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Abstract 

 Coronary heart disease has long been a key area of focus in the discussion of public 

health. As such, numerous studies have been conducted throughout history with the sole 

intention of identifying risk factors leading to the onset of cardiovascular conditions. A plethora 

of statistical procedures can be used to identify an individual’s risk of developing heart disease, 

yet regression models tend to be the default tool used by researchers. Using the data obtained 

from the most influential cardiovascular study to date, the Framingham Heart Study, this analysis 

uses machine learning techniques to generate and test the predictive power of four different 

classification methods: logistic regression models, decision trees, random forests, and support 

vector machines. The findings of this study indicate that logistic regression is the most accurate 

classification technique; it correctly predicts whether an individual will develop coronary heart 

disease more than 84% of the time. 
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1. Introduction  

 In this day and age, technological advancements are continually reshaping the manner in 

which society approaches everyday life. From where people work to the tools they have at their 

disposal, the constant influx of new technology is altering entire industries around the globe at 

unprecedented rates. The medical field is not immune to this concept. As a result, society’s 

understanding of various health-related issues is constantly being improved. If one takes this 

view and applies it specifically to the study of coronary heart disease, these advancements are 

quite apparent. Although new technology and various other studies have since expanded upon its 

initial research, the Framingham Heart Study remains one of the most influential cardiovascular 

studies ever conducted. This longitudinal study laid the foundation for the current understanding 

of heart disease, and its impacts are widespread. With that being said, this renowned research 

still has areas which can be further developed.  

One such area that is largely under-examined is the quantification of an individual’s risk 

of developing heart disease through the use of machine learning techniques. While it is true that 

the Framingham Heart Study has developed an online model (called the Framingham Risk 

Calculator) to help quantify this prospect, the researchers elected to use Cox regression to 

achieve their goal. As such, there is still a considerable opportunity for various machine learning 

techniques to further examine these data. With the assistance of four classification procedures 

(logistic regression, decision trees, random forest analysis, and support vector machines), this 

study analyzes the effectiveness of machine learning techniques in predicting the onset of 

coronary heart disease. It is hypothesized that logistic regression will outperform the other 

models constructed throughout this study. Because this method requires the most rigorous prep-
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work and offers more than a dozen viable models to choose from, this hypothesis assumes that it 

will yield the most compelling results. 

 Upon completion of the aforementioned analyses, this study confirmed the initial belief: 

logistic regression techniques yielded the most accurate classification results, although it only 

slightly outperformed the other methods. More specifically, this model accurately classified data 

84.86% of the time. At the same time, the machine learning technique with the least predictive 

power was random forest classification. This method wielded an accuracy rate of 83.53%. This 

paper will provide a background on the factors influencing the development of heart disease, 

discuss the history and contributions of the Framingham Heart Study, detail the models 

generated through throughout this project, and interpret the results of this statistical analysis.  

2. History of Framingham Heart Study 

 While the medical community now possesses a wealth of information surrounding the 

development and prevention of coronary heart disease, this was not the case a mere seventy years 

ago. In the 1940s in the United States, cardiovascular disease was the leading cause of mortality; 

it accounted for half the deaths nationwide (Mahmood et al.). Despite this daunting statistic, a 

surprisingly small amount of action was taken to resolve this issue. Both the lack of knowledge 

and technology limited corrective action during this time. As such, many Americans continued to 

see early death from heart disease as unavoidable (Mahmood et al.). Unfortunately, this belief 

wasn’t challenged until President Franklin Roosevelt died from cardiovascular complications in 

1945. Beginning in 1948, the American government took matters into their own hands. On June 

16th, the “National Heart Act” established the National Heart Institute in an attempt to reduce the 

impact of cardiovascular disease that was felt throughout the country (Mahmood et al.). The 
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passing of this law would forever change the medical understanding of America’s leading cause 

of death.  

Immediately following the National Heart Act’s inception, researchers began to organize 

the Framingham Heart Study. In the early stages of this process, analysts disagreed whether the 

study should be observational or preventative in nature, but the former methods were eventually 

selected (Mahmood et al.). As such, the Framingham Heart Study officially originated in 1948 

with the purpose of identifying the impact and developmental risk factors associated with heart 

disease in the American population (Randall et al.). The original participants of this study, later 

deemed the “Original Cohort,” consisted of 5,209 men and women between the ages of thirty 

and sixty-two (“About the Framingham Heart Study”).  

After determining the scope and the participants involved in the study, strict data 

collection methods were put into place. According to Connie Tsao and Ramachandran Vasan, 

each participant in the Framingham Heart Study was required to have a physical examination 

every two years. During these visits, individuals underwent in-depth cardiovascular exams and 

discussed all medical and family history with a doctor (Tsao and Vasan). Furthermore, 

researchers were continually in contact with all study participants through various questionnaires 

and phone calls. As a result of these diligent efforts, crucial information was unveiled. More 

specifically, researchers utilized the data obtained from the Original Cohort to identify numerous 

behavioral risk factors such as smoking and dietary habits (Randall et al.). Furthermore, these 

analyses provided evidence against the widely accepted belief that systolic blood pressure played 

little role in the development of coronary heart disease (Mahmood et al.).  

While the aforementioned findings were groundbreaking at the time of their discovery, 

researchers continued to refine their approach to this important topic. As a result, the 
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Framingham Heart Study began to take a new form. Beginning in the early 1970s, researchers 

switched their focus from detection to prevention. Using the numerous heart disease risk factors 

that were identified earlier in the study, researchers developed “risk scores” with the help of 

cumbersome multivariable risk functions and multiple cross-classification (Mahmood et al.). 

These risk scores were the first attempt to identify specific individuals which may be at risk of 

coronary heart disease in the future; these values were based upon large tables that compared 

various combinations of heart disease risk factors. Although these methods were rather 

impractical when analyzing more than a few risk factors at once, they laid foundation for what 

would later become known as “Framingham Risk Scores” (Mahmood et al.). Although this 

concept underwent numerous revisions, it eventually found its most popular form in 1998. In this 

version, researchers established simplistic tables which allowed doctors to look-up values for 

various risk factors, thus easily determining whether an individual was at risk for heart disease 

(Mahmood et al.).  

 Using the above method as an important basis, researchers eventually developed the 

Framingham Risk Calculator (“Cardiovascular Disease (10-Year Risk)”). This model is currently 

located both online as well as in numerous different phone applications. Using Cox regression 

techniques, researchers developed a model which would return the probability of contracting 

coronary heart disease when several common health factors – such as age and blood pressure – 

were treated as inputs (D’Agostino et al.). Thus, this model allows for a convenient way to 

quantify an individual’s risk of developing heart disease, and it is discussed in greater detail later 

in this paper.  

 At roughly the same time that the Framingham Heart Study began to examine 

preventative measures for coronary heart disease, it expanded its research within another realm 
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as well. In 1971, the study grew in size to incorporate the descendants of the Original Cohort 

(“About the Framingham Heart Study”). This expansion led to the development of the Offspring 

Cohort, which consisted of 2,656 additional participants (Tsao and Vasan). In addition to 

continuing the previous research, this also allowed the analysts to study heredity as a component 

of cardiovascular disease. Since this addition in 1971, various other cohorts have been added to 

the study in an attempt to increase diversity across the volunteers (Tsao and Vasan). These new 

groups are called the Omni Cohorts, and the most recent addition was in 2003 (called the Second 

Generation Omni Cohort).  

3. Heart Disease and Mortality  

 Although the Framingham Heart Study is one of the premier longitudinal heart studies to 

date, it would have been impossible for a single analysis to fully research every aspect of heart 

health. As such, specific areas of focus were selected, and the remaining topics were left to be 

more adequately fulfilled by various other studies. Two topics that the Framingham Heart Study 

researched as secondary subjects are the effects of gender and ethnicity in the development of 

cardiovascular conditions. The current research concerning these two topics are detailed in the 

following paragraphs.  

 When the initial studies concerning coronary heart disease first began, very little was 

known about this widespread and deadly condition. While this general lack of knowledge has 

since been eradicated, new questions have emerged. Of the continued research being conducted 

in the field of cardiovascular health, a prominent area of focus is the difference in coronary heart 

disease across gender. Although the overall findings from different research studies examining 

this relationship differ slightly, one theme remains constant: coronary heart disease is more 

prevalent in men (Claassen et al.; Pilote et al.). According to the study conducted by Claassen, 
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Sybrandy, Appelman, and Asselbergs, the prevalence of coronary heart disease for men residing 

in the United States was 37.4%; the corresponding rate for US women was 35%. The mortality 

rates from coronary heart disease differ based upon gender as well. The same study concluded 

that men and women with coronary heart disease faced respective death rates of 48.2% and 

51.8% (Claassen et al.). Furthermore, the number of deaths associated with cardiovascular 

disease have slowly been decreasing in men over the last thirty years, but women have not yet 

reaped the same benefit (Pilote et al.). One potential reason for these significant cross-gender 

differences may be the presence of distinct risk factors. Claassen and colleagues found that 

hypertension and diabetes were more common in women who were diagnosed with 

cardiovascular disease. Conversely, smoking was more prevalent in men (Claassen et al.).  

 Going beyond the effects of gender, researchers have also investigated the role ethnicity 

and socioeconomic status play in determining the risk of heart disease. Although various studies 

have sought to unveil this relationship, conflicting results have at times arisen. While this 

remains the case, several studies have presented compelling arguments which indicate a link 

between the aforementioned variables. One of these studies was conducted by Jess Kraus, Nemat 

Borhani, and Charles Franti. Interestingly enough, this analysis used data which was partially 

obtained from the Framingham Heart Study. Moreover, the study considered data from five 

common ethnic groups: (1) white, (2) black, (3) Asian, (4) Spanish American, and (5) American 

Indian. As the following figure represents, the researchers concluded that the risk of a coronary 

heart disease event is inversely related to socioeconomic status (Kraus et al.).   
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Using factors based on education levels and occupation, the researchers in the above 

analysis determined socioeconomic scores ranging from 11-77 for each participant; high scores 

corresponded to low socioeconomic status. As one can see, the lower the socioeconomic class, 

the greater the probability of experiencing a coronary heart disease event. This relationship 

persisted across four of the five ethnic groups considered in this study (Kraus et al.). More 

specifically, the researchers determined that only the black ethnic group did not have an 

inversely proportionate relationship between coronary heart disease and socioeconomic status 

(Kraus et al.).  

4. Other Contributions  

 Since the work presented in this thesis is most comparable to the regression model 

available on the Framingham Heart Study webpage, it is important to fully understand this 

technique. Prior to the year 2008, the models that were commonly used to determine an 

individual’s risk of developing cardiovascular disease were developed through multiple cross-

classification techniques (Mahmood et al.). Because these tables were increasingly difficult to 

Figure 1. Heart disease and socioeconomic status from: Kraus, Jess F., et al. 

“Socioeconomic Status, Ethnicity, and Risk of Coronary Heart Disease.” 

American Journal of Epidemiology, vol. 111, no. 4, 1980, p. 411. 
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use when considering numerous risk factors, there existed an opportunity for a better model to 

capitalize on this shortcoming. As such, D’Agostino and colleagues developed several different 

models that were not subject to this restraint in 2008 (D’Agostino et al.).  

  Using nearly 8,500 observations obtained from the Framingham Heart Study, Cox 

regression techniques were used to develop two different risk algorithms (D’Agostino et al.). The 

first of these models treated many of the commonly cited risk factors as potential predictors of 

cardiovascular disease; as such, cholesterol levels, blood pressure, and various other medical-

based values were needed as inputs for the model (D’Agostino et al.). Because of this, the 

researchers elected to investigate the construction of a precise prediction model that only used 

“non-laboratory-based predictors” (D’Agostino et al.). In other words, the second model that 

resulted from this study only included variables which could easily be measured without the 

assistance of a physician. Some of these variables include the participant’s age, gender, smoking 

habits, body mass index, and diabetic diagnosis.  

 Both of the aforementioned prediction models are now available on the Framingham 

Heart Study website. Although the two models have several predictors in common, slight 

differences remain (“Cardiovascular Disease (10-Year Risk)”).  

5. Description of Data 

 Because this study could profoundly impact the manner in which medical professionals 

identify individuals at risk of coronary heart disease, it was paramount that the data used for this 

analysis came from a reliable source. As such, this study utilized data from the most influential 

and respected cardiovascular study throughout history: the Framingham Heart Study. When the 

data used in this study was first obtained, it consisted of 4,240 observations across sixteen 

variables. It is key to note, however, that several observations within this dataset contained 
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missing values because of collection constraints within the original study. Since the machine 

learning functions within RStudio are programmed to handle missing values differently, it was 

important to eliminate this source of variability from the present study. As such, any observation 

that contained a missing value was removed from the dataset and not included in this analysis. 

The result was a final dataset consisting of 3,658 observations across sixteen variables.  

 In each of the classification models that this study generated, “TenYearCHD” was treated 

as the dependent variable. This variable was binary in nature; a value of “1” implied that the 

individual developed coronary heart disease within the ten-year period following the collection 

of this data, and a value of “0” implied a healthy diagnosis. Furthermore, the remaining fifteen 

variables in this dataset were treated as predictors in each of the classification models. Before 

these variables are explained in detail, however, one should understand two concepts. First and 

foremost, each of the variables included in this analysis are commonly cited as risk factors for 

coronary heart disease. As such, each one would likely hold some degree of predictive 

capabilities when considered alone. However, in the presence of several other predisposing 

characteristics, some variables will no longer be statistically significant in the classification 

process. Secondly, the predictor variables within this study are a combination of demographic, 

behavioral, and medical risk factors. Furthermore, some of the values were self-reported by each 

participant, while others were recorded by a doctor. The limitations associated with self-reported 

values should be considered when examining the predictive power of the resulting classification 

models. 

  Taking the above considerations into account, the remaining variables included in this 

dataset can now be examined. Each model generated throughout this study utilized the following 

fifteen variables as predictors: (1) “Male,” (2) “Age,” (3) “Education,” (4) “CurrentSmoker,”   
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(5) “CigsPerDay,” (6) “BPMeds,” (7) “PrevalentStroke,” (8) “PrevalentHyp,” (9) “Diabetes,” 

(10) “TotChol,” (11) “SysBP,” (12) “DiaBP,” (13) “BMI,” (14) “HeartRate,” and (15) 

“Glucose.” The first three variables listed above are demographic in nature, and they are rather 

straightforward. The “Male” variable indicates the participant’s sex, with a value of “1” implying 

that the individual is a male. Next, the “Age” variable is a truncated version of each participant’s 

age at the time of their exam. The final demographic variable is “Education.” This variable can 

take on the integers one through four, where each value corresponds to a different amount of 

education that the individual completed. The meaning of these values are as follows: (“1”) some 

high school, (“2”) high school diploma or GED, (“3”) some college, and (“4”) college degree.  

 In addition to the demographic variables detailed above, the dataset used throughout this 

study also included two behavioral variables: “CurrentSmoker” and “CigsPerDay.” Both of these 

values were self-reported by the participant. The “CurrentSmoker” variable is a binary value 

which identifies whether the individual smokes cigarettes; a value of “1” implies that the 

participant smokes on a daily basis. The “CigsPerDay” variable quantifies the previous variable 

by providing the average number of cigarettes a participant smokes each day. It is key to note 

that the “CigsPerDay” variable must be non-zero if the participant identifies as a smoker.  

 Lastly, this dataset considered ten medical variables. Four of these (“BPMeds,” 

“PrevalentStroke,” “PrevalentHyp,” and “Diabetes”) are binary; a value of “1” implies the 

presence of the corresponding variable, and a value of “0” implies its absence. The six remaining 

variables are continuous, and each of these were recorded by a medical professional. For 

instance, “TotChol,” “BMI,” “HeartRate,” and “Glucose” were measures of the participant’s 

cholesterol levels, body mass index, resting heart rate in beats per minute, and glucose levels 

respectively. While each of these values are rather intuitive, two variables in particular likely 
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need further explanation: “SysBP” and “DiaBP.” The variable “SysBP” represents an 

individual’s systolic blood pressure, and “DiaBP” represents their diastolic blood pressure. 

While these values are closely related, there is one key difference between the two. Systolic 

blood pressure measures the amount of force exerted on a participant’s artery walls when their 

heart contracts; diastolic blood pressure is the amount of force exerted when the heart is resting 

(Sheps).   

6. Methods 

 This study relied upon four different machine learning techniques to analyze the data 

detailed in the prior section. More specifically, logistic regression models, decision trees, random 

forests, and support vector machines were used to classify individual observations to one of two 

possible groups: (1) low risk of developing coronary heart disease, or (2) high risk of developing 

coronary heart disease. The following paragraphs detail the construction of each of the 

aforementioned models.  

6.1 Logistic Regression   

This study began with the analysis of several logistic regression models. With that being 

said, it is key to note that numerous preliminary steps needed to be taken prior to constructing 

this classification model. More specifically, the first step in this process was to separate the 

dataset into two distinct groups: (1) a training subset, and (2) a testing subset. To satisfy the 

previous statement, a random sample consisting of 70% of the dataset was assigned to the 

training set; the remaining 30% was then assigned to the testing set. These subsets were then 

used throughout this study to construct the various classification models and compare their 

predictive power.  
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With the data now sufficiently partitioned, the logistic regression model could be 

constructed. To begin this process, the best subset of predictors needed to be selected from the 

entire dataset. To do this, a preliminary logistic regression model was constructed using all of the 

data and “TenYearCHD” as the response variable; the fifteen remaining variables were treated as 

predictors. From here, RStudio’s “step function” was utilized to create a reduced model which 

consisted of only statistically significant predictors. Beginning with the original model detailed 

above, one independent variable was systematically dropped at each iteration to reduce the 

overall Akaike information criterion (AIC) of the model. Because AIC scores are used to 

determine the relative quality of a statistical model, the group of variables which minimizes this 

value is the best subset of predictors that can be used in the logistic regression model.  

The results of the previous process indicated that the following eight variables should be 

used as predictors: (1) “Male,” (2) “Age,” (3) “CigsPerDay,” (4) “SysBP,” (5) “Glucose,” (6) 

“PrevalentStroke,” (7) “PrevalentHyp,” and (8) “TotChol.” Since this process was performed on 

the entirety of the dataset, the final step in this process was to fit the prescribed model to the 

training data. In doing this, three of the predictors that were identified using backwards stepwise 

selection were no longer statistically significant. As such, “PrevalentStroke,” “PrevalentHyp,” 

and “TotChol” were dropped from the model. The final logistic regression model consisted of 

only five predictors: (1) “Male,” (2) “Age,” (3) “CigsPerDay,” (4) “SysBP,” and (5) “Glucose.” 

The resulting coefficients are displayed in the table below. 

Intercept Male Age CigsPerDay SysBP Glucose 

-8.962230 0.567732 0.067032 0.017191 0.018933 0.008323 

Table 1. Final logistic regression model 
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6.2 Decision Tree 

With the logistic regression model completed, this study then turned its attention to the 

construction of classical decision trees. Because the dataset was partitioned into training and 

testing subsets in the previous portions of the analysis, there was no need to repeat this step. In 

constructing the decision tree on the training subset, “TenYearCHD” was once again treated as 

the response variable; the remaining fifteen variables were used as predictors. This information 

was then used to generate a decision tree with the assistance of various RStudio functions. While 

the decision tree that resulted from this process was not overwhelmingly large, it was imperative 

to prune this model to avoid overfitting the data. To do this, the Cp values of the original model 

were analyzed; the smallest tree falling within one standard error of the smallest xerror is a good 

candidate to be the optimal decision tree. After this value was identified as 0.011494, the original 

decision tree was pruned according to this Cp value. The optimal decision tree based upon the 

70% training set is shown below.  

 

Figure 2. Optimal classical decision tree 

As can be seen in the above graphic, the optimal decision tree used four variables to 

classify data: (1) “SysBP,” (2) “Age,” (3) “CigsPerDay,” and (4) “Glucose.” The values depicted 
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within each node provide important information regarding each classification. For instance, the 

uppermost number at each node represents the model’s prediction. A value of “0” implies a 

healthy diagnosis/low risk of coronary heart disease, and a value of “1” represents a high risk of 

developing the condition. Additionally, the two values shown below this indicate the proportion 

of datapoints at that node that correspond to a “0” or “1” prediction. Lastly, the percent listed at 

the bottom represents the percent of all the data used in that node.  

6.3 Random Forest  

The third portion of this analysis involved generating random forests. While the 

underlying concepts for this type of model are quite similar to that of decision trees, the dataset 

needed to be slightly altered before generating this model. More specifically, the response 

variable (“TenYearCHD”) needed to be transformed to characters. Additionally, the “mtry” 

value within this function was set to four. This instructs RStudio to consider four variables at the 

nodes of each decision tree that the model generates. Although there is not consensus regarding 

this concept, it is generally viewed as good practice to set the “mtry” value to the integer nearest 

the square root of the number of predictors used in the model. After accounting for the 

previously mentioned changes, a random forest model consisting of 500 decision trees was 

created for the training subset. 

 

Figure 3. Variable importance in random forest model 
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 As the above image indicates, not all fifteen of the variables included in the model were 

critically important. In other words, “SysBP,” “BMI,” “Age,” “Glucose,” “DiaBP,” “TotChol,” 

and “HeartRate” seemed to have the most influence on this model’s classification of data. This is 

something that should be considered when comparing the accuracy rates of each model later in 

this study.  

6.4 Support Vector Machine  

After successfully constructing the above random forest model, the next step in this study 

was to create and tune a support vector machine. Treating “TenYearCHD” as the response 

variable once again, RStudio constructed a hyperplane that separated the training data into the 

most homogeneous groups possible. Once this model had been created, it was tuned to achieve 

its maximum potential. To do this, the “gamma” and “cost” parameters were allowed to 

fluctuate. RStudio then tried various combinations of these parameters and returned the most 

accurate model. This process yielded a gamma value of 0.001 and a cost of 100.  

 After generating the previous classification models using a 70% training set, this study 

sought to obtain even more accurate results. To do this, all of the prior calculations were repeated 

using a 65% training subset. Because the dataset used in this study had a substantial number of 

observations, a larger testing set allowed each model the opportunity to classify more data 

without leaving the training set with too few observations to be accurate. To avoid redundancy, 

the calculations involving the 65% training set were not included in this paper. Instead, the 

models resulting from these procedures are found in Appendix A.  

7. Results 

 The final stage of this study was to compare and contrast the predictive power of the 

models generated throughout the previous sections of this paper. In order to do this, each model 
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was used to classify the data stored within the testing subsets. Then, the actual results were 

compared to the predicted results using a confusion matrix. The model which yielded the highest 

accuracy rating was then deemed the best classification model for the given data. The accuracy 

rates for each of the models constructed using the 70% training data are discussed first.  

 Before the logistic regression model could be used to classify the data stored in the 

testing subset, the model was first used to obtain the predicted probability that each observation 

would develop coronary heart disease. From here, these predictions were divided into two 

groups: (1) Probability > 50%, and (2) Probability < 50%. Any observation belonging to the first 

group was classified as high-risk for developing coronary heart disease; the remaining 

observations corresponded to a healthy classification. The 50% cutoff value used in this 

calculation was a very natural choice since it indicated that an individual would “more than 

likely” or “less than likely” develop a heart condition. From here, the resulting model 

classifications were compared to the actual data stored in the testing subset using a confusion 

matrix shown below. A value of “1” indicates the presence of CHD. Of the 1,098 observations 

that the logistic regression model classified, 924 were correct. This corresponded to an 84.15% 

accuracy rate (see figure 4).  

 
Figure 4. Confusion matrix for logistic regression model 

 The next machine learning technique analyzed in this study was the classical decision 

tree. Unlike the previous example, no additional prep-work was needed before this model could 

be used to classify data residing in the testing subset. With that being said, one must recall that 

this method yielded two different decision trees which could be used to classify data: (1) the 
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preliminary tree, and (2) the pruned tree. Typically speaking, pruned decision trees are more 

accurate; however, this is not always the case. As such, a confusion matrix comparing the actual 

and predicted values was generated for both the preliminary and pruned decision trees; the tables 

are shown below. A value of “1” implies the onset of cardiovascular disease. Interestingly, these 

calculations indicated that both decision trees accurately assigned data to the correct class 918 

times out of 1,098 attempts. This corresponds to a respectable 83.61% accuracy rate. Since the 

pruned decision tree is more simplistic and equally accurate, we prefer it to the preliminary 

decision tree (see figures below).  

   
Figure 5. Confusion matrix for original tree      Figure 6. Confusion matrix for pruned tree 

 After completing the above calculations, the process was repeated using the random 

forest classification model. While it was assumed that this model would wield a more impressive 

accuracy rating than the previously discussed decision tree, this was not the case. In fact, this 

model performed approximately 0.1% worse. As the following confusion matrix exemplifies, 

this method correctly classified only 917 observations in 1,098 attempts. This translated into the 

least precise model generated throughout this study with an 83.52% accuracy rating. Once again, 

a value of “0” implied a healthy diagnosis, whereas a value of “1” implied the onset of 

cardiovascular disease.  

 
Figure 7. Confusion matrix for random forest model 
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 The final 70% training set model needing assessed was the support vector machine. This 

study analyzed the accuracy rates of both the initial and tuned models to see whether accuracy 

improved. Furthermore, both the preliminary and tuned models were each assessed using a linear 

kernel and a radial kernel to classify the data. Since four distinct tables are necessary to depict 

each model’s accuracy rate, only the confusion matrices corresponding to the final linear (left) 

and radial (right) models are shown below. With that being said, it is important to understand one 

concept before evaluating these support vector machines. When a support vector machine is 

created using a radial kernel, two parameters control how the model is fit to the data. As such, 

tuning this machine will determine the optimal combination between these two parameters which 

leads to the best data classification. When a linear kernel is used to develop an SVM model, 

however, only one parameter is used. With this knowledge in mind, interpretation of the 

resulting models is much easier. After being tuned, the accuracy rate of the radial model 

increased by roughly 0.31%. Interestingly, the final versions of these models boasted identical 

accuracy rates: 83.61%. Although these rates were identical, the manner in which the individual 

data was classified remained distinctly different (see figures below).    

   
       Figure 8. Confusion matrix for linear SVM  Figure 9. Confusion matrix for radial SVM 

Since the calculations regarding accuracy rates for the 65% training set models are 

similar to those described above, this paper does not discuss this process in detail. Instead, the 

accuracy rates for each model can be found in the image below. Additionally, the confusion 

matrix for each model can be located in Appendix A under the corresponding heading.  
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Figure 10. Accuracy and error rates for all models constructed in this study 

8. Predictions 

 For the final portion of this study, each of the previously generated models were used to 

predict the probability of an individual developing cardiovascular disease. In order to do this, 

three fictitious patients were considered. After analyzing the original dataset, a range of typical 

values for each predictor was identified. Then, observations were assigned to the hypothetical 

patients so that one individual had low values for each risk factor, the next had typical values, 

and the last patient had elevated values. The models developed throughout this study were then 

used to make various predictions on this data. In order to avoid redundancy, this analysis will 

only discuss the predictions made using the models which were fit to the 65% training data 

(since these were the most accurate models identified above).  

 When viewing the predictions for each of these models simultaneously, one concept is 

very noticeable: the logistic regression model consistently predicted lower probabilities of 

developing cardiovascular disease. After this, however, the relationship between the remaining 

models is less clear. The identification of this link may indicate why the logistic regression 

model had the highest classification accuracy rate. The predicted probabilities for each of the 

three hypothetical patients can conveniently be compared and contrasted using the following 

table.  
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 Logistic 

Regression 

Decision Tree Random Forest SVM 

Low Values 2.7% 10.8% 9.2% 10.7% 

Typical Values 20.5% 10.8% 14.8% 14.4% 

Elevated Values 70.4% 92.3% 63.0% 46.5% 

Table 2. Each model’s predicted probability of developing coronary heart disease 

9. Conclusions  

 Although the development of coronary heart disease is very complex in nature, this study 

showed that it is possible to generate models which accurately identify high-risk individuals. 

While the machine learning techniques that were assessed throughout this study had very similar 

accuracy rates, the logistic regression models were deemed the most precise, regardless of the 

training subset size. More specifically, the 70% logistic regression model accurately classified 

data 84.15% of the time; the 65% logistic regression model had an improved accuracy rate of 

84.86%. These insights have the potential to drastically change the medical field. With access to 

the aforementioned models, early detection of coronary heart disease becomes possible. As a 

result, physicians around the world would be better equipped to combat the ongoing heart 

disease problem.  

 As the previous statements allude to, these findings support the study’s initial hypothesis: 

logistic regression models will provide the most accurate quantification method. With that being 

said, it was intriguing to see that fitting each model on a smaller training set led to increased 

classification power. One possible explanation for this deals with the sampling technique. 

Because this study only analyzed the results of models based upon two different training subsets, 

it is entirely possible that the 35% testing set consisted of more ideal observations to classify. In 



Glienke 

 

 

21 

other words, the random chance associated with sampling could have slightly influenced these 

results so that the 65% training models were slightly more accurate.   

 Overall, each of the models generated throughout this study exceeded initial expectations. 

With that being said, there is always room for improvement. One area in particular which could 

prove highly beneficial is the collection of more data. Although 3,658 observations may seem 

substantial, more data is always useful when dealing with a complex response variable. 

Furthermore, it is advisable to reconduct this research using more variables. While each of the 

predictors used in this dataset are common risk factors which can allude to the development of 

coronary heart disease, this was far from an exhaustive list. As such, it is possible that the models 

within this study could see significant improvements with this addition.   
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Appendix A – 65% Training Set Models: 

1. Logistic Regression Model 

 1.1 Model Coefficients 

Intercept Male Age CigsPerDay SysBP Glucose 

-8.708082 0.531153 0.067377 0.019520 0.017988 0.007305 

 

 1.2 Confusion Matrix 

 

 

2. Classical Decision Tree 

 2.1 CP Pruning Values 

 

2.2 Confusion Matrices (Preliminary Tree: left, Pruned Tree: right) 
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3. Random Forest 

 3.1 Variable Importance Values 

 

3.2 Confusion Matrix 

 

 

4. Support Vector Machine  

 4.1 Radial Model Before Tuning 
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4.2 Radial Confusion Matrix Before Tuning 

 

 4.3 Radial Model After Tuning 

 

 4.4 Radial Confusion Matrix After Tuning  

 

 4.5 Linear Model 
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 4.6 Linear Confusion Matrix 
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Appendix B – 70% Training Set Models: 

1. Logistic Regression Model 

 1.1 Model Coefficients 

Intercept Male Age CigsPerDay SysBP Glucose 

-8.962230 0.567732 0.067032 0.017191 0.018933 0.008323 

 

 1.2 Confusion Matrix 

 

 

2. Classical Decision Tree 

 2.1 CP Pruning Values 

 

 2.2 Confusion Matrices (Preliminary Tree: left, Pruned Tree: right) 
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3. Random Forest 

 3.1 Variable Importance Values 

 

 3.2 Confusion Matrix 

 

 

4. Support Vector Machine  

 4.1 Radial Model Before Tuning 
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4.2 Radial Confusion Matrix Before Tuning 

 

 4.3 Radial Model After Tuning 

 

 4.4 Radial Confusion Matrix After Tuning  

 

 4.5 Linear Model 
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4.6 Linear Confusion Matrix 
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