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Abstract 
 

 Small viruses that can infect bacteria, called bacteriophages, can be found in the soil. 

These viruses are being examined as a potential treatment against bacterial infections when 

antibiotics are not available or non-effective. Before viruses can be used as a medical treatment, 

they must be studied extensively. Previous attempts to sequence the terminal end of the genome 

of a bacteriophage QCM-11 (Quartz-Crystal-Microbalance-11: Q11) resulted in error. It is thought 

that a covalently bound protein may be attached to Q11’s DNA, blocking sequencing of the 

genome from the 5’ end. Proteins bound to the DNA of phages is not unheard of, a well-

documented phage, Phi29, has a protein bound to the 5’ terminal end of its DNA. Both phages 

were studied to determine if Q11 has a terminally bound protein similar to Phi29. Phages Phi29 

and Q11 were subjected to digestion by various restriction enzymes as well as a 5’ exonuclease. 

If a protein is bound to the DNA of Q11 digestion by these nucleases would be blocked. The 

remaining fragments of phage DNA were run on agarose and polyacrylamide gels. The results 

from the experiment were not able to conclusively prove that a protein is bound to Q11 DNA.  
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Introduction 
 

Bacteria are among the most abundant organisms on the planet. Most bacteria are non-

harmful and, in some cases, even essential for human life. They are also a source of infection 

that affects all living organisms. Antibiotics are the most common form of treatment to combat 

bacterial infections, but like all organisms, bacteria evolve and can become resistant to medical 

treatment over time. A lack of other medical interventions to treat bacterial infections poses a 

major public health risk. As antibiotics rush to keep up with evolving microorganisms, other 

methods of combating bacterial infections need to be researched. 

 Like most species on the planet, bacteria have a natural predator. Viruses that infect 

bacteria, known as bacteriophages or phages, are more abundant in nature than bacteria and 

make up the largest percentage of host-parasite relationships on the planet. The overall research 

is being conducted on bacteriophages as a potential future source of treatment for bacterial 

infections.  

Bacteriophage QCM-11 (Quartz-Crystal-Microbalance-11 - Q11) is thought to have a 

protein that is covalently bound to the end of its’s DNA, similar to another small phage, Phi29. 

The function of these covalently bound proteins is mostly unknown. For Phi29, the 5’ covalently 

bound protein is thought to aid in the packaging of DNA into the head of the virus.2 Further 

exploration of the possible function of these genome-bound proteins will yield a better 

understanding of how these proteins assist in the survival or virulence of the bacteriophage. A 

better understanding about these species of bacteriophage, and terminally bound proteins in 

general, allows researchers to determine whether Phi29 or Q11 could be used as novel 

treatments for bacterial infections. 

 



Purpose 
 

Spores of the bacterial species Bacillus anthracis (B. anthracis), the causal agent of 

anthrax, can be found as long-lasting endospores in soil. Because of this, anthrax poses a 

constant danger of emergence in livestock and humans. Vaccinations against anthrax are not 

available to the general public, and antibiotics to treat the infection are most effective when given 

immediately after exposure.  

Bacillus cereus (B. cereus) is a toxin-producing species of bacteria commonly associated 

with symptoms of food poisoning. Like B. anthracis, B. cereus has the ability to form spores of 

itself that allow it to survive harsh environmental conditions, and then repopulate in optimal 

conditions. B. cereus’ widespread presence in the soil and resistance to basic decontamination 

methods mean, like most foodborne illnesses, that it can infect humans and livestock through 

contaminated food products. B. cereus has been increasingly linked to cases of non-

gastrointestinal-tract infections, many of which have been serious or life-threatening. 

The most widely used treatments for B. cereus and B. anthracis infections are antibiotics, 

which are not always effective. To help mitigate the health risks of B. cereus and B. anthracis 

infections in humans and animals, studies are being conducted on viruses that can infect and kill 

specific species of bacteria known as bacteriophages or phages. These phages are being studied 

as a potential supportive treatment, along with antibiotics to treat Bacillus cereus and Bacillus 

anthracis infections. 

Phage Q11 has been identified as a bacteriophage that can infect Bacillus cereus and 

Bacillus anthracis. Previous attempts to determine the genetic sequence of Q11 have been 

unsuccessful. It is thought that a protein may be permanently bound to the end of Q11’s DNA 

preventing it from being fully sequenced. This investigation aims to determine if a protein is 



covalently (permanently) bound to the 5’ end of Q11’s DNA. Confirmation will allow further study 

into the function of this protein and its role in Q11’s virulence and survival in host bacteria. 

Literature Review 

Background 
 

Phage Phi29 which infects Bacillus subtilis (B. subtilis) has been positively identified as 

having a 5’ protein covalently bound to the end of the phages linear DNA. 1, 2 Previous 

investigations into Phi29 have confirmed the existence of a 5’ terminal protein bound to the end 

of Phi29’s linear DNA.1,2 These experiments utilized restriction endonucleases, or restriction 

enzymes, which cut phage DNA into smaller pieces. These pieces were subjected to treatment 

with 5’ and 3’ exonucleases which degrade phage DNA from both ends (5’ and 3’) of the DNA. 

The results of these experiments showed that there was a small section of DNA that could not be 

degraded with 5’ exonuclease.2 Since this fragment of phage DNA could be degraded with 3’ 

exonuclease, the conclusion was made that something was bound to the phage DNA on the 5’ 

end that blocked the degradation of DNA by the 5’ exonuclease.  

Assembly of the virus was done using radioactively labeled atoms. [3H] thymidine, used 

for building DNA and [35S] methionine, used for building proteins were used.2 Another variation of 

this experiment used [14C] thymidine and [14C] methionine.1 Viral proteins and DNA were 

separated out using sucrose gradient sedimentation. Most viral proteins were banded together on 

the gradient and were detected by measuring levels of radioactively labeled methionine. However, 

a small amount of radioactively labeled methionine was detected in the DNA band, suggesting 

some viral protein was bound to the phage DNA.1,2 Treatment of the protein-bound DNA with 

various chemicals was not able to break the DNA-protein bond, suggesting the linkage was 

covalent in nature.2 



Proteins covalently bound to the 5’ end of small bacteriophage DNA are rare but not 

unheard of. Q11 is a small bacteriophage that can infect Bacillus anthracis Sterne, a safe non-

pathogenic (vaccine) strain of B. anthracis. Previous attempts to sequence the 5’ terminal 

sequence of the bacteriophage Q11 were unsuccessful.3 The inability to sequence the end of 

Q11’s DNA suggests there may be a similar covalently attached protein on the 5’ end of Q11’s 

DNA, similar to Phi29.3,4,9 Like Phi29, a 5’ terminal protein could prevent the complete DNA 

sequencing of Q11. Research completed by Emily Cornelius and Dr. Michael Walter in the 

summer of 2019 on Q11 was inconclusive on the existence of a covalently bound 5’ terminal 

protein.4,9 

Relevance 
 

Bacillus cereus has been widely documented as a potential agent of food-borne illnesses 

causing gastrointestinal distress. Cases of B. cereus infections have also reported non-

gastrointestinal symptoms that can be serious or life-threatening.5, 6 Bacillus anthracis produces 

a toxin that is a known bio-terrorism agent.7 Both of these bacterial species pose a risk to public 

health. The development of new antibiotics to treat bacterial infections has dramatically slowed 

down.8 The World Health Organization (WHO) has also confirmed that bacteria are becoming 

increasingly resistant to antibiotics currently being used to treat infections, which is a major public 

health emergency.8 

Materials and Methods 

Bacteriophage DNA 
 

 A stock from bacteriophage Phi29 was purchased from the Sylvain Moineau, Universite 

Laval, in Quebec Canada. This stock of phage was grown up in B. subtilis strain 1046. Isolated 

DNA was purified by Emily Cornelius and Michael Walter on 2019-12-10 following standard 



methodology.10,11 Samples of purified phage DNA were stored in a freezer at -20 °C until use in 

further experiments. Phage DNA was stored on ice when in use. 

 Bacteriophage Q11 was isolated from planted prairie soil, enriched with B. anthracis by 

Michael Walter.10 This phage was triple-serially-isolated for purity before being increased on 

plates of B. cereus before being harvested for phage DNA. This DNA was purified by 

ultracentrifugation by Emily Cornelius and Michael Walter, using standard methods10, on 2019-

06-18 before being stored in a freezer at -20 °C. Purified Q11 DNA was kept on ice while in use. 

Enzyme Digestion of Phage DNA 
 

Enzymatic digestion of bacteriophage DNA was a critical procedure for identifying 

terminally bound proteins on bacteriophage DNA. For endonuclease (restriction enzyme: RE) 

digestion, varying amounts of restriction enzyme, restriction enzyme buffer, bovine serum albumin 

(BSA) diluted in Promega Multi-core RE buffer, phage DNA and sterile distilled water were 

combined in microcentrifuge tubes. Restriction enzymes EcoRI 10 U/μL (ThermoFisher Scientific 

ER0271, 5,000 units) and HindIII 10 U/μL (ThermoFisher Scientific ER0501, 5,000 units) were 

used for DNA digestion. The buffers for EcoRI and HindIII were obtained from Promega 

Corporation (Madison WI) product numbers R008A and R005A, respectively. The BSA and RE 

buffers (Promega) served as stabilizing agents during enzyme digestion. Bacteriophage DNA 

used in these experiments was isolated from phage Phi29 and phage Q11 on 2019-12-10 and 

2019-06-18, respectively by Emily Cornelius and Michael Walter at the University of Northern 

Iowa. Stocks of the bacteriophage DNA were used for enzyme digestion. Sterile distilled water 

was made in house by autoclaving glass-distilled water for one hour. All reagents and enzymes 

when not in use were stored in a freezer at -20 °C. While in use the reagents were kept on ice to 

preserve enzyme activity. 



Exonuclease digestion of Phage DNA was completed using 5’-> 3’ λ exonuclease (5’ 

exonuclease) 10 U/ μL (ThermoFisher Scientific, EN0562, 5,000 units) following digestion by 

restriction enzyme EcoRI. This exonuclease was and stored in a freezer at -20 °C when not in 

use. While in use the 5’ exonuclease was kept on ice to preserve enzyme activity.  

Incubation of restriction enzymes and exonucleases was typically done in a water bath at 

37 °C. Variations in temperature and incubation time are noted in the experimental results. After 

incubation, NEB Stop Buffer made in-house (50% glycerol, 50 mM EDTA (pH 8.0), 0.05% 

bromophenol blue (10 μl / 50 μl reaction) was added to the reaction to stop the activity of the 

enzyme at a ratio of 1 μL NEB Stop solution to 5 μL of reaction mixture. 

Gel Electrophoresis 
 

Purified phage DNA, phage DNA digested by restriction enzymes EcoRI and HindIII, and 

phage DNA digested by restriction enzyme EcoRI then digested again with 5’ exonuclease was 

loaded onto gels for electrophoresis. The conditions listed in the methodology below is consistent 

for each experiment run unless noted in the results section. 

Agarose 
 

Agarose gels work like a porous sponge. Naturally negatively charged DNA fragments 

migrate through the holes of the sponge when an electric field is applied to them. Smaller 

fragments are more easily able to pass through the holes of the gel. The larger the DNA fragments 

are, the more tangled they get while passing through the gel and do not migrate as far down the 

gel as smaller fragments. This allows DNA fragments to be separated by size and shape.  

Phi29 and Q11 DNA restriction enzyme and exonuclease digests were run on 0.8% 

agarose gels that were poured in the lab. The agarose for making the gels was obtained from 

ThermoFisher Scientific. The gels were run at 80 V for 60 minutes then 40V for four hours in a 



0.5X concentration of Tris-Borate-EDTA running buffer (TBE, pH 8.3). TBE buffer was diluted 

from a stock 10X solution obtained from ThermoFisher Scientific (B52). Gels were stained with 

ethidium bromide (EtBr), at a final concentration of 0.2-0.5 µg/mL in 0.5X TBE for 20 minutes. 

After staining the gels were destained in TBE buffer then imaged on a UV lightbox using 

Carestream Imaging Technology (Carestream Health, Inc, Rochester, NY). 

SDS PAGE 
 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) works similarly 

to agarose gels in that a purified sample is passed through a porous gel using an electric field. 

The fragments generally processed using SDS polyacrylamide are proteins because the holes in 

the polyacrylamide gel are too small for DNA that get stuck at the top of the gel. Proteins are 

denatured by boiling samples in Laemmli buffer (125 mM Tris-Cl pH 6.8, 4% SDS, 20% glycerol, 

10% 2-mercaptoethanol) for 3 minutes. This linearizes and simultaneously coats the proteins with 

sodium dodecyl sulfate (SDS). SDS imparts a negative charge and allows proteins to run through 

the SDS-PAGE gel, being separated by size, not charge or shape.  Purified Q11 DNA and Q11 

DNA treated with restriction enzyme (RE) EcoRI at varying concentrations – then were analyzed 

by SDS PAGE to reveal protein migration differences attributable to proteins attached to Q11 

DNA. Treated DNA samples were loaded on and analyzed on 4–20% gradient Mini-PROTEAN® 

TGX™ Precast Protein Gels, 10-well, 30 µl gels (Bio Rad, Hercules, CA, 4561093) and run in 

standard SDS-PAGE ‘Tris-Glycine’ running buffer (25 mM Tris, 193 mM glycine, 0.1% SDS). The 

gels were run at 150 V until markers reached the bottom of the gel, about 120 minutes. 

After running, the proteins in the gel were treated with a fixative solution mixture of 40% 

ethanol and 10% acetic acid. The gels were rinsed twice with distilled water for 20 minutes. After 

rinsing the gels were stained with Coomassie Blue dye then extensively destained in the fixative 

solution. The gels were silver stained using reagents and methodology from Bio Rad Silver Stain 



Plus Kit, (Bio Rad, Hercules, CA, 1610449) and imaged by transmitted light (not UV) as described 

above. 

Results 
 

The specific conditions for each experiment along with the results and gel images are 

discussed below. Each experiment is date coded in year-month-day format. For example, April 

5th 2020 would be coded as 200405. 

200110 EcoRI Restriction Enzyme Digestion of Phi29 DNA 
Phi29 DNA isolated and purified on December 10th of 2019 (191210) was treated with 

restriction enzyme EcoRI and allowed to incubate for varying amounts of time to demonstrate the 

efficacy of RE EcoRI on Phi29 DNA 

Lanes one and twelve on the agarose gel contain 5μL of 

1kb Generuler DNA ladder (ThermoFisher) each, as a standard 

to measure the length of the restriction fragments. Lanes two 

and eleven on the gel were left blank. Lane 3 was loaded with 5 

μL of Phi29 DNA, 2 μL of 10x EcoRI Buffer H, 2 μL of BSA 

diluted 10X in Promega Multi-core, 11 μL of sterile distilled water 

for a total volume of 20 μL loaded. Lanes four through ten were 

loaded with 20 μL each of a mixture containing 5 μL of Phi29 

DNA, 2 μL of 10X EcoRI Buffer H, 2 μL of BSA diluted to 10X in Promega Multi-core, 2 μL of 

EcoRI restriction enzyme, and 9 μL of sterile distilled water. The contents of lanes three and four 

were not allowed to incubate, NEB Stop Buffer was added to the solution immediately after 

addition of the restriction enzyme. Tubes five, six, seven, eight, nine and ten were allowed to 

incubate for further enzyme digestion at 37 °C for one, two, three, six, eight, and ten minutes, 



respectively, before NEB Stop Buffer was added to each tube. 20 μL of each mixture was added 

to lanes three through ten on an agarose gel.  

The amount of phage DNA used in this digestion was insufficient, though the decrease in 

intensity of the phage DNA band is evident (Figure 1). The next digest of Phi29 DNA will use more 

phage DNA. The results of this experiment confirm that EcoRI is effective at digesting Phi29 DNA. 

200127 EcoRI and HindIII Restriction Enzyme Digestion of Phi29 DNA 
 Phi29 DNA from 191210 was treated with restriction enzymes 

EcoRI and HindIII. Phi29 DNA digested with HindIII was allowed 

to incubate for varying amounts of time to confirm activity of the 

restriction enzyme. More phage DNA was used in this experiment 

after previous trials using 5 μL of phage DNA proved insufficient to 

visualize restriction fragments on an agarose gel.  

Lanes one and eight were loaded with 3 μL of 1kb Generuler 

DNA ladder. Lane two was loaded with a 30 μL aliquot containing 5 

μL of Phi29 DNA, 3 μL of EcoRI buffer H, 3 μL of BSA diluted to 10X 

in Promega Multi-core, 19 μL of sterile distilled water and 6 μL of NEB 

Stop buffer. Lane three was loaded with a 30 μL aliquot containing 20 

μL of Phi29 DNA, 3 μL of EcoRI buffer H, 3 μL of BSA diluted in 

Promega Multi-core, 2 μL of sterile distilled water, 2 μL of EcoRI restriction enzyme. The contents 

of lane 3 were allowed to incubate at 37 °C for 10 minutes before 6 μL of NEB Stop buffer was 

added. Lanes four, five, six and seven were each loaded with an aliquot containing 20 μL of Phi29 

DNA, 3 μL of HindIII Buffer E, 3 μL of BSA diluted to 10X in Promega Multi-core, 2 μL of sterile 

distilled water and 2 μL of HindIII restriction enzyme. Each sample was allowed to incubate for 

ten, fifteen, twenty, and thirty minutes, respectively, before 6 μL of NEB Stop buffer was added to 

Figure 1. 200110 agarose gel of EcoRI digestion 
of Phi29 DNA. 

Figure 2. 200127 agarose gel of EcoRI and 
HindIII digestion of Phi29 DNA. 



each mixture. The agarose gel was run for one hour at 80V and then at 40V for five hours before 

being EtBr stained and imaged. 

 This experiment was a continuation from 200110 where 5 μL of Phi29 phage DNA 

subjected to EcoRI digestion was not enough to produce visible bands on an agarose gel. The 

results from this experiment (Figure 2) show that 20 μL of phage DNA produces undigested bands 

that are very bright on the gel. There was too much phage DNA, not enough restriction enzyme 

and not enough incubation time to digest the phage DNA to produce bands. Less phage DNA and 

a longer incubation time could be used to produce visible bands. 

200130 EcoRI and HindIII Restriction Enzyme Digestion of Phi29 DNA 
 To determine the appropriate concentration of 

Phi29 DNA to load into the gel to produce visible bands 

after restriction enzyme digestion, another round of 

experiments similar to 200110 and 200127 was conducted. 

More Phi29 phage DNA was used than the 200110 

experiment, but less than the amount of DNA used in the 

200127 experiment.  

Lanes one and eight were loaded with 3 μL of 1 kb 

Generuler DNA ladder. Lane two was loaded with a 20 μL 

aliquot of a mixture containing 5 μL of Phi29 DNA, 3 μL of 

EcoRI buffer H, 3 μL of BSA diluted to 10x in Promega 

Multi-core, 9 μL of sterile distilled water and 4 μL of NEB 

Stop buffer. Lanes three and four were loaded with a 20 μL 

aliquot of a mixture containing 10 μL of Phi29 DNA, 3 μL of EcoRI buffer H, 3 μL of BSA diluted 

to 10x in Promega Multi-core, 2 μL of sterile distilled water and 2 μL of EcoRI restriction enzyme. 

Both tubes were incubated at 37 °C for 30 minutes before 4 μL of NEB Stop buffer was added to 

Figure 3. 200130 agarose gel of EcoRI and HindIII 
digestion of Phi29 DNA. 



the mixture. Lane five was loaded with a 20 μL aliquot of a mixture containing 5 μL of Phi29 DNA, 

3 μL of HindIII buffer E, 3 μL of BSA diluted to 10x in Promega Multi-core, 9 μL of sterile distilled 

water and 4 μL of NEB Stop buffer. Lanes six and seven were loaded with a 20 μL aliquot of a 

mixture containing 10 μL of Phi29 DNA, 3 μL of HindIII buffer E, 3 μL of BSA diluted to 10x in 

Promega Multi-core, 2 μL of sterile distilled water and 2 μL of HindIII restriction enzyme. Both 

tubes were incubated at 37 °C for 30 minutes before 4 μL of NEB Stop buffer was added to the 

mixture. The agarose gel was run before being stained and imaged as described in the methods 

section above. 

The amounts of Phi29 DNA loaded in this experiment produced visible DNA on the gel 

(Figure 3). However, digested Phi29 DNA fragments did not produce visible bands. Phi29 DNA 

purified on 191210 appears to contain contaminants that caused the DNA on the gel to smear. 

Phi29 is a well-documented bacteriophage for which enzyme restriction digests are known and 

predictable. The primary use of Phi29 was to set up the conditions for running restriction enzyme 

digests for Q11 DNA. The conditions for this experiment, in terms of concentration and incubation 

time of reagents will be used in future runs using Q11 DNA. 



200203 EcoRI and HindIII Restriction Enzyme Digestion of Q11 DNA 
 Phage Q11 DNA was subjected to the same 

treatment as Phi 29 in the 200130 experiment. Phi29 DNA 

was used in previous experiments as a model to adjust for 

the right concentrations of DNA, enzyme and incubation 

time to yield fragments. Phi29 is a well-studied and 

documented bacteriophage whose results in our lab could 

be compared to previous work with Phi29.  

Lanes one and eight were loaded with 3 μL of 1 kb 

Generuler DNA ladder. Lane two was loaded with a 20 μL 

aliquot of a mixture containing 5 μL of Q11 DNA, 3 μL of 

EcoRI buffer H, 3 μL of BSA diluted to 10x in Promega Multi-

core, 9 μL of sterile distilled water and 4 μL of NEB Stop 

buffer. Lanes three and four were loaded with a 20 μL aliquot 

of a mixture containing 10 μL of Q11 DNA, 3 μL of EcoRI buffer H, 3 μL of BSA diluted to 10x in 

Promega Multi-core, 2 μL of sterile distilled water and 2 μL of EcoRI restriction enzyme. Both 

tubes were incubated at 37 °C for 30 minutes before 4 μL of NEB Stop buffer was added to the 

mixture. Lane five was loaded with a 20 μL aliquot of a mixture containing 5 μL of Q11 DNA, 3 μL 

of HindIII buffer E, 3 μL of BSA diluted to 10x in Promega Multi-core, 9 μL of sterile distilled water 

and 4 μL of NEB Stop buffer. Lanes six and seven were loaded with a 20 μL aliquot of a mixture 

containing 10 μL of Q11 DNA, 3 μL of HindIII buffer E, 3 μL of BSA diluted to 10x in Promega 

Multi-core, 2 μL of sterile distilled water and 2 μL of HindIII restriction enzyme. Both tubes were 

incubated at 37 °C for 30 minutes before 4 μL of NEB Stop buffer was added to the mixture.  

The restriction enzyme digestion of Q11 DNA using EcoRI and HindIII was successful 

(Figure 4). EcoRI digestion of Q11 yielded 9 visible fragments when run on agarose gel. HindIII 

Figure 4. 200203 agarose gel of Q11 DNA digested with 
EcoRI and HindIII. 



digestion of Q11 DNA yielded 17 visible fragments on agarose gel. These results are consistent 

with previous digestions of Q11 DNA performed by Emily Cornelius and Michael Walter in the 

summer of 2019.  

200206 Large Scale EcoRI Restriction Enzyme Digestion of Q11 DNA 
  Q11 DNA digestion by EcoRI in the previous 

experiment, 200203, successfully produced visible bands on 

agarose gel. To continue experiments looking for a terminal 

protein bound, large amounts of restriction digested Q11 are 

needed. In this experiment larger amounts of Q11 DNA were 

subjected to EcoRI restriction enzyme digestion to produce 

Q11 DNA fragments.  

 Five tubes of EcoRI restriction enzyme digest of Q11 DNA were prepared. Each tube 

contained 30 μL of Q11 DNA, 4 μL of EcoRI buffer H, 0.4 μL BSA diluted to 10x in Promega Multi-

core, 3.6 μL of sterile distilled water, and 2 μL of EcoRI restriction enzyme. Each sample was 

incubated at 37 °C for two hours before 10 μL of NEB Stop solution was added to two samples. 

The two samples containing NEB Stop solution were loaded onto an agarose gel in lanes two and 

three to confirm EcoRI digestion. Lanes one and five on the gel were loaded with 3 μL of 1 kb 

Generuler DNA ladder. Lanes four and six were left blank. The gel was run before being stained 

and imaged. The three remaining samples of EcoRI digested Q11 DNA were stored in a freezer 

at -20 °C for future use. These samples are referred to as EcoRI digests of Q11 DNA from 200206 

in future experiments. 

 The digestion of Q11 DNA with EcoRI provided 9 visible bands on the agarose gel (Figure 

5). These results match the previous results of EcoRI digestion of Q11 DNA on 200203. The Q11 

DNA was not fully digested by EcoRI, a longer digestion time is recommended for the remaining 

samples of EcoRI digested Q11 DNA. 

Figure 5. 200206 agarose gel of Q11 DNA digested 
by EcoRI. 



200213 EcoRI Restriction Enzyme Digestion Fragments of Q11 DNA treated 

with 5’ Exonuclease 
 Exonucleases, unlike restriction enzymes which cut DNA at specific recognition sites, 

completely digest double stranded DNA from the 5’ or 3’ terminus, unless something is bound to 

the end of the DNA, blocking activity of the exonuclease. If a 5’ terminal protein is covalently 

bound to the end of Q11’s DNA the terminal protein should block the exonuclease from digesting 

the protein, the DNA it is attached to.  

 A 5’ exonuclease (ThermoFisher) was added to EcoRI digested-Q11 DNA. Lane 

one was loaded with 5 μL of 1 kb Generuler DNA ladder. Lane two was loaded with 25 

μL of a mixture containing 20 μL of Q11 DNA treated with EcoRI restriction enzyme from 

the 200206 experiment and 5 μL of NEB Stop solution. Lane three was loaded with 25 μL 

of a mixture containing 20 μL of EcoRI digested Q11 DNA, 2 μL of 5’ exonuclease, 3 μL 

of 5’ buffer and 5 μL of NEB Stop solution added to the solution after a two hour incubation 

at 37 °C.  

 The EcoRI digestion of Q11 DNA produced most of the visible fragments shown 

in previous experiments 200203 and 200206. There were no visible fragments visible on 

the agarose gel after the 5’ exonuclease digestion of EcoRI digestion of Q11 DNA. A band 

should be visible on the gel if a 5’ terminally bound protein was covalently bound Q11 DNA. The 

absence of any bands after 5’ exonuclease digestion suggests that there is no protein bound to 

Q11 DNA. Further experiments will test fragments of Q11 DNA treated with EcoRI on SDS 

polyacrylamide gels, meant for protein separation. If a protein is bound to a Q11 DNA fragment it 

may migrate through the SDS polyacrylamide gel on the DNA fragment producing a band.  

Figure 6. 200213 5' 
exonuclease and 

EcoRI digestion of 
Q11 DNA on 
agarose gel. 



200214 SDS PAGE Gel of Q11 DNA Untreated and Treated with EcoRI   
SDS polyacrylamide gel electrophoresis (SDS PAGE) was performed on whole Q11 DNA 

and Q11 DNA fragments treated with restriction enzyme EcoRI. SDS PAGE gels have smaller 

pores than agarose gels and are typically used for protein separation. These experiments were 

run with the idea that if a terminally bound protein exists it will migrate along with the DNA it is 

bound to and produce a band on the SDS-PAGE gel. Two gels were run for each SDS experiment 

to replicate results.  

Lane 1 on gel 1 (Figure 7) was 

loaded with 5 μL of BioRad Protein-

Precision-Plus Marker (PPP, BioRad, 

Hercules, CA). Lanes two, three and four 

were loaded with 5 μL each of Q11 DNA 

digested by restriction enzyme EcoRI on 

200206 diluted to 0.1X, 0.01X, and 0.001X, 

respectively. Lane five was loaded with 5 μL 

of restriction enzyme EcoRI diluted to a 1/25 dilution in sterile distilled water so as to match the 

approximate amount of enzyme (protein) in the treated samples. Lane six was loaded with 1 μL 

Figure 7. 200214 SDS PAGE gel 1 of Q11 DNA and EcoRI treated Q11 DNA. 
Silver Stain. 



of undiluted restriction enzyme EcoRI. Lanes seven and eight were left blank. Lanes nine and ten 

were loaded with 5 μL each of untreated Q11 DNA diluted to 0.01X and 0.1X, respectively. 

Lanes one, two, and three on Gel 2 

(Figure 8) were loaded with 5 μL of Q11 DNA 

digested with EcoRI digest on 200206 diluted 

to 0.01X, 0.001X, and 0.0001X, respectively. 

Lane four was left blank. Lane five was loaded 

with 5 μL of PPP Marker. Lane six was loaded 

with restriction enzyme EcoRI diluted to a 

1/100th dilution with sterile distilled water. 

Lanes seven, eight, and nine were loaded with 5 μL each of untreated Q11 DNA diluted to 0.01X, 

0.001X, and 0.0001X respectively. Lane ten was left blank.  

 After loading, the SDS PAGE gel was run at 150 V for approximately three hours before 

being fixed, stained with Coomassie Blue, destained, Silver Stained and imaged using the 

methods described in the SDS PAGE methodology section. The results of this gel were surprising. 

Most DNA is presumed to be too large to migrate through an SDS gel, usually causing the gel to 

warp in the frame. However, every sample of DNA loaded into the gel appeared to migrate without 

causing warping of the gel. Most concentrations of DNA loaded were too faint to be seen on the 

silver stained image. On gel 2 (Figure 8), a faint potential band can be seen in lane seven where 

untreated Q11 DNA was loaded at a 0.01X concentration. A band in the presence of Q11 DNA 

could mean several things. The band appears in the most concentrated sample (0.01X) of Q11 

DNA loaded onto this gel. The band could be a contaminant that is at a high enough concentration 

to produce a band on the gel. The band appears to be roughly the same size (similar migration 

distance) as the restriction enzyme EcoRI. The band could be spillover from loading EcoRI into 

the lane next to it. The absence of a band on gel one where untreated Q11 DNA was loaded at 

Figure 8. 200214 SDS PAGE gel 2 of Q11 DNA and EcoRI treated Q11 DNA. 
Silver Stain. 



the same 0.01X concentration appears to support the hypothesis that this band is a contaminant. 

Our hope is that this band is a protein fragment bound to Q11 DNA that migrated through the gel. 

The possibility of this band being migrated protein on the DNA will continue to be explored in 

future experiments. 

 This was also the first trial of an SDS gel run with Q11 DNA. Various concentrations of 

things like DNA, EcoRI, and marker will be adjusted in further experiments to produce a clean gel 

with bands of similar intensity when treated with silver stain. 

200223 SDS PAGE Gel of Q11 DNA Untreated and Treated with EcoRI  
 Following the discovery of a band forming on gel 2 from the previous experiment (200214), 

the concentrations of marker and restriction enzyme EcoRI were lessened and more Q11 DNA, 

both untreated and treated with EcoRI from the 200206 experiment was used. The goal was to 

produce a gel that had consistent intensity between the marker, restriction enzyme and phage 

DNA when silver stained. More Q11 DNA at higher concentrations was used in an attempt to 

reproduce results from 200214 where a band was found on gel 2 well 7 (Figure 8) where Q11 



DNA was loaded at a 0.01X concentration. Two 

polyacrylamide protein gels were run to replicate 

results within this experiment. 

 For gel 1 (Figure 9), lane one was loaded 

with 1 μL of marker at a 1x concentration. Lane 

two was loaded with 5 μL of marker at a 0.01X 

concentration. Lanes three and four were loaded 

with Q11 DNA treated with EcoRI from 200206, 5 

μL at a 0.01X concentration and 10 μL at a 

0.001X concentration, respectively. Lane five 

was loaded with 5 μL of restriction enzyme EcoRI 

at a 0.01X dilution. Lane six was left blank. Lanes 

seven and eight were loaded with 10 μL each of 

Q11 untreated DNA at a 0.1X and 0.01X 

concentration respectively. Lane nine was left 

blank. Lane ten was loaded with 10 μL of 

untreated Q11 DNA at a 0.1X dilution. 

 Gel 2 (Figure 10), lane one was loaded with 10 μL of 200206 EcoRI treated Q11 DNA at 

a 0.001X concentration. Lane two was left blank. Lane three was loaded with marker diluted to 

0.01X. Lane four was loaded with restriction enzyme EcoRI at a 0.001X concentration. Lane five 

was left blank. Lanes six, seven, and eight were loaded with untreated Q11 DNA at a 1X, 0.1X, 

and 0.01X concentration respectively. Lane nine was left blank. Lane ten was loaded with 5 μL of 

untreated Q11 DNA. 

 All samples were treated as described above in the Materials and Methods section. The 

dilution of the marker in gel 1 lane two (Figure 9) produced clearer bands than loading a smaller 

Figure 9. 200223 gel 1. SDS PAGE of Q11 untreated and EcoRI treated 
DNA. Silver Stain. 

Figure 10. 200223 gel 2. SDS PAGE of Q11 untreated and EcoRI treated 
DNA. Silver Stain. 



amount of 1X marker. The 0.01X dilution of restriction enzyme EcoRI on gel 1 (Figure 9) produced 

a band of similar intensity to the diluted marker in lane two after being silver stained. Untreated 

Q11 DNA at a 1X concentration on gel 2 (Figure 10) lane six was the only DNA band to produce 

something on the gel. The untreated Q11 DNA at 1X created a dark smear in its lane after being 

stained. There were no bands visible for Q11 DNA, treated with EcoRI or untreated at any 

concentration on the gel. Q11 DNA is surprisingly still able to migrate through the gel at every 

concentration. There was no visible warping of gel in any place including Q11 DNA at the 1X 

concentration. The grainy quality in both Figure 9 and 10 is due to the silver stain. All glassware 

involved in making up the silver stain solution will be rinsed with nitric acid to clean the glassware 

and reduce the grainy appearance of future gels. 

200312 SDS PAGE Gel of Q11 DNA Untreated and Treated with EcoRI  
This experiment is looking to either 

confirm or deny the existence of the band seen 

on gel 2 lane seven from the 200214 gel that was 

not seen at any Q11 DNA concentration on the 

20223 gel. Two gels were run for this experiment 

to duplicate results. 

Gel 1 lane one (Figure 11) was loaded 

with 5 μL of marker at a 0.01X concentration. 

Lanes two, three and four were loaded with 5, 10 

and 15 μL, respectively, of 200206 EcoRI digested Q11 DNA. Lane five was loaded with 5 μL of 

restriction enzyme EcoRI at a 0.01X dilution. Lane six was left blank. Lane seven was loaded with 

10 μL of untreated Q11 DNA at a 0.1X concentration. Lane eight was loaded with 5 μL of untreated 

Figure 11. 200312 gel 1. SDS PAGE of Q11 untreated and EcoRI 
treated DNA. Silver Stain 



Q11 DNA at a 1X concentration. Lane nine was left 

blank. Lane ten was loaded with 10 μL of untreated 

Q11 DNA at a 0.01X concentration.  

Gel 2 lane one (Figure 12) was loaded with 

10 μL of untreated Q11 DNA at a 0.1X 

concentration. Lane 2 was loaded with 5 μL of 

marker at a 0.01X concentration. Lane three was 

loaded with 20 μL of untreated Q11 DNA at a 0.1X 

concentration. Lane four was left blank. 5 μL of 

untreated Q11 DNA at a 1X concentration. Lane six was loaded with 5 μL of restriction enzyme 

EcoRI at a 0.01X dilution. Lanes seven and eight were loaded with 10 and 20 μL respectively of 

untreated Q11 DNA at a 0.01X concentration.  

Similar to the 200223 experiment, no discernable DNA band was visible on the gel. Both 

samples of restriction enzyme EcoRI produced a band, as well as the marker proteins loaded in 

each gel. Untreated Q11 DNA loaded into the gel at a concentration at or above 0.01X produces 

a smear that is stained in the lanes where the untreated DNA is loaded. After multiple attempts to 

observe a band on the gel for the suspected Q11 protein, no band similar to the one observed on 

200214 has been found. 

Discussion 
Conclusions 
 

 The absence of bands on the 5’ exonuclease (ThermoFisher) and EcoRI restriction 

enzyme treated sample indicate that terminally bound protein may not exist on Q11’s DNA. Based 

on previous studies of Phi29, which has a confirmed terminal protein, treatment with a 5’ 

Figure 12. 200312 gel 2. SDS PAGE of Q11 untreated and EcoRI 
treated DNA. Silver Stain. 



exonuclease does produce fragments when run on a gel. The absence of results in our experiment 

is worth another run of 5’ exonuclease λ digestion to confirm these results. 

 The presence of a band in the 200214 SDS-PAGE gel image where untreated Q11 DNA 

at a 0.01X concentration was loaded, suggested that there may be a terminally bound protein that 

migrated with the DNA it is attached to. Several other trials 200223 and 200312 were conducted 

in an attempt to replicate the results seen on the 200214 gel. No concentration of Q11 DNA 

treated with EcoRI or untreated was able to produce a band similar to what was observed on the 

200214 gel. It can be concluded that the most likely cause of the band observed on the 200214 

gel was either a contaminant or spillover from loading restriction enzyme EcoRI in the neighboring 

well.  

 This research demonstrated there is not enough conclusive evidence to prove or disprove 

the existence of a terminal protein covalently bound to the end of Q11’s DNA. The results of this 

experiment suggest that a 5’ terminally bound protein may not exist despite earlier experiments3,4,9 

suggesting that a 5’ terminal protein does exist for Q11. Further investigation is required to pursue 

the idea that a protein may be bound to Q11 DNA. 

Areas for further investigation 
 

 This research project was not able to conclusively prove that a protein is covalently bound 

to the end of Q11’s 5’ DNA. While this research project is ongoing, the preliminary results 

presented in this paper cannot conclude that a covalently bound protein is present on the 5’ 

terminal end of bacteriophage Q11’s DNA. Continued research into this topic will build upon the 

methods and techniques in this paper to determine the existence of a covalently bound protein. 

 If Q11 can be shown to have a covalently bound protein on the end of its DNA, further 

investigations will be conducted to isolate, replicate and determine the structure and function of 

the protein in relation to Q11’s virulence and survival in the environment and inside of a bacterial 



host. Several other options could be considered for something that blocks DNA sequencing of 

Q11 on the terminal end. If no covalently bound protein can be found on the end Q11’s DNA 

further investigation will be taken to understand why Q11 DNA was previously unable to be 

sequenced in previous experiments.3 

The understanding of bacteriophages that can kill and infect bacterial species is critical for 

both a more developed scientific understanding and as an emerging healthcare tool to treat 

bacterial infections. Every drug that passes inspection through the Food and Drug Administration 

(FDA) must be studied and researched carefully before the product is released onto the market 

for patient treatment. The same is absolutely true, if not more so for viruses as a potential 

treatment for bacterial infections. This is a type of biotechnology that has been historically 

developed but is only recently seeing use against human bacterial infections. Our current 

healthcare system has relied on antibiotics to treat bacterial infections for almost a century. 

Bacteria may lack complexity but compensate at the rate at which they are constantly dividing 

and growing. Constant treatment of bacterial infections with a limited number of antibiotics has 

led to bacterial resistance to the antibiotics that we rely on to kill them. Novel methods of treating 

bacterial infections need to be explored. 

Bacteriophages are viruses that naturally infect and kill bacteria. These phages replicate 

at a much faster rate than bacteria, potentially only requiring a small dose of phage that will rapidly 

replicate in the body to fight a bacterial infection. Because viruses have a much quicker replication 

cycle than bacteria, they can constantly evolve to evade bacterial defenses to ward off infection, 

like they have been doing for millions of years. It makes sense, as we move into a new era of 

biotechnology, to consider using phages that have evolutionarily evolved over hundreds of 

millions of years to infect and kill bacteria as a novel treatment when antibiotics no longer work. 

Research into novel medical treatments takes time. Years of work need to be put into 

understanding these viruses before they are able to be tested for medical purposes. Every aspect 



of these viruses needs to be understood down to the genetic information that encodes and evolves 

for their survival. It is thought that terminal proteins in certain viruses aid in the replication of 

necessary proteins for the survival and infectivity of the virus. Understanding these components 

allows researchers to get one step closer to applying the knowledge we can learn in the lab to a 

real-life medical application that has the potential to save lives. 
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