1999

Comparing Three Bee Species for Controlled Pollination of Selected Brassicaceae

R. L. Wilson
Iowa State University

C. A. Abel
Iowa State University, cabel@iastate.edu

R. L. Luhman
Iowa State University

Recommended Citation
Available at: https://scholarworks.uni.edu/jias/vol106/iss1/3
Comparing Three Bee Species for Controlled Pollination of Selected Brassicaceae

R. L. WILSON, C. A. ABEL and R. L. LUHMAN1

USDA, Agricultural Research Service, North Central Regional Plant Introduction Station, Iowa State University, Ames, Iowa 50011

Pollination of species of Brassicaceae for seed increase at the USDA-ARS North Central Regional Plant Introduction Station (NCRPIS) has been accomplished for several years by using nucleus hives of honey bees, Apis mellifera L., in field cages. Brassicaceae are cool season crops that need pollination from late April to early June in the northern temperate zone. Overwintered hives of honey bees need time to strengthen (i.e., increase their numbers) and thus it is difficult to make enough nuclei to meet our early season pollination needs. Purchasing package bees from suppliers in the southern U.S. is an expensive alternative. In this study, three bee species; a solitary bee, Osmia cornifrons (Radoszkowski) (Hymenoptera: Megachilidae); honey bees; and alfalfa leafcutting bees, Megachile rotundata (Fab) (Hymenoptera: Megachilidae), were compared for their utility as early season pollinators of Brassicaceae species in field cages. Osmia cornifrons proved to be equal to or better than leafcutters and honey bees for pollination of Brassicaceae in field cages as measured by seed produced/plant. Future seed increases of Brassicaceae at the NCRPIS will utilize Osmia cornifrons in field cages because they are effective pollinators and they are easily managed.

INDEX DESCRIPTORS: hornfaced bee, mason bee, alfalfa leafcutting bee, honey bee, pollination, Osmia cornifrons, Megachile rotundata, Apis mellifera.

The hornfaced bee, Osmia cornifrons (Radoszkowski) (Hymenoptera: Megachilidae), was imported in 1977 from Japan into the eastern United States as an orchard pollinator (Batra 1979). The alfalfa leafcutting bee, a native of southeastern Europe, was accidentally introduced into eastern North America in the 1930s (Eves et al. 1980).

METHODS

Two accessions of Brassica napus (PI 278766 and PI 392025) were planted in 5 × 5 cm peat pots in the greenhouse on 4 March 1994. On 15 April 1994, all surviving plants (about 15 per accession) were equally divided and transplanted into each of 16 field cages measuring 6.4 × 1.6 × 1.6 m (Ellis et al. 1981). We used a completely randomized block design with treatments as follows: 4 cages (replicates) each received (1) one honey bee nucleus containing 4,000–6,000 worker bees and a queen; (2) alfalfa leafcutting bees (about 250), (3) 6 straws containing about 48 O. cornifrons, and (4) an untreated control. Plants were harvested when >50% of the siliques had turned brown (late June to early July). Plants in each cage were counted, threshed, and the seeds obtained were cleaned. Grams of seed obtained were divided by the number of plants per cage to calculate the grams of seed/plant. Data were analyzed using the FACTOR analysis of MSTAT-C (MSTAT Development Team, 1989). When the F-value for treatments was significant (P < 0.05), means were separated with the least significant difference (LSD) test (α = 0.05) included in the RANGE program of MSTAT-C.

In 1995, two additional PI accessions were added to the test (PI 209022 [Sinapis alba] and PI 469944 [Brassica napus]). The plants were planted in the greenhouse on the following dates: PI 209022 (20 February 1995), PI 278766 (3 March 1995), PI 392025 (7 March 1995), and PI 469944 (16 February 1995). All were transplanted into field plots from 17–24 April 1995. Experimental design and treatments were the same as in 1994. Plants were harvested when >50% of the siliques had turned brown. PI 209022 was harvested on 17 July 1995, PI 278766 on 11 July 1995, PI 392025...
stigma and anthers. Honey bees landed on the petals when searching for nectar and didn’t come in contact with the stigma. When honey visiting flowers, the plots.

pack the pollen when they load their hind tibia scopa. Also, while pollinators of Brassicaceae accessions in field cage multiplication, bees were searching for pollen, they effectively harvested pollen in contact with many more flowers than will honey bees.

In 1995, Osmia cornifrons was equal to the other bees in the amount of seed produced/plant for 3 of the accessions tested, these bees are easier to manage than honey bees and less costly to use than are honey bees and alfalfa leafcutting bees. Consequently, we plan to increase our use of this species in seed regeneration program at NCRPIS.

A summary of the cost of managing the three species of bees is given in Table 2.

DISCUSSION

Even though Osmia cornifrons did not produce significantly more seed than the other bees for most of the accessions tested, these bees are easier to manage than honey bees and less costly to use than are honey bees and alfalfa leafcutting bees. Consequently, we plan to increase our use of this species in seed regeneration program at NCRPIS.

Observation of honey bees in cages showed them to be less effective as an early-season pollinator when the weather was damp and cool. Osmia bees were observed to collect pollen and place it on their abdominal scopa in a dry state, whereas honey bees will wet and cool.

Alfalfa leafcutting bees are relatively inexpensive but must be imported from Canada each year. Osmia cornifrons can be increased in the field locally and stored until needed (Wilson and Abel, 1996). In the future, the NCRPIS plans to use O. cornifrons as exclusive pollinators of Brassicaceae accessions in field cage multiplication plots.

on 12 July 1995, and PI 467944 from 21–26 July 1995. Seeds were processed as in 1994 and grams of seed/head were calculated. Statistical analysis procedures used in 1994 were repeated.

RESULTS

During 1994, Osmia cornifrons produced significantly more seed/head on PI 278766 than did the other bees. There was no difference between the bees for seed produced/head on PI 392025 (Table 1).

In 1995, Osmia cornifrons was given in Table 2.

A summary of the costs associated with managing three species of bees.

LITERATURE CITED

ACKNOWLEDGMENTS

The authors wish to thank Nate Bye, Brett Roberts, and Ron Schwegge for help in manipulating the bees. This article is a joint contribution from the USDA-ARS and the Departments of Agronomy and Entomology, Iowa State University. This is Journal Paper No. J-17642 of the Iowa Agricultural and Home Economics Experiment Station, Ames, Iowa, Project No. 1018, and supported by Hatch Act and State of Iowa funds.

Table 1. Seed per plant for two Brassica and one Sinapis species pollinated by 3 different bee species, Ames, IA.

<table>
<thead>
<tr>
<th>ACCESSION</th>
<th>1994</th>
<th>1995</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HB</td>
<td>ALC</td>
</tr>
<tr>
<td>PI 209022</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PI 278766</td>
<td>1.0b</td>
<td>0.6bc</td>
</tr>
<tr>
<td>PI 392025</td>
<td>1.2ab</td>
<td>1.4a</td>
</tr>
<tr>
<td>PI 469944</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 2. A summary of the costs associated with managing three species of bees.

<table>
<thead>
<tr>
<th>BEE</th>
<th>COST/CAGE</th>
<th>LABOR COSTS/CAGE</th>
<th>TOTAL COST/CAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horn-faced bee (Osmia cornifrons)</td>
<td>$3.84a</td>
<td>$3.00b</td>
<td>$6.84</td>
</tr>
<tr>
<td>Honey bee (Apis mellifera)</td>
<td>$37.30c</td>
<td>$6.00d</td>
<td>$43.30</td>
</tr>
<tr>
<td>Alfalfa leafcutting bee (Megachile rotundata)</td>
<td>$0.80e</td>
<td>$4.00f</td>
<td>$4.80</td>
</tr>
</tbody>
</table>

Row means followed by the same letter within years are not significantly different according to the LSD test (P < 0.05)

Honey bee
Alfalfa leafcutting bee
Osmia cornifrons

The future, the NCRPIS plans to use O. cornifrons as exclusive pollinators of Brassicaceae accessions in field cage multiplication plots.

MSTAT DEVELOPMENT TEAM. 1989. MSTAT-C: A microcomputer program for the design, management and analysis of agronomic research experiments. MSTAT Development Team, Michigan State University, East Lansing.

