1210374 3 1210401 3
12np321 3 1210348 3 1210375 3 1210402 3
12n0322 3 1210349 3 1210376 3 1210403 3
12n03923 3 12n0350 3 12n0377 3 12n0404 3
1210324 3 1210351 3 12n037s 3 1210405 3
1210325 3 1210352 3 1210379 3 1210406 3
12n0326 3 1210353 3 1210380 3 12n0407 3
12np327 3 1210354 3 1210381 3 12n0408 3
12n0398 3 12n0355 3 12n03s2 3 12n0409 3
1210329 3 1210356 3 1210383 3 12n0410 3
1210330 3 12n0357 3 1210384 3 12n0411 3
12n0331 3 1210358 3 1210385 3 1210412 3
1210332 3 1210359 3 1210386 3 1210413 3
12n0333 3 12n0360 3 12n03s7 3 12n0414 3
12n0334 3 12n0361 3 1210388 3 12n0415 3
1210335 3 1210362 3 1210389 3 12n0416 3
12n0336 3 1210363 3 1210390 3 12n0417 3
12n0337 3 1210364 3 1210391 3 1210418 3
12n0338 3 12n0365 3 12n0392 3 12n0419 3
1210339 3 1210366 3 1210393 3 12n0420 3
1210340 3 12n0367 3 1210394 3 12n0421 3
12n0341 3 1210368 3 1210395 3 1210420 3
12n0342 3 1210369 3 1210396 3 12n0423 3
12n0343 3 12n0370 3 12n0397 3 12n0494 3

(table continues)

78

K | b(K) K | b(K) K | b(K) K | b(K)
1210425 3 1210452 3 1210479 3 1210506 3
12n0496 3 12n0453 3 12n0480 3 12n0507 3
12n0427 3 1210454 3 1210481 3 1210508 3
1210428 3 1210455 3 1210482 3 1210509 3
12n0429 3 1210456 3 1210483 3 12n0510 3
1210430 3 12n0457 3 1210484 3 12n0511 3
12n0431 3 12n0458 3 12n0485 3 12n0512 3
1210432 3 1210459 3 1210486 3 12n0513 3
1210433 3 1210460 3 12n0487 3 12n0514 3
1210434 3 1210461 3 1210488 3 12n0515 3
12n0435 3 1210462 3 1210489 3 12n0516 3
12n0436 3 12n0463 3 12n0490 3 12n0517 3
12n0437 3 1210464 3 1210491 3 12n0518 3
1210438 3 1210465 3 1210492 3 12n0519 3
12n0439 3 1210466 3 1210493 3 12n0520 3
1210440 3 12n0467 3 1210494 3 1210521 3
12n0441 3 12n0468 3 12n0495 3 12n0522 3
1210442 3 1210469 3 1210496 3 12n0523 3
1210443 3 1210470 3 1210497 3 12n0524 3
1210444 3 12n0471 3 1210498 3 12n0525 3
1210445 3 1210472 3 1210499 3 12n0526 3
12n0446 3 12n0473 3 12n0500 3 12n05027 3
12n0447 3 1210474 3 1210501 3 12n0508 3
1210448 3 1210475 3 1210502 3 12n0529 3
1210449 3 1210476 3 1210503 3 12n0530 3
12n0450 3 12n0477 3 1210504 3 12n0531 3
12n0451 3 12n0478 3 12n0505 3 12n0532 3

(table continues)

79

K | b(K) K | b(K) K | b(K) K | b(K)
1210533 3 1210560 3 12n0587 3 12n0614 3
12n0534 3 12nps561 3 12n0588 3 12n0615 3
1210535 3 1210562 3 1210589 3 12n0616 3
1210536 3 12n0563 3 1210590 3 12n0617 3
12n0537 3 1210564 3 1210591 3 1210618 3
1210538 3 1210565 3 1210592 3 12n0619 3
12n0539 3 12n0566 3 12n0593 3 12n0620 3
1210540 3 12n0567 3 1210594 3 12n0621 3
12n0541 3 1210568 3 1210595 3 12n0622 3
12n0542 3 1210569 3 1210596 3 12n0623 3
1210543 3 1210570 3 12n0597 3 12n0624 3
12n0544 3 12n0571 3 12n0598 3 12n0625 3
1210545 3 12n0572 3 1210599 3 1210626 3
12n0546 3 12n0573 3 1210600 3 12np627 3
12n0547 3 1210574 3 1210601 3 12n0628 3
1210548 3 1210575 3 1210602 3 1210629 3
12n0549 3 12n0576 3 12n0603 3 12n0630 3
1210550 3 12n0577 3 1210604 3 12n0631 3
12n0551 3 12n0578 3 1210605 3 12n0632 3
12n0552 3 1210579 3 1210606 3 12n0633 3
1210553 4 1210580 3 12n0607 3 1210634 3
12n0554 4 12n0s581 3 12n0608 3 12n0635 3
12n0555 4 12n0582 3 1210609 3 12n0636 3
1210556 4 1210583 3 1210610 3 12n0637 3
12n0557 3 1210584 3 1210611 3 12n0638 3
1210558 3 1210585 3 12n0612 3 12n0639 3
12n0559 3 12n0586 3 12np613 3 12n0640 3

(table continues)

80

K | b(K) K | b(K) K | b(K) K | b(K)
1210641 3 12n0668 3 1210695 3 12n0722 3
12n0642 4 12n0669 3 12n0696 3 12ng793 3
1210643 3 12n0670 3 12n0697 3 12n0724 3
1210644 3 12n0671 3 1210698 3 12n0725 3
1210645 3 1210672 3 1210699 3 12n0726 3
1210646 3 12n0673 3 1210700 3 12n0727 3
12n0647 3 12n0674 3 12n9701 3 12ng798 3
1210648 3 1210675 3 1210702 3 12n0729 3
1210649 3 12n0676 3 1210703 3 12n0730 3
1210650 3 12n0677 3 1210704 3 12n9731 3
12n0651 3 12n0678 3 1210705 3 12n¢732 3
12n0652 3 12n0679 3 12n9706 3 12ng733 3
1210653 3 1210680 3 12n0707 3 1210734 3
12n0654 3 12n0681 3 1210708 3 12n0735 3
12n0655 3 1210682 3 1210709 3 12n0736 3
1210656 3 1210683 3 12n0710 3 12n9737 3
12n0657 3 12n0684 3 12n9711 3 12ng738 3
12n0658 3 1210685 3 1210712 3 12n0739 3
1210659 3 1210686 3 12n0713 3 12n0740 3
12n0660 3 1210687 3 1210714 3 12n9741 3
12n0661 3 1210688 3 12n0715 3 12n0742 3
12n0662 3 12n06s9 3 12n9716 3 12n0743 3
1210663 3 1210690 3 1210717 3 1210744 3
12n0664 3 12n0691 3 1210718 3 12n0745 3
12n0665 3 1210692 3 1210719 3 1210746 3
12n0666 3 1210693 3 1210720 3 12n09747 3
12n0667 3 12n0694 3 12ng791 3 12n0748 3

(table continues)

81

K | b(K) K | b(K) K | b(K) K | b(K)
12n0749 3 12n0776 3 1210803 3 1210830 3
12ng750 3 12ng777 3 12n0g04 3 12n0831 3
12n0751 3 12n0778 3 1210805 3 1210832 3
12n0752 3 12n0779 3 1210806 3 1210833 3
12n0753 3 12n0780 3 1210807 3 12n0g34 3
12n0754 3 1210781 3 1210808 3 1210835 3
12ng755 3 12n0789 3 12n0g09 3 12n0836 3
1210756 3 1210783 3 1210810 3 12n0837 3
12n09757 3 12n0784 3 12n0811 3 1210838 3
12n0758 3 1210785 3 1210812 3 12n0g39 3
1210759 3 1210786 3 1210813 3 1210840 3
12ng760 3 12ng787 3 12n0g14 3 12n0841 3
12n0761 3 1210788 3 1210815 3 1210842 3
12n0762 3 12n0789 3 1210816 3 1210843 3
12n0763 3 1210790 3 1210817 3 12n0g44 3
12n0764 3 1210791 3 1210818 3 12n0845 3
12ng765 3 12n¢799 3 12npg19 3 12n0846 3
1210766 3 1210793 3 12n0820 3 12n0g47 3
12ng767 3 12n0794 3 1210821 3 1210848 3
12n0768 3 1210795 3 1210822 3 12n0849 3
12n0769 3 12n0796 3 1210823 3 1210850 3
12ng770 3 12ng797 3 12n0g824 3 12n0851 3
12n9771 3 1210798 3 1210825 3 12n0g52 3
12ng772 3 1210799 3 1210826 3 12n0853 3
12n9773 3 1210800 3 1210827 3 12n0g54 3
12n0774 3 1210801 3 1210828 3 12n0g55 3
12ng775 3 12n0g02 3 12n0g29 3 12n0856 3

(table continues)

82

K | b(K) K | b(K) K | b(K) K | b(K)
12n0857 3 1210865 3 1210873 3 12n0881 3
12n0858 3 12n0s66 3 12n0g74 3 12n0882 3
1210859 3 12n0s67 3 1210875 3 1210883 3
1210860 3 1210868 3 1210876 3 1210884 3
12n0g61 3 1210869 3 1210877 3 12n0885 3
1210862 3 1210870 3 12n087s 3 12n0ss6 3
12n0s63 3 12nps71 3 12n0g79 3 12n0s887 3
1210864 3 1210872 3 1210880 3 12n0sss 3

83

APPENDIX C
CODE USED TO COMPUTE THE BRIDGE INDEXES

Following is the code we used to compute the upper bound on the bridge indexes.
The formatting of the code has been adjusting slightly to improve readability in print

format.

C.1 bridge computation.py

#!/usr/bin/env python2.7

import ast

import csv

import json

import logging

import sys, getopt, os

from reduce_bridges import =

logging.basicConfig(filename="'bridge_computation.log', filemode='w"',

format="'%(asctime)s: Y% (message)s', datefmt='Ym/%d/%Y %I:%M:%S %p',

level=logging.WARNING)

def bridge_computation(argv):

inputfile = "'
outputdir = 'output'
try:
opts, args = getopt.getopt(argv,"hi:o:",["inputfile=", "outputdir",])

except getopt.GetoptError:
print 'bridge_computation.py -i <inputfile> -o <outputdir>'
sys.exit (2)
for opt, arg in opts:
if opt == '-h':
print 'bridge_computation.py -i <inputfile> -o <outputdir>'
sys.exit ()
elif opt in ("-i", "--inputfile"):

inputfile = arg

84

elif opt in ("-o", "--outputdir"):

outputdir = arg

Create a directory for outputs.
if not os.path.exists(outputdir):

os.makedirs (outputdir)

if os.path.isdir (inputfile):
Traverse the directory to process all csv files.
for root, dirs, files in os.walk(inputfile):
for file in files:
if file.endswith(".csv"):
try:
calculate_bridge_index (
os.path.join(root, file), outputdir)
except:
logging.error('Failed to fully process ' + str(file))
print 'Failed to fully process ' + str(file)
elif os.path.isfile(inputfile):
calculate_bridge_index (inputfile, outputdir)
else:
input_message = ' '.join ([
'The specified input is not a file or a directory.',
'Please try a different input.'])
print input_message

logging.warning (input_message)

def calculate_bridge_index(inputfile, outputdir):
Read in a CSV.
with open(inputfile) as csvfile:
fieldnames = ['name', 'pd_notation']
knotreader = csv.DictReader (csvfile)
for row in knotreader:

Create a file to store the output of all trees of this knot.

outfile_name = outputdir + '/' + row['mname']l + ' _output.csv'
with open(outfile_name, "w") as outfile:
outputwriter = csv.writer(outfile, delimiter=',"')
outputwriter.writerow(['name','computed_bridge_index'])
try:

Create a knot object.

knot = create_knot_from_pd_code(

ast.literal_eval(row['pd_notation']),

85

row['name '])

logging.info ('Processing knot ' + str(knot.name))

logging.debug('The initial PD code of the knot is ' + str(knot))

Simplify the knot now to avoid choosing bridges which will be

discarded during simplification.
knot.simplify_rml_rm2_recursively ()
if knot.free_crossings != []:

base_knot_name = rowl['name']

directory = 'knot_trees/' + base_knot_name

knot.list_bridge_ts(directory, 0)

for subdir, dirs, files in os.walk(directory):

more_to_process = True
depth_to_process = 0

while more_to_process == True:

more_to_process = process_tree_with_depth(subdir,

depth_to_process, outfile_name)

depth_to_process += 1
break
else:
write_output (knot, outfile_name)
except:
print 'Failed to fully process the knot.

warning_message = ' '.join([

Moving on to the next knot'

'Failed to fully process', str(knot.name) + '.',

'Moving on to the next knot.'])
logging.warning(warning_message)

continue

def process_tree_with_depth(directory, depth, outfile_name):

more_to_process = False
for subdir, dirs, files in os.walk(directory):
for file in files:

If file name ends in "_" + depth + ".csv",

open the file.

if (depth == int(file.rsplit('_', 1) [-1].rsplit('.', 1) [0]1)):

file_path = os.path.join(subdir, file)

with open(file_path) as treecsvfile:

treereader = csv.DictReader (treecsvfile)

for tree in treereader:

knot = create_knot_from_pd_code(

def

if

__name__ ==

ast.literal_eval(tree['pd_notation']),
tree['name '],
ast.literal_eval(tree['bridges']))
while knot.free_crossings != []:
try:
Drag underpasses & simplify
until no moves are possible.
args = knot.find_crossing_to_drag()
knot.drag_crossing_under_bridge_resursively (*xargs)
knot.simplify_rml_rm2_recursively ()
except:
break
if knot.free_crossings == []:
write_output (knot, outfile_name)
else:
knot.list_bridge_ts (subdir, depth + 1)
more_to_process = True

return more_to_process

write_output (knot, outfile_name):

computed_bridge_index = len(knot.bridges)

info_message = ' '.join([
'Finished processing', str(knot.name) + '.',
'The final bridge number is', str(computed_bridge_index)])

logging.info(info_message)
logging.debug('The final PD code of ' + str(knot.name) + ' is ' + str(knot))
Add the results to our output file.
try:
with open(outfile_name, "a") as outfile:
outputwriter = csv.writer (outfile, delimiter="',")
outputwriter.writerow ([knot.name, computed_bridge_index])
except IOError:
error_message = ' '.join([
'Cannot write output file.'

'Be sure the directory "outputs" exists and is writeable.'])

sys.exit (error_message)

" ".

__main__

bridge_computation(sys.argv[1:])

86

C.2 reduce_bridges.py

#!/usr/bin/env python2.7

import itertools

from itertools import repeat

import logging

import numpy

import sys, os, csv, copy

class Crossing:

def

def

def

def

def

def

__init__(self, pd_code, bridge = None):
self .pd_code = pd_code

self .bridge = bridge

_eq__(self, other):

return self.pd_code == other.pd_code and self.bridge == other.bridge

__hash__(self):

return hash(tuple(self.pd_code))

_str__(self):

return str([self.pd_code, self.bridgel)

alter_elements_greater_than(self, value, addend, maximum = Nomne):

nnn

Change the value of all elements in a Crossing which are greater

than the provided value.

Arguments:

value -- (int) The number to compare each element of the crossing with.
addend -- (int) The number to add to crossing elements greater than value.
maximum -- (int) The maximum allowed value of elements in the crossing.
win

self.pd_code = [alter_if_greater(x, value, addend, maximum) for x in

self .pd_codel

return self

alter_for_drag(self, ordered_segments):

87

def

def

88

self.pd_code = [
alter_element_for_drag(x, ordered_segments[0],
ordered_segments [1]) for x in self.pd_code]

return self

has_duplicate_value (self):

nnn

Determine if there are duplicate values in the PD notation of a crossing.
win
sets = reduce(
lambda (u, d), o : (u.union([o]), d.union(u.intersection([0]))),
self.pd_code,
(set (), set()))
if sets[1]:
return list(sets[1]) [0]
else:

return False

overpass_traveled_from(self):
win
Find the value of the overcross segment of a crossing we travel from
toward the other.
win
e,f,g,h = self.pd_code
if abs(f - h) == 1:
return min(f, h)
else:

return max(f, h)

class Knot:

def

__init__(self, crossings, name = None, bridges = None):

self .name = name

self.crossings = crossings # crossings is a list of Crossing objects
self.free_crossings = crossings/[:]

self .bridges = {}

if bridges:

for bridge in bridges.itervalues():
bridge_end = bridge [0]
for free_crossing in self.free_crossings:

count = free_crossing.pd_code.count(bridge_end)

if count == 1:
i = free_crossing.pd_code.index(bridge_end)
if ((i == 1) or (i == 3)):

self .designate_bridge(free_crossing)
break
elif count == 2:
self.designate_bridge(free_crossing)

break

def __eq__(self, other):

return self.crossings == other.crossings

def __str__(self):

return str([crossing.pd_code for crossing in self.crossings])

def alter_bridge_segments_greater_than(self, value, addend, maximum = Nomne):

nnn

Change the value of the bridge end segments if they are greater

than the provided value.

Arguments:

value -- (int) The number to compare each segment with.
addend -- (int) The number to add to the segments greater than value.
maximum -- (int) The maximum allowed value of segments in the bridge.

nnn

for bridge_index, bridge in self.bridges.iteritems():

for x in bridge:

x_index = bridge.index(x)

self .bridges [bridge_index][x_index] = alter_if_greater(x, value,
addend,
maximum)

return self

def bridge_crossings (self):

return diff (self.crossings, self.free_crossings)

def delete_bridge(self, bridge_key):
for crossing in self.bridge_crossings():
if (crossing.bridge == bridge_key):

crossing.bridge = None

89

def

def

90

self .free_crossings.append(crossing)
del(self.bridges[bridge_key])
logging.debug('The bridge with key ' + str(bridge_key)
+ ' has been deleted.')

return self

delete_crossings (self, indices):
nnn
Delete crossings from a knot.

This removes objects from both knot.crossings and knot.free_crossings.

Arguments:
indices -- (list) the indices of the crossings to delete
Wi
Delete crossings from last to first to avoid changing
the index of crossings not yet processed.
indices.sort(reverse = True)
for index in indices:
del self.crossings[index]
self.free_crossings = list(
set (self.crossings).intersection(self.free_crossings))

return self

designate_additional_bridge (self):

nnn

Choose a crossing to designate as a bridge based on existing bridges.
bridge_crossings = self.bridge_crossings()
bridge_ends = [x for bridge_ends in self.bridges.itervalues()
for x in bridge_ends]
all_bridge_segments = [crossing.pd_codel[i] for crossing in bridge_crossings
for i in [0, 2]]

bridge_interior_segments = diff (all_bridge_segments, bridge_ends)

for free_crossing in self.free_crossings:
interior_match = list(
set ([free_crossing.pd_code[1], free_crossing.pd_code[3]])
& set(bridge_interior_segments))
end_match = list(set(bridge_ends) & set(free_crossing.pd_code))

if (interior_match or end_match):

def

def

91

self.designate_bridge(free_crossing)

return self

logging.critical('We were unable to designate an additional bridge.')
sys.exit('We were unable to designate an additional bridge for '

l.l)

+ self.name +

designate_bridge (self, crossing):

nnn

Identify a crossing as a bridge and extend until it deadends.

Arguments:
crossing -- (obj) a crossing
Wi
Determine the key for this bridge.
bridge_keys = self.bridges.keys()
if (bridge_keys):
key = max(bridge_keys) + 1
else:
key = 0
Designate the bridge and update the crossing's info.
self .bridges[key]l = [crossing.pd_code[1], crossing.pd_code[3]]
self.free_crossings.remove (crossing)
crossing.bridge = key
logging.debug('Crossing ' + str(crossing.pd_code)
+ ' has been designated as a bridge with key ' + str(key))

self .extend_bridge (crossing.bridge)

drag_crossing_under_bridge (self, crossing_to_drag, adjacent_segment):
def find_bridge_to_go_under (adjacent_segment):

nun

Return the bridge crossing under which to drag a free crossing.

Arguments:

adjacent_segment -- (int) The PD code value of the segment to drag
a crossing along.

for crossing in self.bridge_crossings():
if adjacent_segment in crossing.pd_code:

return crossing

bridge_crossing = find_bridge_to_go_under (adjacent_segment)
a, b, ¢, d = crossing_to_drag.pd_code

e, f, g, h = bridge_crossing.pd_code

new_max_pd_val = self.max_pd_code_value()+4

bid = bridge_crossing.bridge

y = bridge_crossing.overpass_traveled_from()

adjacent_segment_index = crossing_to_drag.pd_code.index(adjacent_segment)

logging.debug('We will drag ' + str(crossing_to_drag.pd_code)

+ ' under '

+ str(bridge_crossing.pd_code))

Alter the PD codes of all crossings not invloved in the drag.

a_y_sorted = sorted([a, y])

for crossing in diff (self.crossings, [crossing_to_drag, bridge_crossingl):

crossing.alter_for_drag(a_y_sorted)

Replace the crossing being dragged, (a,b,c,d).
if d == e:

i = sorted([a, y, bl).index(b)

if a < y:

m, n, r, s, t, u, v, w = a, at+l, a+2, a+3, a+l, a+2,
alter_if_greater (b+1+2%i, new_max_pd_val, O, new_max_pd_val),
alter_if_greater (b+2+2*i, new_max_pd_val, O, new_max_pd_val)

if y == f:
logging.debug('Dragging case d=e, a<y, y==f')
y_vals_one = alter_y_values(y, [4,5], new_max_pd_val)
y_vals_two = alter_y_values(y, [3,2], new_max_pd_val)

elif y == h:

logging.debug('Dragging case d=e, a<y, y==h')

y_vals_one = alter_y_values(y, [3,2], new_max_pd_val)
y_vals_two = alter_y_values(y, [4,5], new_max_pd_val)
if a > y:
m, n, r, s, t, u, v, w = a+2, a+3, a+4,

alter_if_greater (a+5, new_max_pd_val, O, new_max_pd_val),

a+3, a+4,

alter_if_greater (b+1+2%*i, new_max_pd_val, 0O, new_max_pd_val),

alter_if_greater (b+2+2%xi, new_max_pd_val, O, new_max_pd_val)
if y == f:

logging.debug('Dragging case d=e, a>y, y==f')

92

y_vals_one = alter_y_values(y, [2,3], new_max_pd_val)
y_vals_two = alter_y_values(y, [1,0], new_max_pd_val)

elif y == h:
logging.debug('Dragging case d=e, a>y, y==h')
y_vals_one = alter_y_values(y, [1,0], new_max_pd_val)
y_vals_two = alter_y_values(y, [2,3], new_max_pd_val)

elif b == e:
i = sorted([a,y,d]).index(d)
if a < y:

m, n, r, s, t, u, v, w = a, a+l, a+2, a+3, a+l, a+2,
alter_if_greater (d+2+2%*i, new_max_pd_val, O, new_max_pd_val),
alter_if _greater (d+1+2%*i, new_max_pd_val, O, new_max_pd_val)

if y == f£:
logging.debug('Dragging case b=e, a<y, y==f')
y_vals_one = alter_y_values(y, [2,3], new_max_pd_val)
y_vals_two = alter_y_values(y, [5,4], new_max_pd_val)

elif y == h:

logging.debug('Dragging case b=e, a<y, y==h')

y_vals_one = alter_y_values(y, [5,4], new_max_pd_val)
y_vals_two = alter_y_values(y, [2,3], new_max_pd_val)
if a > y:
m, n, r, s, t, u, v, w = a+2, a+3, at4,

alter_if_greater (a+5, new_max_pd_val, O, new_max_pd_val),
a+3, a+4,
alter_if_greater (d+2+2%i, new_max_pd_val, O, new_max_pd_val),
alter_if_greater (d+1+2%i, new_max_pd_val, O, new_max_pd_val)
if y == f:

logging.debug('Dragging case b=e, a>y, y==f')

y_vals_one = alter_y_values(y, [0,1], new_max_pd_val)

y_vals_two = alter_y_values(y, [3,2], new_max_pd_val)
elif y == h:

logging.debug('Dragging case b=e, a>y, y==h')

y_vals_one = alter_y_values(y, [3,2], new_max_pd_val)

y_vals_two = alter_y_values(y, [0,1], new_max_pd_val)

i = sorted([a,y,el).index(e)
if a < y:
m, n, r, s, t, u, v, w = a, a+l, a+2, a+3, a+l, a+2,
alter_if_greater (e+1+2*i, new_max_pd_val, O, new_max_pd_val),

e+2xi

if y == f:

logging.debug('Dragging case d=g, a<y,
y_vals_one = alter_y_values(y, [3,2],

y_vals_two = alter_y_values(y, [4,5],

elif y == h:

logging.debug('Dragging case d=g, a<y,
y_vals_one = alter_y_values(y, [4,5],

y_vals_two = alter_y_values(y, [3,2],

if a > y:

m, n, r, s, t, u, v, w = a+2, a+3, a+4,

alter_if_greater (a+5, new_max_pd_val,

a+3, a+4,

alter_if_greater (e+1+2*i, new_max_pd_val, O, new_max_pd_val),

e+2xi

if y == f:

logging.debug('Dragging case d=g, ad>y,

y_vals_one = alter_y_values(y, [1,0],

y_vals_two = alter_y_values(y, [2,3],

elif y == h:

logging.debug('Dragging case d=g, ad>y,
y_vals_one = alter_y_values(y, [2,3],

y_vals_two = alter_y_values(y, [1,0],

i = sorted([a,y,e]).index(e)

if a < y:

m, n, r, s, t, u, v, w = a, a+l, a+2, a+3,

alter_if_greater (e+1+2%i, new_max_pd_val,

if y == f:

logging.debug('Dragging case b=g, a<y,

y_vals_one = alter_y_values(y, [5,4],
y_vals_two = alter_y_values(y, [2,3],

elif y == h:

logging.debug('Dragging case b=g, a<y,

y_vals_one = alter_y_values(y, [2,3],
y_vals_two = alter_y_values(y, [5,4],
if a > y:
m, n, r, s, t, u, v, w = a+2, a+3, at4,
alter_if_greater (a+5, new_max_pd_val,

a+3, a+4, e+2x*i,

alter_if_greater (e+1+2*i, new_max_pd_val, O, new_max_pd_val)

y==f')

new_max_pd_val)

new_max_pd_val)

y==h")
new_max_pd_val)

new_max_pd_val)

0, new_max_pd_val),

y==f")
new_max_pd_val)

new_max_pd_val)

y==h"')
new_max_pd_val)

new_max_pd_val)

a+l, a+2, e+2x*i,

0, new_max_pd_val)

y==£f')
new_max_pd_val)

new_max_pd_val)

y==h')
new_max_pd_val)

new_max_pd_val)

0, new_max_pd_val),

94

crossing_one = Crossing([m,

if y == f:

logging.debug('Dragging case b=g,

y_vals_one =
y_vals_two =

elif y == h:

logging.debug('Dragging case b=g,

y_vals_one =

y_vals_two =

alter_y_values(y,

alter_y_values (y,

alter_y_values (y,

alter_y_values(y,

crossing_two = Crossing([r, y_vals_two[0],

crossing_to_drag.pd_code

= [t, v, u, wl

y_vals_one[0], n,

a>y, y==£f')

[3,2], new_max_pd_val)

[0,1], new_max_pd_val)

a>y, y==h')

[0,1], new_max_pd_val)

[3,2], new_max_pd_val)

y_vals_one[1]], bid)

y_vals_two[1]], bid)

95

index = self.crossings.index(crossing_to_drag)
self.crossings[index:index+1] = crossing_one, crossing_to_drag, crossing_two
logging.debug('(a,b,c,d) becomes ' + str(crossing_one.pd_code)

+ str(crossing_to_drag.pd_code) + str(crossing_two.pd_code))

Alter

if b

8
]

addends

bridge_

the PD code of the bridge crossing,

e:

alter_if_greater (d+2x*i,

alter_if_greater (d+1+2x%1i,

e:

alter_if_greater (b+2x%1i,

alter_if_greater (b+1+2%*1i,

== g) or (b == g):

alter_if_greater (e+1+2x%1i,

alter_if_greater (e+2+2x%1i,

= get_y_addends(a, h, y)

crossing.pd_code =

[m, y+addends[0],

(e,f,g,h).

new_max_pd_val, 0, new_max_pd_val)

new_max_pd_val, O, new_max_pd_val)

new_max_pd_val, 0, new_max_pd_val)

new_max_pd_val, O, new_max_pd_val)

new_max_pd_val, O, new_max_pd_val)

new_max_pd_val, O, new_max_pd_val)

y+addends [1]]

logging.debug('(e,f,g,h) becomes ' + str(bridge_crossing.pd_code))

logging.debug('PD code of the knot after dragging is ' + str(self))

Alter PD code values of bridge ends.

for i,

bridge in self.bridges.iteritems():

self .bridges[i] = map(alter_element_for_drag, bridge,

repeat (a_y_sorted [0],2),

repeat (a_y_sorted[1],2))

Check if the crossing we dragged is now covered by a bridge.

for i,

bridge in self.bridges.iteritems():

for end in bridge:

if (end == crossing_to_drag.pd_code[1])

or (end == crossing_to_drag.pd_code[3]):

self.extend_bridge (i)

logging.

+ !

debug ('Bridge end ' + str(end)

has been extended to cover the crossing we dragged')

logging.debug('After dragging and altering, the bridges are '

+ str(self.bridges))

Get the value of the next segment to drag along in case we continue

with this crossing.

next_segment = crossing_to_drag.pd_code[adjacent_segment_index]

logging.debug('If we drag this crossing again, we should drag it along '

+ str(next_segment))

return crossing_to_drag, next_segment

def drag_crossing_under_

nnn

bridge_resursively(self, crossing_to_drag,

adjacent_segment , drag_count):

Drag a crossing under multiple, consecutive bridges.

Arguments:
crossing_to_drag --
adjacent_segment --
drag along
drag_count -- (int)

nnn

while (drag_count >

(obj) A Crossing to drag

(int) The PD code value of the adjacent segment to

The number of bridges to drag the crossing underneath

0):

crossing_to_drag, adjacent_segment = self.drag_crossing_under_bridge(

crossing_to_drag, adjacent_segment)

drag_count -= 1

Stop if the crossing being dragged has been assigned to a bridge.

if crossing_to_drag.bridge:

break;

def extend_bridge (self,

nnn

Extend both ends of

bridge_index):

a bridge until it deadends.

96

97

Arguments:
bridge_index -- (int) the index of the bridge to extend
Wi
bridge = self.bridges[bridge_index]
logging.debug('We will try to extend the bridge ' + str(bridge))
for x in bridge:
index = bridge.index(x)
X_is_deadend = False
while (x_is_deadend == False):
result = filter(lambda free_crossing: x in free_crossing.pd_code,
self.free_crossings)
if result:
crossing = result.pop()
if x == crossing.pd_code[1]:
logging.debug('Bridge end ' + str(x)
+ ' can be extended to ' + str(crossing.pd_code[3]))
bridge [index] = crossing.pd_code [3]
x = crossing.pd_code [3]
self.free_crossings.remove(crossing)
crossing.bridge = bridge_index
elif x == crossing.pd_code[3]:
logging.debug('Bridge end ' + str(x)
+ ' can be extended to ' + str(crossing.pd_code[1]))
bridge[index] = crossing.pd_code[1]
X = crossing.pd_code[1]
self.free_crossings.remove (crossing)
crossing.bridge = bridge_index
else:
logging.debug('Bridge end ' + str(x)
+ ' is a dead-end and cannot be extended')
X_is_deadend = True
else:

break;

def find_crossing_to_drag(self):
max_pd_code_value = self.max_pd_code_value ()
for bridge in self.bridges.itervalues():
for end in bridge:
crossings_containing_end = []

for crossing in self.bridge_crossings():

98

if end in crossing.pd_code:
crossings_containing_end.append(crossing)
if len(crossings_containing_end) == 2:
end is a T stem.

logging.debug(str(end) + ' is a T stem')

Get the value of the segment adjacent to end.

for end_crossing in crossings_containing_end:

i = end_crossing.pd_code.index (end)
if (i%2 == 0):
adjacent_segment = end_crossing.pd_code [(i+2)%4]

logging.debug('The segment adjacent to the T stem is
+ str(adjacent_segment))

Determine the addend needed to calculate the next

adjacent segment based on the direction we travel

along the T stem.

if i == 0:

[
-

next_segment_addend
else:

next_segment_addend = -1
logging.debug('The next_segment_addend is '

+ str(next_segment_addend))

break;

drag_count = 0
continue_search = True
while continue_search:

reached_deadend = False

Does adjacent_segment belong to a free crossing (deadend)?
for free_crossing in self.free_crossings:
if adjacent_segment in free_crossing.pd_code:
reached_deadend = True

break;

if reached_deadend:
if (free_crossing.pd_code.index(adjacent_segment)2
== 1):
The crossing is oriented such that we can drag it.

drag_count += 1

99

logging.debug('Crossing
+ str(free_crossing.pd_code)
+ ' can be dragged along '
+ str(adjacent_segment))
return (free_crossing, adjacent_segment, drag_count)
else:
continue_search = False
logging.debug(
'We have completed our search of this stem')
break
else:
drag_count += 1
Consider the next crossing along the T stem.
adjacent_segment = next_adjacent_segment (
adjacent_segment, next_segment_addend,
max_pd_code_value)
logging.debug('We need to consider the next crossing'
+ ' along the T stem containing '

+ str(adjacent_segment))

If we check all of the bridge Ts and cannot find a crossing to drag,
return False to signify we need to identify a new bridge.
logging.debug('There are no crossings to drag. '

+ ' We need to identify another bridge.')

return False

def has_rml(self):

Wi

Inspect a knot for crossings that can be eliminated

by Reidemeister moves of type 1.

W

twisted_crossings = []

for index, crossing in enumerate(self.crossings):

if crossing.has_duplicate_value():
twisted_crossings.append(index)
logging.debug ('The knot can be simplified by RM1 at crossing '
+ str(crossing.pd_code))

return twisted_crossings

return False

100

def has_rm2(self):
nnn
Inspect a knot for crossings that can be eliminated

by Reidemeister moves of type 2.

Return the crossings which form an arc and
the PD code value of the segments which will be eliminated when the
knot is simplified.
win
def compare_pd_codes_for_rm2(indices_to_compare, current_crossing,
next_crossing):
output = False
for comparision in indices_to_compare:
current_comparision = [current_crossing.pd_code[comparision[0][0]],
current_crossing.pd_code [comparision[0][1]]]
next_comparison = [next_crossing.pd_code[comparision[1][0]],
next_crossing.pd_code[comparision[1][1]]]
if current_comparision == next_comparison:
True if a RM2 move is possible.
pd_code_segments_to_eliminate = []
for segment_to_eliminate in current_comparision:
if segment_to_eliminate == 1:
pd_code_segments_to_eliminate.append(
[segment_to_eliminate, -1])
else:

pd_code_segments_to_eliminate.append (

[segment_to_eliminate, -2])
output = ([index, next_index], pd_code_segments_to_eliminate)
break
return output
num_crossings = len(self.crossings)

has_rm2 = False

for index, current_crossing in enumerate(self.crossings):

if has_rm2 == False:
next_index = (index+1)%num_crossings
next_crossing = self.crossings[next_index]
difference = max(

current_crossing.pd_code [0],

next_crossing.pd_code[0]) - min(current_crossing.pd_code[0],

def

next_crossing.pd_code [0])

if (difference == 1):

indices_to_compare = [[[2,3],[0,3]],[[1,2],[1,011]]
has_rm2 = compare_pd_codes_for_rm2(indices_to_compare,

current_crossing, next_crossing)

elif (difference == num_crossings-1):

else:

indices_to_compare = [[[0,3],[2,3]1]1,[[0,1],[2,1]1]]
has_rm2 = compare_pd_codes_for_rm2(indices_to_compare,

current_crossing, next_crossing)

break

return has_rm2

list_bridge_ts(self, directory, depth):

nnn

Generate a list of bridge choices that form a "T".

Arguments:

directory -- (str) The base path to store all the output files.
depth -- (int) The depth of the tree
win
if self.bridges == {}:
i=1
depth_suffix = '_' + str(depth)
for a, b in itertools.combinations(self.free_crossings, 2):

if list(set(a.pd_code).intersection(b.pd_code)):

name = self.name + '

tree' + str(i) + depth_suffix
e,f,g,h = a.pd_code
pP,q,r,s = b.pd_code
bridges = {0:[f,h],1:[q,s]}
logging.debug('We found ' + name + ' at '
+ str(a.pd_code) + ', ' + str(b.pd_code))
Create the directory for this tree.
tree_directory = directory + '/tree_' + str(i)
if not os.path.exists(tree_directory):
os.makedirs(tree_directory)
Create the file to store the tree root.
tree_file = tree_directory + '/tree_' + str(i)
+ depth_suffix + '.csv'

outfile = open(tree_file, "w")

101

102

outputwriter = csv.writer (outfile, delimiter=',"')
outputwriter.writerow(['name','pd_notation', 'bridges'])
outputwriter.writerow ([name,str(self),bridges])
i+=1
outfile.close ()
else:
Check if a file for this knot & depth exists. If not, create the file.

tree_prefix = directory.rsplit('/', 1) [1]

depth_suffix = '_' + str(depth)
file_name = tree_prefix + depth_suffix + '.csv'
file_path = directory + '/' + file_name

if not os.path.isfile(file_path):
Create the file we need with headers.
with open(file_path, "w") as outfile:
outputwriter = csv.writer (outfile, delimiter=',"')
outputwriter.writerow(['name','pd_notation', 'bridges'])
Find and store bridge Ts.
i=1
for a, b in itertools.product(self.bridge_crossings (),
self.free_crossings):
knot_copy = copy.deepcopy(self)
if list(set(a.pd_code).intersection(b.pd_code)):
knot_copy.designate_bridge (b)
knot_name_parts = self.name.rsplit('_"', 1)
knot_copy_name = knot_name_parts[0] + '_' + str(i)
with open(file_path, "a") as outfile:
outputwriter = csv.writer (outfile, delimiter=',"')
outputwriter.writerow([knot_copy_name,

str(knot_copy) ,str (knot_copy.bridges)])

def max_pd_code_value(self):

nnn

Return the maximum value possible in the PD code.

nnn

return len(self.crossings)*2

def merge_bridges (self, bridge_a, bridge_b):

nnn

Merge bridges that become one through Reidemeister moves type 1 or 2.

103

Arguments:

bridge_a -- The key of a bridge invloved in the merge.
bridge_b -- The key of the other bridge invovled in the merge.
W

self.delete_bridge (bridge_a)

self.extend_bridge (bridge_b)

return self

def num_crossings (self):

nnn

Return the number of crossings in the knot.

nnn

return len(self.crossings)

def simplify_bridges(self, key):

nnn

Delete or merge bridges eliminated as part of Reidemeister moves.

Arguments:
key -- The index of the bridge to eliminate or None.
Wi
if key != None:
bridge_to_check = self.bridges[key]
if (bridge_to_check[0] == bridge_to_check[1]):
Remove the bridge if it has become a simple arc.
self.delete_bridge (key)
else:
other_bridges = {other_key: value for other_key, value in
self .bridges.items () if other_key != keyl}
for (end, (other_key, other_ends)) in
itertools.product(bridge_to_check, other_bridges.items()):
if end in other_ends:
Merge bridges that have been joined.
self .merge_bridges (key, other_key)
break

return self

def simplify_rmil(self, twisted_crossings):

nnn

104

Simplify one level of a knot by Reidemeister moves of type 1.

Arguments:
twisted_crossings -- (list) the indices of crossings to eliminate
wun
def alter_bridge_end_for_rml(x, duplicate_value, max_value):
if x > duplicate_value:
x -= 2
if x > max_value:
x = x%max_value
elif x == duplicate_value:
if duplicate_value == 1:
X = max_value
elif duplicate_value == max_value+2:
x =1

else:

return x

crossings = self.crossings

for index in sorted(twisted_crossings, reverse = True):
duplicate_value = self.crossings[index].has_duplicate_value ()
key = self.crossings[index].bridge
original_max_value = len(self.crossings)*2

self.delete_crossings ([index])

new_max_value = original_max_value-2

if duplicate_value == original_max_value:
extend_if_bridge_end = [1, duplicate_value + 1]
Adjust crossings.
for crossing in self.crossings:
crossing.alter_elements_greater_than(new_max_value,
-new_max_value, new_max_value)
else:
extend_if_bridge_end = [duplicate_value - 1, duplicate_value + 1]
Adjust crossings.
for crossing in self.crossings:
crossing.alter_elements_greater_than(duplicate_value, -2,
new_max_value)

for i, bridge in self.bridges.iteritems():

105

Adjust bridges.
self .bridges[i] = map(alter_bridge_end_for_rmil, bridge,
repeat (duplicate_value, 2), repeat(new_max_value, 2))
Try to extend bridges.
extend_bridge = any(x in bridge for x in extend_if_bridge_end)
if extend_bridge:
self.extend_bridge (i)
self.simplify_bridges (key)
logging.info ('After simplifying the knot for RM1 at segment '
+ str(duplicate_value) + ', the PD code is ' + str(self)
+ ' and the bridges are ' + str(self.bridges))

return self

def simplify_rml_recursively(self):
win
Simplify a knot by Reidemeister moves of type 1 until
no more moves are possible.
win
while True:
moves_possible = self.has_rmil ()
if moves_possible:
self.simplify_rmil (moves_possible)
if not moves_possible:
break

return self

def simplify_rm2(self, crossing_indices, segments_to_eliminate):

nnn

Simplify a knot by one Reidemeister move of type 2.

Arguments:
crossing_indices -- (list) the indices of crossings to remove
segments_to_eliminate -- (list) each element is a list of the PD code of a
segment that is simplified and the addend to apply to all
greater PD code values.
W
key = self.crossings[crossing_indices[0]].bridge
self.delete_crossings(crossing_indices)
maximum = len(self.crossings) * 2

extend_if _bridge_end = []

106

segments_to_eliminate.sort(reverse = True)

logging.info ('The segments ' + str(segments_to_eliminate [0][0])
+ ' and ' + str(segments_to_eliminate[1][0])

+ ' can be elimiated by RM2 moves.')

for segment in segments_to_eliminate:

value, addend = segment

Alter values of each crossing.
for crossing in self.crossings:

crossing.alter_elements_greater_than(value, addend)

Adjust bridges.
for key, bridge in self.bridges.iteritems():
self .bridges[key] = map(alter_if_greater, bridge,

repeat (value, 2), repeat(addend, 2))

Alter values of remaining segments to eliminate.
segments_to_eliminate = alter_segment_elements_greater_than(

segments_to_eliminate, value, addend)

Remove segments as we finish with them.

del(segments_to_eliminate [-1])

Mod final crossings based on maximum value allowed.

for crossing in self.crossings:
crossing.alter_elements_greater_than(maximum, O, maximum)

Mod final bridge ends based on maximum value allowed.

self.alter_bridge_segments_greater_than(maximum, O, maximum)

extend_if_bridge_end = [value - 1, value + 1]
for bridge_index, bridge in self.bridges.iteritems():
extend_bridge = any(x in bridge for x in extend_if_bridge_end)
if extend_bridge:
self.extend_bridge (bridge_index)
self .simplify_bridges (key)
logging.info ('After simplifying by RM2, the PD code is ' + str(self)

+ ' and the bridges are ' + str(self.bridges))

def

107

return self

def simplify_rm2_recursively(self):
"""Simplify a knot by Reidemeister moves of type 2 until
no more moves are possible.
while True:
moves_possible = self.has_rm2()
if moves_possible:
self.simplify_rm2(moves_possible[0], moves_possible[1])
if not moves_possible:
break;

return self

def simplify_rml_rm2_recursively(self):
win
Simplify a knot by Reidemeister moves of types 1 & 2 until
no more moves are possible.
W
while True:
if self.has_rm1():
self.simplify_rml_recursively ()
if self.has_rm2():
self .simplify_rm2_recursively ()
if not self.has_rml1() and not self.has_rm2():
logging.info ('No more moves of type RM1 or RM2 are possible.')
break;

return self

alter_element_for_drag(x, first, second):

nnn

A helper function for the drag the underpass move to adjust PD code values

of crossings not directly invloved in the move.

Arguments:

x -- (int) The value to alter.
first -- (int) The PD code value of the first segment we travel into.
second -- (int) The PD code value of the second segment we travel into.

nun

if x <= first:

def

def

def

108

return x

if first < x <= second:
return x+2

if x > second:

return x+4

alter_if_greater(x, value, addend, maximum = None):

nun

Arguments:

x -- (int) The number to alter.

value -- (int) The number to compare each element of the crossing with.
addend -- (int) The number to add to crossing elements greater than value.
maximum -- (int) The maximum allowed value of elements in the crossing.

nun

if x > value:
x += addend
if x == 0:
X = maximum
if maximum and (x > maximum):
o .
X = x)maximum

return x

alter_segment_elements_greater_than(segments, value, addend):

nnn

Arguments:

segments -- (list) A list of lists of integers to alter.

value -- (int) The number to compare each element of the crossing with.
addend -- (int) The number to add to crossing elements greater than value.
W

altered_segments = []

for pair in segments:
altered_segments.append([alter_if_greater(x, value, addend) for x in pair])

return altered_segments

alter_y_values(y, addends, maximum):

nnn

A helper function for the drag the underpass move.

Arguments:

y -- (int) The PD code value of f or h, whichever we travel from

109

toward the other.
addends -- (list) Integer values to add to y.
maximum -- (int) The maximum PD code value in the knot after dragging

a crossing.

nnn

y_vals = [alter_if_greater (y+addend, maximum, O, maximum) for addend in addends]

return y_vals
def create_knot_from_pd_code(pd_code, name = None, bridges = None):
nnn

Create a Knot object using a provided PD code.

Arguments:

pd_code -- (list) the PD notation of a knot expressed as a list of lists
name -- (str) a string to identify the knot
bridges -- (list) Each element is a list of PD code values for the

ends of each bridge

nwun

return Knot ([Crossing(crossing) for crossing in pd_code], name, bridges)
def diff(first, second):
nnn

Compute the difference of two lists.

Arguments:

first -- (list) The list to prune

second -- (list) The elements to remove from "first" (if they exist)
nnn

second = set(second)

return [item for item in first if item not in second]
def get_y_addends(a, h, y):
nnn

Get the addends for y to alter the bridge tuple for a drag.

Arguments:

a -- (int) PD code of the 1st element in the tuple being dragged.
h -- (int) PD code of the 4th element in the bridge tuple.
y -- (int) PD code of the 2nd or 4th element in the bridge tuple that is

traveled from toward the other.

def

110

if a < y:

addends

[3,4]
elif a > y:
addends = [1,2]
addends.sort (reverse = bool(y == h))

return addends

next_adjacent_segment (current_segment, next_segment_addend, max_pd_code_value):
nnn
Given a direction of travel, return the PD code segment of the section

adjacent to current_segment.

Arguments:
current_segment -- (int) The PD code value of the current segment
next_segment_addend -- (int) 1 or -1, depending on the direction of travel
max_pd_code_value -- (int) The maximum PD code value for the knot diagram.
wn
next_segment = alter_if_greater (current_segment, O, next_segment_addend,
max_pd_code_value)
if next_segment == 0:
next_segment = max_pd_code_value

return next_segment

111

C.3 analyze output.py

#!/usr/bin/env python2.7

import csv, getopt, numpy, os, Sys

def write_analysis_output (argv):

nnn

Return the minimum bridge index returned by bridge_computation.py.

nnn

input_source

output_dir = 'analyzed_output'
numeral_places = 4
help_message = ' '.join(['bridge_computation.py -i <input_source>',

'-0 <output_dir> -p <numeral_places>'])
try:
opts, args = getopt.getopt(argv, "hi:o:p:",
["input_source=", "output_dir", "numeral_places",])
except getopt.GetoptError:
error_message = ' '.join(['There was an error getting the arguments.',
help_messagel)
print error_message
sys.exit (2)
for opt, arg in opts:
if opt == '-h':
print help_message

sys.exit ()

elif opt in ("-i", "--input_source"):
input_source = arg

elif opt in ("-o", "--output_dir"):
output_dir = arg

elif opt in ("-p", "--numeral_places"):
numeral_places = int(arg)

Create a file for output.
if not os.path.exists(output_dir):

os.makedirs (output_dir)

outfile_path = output_dir + '/minimum_computed_bridge_indices.csv'

112

with open(outfile_path, "w") as outfile:
outputwriter = csv.writer (outfile, delimiter=',"')

outputwriter.writerow(['knot', 'minimum_computed_bridge_index '])

if os.path.isdir (input_source):
Traverse the directory to process all csv files.
for root, dirs, files in os.walk(input_source):
for file in files:
if file.endswith(".csv"):
find_minimum_computed_bridge_index (os.path. join(root, file),
outfile_path, numeral_places)
elif os.path.isfile(input_source):
find_minimum_computed_bridge_index(input_source, outfile_path,
numeral_places)
else:
input_message = ' '.join([
'The specified input is not a file or a directory.',
'Please try a different input.'])
print input_message

logging.warning (input_message)

def find_minimum_computed_bridge_index(csv_file, outfile_path, numeral_places):
computed_bridge_indexes = numpy.loadtxt(fname=csv_file, skiprows=1,
usecols=(1,), delimiter=',', dtype=int)
min_computed_bridge_index = min(computed_bridge_indexes)

Format the name for better sorting.

root, ext = os.path.splitext(os.path.basename(csv_file))
knot_name = root[:-7]

num_crossings, number = knot_name.split('_"')

number = number.zfill (numeral_places)

knot_name = num_crossings + '_' + number

with open(outfile_path, "a") as outfile:
outputwriter = csv.writer (outfile, delimiter=',"')

outputwriter.writerow ([knot_name ,min_computed_bridge_index])

if __name__ == "__main__":

write_analysis_output(sys.argv[1:])

	The programmatic manipulation of planar diagram codes to find an upper bound on the bridge index of prime knots
	Recommended Citation

	tmp.1513976362.pdf.57dW7

