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Abstract 

 Proper vertebrate development is controlled by a tightly regulated sequence of gene activation 

and repression. Exposure to both endogenous (hormones, gene products) and exogenous 

(environmental chemicals, toxins, etc.) substances during development can have profound effects on 

morphology by altering growth, cell fate, cell differentiation, and cell migration. Waterways have long 

been hot-spots for chemical and toxin accumulation, due to runoff and waste dumping. Growing 

concern is being paid to endocrine disruptors, like estrogen (17β-estradiol), which are found in 

increasing levels in rivers and streams. Endocrine disruptors are known to cause a varied number of 

defects in fish species, but the effect of estrogen on early vertebral development is unknown. In this 

study, the effect of exogenous estrogen (17β-estradiol) on development of the zebrafish Weberian 

apparatus is examined. The Weberian apparatus is an evolutionary adaptation of the four anteriormost 

vertebrae, and is unique to otophysan fishes (minnows, catfishes, characins, and South American 

electric eels). The function of the Weberian apparatus is to relay and amplify sound pressure changes 

from the gas bladder to the inner ear through physical coupling, and is hypothesized to be an 

independent developmental and evolutionary module, separate from ancestral vertebrae. High-dose 

estrogen proved lethal to larval zebrafish. Lower concentrations and shortened exposure times 

produced no morphological abnormalities within the cartilage elements of the Weberian apparatus, and 

overall effect on cranial cartilages was inconclusive. In addition, growth rates were not different across 

treatment groups. Results suggest that the Weberian apparatus may be immune to low doses of 

estrogen during early larval development, but given the overall lack of morphological effects across the 

body, immunity may not be limited to the Weberian apparatus alone.  
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INTRODUCTION 

Endocrine Disruptors and the Environment 

Endocrine Disruption 

Endogenous endocrine hormones (estrogen, androgens, growth factors, etc.) are important 

developmental regulators in vertebrates, and are implicated in proper development, growth, 

metabolism and reproduction. Precise spatiotemporal control within the body is crucial for proper 

development and growth in nearly all anatomical systems. A growing concern for all vertebrates is the 

rapid increase of endocrine disruptors (EDs) present in the environment. Endocrine disruptors have 

been defined as agents that interfere with the production, release, transport, metabolism, binding 

action, or elimination of naturally occurring endogenous hormones (Kavlock et al., 1996, reviewed in 

Pait and Nelson, 2002). A small list of recognizable endocrine disrupting compounds includes estrogens 

(and estrogen mimics), Bisphenol-A (BPA), Atrazine, DDT, mercury, and lead (Pait and Nelson, 2002). 

Many of these man-made endocrine disruptors are present in growing concentrations in freshwater 

systems. 

Environmental Impact 

EDs have been found in many streams and rivers throughout the United States. Areas of 

extreme interest are agricultural rich regions (a product of run-off), as well as wastewater treatment 

plant effluents. A study conducted by Koplin et al. (2002) looked at 139 streams across 30 states, and 

found 80% of the streams showed measured concentrations of 1 or more of the 95 contaminates 

investigated. At the time, little data was available on the occurrence of most of the targeted hormones 

and pharmaceuticals being investigated, so sampling sites focused on areas considered susceptible to 

contamination from human, industrial and agricultural wastewater (Kolpin et al., 2002). A specific 

example from the study showed that BPA, a known endocrine disruptor, was found in 41.2% of the 

streams sampled at g/L levels (Kolpin et al., 2002). A subsequent study looked into the contamination 
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of the waters of the Great Lakes and Upper Mississippi River Regions by endocrine disruptors discharged 

from waste water treatment plants from several large cities, including Akron, Detroit, Indianapolis, 

Duluth, St. Paul and Chicago (Barber et al., 2015). The 10-year study looked at 16 different chemicals 

and their concentrations, and found BPA in all waste water treatment plant effluents tested (Barber et 

al., 2015). Another study evaluated the potential endocrine disruption across 11 Minnesota lakes that 

did not have waste water treatment plant discharge (Writer et al., 2010). Several endocrine disrupting 

chemicals, such as bisphenol A and estrogen (17β-estradiol), were found in 90% of the lakes at part per 

trillion concentrations and endocrine disruption was observed in caged fathead minnows and resident 

fish in 90% of the lakes as well (Writer et al., 2010). In the study, plasma vitellogenin, an egg-yolk protein 

normally absent in the plasma of male fish that can be induced by exposure to estrogenic compounds, 

was detected in minnows after exposure to all lakes studied (Writer et al., 2010). Additionally, testicular 

feminization was observed and a decrease in the ratio of immature to mature sperm in eutrophic lakes 

compared to oligotrophic lakes and lakes were classified based on their amount of anthropogenic 

influences (Writer et al., 2010). 

Effects of Exogenous Endocrine Distruptors on Fish Biology 

Biological Effects of Estrogen and Other EDs 

ED infiltration of streams and lakes has led to profound effects on fish biology across many 

anatomical systems. Reproductive disruption has been observed in fish found in estrogen-contaminated 

waters (Jobling et al., 1998) and endocrine disruptor contaminated water (Writer et al., 2010). Effluent 

from the wastewater treatment plant in the city of Boulder, Colorado induced demasculinization of 

primary and secondary sex characteristics of male fathead minnows and vitellogenin was maximally 

elevated within 7 days of exposure (Vajda et al., 2011). The steroidal estrogens 17β-estradiol, estrone, 

estriol, and 17α-ethynylestradiol, as well as estrogenic alkylphenols and BPA, were also found within the 

effluent (Vajda et al., 2011). 
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While disruption of the reproductive system is noted most in the literature, other systems are 

potentially affected as well. In addition to testicular feminization, a decreased ratio of immature to 

mature sperm, and increased plasma vitellogenin in males, increased liver hepatocyte vacuolization in 

urban and urban/agricultural lakes was also found (Writer et al. 2010). Complement activity, peroxidase 

activity and IgM levels in the gilthead seabream Sparus aurata were all altered in the presence of 17β-

estradiol (Cuesta et al., 2007) and estrogens and estrogen-like endocrine disruptors appear to affect the 

balance of proliferation/apoptosis of lymphocytes (Milla et al., 2011). These findings suggest the 

immune system may also be influenced by endocrine disruption. 

ED-Mediated Skeletal Defects  

Research surrounding endocrine disrupting chemicals has focused on reproductive disruption, 

but EDs are also part of a long list of chemicals, genes, and hormones that regulate bone formation and 

growth. For example, calcitonin (needed for normal bone development), can block bone breakdown by 

inactivating osteoclasts (Stepnick, 2004). Insulin-like growth factor affects bone growth, including 

chondrocyte proliferation and hypertrophy (Yakar et al., 2002). Excessive production of Parathyroid 

hormone (PTH) can lead to bone loss (U.S. DHHS, 2004), and the deletion of the dopamine transporter 

gene in mice showed a reduced bone mass and strength (Bliziotes et al., 2002). An important ED that 

shows reproductive disruption and bone regulation is estrogen, which plays a key role in regulating bone 

mass by controlling activity of osteoblasts and osteoclasts (Kameda et al., 1997; Imai et al., 2009). 

Estrogen also regulates chondrogenesis (Fushimi et al., 2009; Cohen et al., 2014), and skeletal gene 

expression (Pashay et al., 2016). 

Previous research has focused on estrogen’s influence on chondrogenesis and skeletal gene 

expression during larval head development, specifically earlier than 7 days post-fertilization (Fushimi et 

al., 2009; Cohen et al., 2014; Pashay et al., 2016). Research showed that zebrafish exposed to aqueous 

17β-estradiol at larval stages showed cartilage malformation leading to fish with shorter and flatter 
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faces (Fushimi et al., 2009; Cohen et al., 2014; Figure 1), and in general skeletal gene expression during 

larval head development decreased when exposed to 17β-estradiol (Pashay et al., 2016). 

 Vertebrate bones can form 

through two different developmental 

modes: through a cartilage precursor or 

by direct ossification from a 

mesenchymal condensation, also called 

membrane bone or dermal bone (Bird 

and Mabee, 2003; Hall, 2015). In the 

vertebral column, both types of bone are 

derived from cells of the somitic 

mesoderm (Gilbert, 2003), and the 

migration of these cells from segmented 

mesoderm (somites) leads to a 

resegmentation and results in the 

classical pattern of vertebrae (van Eeden 

et al., 1998; Morin-Kensicki et al., 2002). 

Alteration of the development and 

segmentation of the mesoderm into 

somites, migration of the precursor cells, or signals directing their fate often lead to abnormalities in 

both chondrogenesis and osteogenesis within the axial skeleton (van Eeden et al., 1996). 

Studies in the zebrafish, Danio rerio, have identified several genes important at various stages of 

vertebral development (van Eeden et al., 1998). Previous work has identified a group of mutants, known 

as segmentation/Fss-type mutants, which lead to abnormal vertebrae via breakdown of proper 

Figure 1. Generalized effects of high-dose estrogen on 

9-days post-fertilization larval zebrafish (treatment 

from 7-9 dpf). Normal morphology seen in A (control) 

versus 25 (B) and 50 M (C) estrogen. Effects include 

reduction of swim bladder (SB) and intestinal thickness 

(I), pericardial (#) and abdominal (*) edema, and 

shortening and improper projection of Meckel’s 

cartilage (M). Scale bar = 1mm.  
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mesodermal segmentation during embryogenesis (van Eeden et al., 1996; van Eeden et al., 1998). These 

include the mutants fused somites (fss), beamter (bea), deadly seven (des), after eight (aei), and white 

tail (wit), which all exhibit breakdown in paraxial segmentation by disrupting the formation of the 

anterior-posterior somite boundaries (van Eeden et al., 1996;  van Eeden et al., 1998). All of these 

mutants are adult viable, and show dramatic defects in the vertebral column. While defects are 

extensive in posterior vertebrae, one region, the Weberian apparatus, is unaffected in these mutants 

(Bird, unpublished), suggesting potential immunity to the loss of these genes and potential 

developmental independence from the rest of the vertebral column. 

Weberian Apparatus and Vertebral Column 

The Weberian apparatus is a complex evolutionary innovation of the four anteriormost 

vertebrae, swim bladder, and inner ear (Figure 2). The Weberian apparatus captures far-field sound via 

the swim bladder (Figure 2, 

green), transduces it into a 

near-field source, amplifies 

the sound, and relays it from 

the swim bladder to the 

inner ear (Figure 2, blue) 

through physical coupling of 

modified vertebral elements 

(Figure 2, red) known as the 

Weberian ossicles (Ladich 

and Popper, 2004). Fish 

without the Weberian apparatus or another auditory adaptation generally hear only near-field sound 

inputs, i.e. those close enough to cause shearing of the otoliths against the sensory epithelium (Fay, 

Figure 2. Cartoon representation of the integration and function of 

the Weberian apparatus. Sound captured by the swim bladder 

(green) is transduced, amplified, and relayed to the inner ear (blue) 

by the Weberian ossicles (red), which are connected via ligaments. 

The critical ossicles (scaphium, intercalarium, tripus) are underlined. 

Modified from Liem et al. 2001. 
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1999; Ladich and Popper, 2004), while fish with the Weberian apparatus allows for detection of sound 

over much wider frequency ranges, and requires less amplitude (loudness) to be detected (Fay, 1999). 

The function of the Weberian apparatus is analogous to the middle ear of mammals, which also uses 

coupling of three bones (malleus, incus, stapes) to transfer and amplify sound from the receiving unit 

(tympanum) to the sensory receptive cells in the cochlea. In both systems, sound causes vibration of a 

membrane that interacts with air (swim bladder/tympanum), which is physically linked to bony 

elements, thereby causing the bony elements to “rock”. The last element in the series of bones 

(scaphium/stapes) is coupled to a fluid-filled chamber containing the sensory epithelia, and it’s rocking 

causes fluid motion over the sensory cells in the inner ear, the hair cells (Schellart and Popper, 1992).  

The vertebral modifications of the Weberian apparatus are subdivided into two regions, the pars 

auditum (the relay component) and the pars sustentaculum (the support component; Bird and Mabee, 

2003; Bird and Hernandez, 

2007). The pars auditum 

(Figure 3) is composed of the 

series of bilaterally paired 

ossicles that are directly 

involved in hearing, and 

include the scaphium, 

intercalarium, and tripus 

(from anterior to posterior 

respectively; Bird and Mabee, 

2003; Bird and Hernandez, 

2007). Two other ossicles, the 

claustrum and os suspensorium, are classified with the main three bones, but their role in sound 

Figure 3. Morphology of the Weberian ossicles. The primary 

transducing elements are the scaphium (A), intercalarium (C), 

and tripus (D). Supplementary ossicles are the claustrum (B) and 

the os suspensorium (E). F shows a typical rib-bearing vertebra, 

from which the Weberian ossicles are derived. Modified from 

Bird and Hernandez (2007).  



7 
 

transmission is unknown (Bird and Hernandez, 2007). The scaphium, intercalarium, and tripus are 

connected to one another via a strong ligament (interossicular ligament), and these bones directly 

transduce and amplify the sound captured by the swim bladder (Ladich and Wysocki, 2003; Ladich and 

Popper, 2004).  

The pars sustentaculum is composed of modified elements of the first four vertebrae, but are 

not directly associated with hearing. It is hypothesized that these elements instead support and protect 

the ossicles, and serve as the anchor for the extensive ligamentous web found in the region (Bird and 

Mabee 2003). While the sound transmitting elements are remarkably conserved in shape across 

cypriniforms, the elements of the pars sustentaculum undergo substantial morphological change across 

cypriniform fishes that is likely tied with environment (Bird and Hernandez, 2007).  

Elements of the pars auditum have been shown to exhibit remarkable conservation in shape 

across very different species of fishes, likely due to the constraint on maintaining their function (Bird 

and Hernandez 2007). The first ossicle, the scaphium (Figure 3A), is associated with centrum 1 (body of 

the first vertebra) and has three characteristic features: the articulating process which meets with 

centrum 1, the ascending process which projects dorsally for ligamentous attachments, and the concha 

scaphium, a large cup-shaped feature (Bird and Mabee, 2003) which makes up the main body of the 

scaphium. The articulating process ossifies from the basidorsal, the original cartilage precursor of the 

scaphium, the ascending process develops as an extension from the same basidorsal, and the concha 

develops from direct mesenchymal condensation (Bird and Mabee, 2003). The second ossicle is the 

intercalarium (Figure 3C), and is associated with centrum 2. The intercalarium is composed of an 

articulating process which meets with centrum 2, an ascending process for ligamentous attachment, and 

the manubrium (Bird and Mabee, 2003). The manubrium is a process of the intercalarium that projects 

laterally and is imbedded in the interossicular ligament, a dense ligament that connects the ossicle 

chain. Similar to the scaphium and claustrum, the intercalarium appears as cartilage but further 
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development is through membrane bone (Bird and Mabee, 2003). The tripus (Figure 3D) is the last 

ossicle of the direct auditory chain, and is associated with centrum 3. It has an articular process that 

meets with centrum 3, an anterior process that attaches to the interossicular ligament, a large ax-

shaped body, and a transformator process that is embedded between the layers of the swim bladder. 

The main body of the tripus begins development from basiventral cartilage found on centrum 3 via 

cartilage condensation. From the main body the anterior and transformator processes are formed from 

membranous ossification rather than any cartilage precursor like the main body and articular process of 

the tripus (Bird and Mabee, 2003). The other defining feature of the tripus is the anterior process which 

is slowest to develop and ossify. In early developmental stages the anterior process extends only 

laterally from the articulating process. As development continues the anterior process begins to project 

laterally and anteriorly where it connects with the interossicular ligament (Figure 2). Although all 

otophysan fishes (10,000+ species) have the Weberian apparatus, little is known about the variation 

outside of one subgroup, Cypriniformes, where a large amount of interspecies variation is present with 

distinct morphologies appearing to be correlated with specific niche (Bird and Hernandez, 2007). 

As mentioned previously, the scaphium, intercalarium, and tripus are directly involved in sound 

detection while the claustrum and os suspensorium are only indirectly related due to their close 

association with the swim bladder and ligamentous attachem to the tripus. The claustrum is usually 

small and diamond shaped, and sits dorsally and medially to the scaphium. The ventral side of the 

claustrum caps the top of the scaphium creating the bony posterior walls of a fluid filled cavity called the 

sinus impar, which projects into the inner ear and leads to activation of the hair cells (Chardon and 

Vandewalle, 1997). The claustrum initially appears as cartilage but further development is via 

membrane bone (Bird and Mabee, 2003). Lastly, the os suspensorium rests on the anterior surface of 

the swim bladder and articulates with the tripus. The os suspensorium develops from direct 

mesenchymal condensation outgrowth from the basiventral cartilage of the fourth vertebra (Bird and 
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Mabee, 2003). The ossicle extends anteriorly and arches ventrally over the swim bladder. It is important 

to note the os suspensorium does not form directly from the fourth rib or vertebra, but from the 

cartilage of parapophysis 4 (Bird and Mabee, 2003). In zebrafish, all parapophyses develop from clusters 

of chondrocytes on the lateral side of centra (Bird and Mabee, 2003). This is important as any effect on 

chondrogenesis due to exogenous estrogen exposure as seen in previous research could potentially alter 

parapophysis development and thus alter the positioning of the os suspensorium indirectly. Such 

potential has led to the current investigation of exogenous estrogen’s effect on Webarian apparatus 

development. 

Current Study and Hypothesis 

Estrogen and ED-contaminated water has biological effects on fish in the wild (Jobling et al., 

1998; Writer et al., 2010; Vajda et al., 2011) and lab studies have shown that estrogen also affects 

cartilage and bone growth through multiple pathways (Kameda et al., 1997; Fushimi et al., 2009; Imai et 

al., 2009; Cohen et al., 2014; Pashay et al., 2016). While research regarding the effects of estrogen on 

chondrogenesis has focused primarily on the head and early larval development (< 5dpf), little research 

has been done specifically on the vertebral column, including the Weberian apparatus. Developmental 

regulation of the Weberian apparatus is independent of the segmentation gene network that controls 

development of other vertebral regions, and may be immune to other regulators of mesodermal-based 

bone and cartilage development.  

Hypothesis: Although evolutionarily tied to the axial skeleton, the development of the Weberian 

apparatus will be buffered from estrogen-based defects that affect other regions of the axial 

skeleton, as well as cartilage development in non-axial regions 

Null hypothesis: The Weberian apparatus will not be immune to estrogen-based defects, and 

will show cartilage-based defects in growth and morphology similar to those predicted in other 

skeleton regions, including the fins and skull.  
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MATERIALS AND METHODS 

Fish Husbandry and Breeding 

 Adult zebrafish were obtained from Pet Solutions (Beavercreek, OH). Adult and juvenile 

zebrafish were maintained at 28.5 +/- 0.5°C on a 12:12 light cycle following standard protocol 

(Westerfield 2000). Adults were fed twice daily with live brine shrimp (Brine Shrimp Direct, Ogden, UT), 

or commercial zebrafish pellet (Pentair Aquatic Eco-Systems, Apopka, FL). Embryos and larval zebrafish 

were maintained in incubators at 28°C until 5 days post-fertilization, then moved to permanent housing 

in a Z-Hab Mini zebrafish system (Pentair) and fed a mixture of newly hatched brine shrimp, powdered 

spirulina, and powdered larval food (Pentair). 

 For breeding, adults were placed in breeding hotels (Pentair) the night before collection, with 

males and females separated by a clear plastic divider, allowing them to see each other, but not 

interact. The next morning, breeding groups were moved to fresh water within five minutes of first-light 

to stimulate breeding, and barriers removed. Embryos were collected every 30 minutes. Once collected, 

embryos were transferred to a petri dish filled with embryo medium (Westerfield, 2000), then placed in 

an incubator at 28°C. At 10 hours past fertilization, embryos were screened, and dead, unfertilized, or 

deformed embryos were removed. Remaining embryos were then placed in corresponding treatment 

and control groups of fifty individuals per petri dish (40mls of embryo medium per dish). 

Experimental Methods 

Estrogen Treatment. Estrogen (17β-estradiol, Sigma #E8875) was diluted to a 10mM stock 

solution (in 100% Ethanol) and stored at 4°C in a foil-wrapped vial to prevent degradation. Viable 

embryos were separated into groups of 50 embryos as above. Experiments always consisted of two 

control groups (control = embryo medium, control + ethanol = embryo medium with ethanol equal to 

ethanol found at the highest estrogen concentration) and combinations of several different working 

estrogen concentrations (2.5M, 5M, 10M, 15M, 25M, or 50M 17β-estradiol diluted in embryo 
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medium). Larvae were treated in combinations ranging from seven to eleven days past fertilization (dpf). 

This age range was selected as it is the size range when cartilage elements of the Weberian apparatus 

have begun development (Bird and Mabee 2003). During the treatment period, larvae were housed in a 

darkened incubator, to prevent degradation of the estrogen. 

Fixation, Clearing, Staining, and Observation 

In order to determine the effect of exogenous 17β-estradiol on overall chondrogenesis and 

formation of the Weberian apparatus, zebrafish were enzyme cleared and double-stained for skeletal 

analysis using standard methods (Dingerkus and Uhler 1977, Potthoff 1984, Bird and Mabee, 2003). 

Larvae were anesthetized using buffered 0.04% MS-222 (Tricaine, Fisher #AC118000500), then fixed in 

chilled 10% buffered formalin (Fisher #F79P) for a minimum of 24h at 4°C. After fixation, specimens 

were processed through a dehydration series to 100% Ethanol, then stained for 6-16 hours in a 0.02% 

Alcian blue solution (20% glacial acetic acid in absolute ethanol), which selectively stains cartilage. Next, 

cartilage staining was differentiated using 100% ethanol (2-12h), and then specimens were rehydrated 

through a descending ethanol series and transferred into an aqueous saturated sodium borate solution 

overnight to neutralize any remaining acid. Next, specimens were bleached in a 0.5% KOH + H202 

solution for up to 3 hours (under light) to remove surface pigmentation, followed by muscle digestion 

using 1% trypsin solution (30% dH20, 70% saturated sodium borate). Trypsin digestion lasted from 6-48h. 

Once sufficient muscle mass had been cleared and elements of the Weberian apparatus were visible, 

specimens were rinsed to remove the trypsin solution and then stained overnight with a 0.025% Alizarin 

red solution (in 0.5% KOH) to stain bone. Lastly, specimens were placed in an increasing glycerol series 

(3:1 KOH: glycerol, 1:1 KOH: glycerol, 3:1 glycerol: H2O; each step overnight) to finish the clearing 

process. Specimens were stored in 3:1 glycerol: H2O for skeletal analysis. Observations were made using 

a VanGuard 1272ZL dissecting microscope outfitted with a VanGuard IS500 camera. Images were 

collected using IS Capture on a Dell Optiplex 960. 
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RESULTS 

Treatment Mortality (Table 1, Figure 4)  

The initial experimental design (using brood Dr-Wt-0011uni) was planned to run from days 7-11, 

with a solution change mid-way through the course, and food available at all times as larvae normally 

are feeding at this age. Concentrations were set at the high end (25 and 50M) of previous reported 

usage (Fushimi et al., 2009). The initial cohort, including both control groups, were all dead by the 

morning of Day 9. A second group from the brood was then started at Day 9 to run through Day 11, but 

all individuals were dead late on Day 10.  

Due to the total mortality seen in the first round, several modifications were made for 

subsequent treatment trials. First, algae was not given during treatment, as it was determined that the 

reaction of the estrogen with the algae lead to water fouling. Second, concentrations were lowered 

significantly, down to 5 and 10M from 25 and 50M. Third, the initial treatment duration of 5 days was 

reduced to two days (7-9 and 9-11), such that individuals were placed into treatment on the afternoon 

of Day 7, and removed from treatment in the morning of Day 9. The reduction in treatment duration 

was an attempt to mitigate the effects of fasting. The second round of treatment (with Dr-Wt-0012uni) 

Table 1. Mortality in control and experimental groups during treatment and post-treatment growth. 

All control and treatment groups started with 50 viable larvae.  

7-11d 9-11d 7-9d 9-11d 7-9d 9-11d 7-9d 9-11d 7-9d 9-11d

Control 0/50 0/50 50/50 (14) 50/50 (*) 50/50 (25) 50/50 (17) 50/50 (16) 50/50 (0) 50/50 (8) 50/50 (36)

Control + Ethanol 0/50 0/50 50/50 (12) 50/50 (*) 50/50 (22) 50/50 (4) 50/50 (10) 50/50 (0) 50/50 (11) 50/50 (10)

2.5M Estrogen - - - - - - - - 50/50 (16) 50/50 (9)

5M Estrogen - - 48/50 (17) 0/50 50/50 (21) 50/50 (1) 50/50 (0) 50/50 (0) 50/50 (4) 50/50 (15)

10M Estrogen - - 32/50 (3) 0/50 50/50 (9) 50/50 (0) ?/50 (15) 50/50 (0) 50/50 (10) 50/50 (18)

15M Estrogen - - - - - - - - 50/50 (3) 50/50 (5)

20M Estrogen - - - - - - - - 40/50 (#) 31/50 (#)

25M Estrogen 0/50 0/50 - - - - - - - -

50M Estrogen 0/50 0/50 - - - - - - - -

 

Number Surviving Treatment/Number At Start of Treatment (Number Surviving to Fixation)

* = Culled due to lack of experimental group survival

# = Survivors fixed immediately after conclusion of treatment protocol

Dr-Wt-0011uni Dr-Wt-0012uni Dr-Wt-0013uni Dr-Wt-0017uni Dr-Wt-0018uni
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proved more successful (Table 1), with all control individuals making it through treatment, however 

mortality was seen in both the 5 and 10M group during 7-9 day treatment, and total mortality was 

seen in the experimental groups during 9-11 day treatment (Table 1). After inspection, it was 

determined that during the transfer, algae remained in the dishes of the 9-11 day treatment group (they 

were being fed normally from Day 5 to Day 9), which is the likely source of the mortality. Two additional 

experimental groups (Dr-Wt-0013uni and Dr-Wt-0017uni) proved even more successful, with all 

individuals making it through the treatment protocol (Table 1), however, they had limited survival 

during the growth period. A final experimental group (Dr-Wt-0018uni) composed of several different 

treatment concentrations (2.5, 5, 10, 15, and 20M) was run for a more defined analysis on skeletal 

changes. Overall, the survival was excellent across all groups except the 20M treatment group (Table 1 

Figure 4. Graphical representation of mortality during and post-treatment in brood Dr-Wt-

0018uni. All groups started with 50 individuals. Light color represents the number of 

individuals surviving treatment, dark color represents the number of individuals surviving the 

growth period until fixation. 
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and Figure 3), which upon post-treatment observation exhibited significant developmental defects 

across several organ systems, and individuals were fixed immediately. All other experimental 

concentrations had several individuals make it through the growth period for analysis (Figure 4).  

Effects on Growth (Table 2, Supplementary Figure 1) 

 Survival and growth 

of individuals varied greatly 

across experimental groups. 

In the final experimental 

group (Dr-Wt-0018uni), no 

significant difference in 

mean size was observed 

within either the 7-9 dpf or 

9-11 dpf treatment times 

(Table 2).   

Similarly, t-tests conducted across treatment time (7-9 dpf vs 9-11 dpf) provided no significant 

difference between control or experimental groups (Supplementary Table 1, Supplementary Figure 1). 

The sole exception was the comparison of at 5M (p=3.066E-5). However, given the very low sample 

number for the 7-9dpf treatment group, the confidence that this result is a true difference between 

experimental treatment time periods is low.   

Effects on Formation and Development of the Weberian Apparatus (Figures 5, S2, S3) 

 Elements of the Weberian apparatus begin development as a series of cartilaginous 

condensations, and portions of the ossicles (articular processes, Figure 3) remain as cartilage during 

ontogeny. Therefore, any effects on the initial cartilage elements are predicted to manifest as defects in 

size or shape of the adult ossified elements. 

Brood 18 7-9dpf Treatment

Source of Variation SS df MS F P-value F crit

Between Groups 11.56726 5 2.313452 1.471635 0.217474 2.417356

Within Groups 72.31332 46 1.572029

Total 83.88058 51

Brood 18 9-11dpf Treatment

Source of Variation SS df MS F P-value F crit

Between Groups 5.352285 5 1.070457 0.89204 0.49014 2.319277

Within Groups 104.4008 87 1.20001

Total 109.7531 92

Table 2. ANOVA analysis of mean growth among control and 

experimental groups within treatment times. 
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A total of 332 individuals were collected 

after sufficient growth to easily visualize 

elements of the Weberian apparatus. All 

individuals were screened for morphological 

defects. A subset of 24 individuals (2 per 

treatment time and control/experimental 

group) were then selected for in-depth analysis 

(see Appendix). Individuals were size matched 

across all groups to minimize the effects of size 

on variability in Weberian ossicle morphology.  

Analysis of size and shape of the 

Weberian ossicles found no clear or repeated 

morphological changes. All control and 

experimental groups displayed normal size and 

shape of the scaphium, intercalarium, and 

tripus, relative to body length and compared to 

previously documented wildtype morphology 

(Bird and Mabee, 2003). Similar normal 

developmental patterns were also seen in the 

non-sensory portions of the Weberian 

apparatus, with only two fish exhibiting minor 

alterations in the first lateral process. 

Ligamentous connectivity also showed no 

deviance from wildtype when comparing 

Figure 5. Representative morphology in control and 

treatment groups. Cleared and stained Weberian 

ossicles (scaphium = s, intercalarium = I, tripus = t) 

showed no gross morphological abnormalities in any 

of the lower estrogen concentrations. 
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treatment to control. No other deviations from wildtype morphology were noted in the Weberian 

apparatus of control and experimental individuals at the estrogen concentrations tested, including size 

and shape of the swim bladder and size and position of the otoliths, suggesting that, generally, the 

Weberian apparatus appears immune to low levels of estrogen early in development at the stages 

examined in this study.   

DISCUSSION 

Fine Tuning the Experimental Design 

Previous experiments examining the effect of exogenous estrogen on skeletal development in 

zebrafish have focused only on embryonic and early larval stages of development (<5 dpf; Fushimi et al., 

2009). Using young larvae at these stages avoids the need for exogenous feeding, which begins at Day 5. 

As the elements of the Weberian apparatus don’t begin developing until Day 7 (Bird and Mabee 2003), 

dealing with feeding was a substantial obstacle. After it was determined that the estrogen and algae 

were incompatible, the larvae were forced to fast for the duration of the treatment period, which even 

at 2 days proved problematic. An unforeseen problem was lethal effects of high estrogen concentrations 

on other anatomical regions (Figure 1), which were unanticipated due to earlier studies claiming 

treatment after development has begun did not affect cartilage development in the skull (Fushimi et al., 

2009), a finding disputed by this study. This forced the reduction of estrogen to much lower 

concentrations and shortened treatment durations, which may place treatment below the threshold of 

morphological effect at the stages examined. 

Mortality and Survival Post-treatment 

 A previous study looked at the mortality rates following 17β-estradiol treatments at 5-50M 

concentrations over a 1 to 5 dpf, and resulted in mortality rates of as low as 1% at 5M and 100% at 

50M (Fushimi et al., 2009). This study looked at 17β-estradiol exposure over a shorter time period (7-9 

dpf and 9-11 dpf) with mortality rates immediately following exposure at 0% (total survival) for both 
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treatment times at concentrations ranging from 2.5-15 M, indicating a lowered sensitivity to estrogen 

at these later stages. However, a threshold was reached at 20M concentrations, with mortality of 

20.0% and 38.0% for 7-9 dpf, and 9-11 dpf respectively, and 100% mortality at 25M and 50M. These 

results indicate that, while larval zebrafish have a strong capacity to tolerate low levels of estrogen, 

higher levels overwhelm developmental regulatory systems in a similar fashion as seen in very early 

larvae. 

The unknown effects of fasting during the treatment periods complicate the analysis of estrogen 

effects during the treatment period. It was impossible to quantify the effects of fasting, but given the 

lower than expected survival (50%) of control groups (Figure 4 and Table 1), it is likely that fasting also 

played a role in the mortality seen across all groups. Paired with the effects of high-dose estrogen on 

cranial cartilages, in direct contradiction to previous studies (Fushimi et al., 2009), feeding could have 

also been reduced due to lower jaw and branchial arch defects. 

Effects on Growth 

 Previous work that looked at the effects of exogenous estrogen focused on chondrogenesis or 

gene expression in the head, and immediately fixed following treatment exposure which did not exceed 

7 dpf for any study (Fushimi et al., 2009; Cohen et al., 2014; Pashay et al., 2016). In this manner, the 

current research is the first of its kind. Late stage growth and morphogenesis is often overlooked in 

zebrafish studies due to the complexity of raising exogenous feeding larvae, but necessary to see how 

early developmental challenges manifest in adult morphology. Elements of the Weberian apparatus 

undergo a dramatic and complex morphogenesis that continues from early larval stages to early adult 

(Bird and Mabee, 2003).  

Analysis via ANOVA produced no significant difference in the growth rates of surviving 

individuals among control and experimental groups in either the 7-9 or 9-11 treatment groups of Dr-Wt-

0018uni. Similar to the concerns regarding mortality, the inability to see significant differences could be 
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due to using low estrogen concentrations and limited exposure times. However, given the larger survival 

rates for Dr-Wt-0018uni, these results are well supported. 

Effects on Morphology 

 In the Weberian apparatus, no large morphological changes were found. All groups showed 

similar development patterns in connectivity and chondrogenesis (Figures 6, S2, S3). Overall shape of 

the Weberian ossicles, as well as supporting structures, was unaffected at low estrogen concentrations 

(2.5-15M). These results suggest that the Weberian apparatus is immune to the effects of low-dose 

estrogen at the stages examined. However, the novelty of this immunity is tenuous, as overall only 

limited effects were seen in the cartilages of other anatomical regions. No defects were seen in the 

cartilages of the median and paired fins. Potential minimal effects were seen in the otic region of the 

chondrocranium (reduction), as well as the 4th and 5th branchial arches (reduction). However, 

morphometric analysis of these structures is necessary to elucidate the potential effects, which was 

beyond the scope of the study.   

Estrogen in Context 

 The goal of this research was two-fold: 1) to determine the effect of estrogen on the 

development of the Weberian apparatus and 2) to determine whether the immunity of the Weberian 

apparatus to segmentation perturbation extends to chondrogenesis perturbations. In light of the results, 

the hypothesis of Weberian apparatus immunity cannot be rejected, but only for a narrow analysis at 

low estrogen concentrations. No effects on morphology were seen at all of the lower concentrations 

(2.5-15M), supporting the claim that elements of the Weberian apparatus can compensate to the 

challenge, but whether the Weberian apparatus is unique in its immunity depends on the morphometric 

comparisons on other regions, which were only minimal at best. The challenges of feeding, high-dose 

toxicity, and unanticipated retroactive effects on large cranial cartilages made a large-scale analysis of 

robust estrogen challenges impossible under the current experimental design. 
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Future Directions  

 Several unforeseen challenges made execution of the original experimental design difficult. 

These included problems with feeding, concentrations, exposure times, and cranial defects. The 

presence of cranial defects suggests that estrogen’s effect is substantial on even large cartilages well 

after formation has begun. This may allow the treatment time to be moved to later in ontogeny, 

perhaps to a stage when the larvae are less susceptible to fasting stress. With regards to feeding, the 

elimination of fasting would be optimal, and the identification of a food-type that is neutral to estrogen 

exposure would negate the need for fasting. This likely requires testing manufactured non-live feed. It 

may also require daily water changes and brief times in light to allow for locating food (zebrafish are 

visual feeders). Moving the treatment time to later in development may also result in reduced effects on 

cranial and visceral systems (intestine, heart), potentially allowing for increased concentrations and 

exposure times to be utilized. It is clear that at concentrations over 20M, estrogen has a marked effect 

on cartilage formation, so testing at these levels will be critical to truly address the hypothesis presented 

in this project. 

 While the effects of estrogen on the developmental morphology and the immunity of the 

Weberian apparatus has provided some insight into its independence from ancestral units, continued 

investigation is needed. Furthermore, estrogen is one chemical in a list that influences chondrogenesis 

and bone formation. Many other chemicals and genes can be used to investigate the proposed 

developmental buffering of the Weberian apparatus. Two potential candidates to use in further 

investigation would be insulin like growth factor 1 (IGF-1) and transforming growth factor-β1 (TGF- β1) 

which affect articular cartilage growth (Balcom et al., 2012). Continued identification of bone and 

cartilage modulators and testing their impact of Weberian apparatus and vertebral column development 

is necessary to fully test the immunity of the Weberian apparatus. 
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APPENDIX 

Data sheet for in depth morphological analysis. 
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Supplementary Table 1. 

Pairwise comparisons of Dr-Wt-0018uni treatment 

groups (control, control + ethanol, 2.5M, 5M, 

10M, and 15M estrogen) between treatment 

exposure times. 

 

  

Pairwise t-Test Between Treatment Groups

C 7-9d C 9-11d

Mean 7.45 7.019444444

Variance 1.24 0.993039683

Observations 8 36

df 10

t Stat 1.007621257

P(T<=t) two-tail 0.337395211

t Critical two-tail 2.228138852

CE 7-9d CE 9-11d

Mean 7.572727273 6.84

Variance 1.472181818 1.013777778

Observations 11 10

df 19

t Stat 1.510818062

P(T<=t) two-tail 0.147287915

t Critical two-tail 2.093024054

7-9d 2.5uM 9-11d 2.5uM

Mean 7.0875 6.8

Variance 1.821166667 2.5225

Observations 16 9

df 15

t Stat 0.457967068

P(T<=t) two-tail 0.6535403

t Critical two-tail 2.131449546

7-9d 5uM 9-11d 5uM

Mean 8.55 6.46

Variance 0.096666667 1.712571429

Observations 4 15

df 17

t Stat 5.61921165

P(T<=t) two-tail 3.06564E-05

t Critical two-tail 2.109815578

7-9d 10uM 9-11d 10uM

Mean 7.24 6.555555556

Variance 1.604888889 0.695555556

Observations 10 18

df 13

t Stat 1.533800636

P(T<=t) two-tail 0.149049258

t Critical two-tail 2.160368656

7-9d 15uM 9-11d 15uM

Mean 6.2 7.2

Variance 3.43 1.135

Observations 3 5

df 3

t Stat -0.85425374

P(T<=t) two-tail 0.455753177

t Critical two-tail 3.182446305
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Supplementary Figures 

Figure S1. Box-and-whisker plot 

showing size range of surviving 

individuals of brood Dr-Wt-

0018uni, comparing treatment 

groups across treatment times 

(7-9 vs 9-11). See 

Supplementary Table 1 for 

results of pairwise comparisons. 
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Figure S2. Cleared and stained zebrafish 

showing the Weberian apparatus in the 

largest individual from all treatment 

groups and treatment times in dorsal view 

(anterior to the left). No significant 

differences in the Weberian ossicles 

(scaphium = s, intercalarium = i, tripus = t) 

were found within 7-9 (A-F) and 9-11 (G-L) 

treatment times, or between control (A,G), 

control plus ethanol (B,H), 2.5M estrogen 

(C,I), 5M estrogen (D,J), 10M estrogen 

(E,K), or 15M estrogen (F,L) at different 

treatment times. Scale bar = 1 mm.  

  



28 
 

Figure S3. Cleared and stained 

zebrafish showing the Weberian 

apparatus in the largest individual from 

all treatment groups and treatment 

times in lateral view (anterior to the 

left, dorsal to the top). No significant 

differences in the Weberian ossicles 

(scaphium = s, intercalarium = i, tripus 

= t) were found within 7-9 (A-F) and 9-

11 (G-L) treatment times, or between 

control (A,G), control plus ethanol 

(B,H), 2.5M estrogen (C,I), 5M 

estrogen (D,J), 10M estrogen (E,K), or 

15M estrogen (F,L) at different 

treatment times. Scale bar = 1 mm.  


	Developmental immunity of the skeletal elements of the Weberian apparatus to the effects of exogenous estrogen (17-β estradiol), a known disruptor of cartliage development
	Recommended Citation

	tmp.1504809407.pdf.ox2y6

