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ABSTRACT 

 The problem that baseball coaches face is which base stealing technique is most 

effective. The purpose of this study is to compare three base stealing techniques 

(crossover step (CS), jab step (JS), and drop step (DS)) on initial sprint kinematics and 

steal time in Division I baseball players. This paper will address the stretch shortening 

cycle (SSC) and its effects, the false step technique, sprinting technique, and acceleration. 

This research will provide coaches with the knowledge and educate them on which 

technique provides greater sprint speeds. The method for research was experimental, 

repeated measures design to determine the effects of three different base stealing 

techniques on sprint capabilities. The results showed no significant difference between 

the three techniques (F(4,32)=2.3, p=0.083). A secondary analysis showed that a smaller 

magnitude of heel displacement during the drop step resulted in faster sprint times when 

compared to a larger heel drop through 5-m (F(4,100)=16.5, p=0.001). In conclusion, 

when teaching the DS, a smaller heel displacement resulted in faster sprint times when 

compared to a larger heel displacement. 
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CHAPTER I 

INTRODUCTION 

Base running in baseball is an aspect of the game that draws a lot of attention 

(Fox, 2006). The ability of the base runner to steal a base provides many advantages for 

the offensive side of baseball. Safe arrival at the stolen base requires the ability of the 

base runner to cover the distance between bases in a short amount of time, reaching the 

base before the catcher throws them out (Brunfeldt, Dapena, & Ficklin, 2015). With on 

base percentage and run production decreasing, stolen base attempts are increasing 

(Moore, 2012). 

A successful stolen base advances the runner and removes a force play at second 

base (Ficklin, Lund, & Reilly-Boccia, 2014). With the removal of the force play at 

second, the defense is unable to turn a double play and is required to throw the batted ball 

across the infield. The most important advantage that is provided by the advancement of 

bases without making an out is that it provides the offense with three opportunities to 

drive the runner in with a hit, successively increasing the run expectancy (Ficklin et al., 

2014). 

Run expectancy is the average number of runs a team produces during any 

situation (Ficklin et al., 2014). Increasing the run expectancy is the potential reward for 

the attempt of stealing a base. For example, a team can expect to score 0.56 runs in an 

inning with zero outs and zero runners on base. If the lead-off man reaches first base, this 

value increases to 0.95. With a successful attempt of stealing second, this value will 

increase again to 1.19 (Lederer, 2006). 
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If the baserunner at first base is thrown out at second base while attempting to 

steal, the run expectancy decreases from 0.95 (runner at first base with zero outs) down to 

0.30 (zero runners on base and one out). This results in a loss of 0.65 because of the 

failed attempt (Lederer, 2006). The potential risk (0.65 decrease) outweighs the potential 

reward (0.24 increase) by nearly three times. In other words, a team needs three 

successful stolen bases for every one failed attempt to break even. Being caught stealing 

is a double-edged sword. A runner who is thrown out not only produces an out, but also 

removes himself from the base paths and potential scoring position (Lederer, 2006). 

From MLB statistics from 2000-2005, the average run value for all stolen base 

attempts was -0.041662, with a success rate of 67% reaching just under the rate to break 

even (Fox, 2006). Keeping the marginal out, the risk of an out produced by a stolen base 

attempt, should be kept low (Moore, 2012). Although attempting to steal a base gives 

many tactical advantages in terms of run expectancy, the success rate of this attempt 

needs to be taken into account. 

Along with the sabermetric analyses of a stolen base, the proper technique and 

footwork is also a crucial element. Very little is known about the proper technique of 

stealing a base. Two common techniques that are utilized are the CS, where the left leg 

crosses in front of the right leg with right leg generating the force, and the JS, where the 

right foot takes a small step towards the base before the left foot crosses the right with the 

left leg generating the force (Wasserman, 2015). A new technique is being introduced 

called the DS.  
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The DS is a negative/false step where the right foot drops toward the left foot, so 

that the right foot is now directly underneath the right hip. This position creates an 

efficient shin angle at that ankle joint that is mechanically advantageous to accelerate the 

body. The DS allows the hips to open, creating the proper direction of movement towards 

the advancing base (Wasserman, 2015). A similar movement of the first step in collegiate 

linebackers was analyzed in a recent study comparing the first step and rhythm/DS on 

sprint speed. The results found that the rhythm/DS technique resulted in a greater 

acceleration when compared to the first step technique (Cusick, Ficklin, & Lund, 2014). 

The mechanisms of why this technique should work comes from a biomechanical 

standpoint. The shift of weight from the DS displaces the center of mass (COM) in the 

path of the ground reaction force (GRF; Cusick et al., 2014). Maximizing the forward 

component of the GRF is beneficial in maximizing acceleration, which requires 

adaptations in technique from the lesser angle between the ground and GRF vector. One 

way this may be accomplished is by leaning forward, or in this case, taking a step 

backwards. Additionally, this technique allows the runner to utilize the benefits of the 

stretch shortening cycle (SSC) from the repositioning of the lead leg, improving the 

ability to generate force during the first step (Cusick et al., 2014). 

Despite the evidence that this DS technique resulted in greater acceleration in 

collegiate football linebackers and the biomechanical mechanisms showing the benefits 

of this technique, baseball coaches continue to eliminate the DS. Very little research has 

conclusively determined the greater technique. 
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Statement of the Problem, its Significance, and the Purpose of the Study 

 The problem that coaches face is that they are uninformed of which base stealing 

technique is the best. In the past, the CS technique has been utilized because of the notion 

that there is no “negative” motions. These coaches are unware that this negative motion 

may put the runner in a more biomechanically efficient position to generate force and 

accelerate. This research will provide coaches with the knowledge and educate them on 

which technique provides greater sprint speeds. Therefore, the purpose of this study is to 

compare three base stealing techniques on initial sprint kinematics and steal time in 

Division I baseball players. 

Null Hypothesis 

There is no difference between the three base stealing techniques on sprint 

kinematics and steal time. 

Delimitations 

 The subjects that will be participating in this study are Division I baseball 

players. The variables that will be included in this study are acceleration, velocity, 

ground reaction force, and center of mass. The equipment used are high speed 

cameras and digitizing with MaxTraq in the biomechanics laboratory. The results 

of this study will utilized to generalize the tactic of base stealing in baseball. 

Limitations 

 A limitation of this study is the experience of one base stealing technique 

compared to the other two. Some athletes may prefer one technique over the other 

two and utilize it on a daily basis, limiting the experience of the others. Another 
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possible limitation is the range of skill in base stealing within the subjects. 

Although all athletes have experience with base stealing, some athletes may have 

been utilized in base stealing, providing them with greater experience. 

Definition of Terms 

• Acceleration: The rate of change of velocity per unit of time 

• Velocity: The speed of something in a given direction 

• Ground reaction force (GRF): The force exerted by the ground on a body 

in contact with it 

• Center of mass (COM): The point representing the mean position of the matter in 

a body or system 

• Stretch shortening cycle (SSC): An active stretch (eccentric contraction) of a 

muscle followed by an immediate shortening (concentric contraction) of that same 

muscle 

Assumptions 

1. The subjects participating in this study gave maximal effort during each trial 

2. Each base stealing technique was performed properly by each subject 

3. The data collection techniques are valid and reliable 
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CHAPTER II 

REVIEW OF RELATED LITERATURE 

In order to understand the benefits of the false step technique utilized in base 

stealing, the mechanisms that enhance the movement need to be addressed. The following 

review of literature will contain the role of the stretch shortening cycle (SSC) in athletic 

movements, the effects of the false step, and the sprint cycle. The mechanisms of each of 

these topics will be addressed to compare the three base stealing techniques on initial 

sprint kinematics and steal time in Division I baseball players. 

Stretch Shortening Cycle 

 The stretch shortening cycle (SCC) describes a natural muscular function in 

which a pre-activated muscle-tendon complex is lengthened during the eccentric phase of 

the movement followed by a muscle-tendon shortening during the concentric phase 

(Gollhofer, Leukel, & Taube, 2012). The muscle-tendon mechanism is engaged during 

quick, explosive movements such as sprinting, jumping, and agility. Movements that are 

essential in sport (Markovic, & Salaj, 2011). The SSC has gained a lot of attention in 

sports performance because of the important role it obtains in the components of sport, 

power and agility (Finni, Ishikawa, Komi, & Kuitunen, 2005). 

The major advantage of the SSC is considered to be partial storage and release of 

kinetic energy leading to enhanced power output and greater movement economy 

(Gollhofer et al., 2012). The effect of the SSC on the enhancement of positive work can 

be of the order of 1.5-2.3 times the work capabilities when starting from maximal 

isometric action (Komi & Nicol, 2011). It has been shown that the energy stored by the 
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SEC in the downward phase provides 32% of the total muscle energy in the push-off 

phase (Bohm, Bruggemann, Cole, & Ruder, 2006). 

Since this phenomenon is so important to performance, many researchers have 

conducted numerous studies to explain the effects of this mechanism and how it relates to 

performance. The important function from the SSC are to minimize unnecessary delays 

in the force-time relationship by matching the pre-activated levels of force to the required 

level to meet the expected eccentric loading and to make the final concentric action either 

more powerful or to generate force more metabolically efficient (Komi & Nicol, 2011). 

The SSC operates through a combination of mechanisms relating to muscle mechanics. 

One SSC mechanism contributing to the increase in maximal power production is 

the storage and release of elastic energy from the elastic components of the muscle-

tendon unit. The SSC allows for energy storage capabilities of the elastic components 

(SEC) and stimulation of the stretch reflex to employ a maximal increase in muscle 

recruitment. With the increase in muscle recruitment caused by the SCC, this 

phenomenon leads to a more explosive concentric action enhancing sports performance 

(Jeffreys & Turner, 2010).  

When the muscle complex is stretched, elastic energy is stored in the SEC, 

consisting of tendons, and contributes toward force production if a concentric contraction 

occurs immediately after (Dickens, 2012). Tendons are considered to be the key site for 

the storage of energy within the SEC because of their ability to store energy, recoil, and 

release energy. The tendon recoil is responsible for both the increase in power output and 

conservation of energy during movement (Jeffreys & Turner, 2010).  
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The energy stored in the SEC during the eccentric phase either increases the force 

production during the concentric movement. The stored energy increases the force 

production during the concentric phase beyond the ability of an isolated concentric 

muscle action. Stored elastic energy contribute to the reflex recruitment of additional 

motor units, the increase in rate coding, and enhancement in potentiation before 

contraction (Hennessy, & Kilty, 2001). The greater the release of elastic energy, the 

greater reduction in cross-bridge formation and force production needed (Jeffreys & 

Turner, 2010). The SEC can generate a large amount of force and optimizes rate of force 

development (RFD), but has been shown to not be possible during slower movements 

(Dickens, 2012). 

The efficiency of the SSC depends on the ability to transfer energy from the 

eccentrically stretched muscle-tendon complex to the concentric push-off phase. 

Muscular stiffness regulation is considered to be an essential factor for a successful 

transfer of energy. The reflex contributions induced by the stretch during the eccentric 

phase enhance muscular stiffness, leading to an increase in performance during the 

concentric phase. The reflex may also prevent muscle yielding in certain conditions 

where the muscle is not pre-activated (Gollhofer et al., 2012). 

Another SSC mechanism is from the work of the muscle spindles. The muscle 

spindles are proprioceptors within the muscle that detects changes in relative length of 

the muscle. During a sudden lengthening of the muscle, the muscle spindles release an 

impulse to the spinal cord. The size of the impulse depends on the magnitude of the 

stretch. If the impulse is large enough, an automatic protective response causes the 
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muscle fibers to contract (Dickens, 2012). The firing frequencies are proportionate to the 

velocity of change of length of the muscle in relation to the amplitude (Gollhofer et al., 

2012). 

The rate of the stretch is essential during this movement. A greater muscle 

recruitment and activity during the SSC concentric phase results from a higher stretch 

rate. Moreover, the forceful and rapid lengthening of the muscle-tendon unit during the 

eccentric phase of the movement causes a mechanical deformation of the muscle spindles 

that activate a reflexive action. This stretch reflex increases the stimulation of the muscle 

and results in an increased contraction force during the concentric phase and contributes 

to an enhancement of power output. The extent to the enhancement in power from the 

SSC depends on the rate of the stretch and the magnitude of the impulse detected 

(Cormie, McGuigan, & Newton, 2010). 

 The muscle spindles may be responsible for the potentiation after a prestretch of 

the muscle due to its initial reflex recruitment of additional motor units and rate of firing 

of the recruited units. This mechanism contributes to the development of an active state at 

a high level, which allows the muscle to generate higher force production during the 

concentric phase (Jeffreys & Turner, 2010).  

 The muscle length has an impact involved in the increasing force output after 

SSC. The force enhancement is related to the longer length of the muscle before the 

concentric phase. This places the muscle in a more advantageous position on the length-

tension relationship to produce force. Due to the effects of the SEC, the muscle fibers are 

at optimal length at contraction and are able to produce greater force. Due to this 
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isometric action, the lowering of force output with increasing velocities is avoided and 

enables the muscle fibers to far exceed the force output of concentric contractions 

(Jeffreys & Turner, 2010). 

False Step 

 An athlete’s ability to initiate and change direction rapidly is influential to 

sprinting and sport performance (Dysterheft, Lewinski, Pettitt, & Seefeldt, 2013). When 

moving from one point to another, quickness is often the deciding factor (Brown, Coburn, 

Johnson, Judelson, Khamoui, Tran, & Uribe, 2010). Therefore, coaches should be placing 

most of their efforts on the mechanics of acceleration and first step quickness to 

maximize the efficiency of training (Cronin & Frost, 2011). In many sport activities and 

movements, it is required of the athlete to accelerate from a stationary position to 

maximal speed (Kraan, Snijders, Storm, & Veen, 2000). From the stationary position, 

two main take off techniques are involved, the forward step and the false step (LeDune, 

Nesser, Finch, & Zakrajsek, 2012). 

 The forward step requires the athlete to step forward into a sprint from a standing 

position. The false step allows the athlete to take a step backwards, or in the negative 

direction, before stepping forward with the opposite foot (LeDune et al., 2012). With the 

step backwards, the athlete’s base of support displaces behind the center of gravity before 

stepping in the desired direction (Cusick et al., 2014).  

The initial movement from a stationary position, the center of mass must be 

displaced outside the base of support. This is achieved by one of two ways: by a rotation 

of the body at the ankle joint, shifting the center of mass, or displacing the base of 



11 
 

support by changing a foot position by stepping backwards or to a side (Cronin, Frost, & 

Levin, 2008). Researchers have identified two important factors of maximizing 

acceleration: forward position of the body’s COM and the use of the SSC (Brown et al., 

2010). 

From a parallel stance, an athlete chooses to initial movement by a repositioning 

of their center of mass by leaning, or moving their feet (Cronin et al., 2008). Both 

techniques are commonly utilized by coaches and are implemented in various sports 

activities. The argument for the forward step is that it eliminates the backwards step, thus 

saving time generating forward momentum. Although, the false step utilizes the effects of 

the SSC and the elastic properties of the tendon and the reflex movement (LeDune et al., 

2012).  

According to previous research, it has been stated that the false step outperformed 

the forward step in terms of production of force at the initial step. The false step has been 

shown to also generate faster sprint times from an upright position when compared to 

other techniques (LeDune et al., 2012). The research also showed that using a false step 

technique, sprint time was reduced by 100 ms when the distance to be covered was as 

short as 3 meters (Cronin et al., 2008). 

In an additional study comparing the force and power at push-off between a 

staggered stance, parallel stance, and the false step, the researchers concluded that using a 

backwards step to accelerate is advantageous. It was also stated that the athletes 

participating in the study inherently adopted the backwards stepping strategy when asked 

to sprint from a stationary position (Cronin & Frost, 2011). 
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From previous research, the false step has shown to be the superior technique if 

the distance to be covered is less than ten meters (Brughelli, Cronin, Frost, Green, & 

Levin, 2007). When the false step was compared to a forward step over a 5-meter sprint 

the difference was significant, with the false step resulting in substantially faster times. 

Stepping backwards to initiate forward movement can improve sprint performance due to 

the increase in force and power production at push-off. Using the forward step caused the 

subjects to remain in contact with the ground for a longer period of time, and it took the 

subjects longer to reach their peak force. In addition, the time period from peak force to 

takeoff was also greater (Cronin & Frost, 2011). 

Many mechanisms partake in the enhancement from the false step technique and 

improve the performance of the movement. Certain biomechanical properties are present 

during the false step that allow for greater acceleration and sprint velocities that are 

important to recognize. It is important for coaches and sports performance coaches to 

understand these effects when concentration on the technique of the first step used when 

initiating movement (Cusick et al., 2014). 

Utilization of the SSC by the false step is crucial and increases the force 

production capabilities, therefore, decreasing sprint times. When the athlete steps back, 

there is an eccentric action of the muscle, lengthening the calf muscle. This activates the 

muscle spindles sending a signal to the spinal cord, sending a reflex signal back to the 

muscle serving to the increase in force production during the concentric muscle action 

(Brown et al., 2010). The SSC has been shown to increase the force production 

capabilities by preloading the muscle with elastic energy (Dysterheft et al., 2013). This 
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ballistic movement created by the false step is then supported by greater acceleration 

values. 

To accelerate forward from a standing position without a loss of balance, the 

athlete must keep the body COM in the path of the GRF (ground reaction force). 

Maximizing the forward component of GRF is beneficial in maximizing acceleration, but 

also requires an adaptation of technique to account for the lesser angle. This can be 

accomplished by moving the ground point of application of the GRF, or stepping 

backward. This has been applied by the use of starting blocks in the sport of track and 

field (Cusick et al., 2014). 

Higher values of GRF that are applied in a shorter amount of time seem to 

facilitate greater impulses. A study done on field sport athletes demonstrated that those 

who were capable of producing greater GRF, especially the vertical component, exhibited 

less contact time with the ground and bigger stride length, which resulted in faster times 

during the first five meters of a sprint that was initiated from a split stance position 

(Callaghan, Jeffriess, Lockie, Murphy, & Schultz, 2013). It has been shown that faster 

sprint times, within the first 10 meters of a sprint run, are achieved with greater 

horizontal impulses (Kawamori, Newton, & Nosaka, (2013). 

Horizontal forces and impulses are extremely important for acceleration and 

sprint starts. During block starts in track and field, greatest horizontal forces were a result 

by maximizing the horizontal component of the GRF. Utilizing the false step resulted 

similar values due to the repositioning of the COM and extra forward lean. Taking a false 

step increases the horizontal component of the total GRF produced during a sprint start. 
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The study compared the values generated during the sprint starts in track from the blocks. 

Utilization of the start blocks maximized the horizontal forces produced during their 

takeoff by allowing them to lower their COM and assume a forward lean in an attempt to 

achieve greater accelerations (Cusick et al., 2014).  

An additional study that compared the effects of forward and false step on total 

sprint time also concluded that the false step is far more superior. The authors suggested 

that false step is a better training technique as it displaces the COM anteriorly while at the 

same time utilizing the SSC, concluding that the false step resulted in greater horizontal 

power and bigger impulse (Brown et al., 2010). 

The countermovement of the false step is intended to create an explosive 

movement to propel the body forward at a high rate (Brown et al., 2010). Although taking 

a false step prior to accelerating forward seems counterproductive, the shorter time to 

peak force and higher force production are more important (Kraan et al., 2000). The 

utilization of the SSC increases the impulse during the initial push which decreases total 

sprint time. The false step technique allowed the runner to utilize the SSC for improving 

the ability to generate initial force production during the first step (Cusick et al., 2014).   

As it appears, false step decreases the time needed to reach peak force, while at 

the same it increases push-off force. The combination of these mechanisms results in 

higher overall accelerations and sprint velocities (Brown et al., 2010). The activation of 

the SSC improves an athlete’s ability to produce higher forces during the initial step of a 

sprint (Cusick et al., 2014). Utilizing the SSC has been shown to improve performance. 
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 Having to lean forwards to position the center of mass ahead of the feet to initial 

movement with the false step alters the segment mechanics and changes the athlete’s 

ground contact, mainly in the first step which is crucial. Making the use of the false step 

also alters the way an athlete produces force at push-off by changing their segment 

mechanics and utilizing the SSC, resulting in higher horizontal velocities at the first 

ground contact (Cronin, & Frost, 2011). 

Therefore, the false step has a potential to result in superior sprint performance. 

However, any benefit that is provided by the utilization of the SSC goes away if the 

forward step is used instead, as this will not allow for the activation of the SSC and the 

production of greater forces and higher velocities (Cusick et al., 2014). With a parallel 

stance, the center of mass must be repositioned before horizontal force can be developed. 

This delay with the effects of the SSC are conclusive to improving an athlete’s 

acceleration and movement time (Cronin et al., 2008). 

Sprinting 

Many strength and conditioning practitioners, coaches, and athletes is the 

development and improvement of sprint speed (Brughelli, Chaouachi, & Cronin, 2011). 

In sports like baseball, soccer, and football, just to name a few, being able to sprint at 

high velocities could determine the level of success. Sprinting is a high velocity running 

skill during which the goal is to cover a certain distance in the least possible time 

(Bezodis, Kerwin, & Salo, 2008).  
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This complex task places high neuromuscular demand on the athlete and requires 

high level of coordinated movement and appropriate sequence of muscle activations in 

order to perform at peak levels (Young, 2008). Many mechanisms take place in sprinting 

that separate the elite and their counterparts. Whether it’s within the technical aspect such 

as stride length and stride frequency, or from a biomechanical standpoint such as force 

production and impulses, a better understanding of the movement is crucial. 

Speed is a function of stride length and stride frequency. These two variables are 

interdependent and inversely related, as one variables increases, the other may decrease. 

Therefore, it is important to reach an optimal balance between stride length and stride 

frequency without manipulated either as if they were completely independent (Young, 

2008). The limit to speed is reached when foot-ground contact times and effective 

vertical impulses decrease to the minimums that provide just enough aerial time to 

reposition the swing limb for the next step (Bundle, Prime, Sandell, & Weyand, 2010).  

To increase sprint speeds, an athlete must increase the force they apply to the 

ground and be able to apply those forces in shorter periods of time. Just as the amount of 

force applied is important, the direction of the force applied is also important. For 

maximal speed velocities, the athletes should minimize horizontal braking forces and 

maximize vertical propulsive forces. Vertical propulsive forces are important because 

once momentum has been maximally developed during acceleration, the balancing of 

internal and external forces acting on the body are important to keep the body moving 

forward at the same speed (Young, 2008).  
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The benefit of greater force application is two-fold. First, greater force application 

will increase stride length. The greater force applied into the ground will result in a larger 

displacement of the athlete’s body in the air and greater distance will be covered. Second, 

the increased force application results in an increased stride frequency as well.  Stride 

frequency is comprised of ground contact time and flight time (Young, 2008). To 

improve the specific abilities that will enhance speed, the ability to withstand and 

produce large forces in a short period of time is crucial. 

There are three primary goals in maximizing the velocity of sprinting: 

preservation of stability, minimization of braking forces, and maximization of vertical 

propulsive forces. The first goal of sprinting mechanics is the preservation of stability. 

Stability is crucial to any athletic movement by ensuring that the body is able to move 

with maximal efficiency. When stability is disrupted, dysfunctional movement patterns 

are often the result along with loss of elasticity. As with many aspects of sprint 

performance, posture is the core of enhancing stability. Posture refers to the positioning 

and functional capacity of the core region of the body (Young, 2008). 

Without proper internal stability and appropriate postural alignment, preservation 

of stability is often affected. To enhance the stability, the musculature surrounding the 

spine should be strong and remain stable during the movement of all limbs (Young, 

2008). It is important to recognize that stabilization is dynamic in nature and not always 

static. This is especially true of the pelvis. While the general position of the pelvis should 
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have some posterior tilt, efficient sprinters exhibit pelvic rotation in all three planes 

(Novacheck, 1998). 

Along with stabilization of the core, the sprinter’s head, neck, and spine should be 

neutrally aligned. This posture gives freedom of movement and relaxation, both to 

enhance elastic energy from the core and extremities. An upright posture promotes front-

side mechanics and limits backside mechanics. Front-side mechanics refers to the actions 

of the lower extremities that occur in the front of the body, while backside mechanics 

refer to the actions occurring behind the body. This is crucial to sprinting efficiency 

(Young, 2008). 

The second objective of sprinting mechanics is minimizing braking forces that the 

athlete produces at ground contact. Braking forces are the forces which occur in the 

opposite direction of the desired movement and tend to lead to deceleration. Although 

completely removing braking forces is impossible, attempts with technique should be 

made (Young, 2008). The primary cause of an excess in braking forces is due to the 

athlete over striding and making contact with the ground too far in front of their center of 

mass. 

Two scenarios are often the cause of excessive braking forces. The first cause is 

the stride length and the attempt of “reaching out” with each step. This often creates a 

ground contact point further in front of the athlete’s center of mass. Stretching out with 

each step in an attempt to increase stride length will ultimately have an opposite effect 

and create horizontal braking forces (Young, 2008). 
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The second scenario is instability. When the body is experiencing instability, the 

attempt to regain stability by a premature grounding of the swing leg. The premature 

grounding means that the foot will still be moving forward with respect to the body when 

contact is made with the ground (Young, 2008). The premature grounding is often 

referred to as positive foot speed. This is potentially disruptive to efficient sprinting 

because of the increase in the braking forces. This is referred to as negative foot speed at 

ground contact and is highly correlated with increased sprinting speeds. Any negative 

foot speed is a byproduct of efficient front-side mechanics and sufficient flight time 

(Young, 2008).  

The final objective of sprinting is enhancing vertical propulsive forces. Increasing 

vertical propulsive forces increases vertical displacement of the athlete, which leads to a 

more effective ground contact position and increased likelihood of negative foot speed. 

Better sprinters tend to have greater upward vertical displacement during flight and less 

downward vertical displacement following ground contact. Their counterparts have 

difficulty producing vertical forces, resulting in a dropping of their hips at ground 

contact. This leads to a lengthening time of ground contact and reduces the elastic 

components at push-off (Young, 2008). 

Increased vertical force application results in a more effective ground contact 

position. With better vertical displacements occurring in faster sprinters, longer time is 

available for the athlete’s swinging leg come in contact with the ground closer to the 

center of their center of mass. Insufficient flight time may result in a ground contact point 
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further in front of their center of mass. This will result in an increase in braking forces 

(Young, 2008). The main mechanism that repositions the leg during a sprinting cycle is 

the storage and release of the mechanical energy of the flexor muscles of the swinging 

leg. Therefore, it is now believed that in order for an athlete to achieve faster speeds, the 

athlete has to apply greater ground forces to minimize ground contact time rather than 

just attempting to increase stride frequency by trying to propel the limp forward. 

(Brughelli et al., 2011). 

Acceleration 

 Maximal running speed and acceleration are essential components when it comes 

to performance in sport. A faster athlete has the ability to reach the destination in a 

shorter period of time, thus a greater advantage of winning (Kawamori et al., 2013). 

Although maximum velocity is important in sport, it is generally accepted that the ability 

of greater acceleration is of greater importance in sport because of the rarity of reaching 

top speeds in field sports (Coutts, Lockie, & Murphy, 2003).  

Maximal sprinting speeds depend on the increasing in speeds that occur prior in 

the acceleration phase. Therefore, the ability to accelerate the body is crucial to 

performance (Nagahara, Matsubayashi, Matsuo, & Zushi, 2014). In team sports, 

acceleration is of main importance because of sprint capabilities in short durations 

(Kawamori et al., 2013). The ability of quickness over the first few steps during a sprit is 

vitally important during the game (Coutts et al., 2003). 
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Acceleration is defined as the rate of change of velocity. Although, in a practical 

sense, acceleration ability is referred to as sprint performance over smaller distances such 

as 5-10 meters, and is assessed using sprint time or velocity (Coutts et al., 2003). In 

contrast to the upright posture sprinters adopt during maximal velocity, sprinters have a 

forward trunk lean that assists acceleration as the whole body’s center of mass is brought 

ahead of the base of support (Nagahara et al., 2014). 

Many mechanisms partake in the acceleration phase of sprinting, both from the 

technical and biomechanical aspects. From a biomechanical standpoint, kinematic 

variables such as ground reaction force (GRF), impulses, and force production. From a 

technical standpoint, stride length and stride frequencies play an important role and the 

difference from maximal velocity also play important roles in the acceleration phase. The 

duration at which force is produced during the stance phase is also important for 

acceleration. Relationships between ground reaction force and ground contact time have 

been shown to enhance acceleration, but also the relationship between ground reaction 

force and time can also be analyzed through impulse, specifically vertical impulse, 

horizontal impulse, and resultant impulse (Callaghan et al., 2013).  

During the acceleration phase, faster sprints speeds were developed from a 

correlation between step length, ground contact time, and flight time with sprint velocity, 

concluding that greater step lengths, shorter ground contact times, and longer flight times 

were evident. Longer step lengths are indicative of higher strength and power 

development in the leg muscles specific to the sprint step (Callaghan et al., 2013). 
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Results have shown that greater vertical force production during the stance phase 

of acceleration contributes to a shorter ground contact time. Faster subjects who produce 

shorter ground contact times tend to produce greater vertical and ground reaction forces. 

Shorter contact times have been related to faster sprint speeds both during maximum 

velocity sprinting in track and field sprinters, as well as acceleration in sport athletes 

(Callaghan et al., 2013). During acceleration, sprinters accelerate with a rapid increase in 

stride frequency and a rapid decrease in ground contact time, contacting their foot on the 

ground behind the position of their center of mass (Nagahara et al., 2014). 

Stride frequency is also important during the acceleration phase. The results 

showed that individuals with high acceleration ability produced a higher stride rate of 9% 

when compared to their counterparts. Athletes who are able to generate higher sprint 

velocities over a short duration have the capabilities due to greater stride frequencies 

produced by the reduced ground contact time (Coutts et al., 2003). Step length and step 

frequency have to be coordinated to enable ground contact times to be equal to the 

duration of time of the flight phases within the shortest amount of time capable (Coh, 

Stuhec, & Tomazin, 2003). 

Controversy has been shown between the importance of vertical or horizontal 

force and impulse production. It has been suggested that horizontal force is what 

influences high running velocities, while others claimed that it is the vertical forces that 

contribute the most (Brughelli et al., 2011).  Impulse is a term frequently used by sport 

scientists in literature reviews as it strongly correlates with sprinting, jumping, throwing, 
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and generally any sport that requires high velocities, accelerations, and forces (Dayne, 

Haines, Kirby, & McBride, 2011). The influence of impulse generated during the stance 

shows a relationship with stride length.  

It has been argued from past researchers that vertical impulse is more important 

that horizontal impulse. A greater vertical impulse suggests either a high production of 

vertical force or a higher rate of vertical force production. Results suggest that subjects 

with longer step lengths early in acceleration generate greater vertical impulse values. As 

previously stated that faster subjects produce longer step lengths, faster acceleration can 

be derived from greater vertical impulses. Faster performances in the first 5 m of a 

maximal sprint can influence sprint efforts over 10, 15, and 30 m. Therefore, greater early 

vertical impulse production for athletes producing longer steps within the first 5 m would 

assist with early speed generation during a short, or extended maximal sprint (Callaghan 

et al., 2013). 

Researches have also argued that the horizontal component of the production of 

force and impulse and its effects on acceleration. During the first three steps of 

acceleration, the body’s center of mass has to rise gradually in the vertical direction to 

maximize the horizontal component at push-off (Coh et al., 2006). It has been suggested 

that faster participants over a 10 m sprint produced larger net horizontal impulses by 

applying larger net horizontal forces, resulting in greater acceleration of the center of 

mass during each ground contact. This has been seen to be true as long as there is not an 

increase in ground contact time or excessive flight time (Kawamori et al., 2013). 
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Net horizontal impulse production is more important immediately after the start of 

acceleration where the athlete needs to overcome inertia of the body from a stationary 

position. Strong correlation has been seen between sprint time and net horizontal impulse 

during first ground contact during a maximal sprint initiated from a parallel starting 

position (Kawamori et al., 2013). 

A greater ground reaction force directed in the line more toward horizontal results 

in greater acceleration (Callaghan et al., 2013). Additional studies found that peak 

horizontal force significantly increased with incremental running velocity. The 

researchers concluded that increasing running velocity from moderate to maximum, 

sprint velocity is more dependent on horizontal force production than vertical force 

production (Brughelli et al., 2011). 

Furthermore, a study examining a block start using an elite a sprinter indicated 

that during the first three steps of the sprint the horizontal velocity was substantially 

higher than the vertical one. Therefore, the horizontal component of the ground reaction 

force has to be much greater than the vertical one, in order to provide the necessary 

horizontal impulse for accelerating forward (Coh et al., 2006). During the first steps of a 

sprint, there is a strong correlation between horizontal impulse and faster accelerations 

(Dayne et al., 2011). Similar findings comparing the forward step and false step 

concluded that horizontal force production and horizontal impulse were the main 

determinants of faster sprint times during the initial phase of a sprint (Cusick et al., 

2014). 
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Conclusion 

 In summary, the importance of the false step in sport has been expressed through 

many studies. The vast majority of the previous studies comparing the false step with the 

other techniques utilized have concluded that the false step is superior for acceleration. 

With the false step being the more effective technique in the many sports researchers 

have studied, it is hypothesized that similar results will occur when comparing the three 

base stealing techniques. 

  Utilization of the SSC is essential in sport. With its effects on acceleration and 

speed, sport performance is enhanced. This muscle-tendon mechanism is engaged during 

quick, explosive movements such as sprinting, jumping, and agility (Markovic, & Salaj, 

2011). This phenomenon occurs during the false step movement. Utilization of the SSC 

by the false step is crucial and increases the force production capabilities, therefore, 

decreasing sprint times (Brown et al., 2010). 

The false step allows for a forward trunk lean that assists acceleration as the 

whole body’s center of mass is brought ahead of the base of support (Nagahara et al., 

2014). This allows for a greater GRF directed in the line more toward horizontal results 

in greater acceleration (Callaghan et al., 2013). From the results of this review, numerous 

studies conducted have concluded that the false step is the superior technique and results 

in faster acceleration and sprint times. 
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CHAPTER III 

METHODOLOGY 

Research Design 

 The research design of this study contains an experimental approach to the 

problem. A counterbalanced, randomized, repeated measures design was conducted to 

determine the effects of three different base stealing techniques on sprint capabilities. The 

three base stealing techniques utilized were the CS, JS, and the DS. After familiarization, 

each subject performed two trials of each technique in an order that was random and 

counterbalanced. 

Research Participants 

 Nine Division I collegiate baseball players were recruited for this study. After the 

subjects were informed of the potential risks and benefits pertaining to the study, every 

subject signed an informed consent to participate in the study. The Internal Review Board 

of the University of Northern Iowa reviewed all study procedures 

Procedures for Collecting Data 

 All sprint trials were videotaped at 100 Hz on an Edgertronic camera 

(Edgertronic, 300 Santana Row, Suite 200, San Jose Ca. 95128). The camera was 

positioned 10 m away with the optical axis perpendicular to a vertical plane containing 

the middle of the running lane. Upon arrival to the testing facility, the subjects were 

instructed through a 10-minute dynamic warm-up. Following the warm-up, the subjects 

were provided instructions of the execution of each base stealing technique that were to 
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be performed. After the introduction of each technique, the subjects were then provided 

the opportunity to familiarize themselves with the three techniques. 

 After familiarization, each subject performed two trials of each technique. The 

order at which the subjects performed each trial was randomly assigned in a 

counterbalanced order. The subjects were provided no feedback regarding their 

performance of each trial. All trials were performed on an indoor facility on a turf 

surface. For analysis, cones were placed at 2.5-m and 5-m away from the starting point. 

Each subject sprinted through the 5-m mark for completion of each trial.  

Data Analysis 

All videos were transferred to MaxTraq (Innovision Systems, Columbiaville, MI, 

USA) for digitization. For each frame, the 21 anatomical landmark locations were 

digitized for calculation of the subject’s center of mass (COM) using a previously 

described segmentation method using segmental inertia parameters from De Leva (1996). 

Each technique containing two trials were averaged for each subject for analysis. 

For the video analysis, the 2.5-m and 5-m distances were used as calibration 

distances. The time at which the subject’s COM passed the 2.5-m and 5-m marks were 

calculated for each trial. The distance of the heel drop, displacement of the lead heel at 

the start of the movement, was calculated to determine the magnitude of the drop and 

speed time. The distance behind the COM of the heel at first step was calculated. 

Descriptive statistics were performed on all performance variables. Repeated-

measures multiple of variance (MANOVA) was used to compare the three techniques at 
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the time at 2.5-m and 5-m distances. A Bonferroni correction was used to control for 

familywise error. Alpha was set at 0.05 for all tests. 
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CHAPTER IV 

RESULTS 

Descriptive statistics (mean ± SD) of both temporal variables organized by the 

three techniques are displayed in Table 1.  The repeated measures MANOVA indicated 

that no treatment effect was observed therefore no posthoc analysis was performed 

(F(4,32)=2.3, p=0.083).  

Table 1. Descriptive statistics of temporal variables by technique (n=9). 

 Crossover Step Jab Step Drop Step 

Variable Mean SD Mean SD Mean SD 

t2.5 (s) 1.00 0.07 1.01 0.06 1.04 0.06 

t5 (s) 1.45 0.08 1.46 0.06 1.49 0.07 
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CHAPTER V 

DISCUSSION 

 The purpose of this study is to compare three base stealing techniques on initial 

sprint kinematics and steal time in Division I baseball players. Nine Division I NCAA 

baseball players were recruited for participation in this study. All subjects were instructed 

on how to perform each technique utilized in this study and were allowed for 

familiarization prior to testing. 

 Surprisingly, there were no significant effects when comparing the CS, JS, and 

DS. Actually, the DS resulted in the slowest time when compared to the two other base 

stealing techniques. This was alarming to the researcher because of the previous studies 

conducting that the DS resulted in faster acceleration times. Such as the study conducted 

by Cusick et al., (2014) on linebackers and acceleration, and Cronin et al., (2007) 

researching acceleration within 5-m distances both resulting in faster sprint times 

utilizing the DS. LeDune et al., (2012), also showed the DS resulted in faster sprint times 

in as short as 3-m distances.  In these previous studies, along with numerous others, the 

DS technique was the dominant technique. However, no significant differences resulted 

from the present study. 

 Upon further review of the videos taken for analysis, it was observed that the 

execution of each technique was flawed, which produced incorrect results. It was noticed 

that during the CS trials, the lead foot did not stay in contact with the ground as 

instructed, but rather displaced in the negative direction comparable to the DS technique. 

Although this negative displacement was not as drastic as in the DS technique, this still 
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affected the results of the study. A similar qualitative analysis was done during the JS 

trials. It was observed that the athlete broke contact with the ground at the start of the 

movement, as they should, but instead of making a positive movement with the lead foot, 

many subjects made the same negative displacement as in the JS trials. That is, the 

majority of the JS trials performed were actually DS. 

 After noticing these technical errors performed by the subjects, a secondary 

analysis was performed. The horizontal position of the heel of the lead foot during the 

lead was compared to the position of the heel after the foot was raised and lowered back 

to the ground for all three conditions. This was called heel drop displacement (sheel) and 

for all three conditions was negative in all cases. This confirmed that the visual analysis 

of the videos during the secondary analysis that the majority of the subjects were 

performing the DS technique without knowing. Of all the trials conducted, there was only 

one trial during the JS trials that resulted in the correct positive displacement of the heel 

as instructed. Specifically, the CS had an average displacement of -0.1-m, the JS 

averaged a -0.02-m displacement, and the average DS displacement was -0.31-m. 

Clearly, the magnitude of the DS has an effect on the temporal variables.  To 

determine the effect of the sheel on the temporal variables, each subject’s t2.5 (time at 2.5-

m) and t5 (time at 5-m) data were converted to a score relative to each subject’s slowest 

trial.  Each of the six trials were rank in ordered for each subject and the slowest trial was 

given a score of zero.  If the next slowest score was 5% faster than the slowest score, it 

was scored as 0.05.  The relative scores (t2.5rel, t5rel) were rank ordered and quartiles were 

calculated in order to group the trials by slowest to fastest trials. Two separate MANOVA 
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analyses were used to determine the changes in sheel and time across the three groups; 

slow, medium, and fast. 

The first MANOVA indicated a significant group effect for the 2.5-m distance 

(F(4,100)=19.7, p=0.001).  There was a significant grouping effect for t2.5rel (p=0.001) but 

not for sheel (p=0.41).  A significant grouping effect was also observed by the second 

MANOVA that analyzed the 5-m distance (F(4,100)=16.5, p=0.001).  The group effect 

was significant for t5rel (p=0.001) as well as sheel (p=0.047). The results of the posthoc 

analyses can be found in Tables 2 and 3. 

 

Table 2. Effect of trial grouping on t2.5rel and sheel 

  t2.5rel (%) Faster sheel (m) 

Variable Mean SD Mean SD 

Slow 0.01 0.01 0.16 0.14 

Medium 0.07* 0.03 0.11 0.13 

Fast 0.17** 0.03 0.16 0.16 

*Significantly greater than the “slow”. **Significantly greater than “medium.”  
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Table 3. Effect of trial grouping on t5rel and sheel 

  t5rel (%) Faster sheel (m) 

Variable Mean SD Mean SD 

Slow 0.01 0.01 0.19 0.17 

Medium 0.04* 0.01 0.16^ 0.14 

Fast 0.08** 0.02 0.08^^ 0.08 

*Significantly greater than the “slow”. **Significantly greater than “medium.” ^Significantly 

greater than “slow.”  ^^Significantly greater than “medium.”  

 

Through the first 2.5-m, the amount of displacement of the lead heel during the 

DS was not significant. Due to the limited amount of time to accelerate up to the 2.5-m 

mark, the ability to see an effect was eliminated. With an interplay between variables, 

such as shin angle, trunk lean etc., created with a larger displacement during the DS, the 

foot travels in the negative direction in a greater magnitude when compared to a smaller 

magnitude of a drop with less negative displacement of the heel. 

 There was a significant effect on the magnitude of negative displacement during 

the DS on the speed of the trial at 5-m. The results showed that the smaller magnitude of 

lead heel displacement during the DS lead to faster trials through 5-m. As shown above, 

the fastest trials through 5-m occurred with a 0.08-m heel drop. As the length of negative 

displacement of the heel during the DS increases, the speed of the subject decreases, 
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resulting in slower time trials. Therefore, a shorter drop is more effective than a longer 

drop. 

 The reason for the faster sprint speeds through 5-m using a smaller DS results 

from the direction of the GRF, pointing in an optimized direction enhanced by both 

horizontal and vertical forces. As stated, there has been controversy between the 

importance of maximizing horizontal or vertical forces. Previous studies have indicated 

that maximizing horizontal forces is more important for acceleration, while other studies 

claim that vertical forces are more important for acceleration. Nagahara et al., (2014) 

have stated that increasing stride frequency and decreasing ground contact time are 

crucial for acceleration. To do this, vertical force production is critical. However, 

Kawamori et al., (2013) claimed that net horizontal impulse production is more important 

after the start of acceleration to overcome inertia of the body at rest.  

 In the present study, the mean of heel displacement during the DS ranged from 

0.08-0.19-m, with the faster trials resulting from the smaller magnitude of a drop. This is 

a case for maximizing the vertical component during acceleration. With a larger 

magnitude of a DS, the subjects COM is positioned further in front of the lead foot, 

which would require the subject to maximize their horizontal force to accelerate and not 

fall down. Since this situation resulted in slower sprint times, vertical force production 

must be more important. From a smaller DS, there is less distance between the COM and 

the lead foot. This enables the subject to optimize the production of both vertical and 

horizontal components, rather than so much emphasis on horizontal force production. 
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 It is also possible that these baseball players are not necessarily trained to be 

sprinters and do not possess the technique to tolerate the greater horizontal impulses 

generated from a larger magnitude DS. Therefore, utilization of both vertical and 

horizontal forces is needed to accelerate the body forward. 

 From the results of the present study, the magnitude of the displacement of the 

lead heel has an effect on sprint time through 5-m. With the contradiction from previous 

research on the effects of the drop step technique, force plate data should be utilized in 

future research to determine the effects of the magnitude of a DS on the amount of GRF 

generated and total sprint times. 

Conclusion 

 The initial results from the present studied showed the DS was not significantly 

faster than the CS and JS techniques. In fact, the DS produced the slowest times. After 

further review of the videos, a secondary analysis was performed. 

 The secondary analysis showed that most of the CS performed were, in fact, DS 

unknowingly performed by the subjects. Additionally, all but one trial of the JS were 

performed correctly. The results also showed that the magnitude of the displacement of 

the heel during the DS had an effect on sprint times at 5-m. The shorter of displacement 

of the heel resulted in faster sprint times compared to a larger magnitude of a drop. In the 

present study, the fastest trials performed had an average displacement of 0.08-m, 

compared to the slowest trials averaging a displacement of 0.19-m.  
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 From the present study, the results indicate that the magnitude of the displacement 

of the heel during the DS has an effect on sprint times. A shorter displacement resulted in 

faster sprint times through 5-m by optimizing the GRF through both the vertical and 

horizontal forces. The information coaches can use from this study is to teach a shorter 

drop rather than one of larger magnitude for best performance during base stealing. 
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