Activities for Challenging Gifted Learners by Increasing Complexity in the Common Core

Alyssa McKeone
University of Northern Iowa

Lenora Caruso
University of Northern Iowa

See next page for additional authors

Let us know how access to this document benefits you

Copyright ©2015 Alyssa McKeone, Lenora Caruso, Kaitlyn Bettle, Ashley Chase, Bridget Bryson, Jean S. Schneider, and Audrey C. Rule

This work is licensed under a [Creative Commons Attribution-Noncommercial-Share Alike 4.0 License](https://creativecommons.org/licenses/by-nc-sa/4.0/).

Follow this and additional works at: https://scholarworks.uni.edu/oermaterials

Part of the [Curriculum and Instruction Commons](https://scholarworks.uni.edu/oermaterials)

Recommended Citation

McKeone, Alyssa; Caruso, Lenora; Bettle, Kailyn; Chase, Ashley; Bryson, Bridget; Schneider, Jean S.; and Rule, Audrey C., "Activities for Challenging Gifted Learners by Increasing Complexity in the Common Core" (2015). *Open Educational Resources*. 286.
https://scholarworks.uni.edu/oermaterials/286

This Activities and Labs is brought to you for free and open access by the Open Educational Resources at UNI ScholarWorks. It has been accepted for inclusion in Open Educational Resources by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
Author
Alyssa McKeone, Lenora Caruso, Kailyn Bettle, Ashley Chase, Bridget Bryson, Jean S. Schneider, and Audrey C. Rule

This activities and labs is available at UNI ScholarWorks: https://scholarworks.uni.edu/oermaterials/286
Activities for Challenging Gifted Learners by Increasing Complexity in the Common Core

Authors: Alyssa McKeone¹, Lenora Caruso¹, Kailyn Bettle¹, Ashley Chase¹, Bridget Bryson¹, Jean S. Schneider², and Audrey C. Rule³,⁴

¹Undergraduate Middle-Level Dual Major Student, Department of Curriculum and Instruction University of Northern Iowa, Cedar Falls, Iowa, USA
²Faculty Member in the Middle Level Education and Education of the Gifted Divisions, Department of Curriculum and Instruction, University of Northern Iowa, Cedar Falls, Iowa, USA
³Faculty Member in the Elementary Education and Education of the Gifted Divisions, Department of Curriculum and Instruction, University of Northern Iowa, Cedar Falls, Iowa, USA
⁴Research Fellow, Center for Educational Transformation University of Northern Iowa, Cedar Falls, Iowa, USA

April 29, 2015

Based on the Conference Presentation:

Abstract
Gifted learners need opportunities for critical and creative thinking to stretch their minds and imaginations. Strategies for increasing complexity in the four core areas of language arts, mathematics, science, and social studies were addressed using the Common Core and Iowa Core Standards through several methods. Descriptive adjective object boxes were created, based on the themes of bees, surface area and volume, cultural beliefs and mummies, and bee colony collapse disorder. The sets of materials were used in various ways to increase the complexity of instruction in the core subject areas of literacy, mathematics, social studies, and science. The descriptive adjective boxes consisted of several small objects related to a theme with corresponding cards. This card set provided activities to increase the complexity of the topics. This document provides the content presented at the Iowa Talented and Gifted Association’s (ITAG) Annual Conference.

Acknowledgements
The authors gratefully acknowledge funding from the Center for Educational Transformation at the University of Northern Iowa and from the Verna and Raymond Smith Scholarship Fund used to support travel for the University of Northern Iowa faculty of the Education of the Gifted Division and five middle level education majors to attend a state conference addressing the needs of talented and gifted students.

Introduction
Too often, gifted students are overlooked in classrooms, even by well-intentioned teachers. Many teachers believe the myth that gifted students will reach their potentials on their own; or, teachers lack the time and skills needed to appropriately challenge the gifted. The No Child Left Behind (NCLB) Act did not include legislation for the gifted. The educational initiative of Response to Intervention (RTI) is designed to remediate learning and behavior for learners who struggle. The current surge of interest in the common core may further harm the gifted because the standards are locked into grade level content (Schoedter-Davis, 2014). A mother of a gifted child shared her seven year old’s thoughts about teachers (Kottmeyer, C., 1997-2015, p. 1). “The teachers are really nice people, all of them. And I understand about other kids needing to learn. But sometimes I wonder – what about me, in terms of learning?”

Most educators complete their college years with little to no instruction on effective teaching of gifted students. However, at the Midwestern university of the authors of this document, middle level education majors complete an online, week-long unit of instruction focused on gifted students. They learn about the characteristics of the gifted, begin to comprehend the diversity of this group of students, and complete activities designed to provide them tools for teaching gifted students. They learn how to compact curriculum so that learners skip parts of the curriculum they have already mastered to spend time on new learning instead. These preservice teachers also learn how to increase the complexity of lessons to meet the needs of high-achieving students. For the presentation at the Iowa Talented and Gifted Association (ITAG) conference on which this document focuses, five middle level education students used descriptive adjective object boxes that one of the professors had made and created several new sets of materials themselves. They added ideas of their own to increase complexity for elementary or middle level gifted learners.

This document describes the contents of these effective learning materials, offers activities to enhance student understanding of the topics, and provides suggestions to increase the complexity to challenge high-performing students.

Literacy: Increasing Vocabulary
The materials described here assist students in increasing their descriptive vocabularies. After working with teacher-made materials, students could each be given a theme, and they could each assemble their own set of items related to the theme. Then, students would generate
adjectives for each object, printing four unique adjectives that refer to one object in the box on each of the cards. Gifted students might also make these materials as a service project for younger students.

Lessons involving Descriptive Adjective Object Boxes

Common Core Literacy Standards (2010a) Addressed:
Language; Vocabulary Acquisition and Use: Grade 4: 4. Determine or clarify the meaning of unknown and multiple-meaning words and phrases based on grade 4 reading and content, choosing flexibly from a range of strategies. 4c. Consult reference materials (dictionaries, glossaries, thesauruses), both print and digital, to find the pronunciation and determine or clarify the precise meaning of key words and phrases. 5. Demonstrate understanding of figurative language, word relationships, and nuances in word meanings. 5c. Demonstrate understanding of words by relating them to their opposites (antonyms) and to words with similar but not identical meanings (synonyms). 6. Acquire and use accurately grade-appropriate general academic and domain-specific words and phrases, including those that signal precise actions, emotions, or states of being and that are basic to a particular topic. Grades 4, 5, 6: L.4.3a. Choose words and phrases to convey ideas precisely.

Typical basic lesson: Match the sets of four descriptive adjectives printed on the cards with the corresponding objects. See Figure 1 below for eight of the cards from a descriptive adjective object box with the theme of “bees.” The card fronts show the adjectives; the card backs show the corresponding object and a fact that goes with the theme of “bees” to increase content knowledge. The objects, therefore, are shown by the photographs on the card backs. Students use a print or digital dictionary to define unfamiliar words and learn their applications to real objects as they work with the materials.

Figure 1. Example cards from the “Bees” set of descriptive adjective object box materials.
First Activity for Increasing Complexity: Generate a Venn diagram to sort items from the box.
Complex thinking skills: Applying the logic of a Venn diagram and mentally trying different adjectives until an appropriate combination of labels for the circles and available objects is found. See Figure 2 and Figure 3 below.

![Venn Diagram Compare and Contrast](image1)

![Placing 3 Objects on a Venn Diagram](image2)

Second Activity to Increase Complexity (shown below in Figure 4): Choose two items from the descriptive adjective object box. Create a chart that compares and contrasts them, noting the general category for each characteristic. Complex thinking skills: Determining a category name for the different characteristics is challenging because one must think abstractly of what category will encompass the characteristic. Blank forms for the first and second activities are provided in Figure 5 and Figure 6.

![Compare & Contrast Using a Chart](image3)

Figure 2. Venn Diagram Compare and Contrast
Figure 3. Placing Three Objects on a Venn Diagram.

Figure 4. Compare and Contrast Chart
Venn Diagram

Figure 5. Blank Venn Diagram

Compare and Contrast Chart

<table>
<thead>
<tr>
<th>Compare:</th>
<th>General Category</th>
<th>Object 1:</th>
<th>Object 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tell how they are similar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrast: Tell how they are different</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6. Blank Compare and Contrast Chart

Third Activity to Increase Complexity: Generate additional descriptive adjectives for a chosen item (try to generate 20 adjectives). See Figure 7 below. Discuss which are synonyms and the differences between the words.

Creative thinking skill of fluency. It requires the student to consider many different aspects of an object such as its texture, luster, configuration, size, density and to also generate synonyms to increase the number of words.

Porcelain Box

Figure 7. Porcelain Box Object and Set of Twenty Descriptive Adjectives

- hollow
- floral
- encircled
- compact
- textured
- colorful
- ceramic
- raised
- flat-bottomed
- snapping
- rigid
- enclosing
- clasped
- unglazed
- multicolored
- hard
- painted
- round
- circular
- hinged
- empty
Fourth Activity to increase complexity: Create a cinquain poem for one of the objects with no words repeated. See the example in Figure 8.

Creative thinking skill: Expressing emotion or a message through vocabulary choice.

<table>
<thead>
<tr>
<th>First Line</th>
<th>One noun, a synonym for the object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Line</td>
<td>Two adjectives</td>
</tr>
<tr>
<td>Third Line</td>
<td>Three –ing words (gerunds)</td>
</tr>
<tr>
<td>Fourth Line</td>
<td>A four-word phrase or sentence</td>
</tr>
<tr>
<td>Fifth Line</td>
<td>One noun, a synonym for the object and different than the first line</td>
</tr>
</tbody>
</table>

Notepad

Figure 8. Creating a Cinquain Poem Related to an Object

Extension of the Literacy Activity

One participant at the conference volunteered the idea to create a descriptive adjective box based on a novel students are reading in class. An example, is the novel, The Great Gatsby. The items in the box could include a daisy, artificial eggs, an apple, play money, and flapper fringe. The items represent characters, locations, or themes throughout the novel. Students could also be grouped to create the boxes; one group would create a character box, another group would find items related to locations or settings from the book, and another for themes. An activity to accompany the boxes of materials made by groups would be a presentation to their peers in which group members might discuss the importance of the items and how they represent specific parts or aspects of the novel. Students might ask their peers in other groups to create a chart describing the items. The columns headings for the chart might be the following: the item, what it represents, explanation of how it represents it, and other possible items to indicate this same idea. Students could also create storyboards based on the items in the box or use the storyboard as a retelling tool.

Mathematics Volume Lessons involving Descriptive Adjective Object Boxes

Common Core Mathematics Standards (2010b) Addressed:
Solve real-world and mathematical problems involving surface area, and volume.
CCSS.Math.Content.6.G.A.2 Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas V = l w h and V = b h to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.
CCSS.Math.Content.6.G.A.4 Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.

Figure 9 on the next page shows a basic volume lesson for determining the volume of a rectangular prism.
Typical basic lesson: Locate a rectangular prism in one of the descriptive adjective object boxes and measure it. Find the volume of a rectangular prism by measuring the height, width, and length of the prism and multiplying them by each other. For the rectangular prism at right, multiply 2.5 x 1.5 x 1 = 3.75 cubic inches.

Figure 9. Typical Basic Lesson

Activity for Increasing Complexity
Choose a three-dimensional, irregularly shaped object from one of the descriptive adjective object boxes. Generate three or more different methods of estimating the volume of the object. Calculate volumes for each method. Evaluate the methods, explaining their strengths and weaknesses. See Table 1 for an example comparison chart.

Volume by Approximating with Rectangular Prisms: Estimate several boxes (rectangular prisms) that, when placed on top of each other or side-by-side, would approximately equal the volume of the object; calculate and add the volumes of the boxes. If the object is basically shaped like a rectangular prism, measure its length, width, and height to calculate an estimate of its volume.

Volume by Displacement: Measure a graduated cylinder of table salt, sand, birdseed, or water (if the object is waterproof). Determine the top surface level of the substance. Push the object into salt, sand, seed, or water. Shake gently or tamp to eliminate air holes. Re-measure surface level and determine the volume of salt, sand, seed, or water displaced.

Volume by Approximating with Cylinders: Estimate volume by adding cylinders that approximate the object, or use just one cylinder if the object is basically cylindrical in shape. Use the formula for a cylinder to determine the volume: \(V = \pi r^2 h \); calculate and add the volumes of the cylinders.

Volume by Determining Surface Area with Grid and Average Thickness: For an object of approximately even thickness, photograph the object and determine the surface area by superimposing a grid over the photo and counting squares. Then determine the “average” thickness by measuring it in a typical place. Multiply the surface area by thickness.

Social Studies: Exploring Burial Practices
There are many ways to increase the complexity of the Common Core for gifted and talented students. For the area of social studies, students can be given a broad topic and asked to choose a suitable subtopic to explore through researching information and making a corresponding object box. One possibility might be the cultural practice of burying the dead. Ancient or historic burial practices may be examined as the broad topic. Students could choose a country (or region) and examine the burial practices of its inhabitants. This process allows students choice within parameters.

Volume by Approximating with Base Ten Block Unit Cubes: Place the object on a flat side. Stack base ten cubes next to the object to create a three-dimensional volume of approximately the same size and shape. Count the cubes.

Table 1. Comparison of Different Volume Determination Methods

<table>
<thead>
<tr>
<th>Method Comparison</th>
<th>Strength</th>
<th>Weakness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximating with Rectangular Prisms</td>
<td>The volume of a rectangular prism is easy to calculate. One could actually make little boxes out of paper to approximate the object.</td>
<td>Depends upon how well the rectangular prisms approximate the shape of the object.</td>
</tr>
<tr>
<td>Displacement</td>
<td>Determining the final volume with the object submerged minus the original volume is fairly easy. This method should actually measure volume.</td>
<td>Some of the substance may be lost; object might not fit into graduate cylinder or measuring cup.</td>
</tr>
<tr>
<td>Approximating with Cylinders</td>
<td>The volume of a cylinder is fairly easy to calculate. One could actually make little cylinders out of paper to approximate the object.</td>
<td>Depends upon how well the cylinders approximate the shape of the object.</td>
</tr>
<tr>
<td>Surface Area Grid and Thickness</td>
<td>Easy to count the squares on a grid. Multiplying the surface area times the thickness is easy.</td>
<td>Depends upon having an object of fairly even thickness. Need a camera or place grid over object.</td>
</tr>
<tr>
<td>Approximating with Base Ten Block Unit Cubes</td>
<td>Counting unit cubes is easy.</td>
<td>Depends upon how well the cubes approximate the shape of the object.</td>
</tr>
</tbody>
</table>

After the aforementioned introductory activity of locating information about burial practices, students might analyze information about aspects that are both similar and different for the burial practices of the ancient country chosen by the student and those of people living currently in America by charting these similarities and differences on a Venn diagram. Another activity students could do, once they’ve found the similarities and differences, is to make cards, each featuring a description of the burial practice idea specific to either America or the chosen country on one side and a picture of the idea on the other side. This allows students to have a visual...
representation to supplement the information on the other side of the card. Students could be creative and draw their own pictures of their conception of how the idea should be represented. These cards can then be matched to objects in an object box that represent each concept. For example, students might assemble a set of objects representing mummies. The cards may also be used to form a compare and contrast chart or placed on a Venn diagram with sections of the diagram labeled.

Iowa Core Essential Concept and/or Skill: Understand the role of culture and cultural diffusion on the development and maintenance of societies. (SS.6-8.H.3) (Iowa Department of Education, 2010):

- Understand ways groups, societies, and cultures have met human needs and concerns in the past.
- Understand how information and experiences from the past may be interpreted by people from diverse cultural perspectives and frames of reference.
- Understand language, literature, the arts, architecture, other artifacts, traditions, beliefs, values, and behaviors have contributed to the development and transmission of culture.

Basic Lesson

Match the descriptive cards with the mummies in a descriptive adjective object box. Categorize the mummies in the box as representing genuine religious beliefs versus fantasy. See Figure 10 below for the cards that feature images of the objects.

![Figure 10. Descriptive Adjective Object Box Cards for the mummy box](image)

Activity for Increasing Complexity

Students should research the better known mummies of the world. After finding detailed information, making a descriptive adjective object box, and sorting the objects on a Venn diagram, students may provide a presentation to classmates on the burial similarities and differences of their chosen country compared to modern America. After all the presentations, students could have a class discussion on some similarities and differences they see between all of the chosen countries and modern America and the basic human needs these burial practices satisfy. Students can discuss any cultural universals that occur in the different societies. Students can discuss factors making some of these burial practices acceptable today, while also discussing why some practices would not be allowed in modern America. Such a discussion allows students to use higher order thinking skills. During this discussion, students should explore rituals from Ancient Egypt and compare to today's burial rituals. Who had elaborate funerals? What was the importance of pyramids? Research mummies and the Egyptian mumification process. Compare the transmission of culture today and in Ancient Egypt. See Table 2 (next page).
Table 2. Comparison of Burial and Death Practices

<table>
<thead>
<tr>
<th>Cultural Aspect</th>
<th>Modern America</th>
<th>Ancient Egypt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funeral service</td>
<td>Preparation of body in secret at mortuary, funeral services, procession of cars, burial in cemetery</td>
<td>Secret rites, funeral procession, burial tomb</td>
</tr>
<tr>
<td>Coping with fear of death</td>
<td>Halloween decorations, religious beliefs of heaven</td>
<td>Tomb artwork and religious belief of life after death</td>
</tr>
<tr>
<td>Role-play, costumes, masks</td>
<td>Kids dress as spirits and popular characters during trick-or-treat</td>
<td>High priests dressed as Egyptian gods during funeral</td>
</tr>
<tr>
<td>Objects</td>
<td>Jack-o-lanterns to scare away evil spirits, Trick-or-treat candy, apples</td>
<td>Protection charms in mummy wrappings, Storage of food in the tomb for the afterlife</td>
</tr>
<tr>
<td>Food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Widespread acceptance</td>
<td>Populace participates in trick-or-treating</td>
<td>Populace accepted religion; viewed funeral procession</td>
</tr>
<tr>
<td>Literature</td>
<td>Ghost stories, horror movies, songs, poems, Halloween cards.</td>
<td>Book of the dead, verbal stories, tomb writing in hieroglyphics</td>
</tr>
</tbody>
</table>

Second Activity to Increase Complexity
Students research the lesser known, natural mummies of the world:
- Research two of the bog bodies of northern Europe (Lindow Man, Weerdinge Men, Windeby Girl, Tollund Man, Grauballe Man, etc.)
- Research the bog bodies of North America, like thepeat mummies at Windover, Florida.

Table 3. Comparison of Scientific Techniques Used in Investigating Bog Bodies to Those Shown in the Popular Media

<table>
<thead>
<tr>
<th>Techniques in Current Popular Media</th>
<th>Mystery of Deaths of Bog Bodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSI: Crime Scene Investigation show conducts autopsies</td>
<td>Well-preserved stomach contents</td>
</tr>
<tr>
<td>X-Files Agent Dana Scully does autopsies and examines unusual features of corpses</td>
<td>Well-preserved skin and orange hair</td>
</tr>
<tr>
<td>Sherlock PBS Series: Sherlock Holmes is able to deduce facts from small clues on clothing</td>
<td>Preserved clothing and hats</td>
</tr>
<tr>
<td>Bones series has Dr. Temperance Brennan (“Bones”) examine human remains to determine manner of death.</td>
<td>Cause of or motive for death</td>
</tr>
<tr>
<td>48 Hours Mystery and Cold Case files use modern techniques to unravel the mysteries behind people’s deaths</td>
<td>Origins of the people through CT scans, three-dimensional imaging, and radiocarbon dating, DNA analysis</td>
</tr>
</tbody>
</table>

Extension of the Social Studies Object Box Idea
Another idea to have students create “get to know you” boxes at the start of class. Inside each student’s set will be items that describe their background, talents, interests, pets, and characteristics. A restriction to place on the box would be to limit the students to one picture, the rest being actual three-dimensional items. This way, the students must think more critically about who they are, what describes them, and how to represent those ideas physically. The cards to accompany this box can be the traditional descriptive adjective cards describing the items. See Figure 11 for example objects in a student’s set.

After matching the items to their sets of descriptive adjectives, classmates would guess what each object might represent. The back of each of the descriptive adjective card should have a brief explanation of what the object represents. Once the items have been matched and inferences as to the
meanings of objects have been made, each peer adds one item to a list of additional items that might be put into the set to represent the maker of the box and explains his or her reasoning. This activity forces the student to use the items in the box to better understand their peers. For example, a student may have a small guitar in their box. The peer could add sheet music to the chart because the student is interested in music or playing music. At the end of the school year, students could revisit their boxes and reflect on the items: what has changed? Would they still have those items in there? Is the list a good representation of items they would include? Students could reflect verbally in a discussion or write their thoughts in a journal.

Figure 11. Objects in a Student’s “Get to Know Me” Set

Science: Investigating Colony Collapse Disorder
Basic Lesson
Object boxes can be used in science to provide hands-on representations of concepts to hold student attention and improve learning. Provide an object box that is focused on an organism such as bees, caterpillars, bats, or spiders. Make a web of interdependency of organisms in the environment with this animal at the center. Such a web is shown below in Figure 12.

Iowa Core Essential Concept and/or Skill: Understand and apply knowledge of:
- Interdependency of organisms, changes in environmental conditions, and survival of individuals and species.

First Activity to Increase Complexity
A set of materials focusing on Colony Collapse Disorder, the current vast reduction in bee colonies in the United States, may include items affected by the disorder such as flowers, beeswax products, and honey. It may contain other items representing crops affected by the loss of flower pollination such as a vegetable seed packet and a plastic squash or tomato. Simulated pesticides or herbicides (a small bottle or box with the image of the product’s ad glued or taped to it to represent the chemical may also be included (Never include anything dangerous or poisonous in an object box.) Perhaps a statement about GMO’s (genetically modified organisms) from an organic food product package can be included to represent genetic modifications of crops. See Table 4 (next page).

One set of cards that accompanies the items has a set of four adjectives on each card to describe each item, as in a typical descriptive adjective object box. Another set of cards; to be made by the students, goes into further detail about possible causes of Colony Collapse Disorder, connecting specific ideas with objects in the box. This step adds to the complexity of the activity, as students will need to locate additional information about Colony Collapse Disorder to successfully complete the matching.

Extension
This extension focuses on students’ research ability. The matching activity described previously can be a warm-up to writing a research paper by helping the student create an outline and gain background knowledge on the topic. This allows the teacher’s object box activity to integrate language arts into the science lesson. A discussion about cause and effect can follow. The students should be able to create a table based on the information gathered about the Colony Collapse Disorder and how its effects are represented through the items in the box.
Table 4. Example items that might be in the Colony Collapse Disorder Box

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A few honeybees made of different materials</td>
<td>Artificial flowers to represent wild or planted flowers for the bees</td>
<td>Seed packets or real examples of crops like corn, wheat, and cotton that might not be pollinated</td>
</tr>
<tr>
<td>Ceramic honey jar representing honey</td>
<td>Products made from beeswax such as lip gloss or candle</td>
<td>Plastic examples of fruit or vegetables that might not get pollinated</td>
</tr>
<tr>
<td>Small bottle with an ad about an insecticide taped to it to represent insecticides</td>
<td>Small box with label of a common herbicide glued to it to represent herbicides</td>
<td>Genetically Modified Organism – perhaps a statement cut from a food product or a part of a crop plant labeled “GMO”</td>
</tr>
</tbody>
</table>

Extending to Other Current Events Affecting Organisms

Students could research topics other than the issues of reduction in bee colonies. They could examine current science-related issues in the news such as the Ebola outbreak in several countries of Africa. After researching an issue, students form small groups to generate solutions. Students, then, could have a classroom science conference in which each group presents their solutions to the rest of the class. Students are assessed on how well they convey their ideas and whether their solution idea could actually be implemented. See Table 5 below for some recent events and issues.

A great way to increase complexity in science is to integrate another related problem. The book *Silent Spring* by Rachel Carson (1962) focuses on similar ideas to the colony collapse disorder. Have students read the book and make connections between the environmental problems in the book (such as the pesticide DDT causing thin egg shells in birds) and the environmental consequences of the Colony Collapse Disorder.

Combining reading about environmental problems of the past with the current issue of Colony Collapse Disorder will challenge students to make multiple connections between the events. *Silent Spring* brings an opportunity for students to learn about the field of ecocriticism, in which literary scholars analyze the environment, generate solutions, and also examine the ways environmental problems and nature are portrayed through literature. Having students write a story or article about the colony collapse disorder from an eco-critical stance will challenge them to take and apply the knowledge they have acquired.

Table 5. Possible Current Events Affecting Organisms

<table>
<thead>
<tr>
<th>Organism</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeybees</td>
<td>Colony collapse disorder is a serious problem threatening the health of honey bees in the United States. By planting flowers in neighborhoods, people can provide needed nectar and pollen to bees.</td>
</tr>
<tr>
<td>Monarch butterflies</td>
<td>Monarch butterflies died in record numbers, possibly due to weather extremes and farming practices that kill milkweed, their food source as caterpillars. Monarch butterflies disseminate pollen, which affects plant diversity. They are also a food source for many birds.</td>
</tr>
<tr>
<td>Bats</td>
<td>Many bats are dying because of white-nose syndrome, a fungus infection around the muzzle of bats. The fungus is rapidly spread by humans entering and exploring caves in which bats hibernate. Bats eat a tremendous number of insects each night including mosquitoes and farm pests. Bats pollinate desert cacti.</td>
</tr>
<tr>
<td>Spiders</td>
<td>A rare spider that has not been seen for 3 decades was discovered at the site of a 15 million dollar highway construction project in Texas, and the construction project was halted.</td>
</tr>
</tbody>
</table>

References

