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ABSTRACT 

Coal fired power plants are responsible for more than 75 percent of the energy 

produced in Iowa.  Burning coal releases large amount of carbon dioxide and other 

chemical compounds into the atmosphere. 

A variety of types of biomass, including prairie vegetation, are being proposed as 

biofuel alternatives for electrical generation. Tilman et al. (2006) determined that biofuels 

from mixtures of prairie vegetation of increasing diversity provide more usable energy, 

reduce greenhouse gases and produce less agriculture pollutants.  The Prairie Power 

Project of the Tallgrass Prairie Center is testing four mixtures of prairie species for 

maximum production of biomass.  A primary concerns regarding burning prairie biomass 

for electrical generation is the potential for slag production from trace metals and other 

minerals during the combustion process (Skrifvars et al. 1998).  Adler et al. (2006) 

observed that the mineral content of switchgrass declined from summer to fall harvest 

and dropped further the following spring.  Little is known about the slagging potential of 

prairie forbs.  

This study examined the concentration of three minerals, potassium, sodium, and 

silicon, in nine prairie forb species in relation to their potential for slagging. Samples of 

the prairie forbs were collected during late fall and early spring-near the beginning and 

the end of the winter dormancy period from five different prairie sites.  Mineral 

concentrations of the prairies forbs were compared to determine whether some species 

had higher potential for slagging than others.  Also, concentrations of the minerals were 



 

sampled fall and spring to determine if there were changes during the winter dormancy 

period that would affect slagging potential of the plants. 

The energy production per unit weight was similar for all the species.  The slag-

inducing chemicals in the prairie forbs varied from species to species.  Solidago 

canadensis, Solidago rigida and Silphium laciniatum exhibited high potential for 

slagging and should be avoided as biofuels.  Desmodium canadensis showed low 

potential for slagging. Concentrations in Monarda fistulosa, Lespedeza capitata, and 

Heliopsis helianthoides declined during the winter dormancy.  Delaying harvest until 

spring would improve their candidacy for biomass production. 
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CHAPTER 1 

INTRODUCTION 

Iowa has relied upon coal fired power plants for the bulk of its energy production 

since the 1880s (Energy Information Administration 2008).  In 1999, burning coal 

released 1.8 x 106 metric tons of carbon dioxide in the United States alone.  Low-sulfur 

coal is commonly used to reduce air pollution.  Currently, the state of Iowa produces 

more than 75 percent of its energy using low–sulfur coal (Energy Information 

Administration 2008).  Coal, as a fossil fuel, is not an unlimited resource.  The 

environmental impact of burning any fossil fuel leaves a mark on the Earth.  Not only 

does coal cause air quality issues, it produces a host of other environmental concerns, 

including water pollution and land disturbance (World Coal Association 2015).   

Renewable fuel resources are increasingly being considered as a means of 

reducing the carbon footprint (Energy Information Administration 2008).  Biofuels have 

been gaining popularity as a viable source of renewable energy to reduce our dependence 

on fossil fuels. Iowa, with a high production rate of corn, is the leading producer of 

ethanol (Energy Information Administration 2008).  In 2008, the state produced about 

three-tenths (30%) of our nation’s supply.  In 2012, according to the Iowa Renewable 

Fuels Association (2012), Iowa’s ethanol plants produced 3.7 billion gallons of ethanol.  

The United States produced 13.3 billion gallons of ethanol in 2013 (Renewable Fuels 

Association 2013). 

A wide variety of different types of biomass are being pursued as biofuels.  The 

different types of biomass include single species of grasses, sawdust and other wood 
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products, railroad ties, plant residue from sugar processing, alfalfa, rice hulls, straws, 

stone fruit pits, mill sludges and other natural products to name a few. Biomass fuels are 

more carbon neutral than fossil fuels (McKendry 2002).  Neutrality in this sense means 

that a growing plant sequesters the same amount of CO2 as is released during its 

combustion.  Therefore, no excess CO2 is released during combustion than is 

incorporated into the plant.  Fossil fuels are carbon positive.  All of the CO2 produced by 

fossil fuels when burned is released into the atmosphere.  The CO2 they sequestered was 

taken from an ancient atmosphere millions of years ago, and therefore adds to that of the 

current atmosphere.  

McKendry (2002) lists the following characteristics of the ideal crop species for 

energy production:  

 high yield (maximum production of dry matter per hectare) 
 low energy input to produce 
 low cost  
 composition low in contaminants 
 low nutrient requirements 
 

Other environmental requirements for ideal energy crops include appropriate climate 

conditions for the growth of specific species and the effective use of available moisture 

and naturally available fertilizers (McKendry 2002). While this study by McKendry 

(2002) relates to United Kingdom climates, these considerations apply to biomass crops 

in general.  

In an effort to find ways to reduce greenhouse gasses and become less dependent 

on fossil fuel, Governor Culver recommended to the Iowa Legislature that they establish 

an Office of Energy Independence.  Culver indicated, “The goal is to wean Iowa from its 
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dependence on foreign oil by 2025,” (Clayworth 2007).  To provide funding to meet the 

goal, he further recommended the creation of the Iowa Power Fund in 2007 (Bevill 

2011).  The bill was signed May 23, 2007 with the intention of providing funding for 

various alternative energy projects.  

The Iowa Power Fund was initiated with $100 million dollars to be spent in 4 

years (Bevill 2011).  “Culver predicted the fund would leverage ‘hundreds of millions, if 

not billions of dollars’ of additional investments in the state from private and federal 

sources,” according to an article in the Des Moines Register (Clayworth 2007).  Within 

the first two years, $51.6 million dollars was used to fund 39 projects, 13 of which were 

focused on biofuels (Bevill 2011). 

The first project funded by the Iowa Power Fund Board was proposed by the 

Tallgrass Prairie Center (TPC) at the University of Northern Iowa (UNI).  The Prairie 

Power project was designed to (1) determine the best mixture of prairie species for 

maximum biomass production to burn for electrical generation and (2) test at an 

agronomic (crop scale) level the findings of Tilman et al. (2006) that energy production 

increased with greater species richness (Smith 2008b)  The applied research project 

compared four different mixes of prairie species (1) a switchgrass monoculture, (2) a 

mixture of five species of native warm season grasses including switchgrass, (3) a 

mixture of 16 native species, five warm season grasses and cool season grasses, plus 

forbs, and (4) a mixture of 32 species (including the previous 16 species) plus 16 more 

species of native grasses, forbs and sedges (Smith 2008b).  
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Several ongoing studies, including those at Iowa State University and the 

University of Texas, involve the use of monocultures of native prairie grasses, such as 

switchgrass, for alternative energy production (Price 2009).  However, very few are 

studying mixed plantings of prairie grasses and/or forbs.  Ancillary benefits of using 

prairie plants for biomass production include improved habitat for wildlife, reduced storm 

water runoff and soil erosion, decreased greenhouse gases, increased carbon 

sequestration, less fuel usage for tillage and increased biodiversity (Smith 2008a). 

One of the concerns of burning prairie biomass for electrical generation is the 

production of slag during the combustion process from trace metals and other minerals 

within plants (Skrifvars et al. 1998).  Timing of harvest of switchgrass has been observed 

to affect both switchgrass yield and biofuel quality.  The ash concentration of switchgrass 

decreases as it matures during the growing season (Sanderson and Wolf 1995).  If harvest 

is delayed until the following spring, mineral concentration as well as yield decreased in 

Miscanthus sp. (Lewandowski et al. 2003) and reed canary grass (Phalaris arundinaceae 

L.) (Burvall 1997). 

Adler et al. (2006) studied chemical changes in selected plants to determine if 

mineral concentrations were affected by different harvest times. They examined how 

harvest time affected switchgrass biomass yield and biofuel quality.  They observed that 

mineral content within switchgrass decreased from summer to fall harvests as others 

observed in reed canary grass (Phalaris arundinaceae) and Miscanthus sp. (Burvall 1997 

and Lewandowski and Kitcherer 1997).  The mineral concentrations dropped even further 

when harvest was delayed to the following spring (Adler et al. 2006). However, later 
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harvest times could affect the quantity of biomass gathered from a site.  Although Adler 

et al. (2006) determined that switchgrass yield generally decreased when harvest was 

delayed from fall to spring, they observed that fuel quality was improved with reduced 

concentrations of slagging and fouling minerals and lower water content.  

Literature Review 

Giant strides toward developing renewable fuel sources are being made in the 

United States every day.  The State of Iowa, through the Office of Energy Independence 

and the Power Fund, provides opportunities to pursue alternative energy sources.  Iowa 

State University (ISU) and several other universities across the country are investigating 

monoculture stands of native grasses, while other organizations have invested in more 

exotic species such as sugar cane, corn, sugar beets, grains, elephant grass, silver plume 

grass, and kelp (Demirbas 2005).  ISU has focused on combinations of native species and 

agronomic crops.  In the process, they have studied cover crops, weed suppression and 

management strategies (Picasso et al. 2008, Wilsey and Blong 2007).  There has been 

extensive study of the energy and biomass output of crops grown exclusively for energy 

production (Demirbas 2005).   

Growth and productivity of monoculture stands are being extensively 

investigated.  Switchgrass, for instance, exhibits a strong correlation between the latitude 

of its native origin and the rate that it reproduces (Rinehart 2006).  Lowland ecotypes 

from the southern latitudes have higher yield potential than upland ecotypes from the 

north, but are not as cold tolerant (Casler et al. 2004).  Cultivars moved north from more 
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southerly latitudes have higher yields, producing more biomass than cultivars originally 

from those northern latitudes (Rinehart 2006).   

Co-firing plant biomass with coal is gaining considerable attention.  For over 10 

years, Chariton Valley Resource and Conservation Development, a non-profit 

corporation, studied the feasibility of co-firing switchgrass biomass with coal for 

electrical generation (Florine et al. 2006).  Programs testing the co-firing of coal and 

plant biomass in large utility boilers show beneficial results for the utility by reducing 

fuel costs and minimizing waste while benefiting the environment with reduced pollution 

from NOx, SOx and CO2 (Sami et al. 2001).  The degree of benefit depends on the type of 

biomass used and the biomass/coal blend.  When burned, each type of biomass material 

produces ash of a specific quantity and composition, and different quantity of energy 

from one to the next.  While cofiring seems beneficial, experiments investigating the 

interactions between coal particles and biomass during the combustion process need 

further research (Sami et al. 2001).   

Demirbas (2005) suggests that an area of future study for biofuel production 

would be the use of polycultures, rather than monocultures.  Polyculture mixtures yield 

much more biomass and subsequently more energy than monoculture stands.  Tilman et 

al.’s (1996) research indicates that as species richness increases energy production 

increases due to greater biomass.  The Prairie Power Project of the Tallgrass Prairie 

Center was designed to verify the findings of Tilman et al. (2006) at an agronomic level 

and determine the best mixture of native biofuels for optimal energy production.  The 

TPC project was initiated in 2008. 
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According to Tillman and Prinzing (1995), the use of vegetative biofuel “requires 

an understanding that these materials are fundamentally different” than coal.  Structure, 

specific gravity, bulk density, porosity and void volume, chemical composition and 

characteristics of ash and reactivity are all widely varying physical characteristics.  Ash 

produced from living plant matter typically has a tendency to be very alkaline ash with 

high levels of potassium oxide.  Their study suggests that the alkalinity in the plant matter 

is influenced by soil conditions and mineral uptake during growth properties (Tillman 

and Prinzing 1995). A logical and important step in moving from monocultures to 

polycultures is the testing of mineral properties of the species included in a biomass mix 

(Tilman et al. 1996). 

Harvest time is a big factor to be considered in all the studies of biomass quality.  

According to Adler et al. (2006), harvest time directly affects quality (mineral content) 

and quantity of biomass from switchgrass and a variety of other grasses.   

Florine et al. (2006) evaluated twenty-six cool-season grassland species including 

forbs from ten fields of pasture, hay or Conservation Reserve (CRP) plantings in the 

Chariton Valley Biomass Project area.  This evaluation was to determine the plants’ 

potential for energy production for co-firing with coal for electrical generation. Biomass 

accumulation in cool-season pastures was greatest in spring and early summer while in 

switchgrass it was greatest in late spring and summer.  Due to the diversity of herbaceous 

plant species in the sampled sites, chemical composition was variable.  Vegetation 

harvested for burning with coal was more suitable from some areas than from other areas 

because of lower ash, sulfur, and chloride content.  The ash levels of a majority of cool-
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season species from pastures were higher than switchgrass and were more comparable to 

coal.  However, sulfur levels were similar to switchgrass and lower than coal.  The major 

component of ash from grasses is silica.  Warm season (C4) grasses typically have lower 

silica levels than cool-season (C3) grasses because they utilize water 50% more 

efficiently (Samson and Mehdi 1998).  

According to Demirbas (2005) ash compositions of plant biomass and coal are 

fundamentally different, as “Biomass fuel properties vary significantly more than those of 

coal…”  Consequently, the deposition rate of biomass ash has the potential to be widely 

variable relative to coal (Demirbas 2005).   

There are thirteen mineral nutrients that are important to a plant’s growth and 

survival.  Most plants grow by absorbing nutrients that come from the soil.  Presumably 

plants can only absorb those minerals accessible to them.  Therefore, variations in 

mineral concentrations in plants are related to concentrations in the soil.  In the 

absorption process, chemicals in addition to mineral nutrients may be taken up from the 

soil.  Consequently, a number of different minerals may be present in plants when they 

are harvested for burning to generate electricity.  All species utilize similar minerals to 

grow, but they may require different amounts.  An example of varying levels of minerals 

within different plant species is presented in Table 1 (Klaas 1998). 
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Table 1: Mineral content of ash from hybrid poplar, pine, and switchgrass* 

Component Hybrid poplar 
(dry wt%) 

Pine 
(dry wt %) 

Switchgrass 
(dry wt %) 

CaO 47.20 49.20 4.80 
K2O 20.00 2.55 15.00 
P2O5 5.00 0.31 2.60 
MgO 4.40 0.44 2.60 
SiO2 2.59 32.46 69.92 

AI2O3 0.94 4.50 0.45 
BaO 0.70  0.22 

Fe2O3 0.50 3.53 0.45 
TiO2 0.26 0.40 0.12 
Na2O 0.18 0.44 0.10 

Mn2O4 0.14  0.15 
SrO 0.13  0.04 
CO2 14.00   
SO3 2.74 2.47 1.90 

Total: 98.78 96.30 98.35 
 
*Presence of carbon and sulfur likely due to insufficient temperature and length of time 
for ashing process to volatilize non-mineral components (Klass 1998). 
 

Because of the minerals contained within plant matter, slagging and fouling are 

two major issues with burning biomass. Slagging and fouling are caused by inorganic 

constituents within ash.  Alkali metals from combusted biomass form sticky deposits on 

the metal and refractory surfaces of combustion chambers. These ill effects are called 

slagging when “the deposition of ash on furnace walls, mainly in the radiant section, is in 

a highly viscous state and forms a liquid layer…” (Hare et al. 2010)   Fouling is “…when 

the deposit is built up by condensed materials, forming a dry deposit, generally in the 

convective section…” (Hare et al. 2010).  These deposits are found on grates and in 

fluidized beds of power plants (Miles et al. 1996).  Clinkers are formed by the 

agglomeration of low viscosity molten ash particles on stoker grates (Magasiner et al. 
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2001). They are more readily created within stoker-fired boilers than pulverized fuel 

boilers.  The processes inside the furnace are what determine the level of problems. 

According to Demirbas (2005), “slagging and fouling reduces heat transfer of combustor 

surfaces and causes corrosion and erosion problems which reduce the lifetime of the 

equipment.”  Stoker-fired boilers allow the fuel more residence time and thus more time 

for deposits to form.  Clinkers, slagging and fouling are all a result of elemental volatility 

and the viscosity (dependent on chemistry, oxidizing conditions and temperature) of the 

ash left after the transformation of the fuel being combusted (Magasiner et al. 2001).  Ash 

is formed when a solid residue is produced by the combustion of the fuel in the air 

(McKendry 2002).  

In addition to slagging and fouling, a third problem called sintering can also result 

from using biomass.  Sintering occurs when loosely attached particles in fluidized bed 

boilers densify and compact into a hard mass (Skrifvars et al. 1998).  Skrifvars et al. 

(1998) evaluated 10 biomass ashes to compare the sintering tendencies.  They determined 

that silicate and alkali salts may result in formation of extensive deposits.  Sintering can 

be calculated using a formula called “multicomponent, multiphase thermodynamic 

equilibrium”.   

Miles et al. (1996) investigated the complex chemistry involved in formation of 

deposits.  They created a database which includes an elemental analysis of a wide variety 

of biofuels and their ash. Their results also indicated that gasification may reduce alkali 

volatilization from biofuels.  However, current coal fired facilities would need to be 

retrofitted for gasification. 
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Indices for slagging (Table 2) and fouling (Table 3) have also been determined 

(Magasiner et al. 2001).  Slagging is determined by measuring ash deformation 

temperatures under reducing and oxidizing conditions.  Slagging index A involves the 

base/acid ratio and the total sulfur content.  Index B is (maximum hemisphere 

temperature plus four times the minimum initial deformation temperature)/5 (Magasiner 

et al. 2001).  Both indices can portray whether slagging is unlikely, possible, or probable 

(Magasiner et al. 2001). 

Table 2.  Slagging potential as indicated by calculations of Slagging Index A and 
Slagging Index B (Magasiner et al. 2001).  

 
 Slagging unlikely Slagging possible Slagging probable 

Slagging Index A < 0.6 0.6 to 2.6 >2.6 
Slagging Index B >1340 1340 to 1150 <1150 

 
 

Fouling indices are also available as reliable indicators of the likelihood of 

fouling.  The presence of sulfur makes determining fouling indices slightly more difficult.  

Coal itself is considered to be a fouling fuel.  Because of this coal fired boilers are usually 

equipped with sootblowers (Magasiner et al. 2001).  Two fouling indices have been 

developed.  TES stands for the Thermal Energy Systems Index, and DOE stands for the 

Department of Energy’s index.  Both indices can portray whether fouling is unlikely, 

possible, or probable (Magasiner et al. 2001). 
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Table 3.  Fouling potential as indicated by calculations of TES Index and DOE Index 
(Magasiner et al. 2001).   

 
 Fouling unlikely Fouling possible Fouling probable 

TES Index <0.17 0.17 to 0.34 >0.34 
DOE Index <0.10 0.10 to 1.00 >1.00 

 
 
According to Miles et al. (1995), a calculation can be done that combines slagging 

and fouling into one index.  The equation to calculate a combined slag and foul index is 

as follows: 

1×106

HHV Btu Lb(Dry)⁄
×Ash%×Alkali% in Ash=Lb Alkali MMBtu⁄  = Combined Index 

MMBtu stands for one million BTU, a British unit of energy.  HHV stands for 

Higher Heating Value, a value depicting the heat produced from combustion. The values 

of the parameters are the same as the fouling TES Index above.  The guidelines stated 

above and the equation in Miles et al. (1995) provides the limits for slagging used for our 

project.   

Concentrations of alkali per heat unit within the fuel are one way the coal industry 

attempts to classify coal.  Using the equation for the combined index, one can classify all 

other fuels containing these alkalis and use the resulting calculated number to determine 

which fuel source causes less fouling (Miles et al. 1995). 

According to Magasiner et al. (2001) and Miles et al. (1995), the criteria for 

fouling potential are as follows: Values from 0-0.4 lb/MMBtu (0 to 0.17 kg/GJ) indicate 

fouling is unlikely; values from 0.4-0.8 lb/MMBtu (0.17 to 0.34 kg/GJ) indicate fouling 

is possible, and any value over 0.8 lb/MMBtu (0.34 kg/GJ) indicates it is probable.   
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The combined slagging and fouling equation provides the data necessary to 

determine which of the species studied will cause problems within coal-fired power 

plants.  This equation provides a means to compare slagging and fouling potential of 

samples related to fall and spring harvests.  To reduce slagging and fouling, the optimal 

time for harvest is when the mineral content of the ash is lowest.  This is determined by 

testing the ash.  

Many biomass fuels cause slagging and other forms of deposit formation during 

combustion.  In comparison to varieties of biomass in general, coal is likely to have a 

lower fraction of alkali-earth metals such as calcium and magnesium (Magasiner et al. 

2001).These deposits can reduce heat transfer, reduce combustion efficiency, and damage 

combustion chambers when large particles break off.  Trace metals, silica, sulfur, 

potassium, sodium, chloride, phosphorus, calcium, magnesium, and iron present in plant 

tissue all have the capacity to cause undesirable reactions in furnaces and boilers.  These 

minerals can lead to fouling and slagging due to ash deposits (Demirbas 2005).  In some 

situations, these minerals “can cause corrosion, slagging, and fouling of boilers and 

increased emissions” (Lewandowski and Kircherer 1997).   

These elements differ in terms of the magnitude of their effect on slagging and 

fouling.  Therefore, some are greater concern than others regarding combustion as a 

biofuel.  A brief summary of aspects of each element is provided below (Biolex 2015).  

Silicon is the most common bulk ash-forming element in biomass. Silicon is 

present in significant concentrations in certain plants especially grass stems.  SiO2 forms 

the main matrix for the ash and slag during biomass combustion. The melting 
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temperature depends strongly on the mixture of other ash forming elements; the alkali 

metals potassium and sodium, in particular, lower the ash melting temperature of biomass 

ashes (Biolex 2015). 

Sulfates formed from sulfur lower the ash melting temperature and can thus be 

significant contributors to slagging and fouling problems in biomass boilers. However, 

due to competing reactions with chloride, high sulfur to chloride ratios can in some cases 

be of advantage, as it can decrease chloride corrosion problems (Biolex 2015). 

Potassium is a major nutrient and very important for growth of plants.  High 

concentrations are common in rapidly growing plants. The concentration does commonly 

also depend on growing season of the plant (i.e. in summer and spring when the growth 

of the plant takes place, the concentrations are higher than in the winter when no growth 

occurs).  Potassium may be lost as an aerosol during combustion, and consequently one 

of the main components of fouling in boilers using solid biomass fuels.  Moreover, it 

reacts with other ash forming elements in the ash and in high concentrations it can 

significantly lower the melting temperature of ash and thereby cause slagging and fouling 

(Biolex 2015). 

Sodium is not a plant nutrient like potassium. However, plants growing in soil 

high in sodium can have significant concentrations of sodium.  Sodium behaves similar to 

potassium during combustion and therefore causes the same problems of fouling and 

slagging and particle emissions described for potassium (Biolex 2015). 

Chloride is typically a major component in particulate emissions from biomass 

combustion units, mainly in the form of KCl.  Chlorides have relatively low melting 
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temperatures and thus chloride particles can significantly contribute to fouling. Slagging 

is less common as typically very low concentrations of chloride remain in the bottom ash 

due to the relatively high volatility of chlorides compared to oxides and sulfates (Biolex 

2015). 

Phosphorus is an essential nutrient both as a part of several key plant structure 

compounds and as a catalyst in the conversion of numerous key biochemical reactions in 

plants.  Generally phosphorus is a controlling element in ash transformation reactions 

during biomass combustion.  The addition of calcium and magnesium tends to lower 

melting temperature and thus increases slagging and fouling (Biolex 2015). 

Calcium is a main ash forming elements in biomass ashes. However, CaO 

increases the melting temperature of ash and thus is not much of a concern in slagging 

and fouling (Biolex 2015).  Magnesium, a component of chlorophyll, is not a particular 

concern in slagging fouling as MgO increases the melting temperature of ash and green 

plants are seldom used as fuel (Biolex 2015).  Iron is very common in earth minerals, 

however, it has low involvement in biological activities and thus does not naturally exist 

in high concentrations in plant material (Biolex 2015). 

Research related to causes of slagging and fouling by biofuels has focused on two 

alkali metals, potassium and sodium, and silica.  As indicated above, all three elements 

are common in living plants. In general, it appears that faster growing plants (or faster 

growing plant components) tend to have higher concentrations of alkali metal and silica 

(Miles et al. 1993). 
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Research Questions 

When evaluating plant species as potential sources of biomass to burn for 

electrical generation, it is important to know which plants are most likely to cause 

slagging and fouling at the time of combustion. With the exception of switchgrass, little 

is known about biomass productivity and mineral content of the prairie species.  Those 

that retain the most mass and the least amount of fouling and slagging minerals would be 

the best sources for burning for electrical generation.   

The goal of the Prairie Power Project is to develop a mixture of prairie species for 

optimal production of biomass to burn for electrical generation.  Consequently it is 

important to (1) know the level of slag inducing minerals of plants and (2) if changes 

occur in these minerals during dormancy.  This information would provide some insight 

into biofuel quality. 

Adler et al. (2006) determined that delaying switchgrass harvest over winter until 

spring appeared to improve biofuel quality due to a reduction in the slagging and fouling 

potential although biomass yield was reduced. However, no information is available 

regarding biomass productivity and slagging and fouling potential in forbs.  From these 

limited observations one might infer that other grasses would behave similarly to 

switchgrass. As two of the seed mix treatments in the Prairie Power Project contain forbs, 

it is desirable to know the level of slag inducing minerals present in these forbs and if 

changes in the levels of these minerals occur after the onset of dormancy. 

This study was designed to assess the mineral content of several prairie forbs to 

determine the concentration of slag inducing chemicals and, thus, the feasibility of 
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including them in biofuel mixtures for burning for electrical generation. As potassium, 

sodium and silicon are the most studied of slag inducing minerals, the design also 

included determining if changes in the concentration of these minerals occurred during 

dormancy.   

Nine forb species from the treatment mixes of the Prairie Power Project were 

selected for this study.  Samples of these species from five sites were analyzed for 

potassium, sodium and silicon and changes in content of these minerals after dormancy.  

Also, soils in the vicinity of each forb species were analyzed to ascertain whether there 

was a relationship between the mineral content of the soil and the mineral content of the 

forbs. 

Hypotheses 

The following hypotheses are tested in this study: 

1. Concentrations of slag inducing minerals (potassium, sodium and silicon) 

in selected forbs will vary from species to species. 

2. Concentrations of slag inducing minerals (potassium, sodium and silicon) 

present in selected forbs will decline from fall to spring. 
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CHAPTER 2 

MATERIALS AND METHODS 

Site Description 

 Five sites were chosen for sampling minerals in selected forbs and the soil 

surrounding them.  One was a prairie remnant and four were prairie plantings.  To ensure 

that the plantings were well established, the sites had to have been planted more than five 

years prior to the study.  All were located within reasonable proximity to the university to 

limit the amount of winter driving.   

The five sites selected were the Dunkerton Railroad Prairie, Big Woods Lake Prairie, 

University of Northern Iowa (UNI) Campus Prairie, University of Northern Iowa (UNI) 

Museum Prairie and Pheasant Ridge Golf Course Prairie.  Soil types of the sites were 

ascertained by consulting the Soil Survey of Black Hawk County, Iowa (Natural 

Resources Conservation Service 2006).  Site information was provided by Williams 

(pers. comm. 2010).  All sites can be found on the image below. 



 
 

 
 

 

Figure 1. Map of research site locations within Black Hawk County, Iowa.  Taken from MapQuest. 
 

 Dunkerton Railroad Prairie 

 Big Woods Lake Prairie 

 UNI Campus Prairie 

UNI Museum Prairie 

 Pheasant Ridge Golf Course Prairie 
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The Dunkerton Railroad Prairie site (42.569745, -92.170378) was used as a 

reference site for the project because it is a prairie remnant rather than a reconstructed 

prairie.  It can be found at the red marker on Figure 1.  As a remnant, it has more 

diversity and is of better natural quality than the other sites.  This 3 acre area (Figures 2-

4) was included within the right-of-way of the Iowa Northern Railroad when it was 

constructed in 1885 (Smith pers. comm. 2008) and has never been cropped.  Smith 

conjectured from site characteristics that topsoil had been removed from a portion of the 

right-of-way for roadbed fill during construction of the railroad.  As prairie vegetation 

was still adjacent to the site at that time, the scraped area recovered through secondary 

succession to approximate the pre-settlement prairie.  
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Figure 2: View of Dunkerton Prairie site during fall sampling 
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Figure 3: The same area of Dunkerton Prairie, before the second sampling (winter) the 
first year. 
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Figure 4: Different view, standing on the train tracks, of the same area of Dunkerton 
Prairie site during spring sampling.  Please note the crushed vegetation by the fence 
where the large drift was located. 

 

The soils of the Dunkerton site are primarily Floyd loam, a somewhat poorly 

drained upland soil, and Marquis loam, a moderately drained upland soil (Natural 

Resources Conservation Service 2006).  The 3 acre tract slopes upward from the north 

end to the south end on the west side of the right-of-way.  Soil moisture ranges along the 

same slope from wet mesic at the north end to mesic to dry mesic at the south end.  The 

site is usually burned on a 3 year rotation, and was burned in April, 2008 prior to the 
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study.  Vegetation samples were taken randomly throughout the prairie remnant, but not 

in the far north end and where there was standing water. 

The Big Woods Lake Prairie site (42.550240, -92.432770) is located on the Cedar 

River floodplain in Cedar City, Iowa.  The site can be found on Figure 1 at the blue 

marker.   The 10 acre site contained some native vegetation when it was overseeded with 

80 native species in May 2001.  Different portions of the area are burned annually.  The 

sample sites were last burned in 2006 prior to the study (Williams pers. comm. 2010).  

The soil type is Finchford loamy sand, excessively drained alluvium on a stream terrace 

(Natural Resources Conservation Service 2006).  Much of the area was disturbed by sand 

extraction for roadbed construction of Highway 58 and 218 in the 1990s.  Some of the 

slurry from sand extraction was left on the site (Smith pers. comm. 2008).  Sample areas 

are located on both sides of the bike trail east of the lake with some on the “Indian 

mound”.  This site was flooded in June 2008 for several days (Figure 5), resulting in 

absent data to our study. 
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Figure 5. Big Woods Lake Prairie after the flood April 2008; between years 1 and 2. 

 

 The UNI Campus Prairie site, (42.510502, -92.453657) is located in the southeast 

portion of the UNI campus.  The site can be found on Figure 1 at the orange marker.  The 

8 acre site (Figure 6) is managed by the Biological Preserves Committee and the 

Tallgrass Prairie Center.  To begin the prairie reconstruction, native grasses were drill 

seeded in June of 1973.  To increase diversity, forbs were added to the grass planting at 

various times from 1976-1989 (Smith pers. comm. 2008).  It has been burned on a three 

to four year rotational basis since 1975 (Smith pers. comm. 2008, Williams pers. comm. 

2010).  One-half of it was burned in April of 2008 prior to the start of the project.  The 

soil is Saude loam located on a stream terrace adjacent to a small floodplain (Natural 



26 
 

Resources Conservation Service 2006). Samples were collected throughout the prairie 

area. 

 

 

 
Figure 6. UNI Campus Prairie, after sampling time 1, year 1. 

 

The UNI Museum Prairie site, (42.507465, -92.466558) is located on the UNI 

campus in the northwest corner of the intersection of University Ave. and Hudson Rd.  

The site can be found on Figure 1 at the yellow marker.  In June 2002, the approximately 

1 acre site (Figure 7) was no-till drilled with source identified Northern Iowa Zone 1 seed 

(Williams pers. comm. 2010).  This site was burned in April of 2007, and again in April 

of 2008.  The soil of the Museum Prairie is Bremer-Marshan-Urban land complex located 



27 
 

on an alluvium terrace that is occasionally flooded (Natural Resources Conservation 

Service 2006).  Samples were collected throughout the prairie area. 

 

 

 
Figure 7. UNI Museum Prairie, after sampling time 1, year 1. 

 

 The Pheasant Ridge Golf Course Prairie site (42.527955, -92.488487) is located 

on the south edge of Pheasant Ridge Golf Course adjacent to 12th St.  The site can be 

found on Figure 1 at the green marker.  This 2 acre site (Figure 8) was broadcast seeded 

in November 2000.  It was burned in April of 2007, and again in April of 2008 (Williams 

pers. comm. 2010).  The upland soil is Kenyon and is moderately well drained (Natural 
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Resources Conservation Service 2006).  Samples were collected throughout the prairie 

area. 

 

 
Figure 8.  Pheasant Ridge Prairie, after sampling time 1, year 1. 
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Species Sampled 

 Forbs rather than grasses were selected for the study because few studies have 

been done regarding forbs and minerals that cause fouling and slagging.  Forb species 

that would likely be utilized in a biomass mixture were selected.   

Eight criteria were used in selecting the nine forbs for this project.  Forbs that 

would likely be included in biomass plantings were selected.  The forb selection criteria 

were based upon years of personal experience working with the forbs (Williams pers. 

comm. 2010).  The criteria were as follows: abundant distribution statewide; adaptability 

to different soil types and moisture variations; easily grown from seed; wood-like stems 

(greater bulk biomass); ability to fix nitrogen (legumes); standability (ability to resist 

being matted down by heavy snow throughout the winter); relatively long-lived; and 

capable of growing in close proximity to other prairie species.  The species chosen are in 

Table 4. 

 
Table 4.  Forb species studied 

Common Name Scientific Name Abbreviation 

Showy tick-trefoil (legume) Desmodium canadense Deca 

Pale purple coneflower Echinacea pallida Ecpa 

Ox-eye sunflower Heliopsis helianthoides Hehe 

Round-headed bush clover (legume) Lespedeza capitata Leca 

Wild bergamot Monarda fistulosa Mofi 

Grey-headed coneflower Ratibida pinnata Rapi 

Compass plant Silphium laciniatum Sila 

Canada goldenrod Solidago canadensis Soca 

Stiff goldenrod Solidago rigida Sori 
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As knowledge of over-winter standability of the forbs is limited, I observed the 

standability of the species throughout the two winters of this study.  

Data for all of the nine species were not collected at each of the five locations due 

to variations in seed mix, management, and site history.  Some species were not present, 

and other species were not of sufficient size.  One condition of collection was that each 

collected plant must possess a flowering ramet. Big Woods Prairie contained all the 

species the first year, but many were not present the second year due to extensive 

flooding in June.  Campus Prairie was missing Heliopsis helianthoides, Dunkerton Prairie 

was missing Desmodium canadense and Silphium laciniatum the second year.  Basal 

leaves of Silphium laciniatum were present, but no flowering stalks could be found.  

Museum Prairie was missing Lespedeza capitata, and Pheasant Ridge Prairie was missing 

Lespedeza capitata as well as Solidago canadensis.   

Species identification during the dormant season was difficult.  Therefore, during 

the early fall, sites were visited to determine whether the selected species were present 

and to note their location. 

During testing and data analysis, several samples were thrown out due to 

insufficient amount of plant material, as the ISU lab required about 10 grams for 

vegetation testing.  Also, frozen soil made it impossible to obtain some soil samples.  

These problems resulted in gaps in data.  Furthermore, Big Woods Prairie was not 

included in the summer sampling for biomass and species richness because numerous 

species were absent or of inadequate size due to the flood of June, 2008.  Several species 
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were not available for sampling the next year due to the flood.  Within the data, this will 

be denoted as NA, for not available. 

Mineral Sampling and Analysis 

 Plants and associated soil cores were sampled three times to determine mineral 

content during the first dormant period (2007-2008).  They were sampled twice for 

mineral content the second dormant period (2008-2009).  In addition, the vegetation was 

sampled once for biomass and species richness during the summer (2008).  

Sampling for plant and soil mineral content was done after the first hard frost of 

the fall when we were certain the plants were senescent.  The first year’s fall sampling 

was done from December 4, 2007 to December 18, 2007.  The second sampling period 

was January 22, 2008 to February 20, 2008.  The spring sampling period was March 25, 

2008 to April 8, 2008. In the second year, the winter sample period was dropped due to 

difficulties in sampling when the ground was frozen.  To be consistent, data from the 

second sampling in year 1 was not included in the analyses.  The second year’s fall 

sampling was done November 25, 2008 to December 8, 2008 and the spring sampling 

was conducted March 13, 2009 to March 27, 2009. 

Species in the study were sampled at each of the five locations for mineral 

content.  When possible, nine full plants of each species were collected at each location 

and combined at random to create three individual plant replicates.  Three individual 

plants collectively comprised one sample for that species at that location, so the result 

was three samples for each of the nine species at every site.  Only plants in fruit were 

collected to insure the specimen was at or near maximum productivity.  In addition, stems 
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with fruit were much easier to locate in the winter with snow on the ground.  Some sites 

did not contain a sufficient number of plants of a particular species to harvest three entire 

plants in both fall and spring.  In such a case, the species was not collected, or, if it had 

more than one ramet to the plant then only one ramet was harvested from each of nine 

plants of that species per sampling.  These deviations were noted on the data for those 

samples.  If the amount of sample material collected in this manner was insufficient for 

testing, it was not included in the material sent to ISU for analysis, but was included in 

the combined material tested by Hazen Research, Inc. 

When sampling plants, the maximum height of the plant was measured and the 

number of fruiting ramets counted.  There were two exceptions to the counting of the 

ramets: (1) if only one fruiting ramet (of large, multi-ramet species) was collected due to 

an insufficient number of plants and (2) if the plants were colonial or highly rhizomatous 

with numerous ramets making distinguishing of individual plants impossible.  In these 

cases we did not count the fruiting ramets, and only measured the height of the one 

collected. 

The plants were clipped off with scissors as close to ground level as possible, 

placed in paper bags, and taken to the TPC to be dried.  After the samples were dried they 

were prepared to be sent to the Iowa State University Soil and Plant Analysis Laboratory 

for analysis. 

All samples were prepared according to directions provided by the Iowa State 

University Soil and Plant Analysis Lab.  The plant material was dried in large paper bags 

for three days in drying ovens (Quincy Lab, Inc.  Model 21-250) at 60 degrees Celsius.  
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After being dried, the plant material was ground using a Wiley Grinder with a size 20 

mesh screen.  Up to 10 grams of material of each sample (a composite of 3 clipped 

plants) was placed in individual plastic bags for analysis of mineral content of potassium, 

sodium and silicon.  The samples were sent to the ISU Soil and Plant Analysis Lab 

(Skrifvars et al. 1998) to be tested for silicon and the alkali metals sodium and potassium. 

To determine if soil mineral content influenced the mineral content of the plants, 

we compared the minerals in soil samples with the minerals in adjacent sampled plants.   

Soil core samples of 2 cm x 15 cm were taken near the base of each plant collected using 

a soil core sampler.     

The soil samples were returned to the TPC where they were oven dried at 30 

degrees Celsius for three days.  They were then crushed with a hammer and placed in 

plastic bags.  The soil samples were combined to produce composite soil samples in 

exactly the same combinations as the vegetation samples.  For each vegetation sample 

(composite of three plants) there was a soil sample (a composite of the three soil samples 

taken next to those three plants).  After this preparation of the soil material, 100 grams 

were measured out according to test lab requirements, and were sent to the ISU Soil and 

Plant Analysis Lab.  They determined plant available potassium, sodium and silica within 

the soil samples.  ISU results will be referred to as individual site data. 

Vegetation samples and soil samples were also sent to Hazen Research, Inc. for a 

more general, overall mineral analysis.  Before being submitted to Hazen for analysis, the 

original vegetation samples of each species from the five sites were combined and mixed 

further.  For each fall and spring sampling, samples of individual species from each site 
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were combined with samples of the same species from other sites.  This formed a 

composite vegetation sample of each species for each sample period (four samples of 

each species-one each for fall 2007, spring 2008, fall 2008 and spring 2009).  

An associated composite soil sample was created from the soil cores collected 

next to the vegetation samples.  As with the vegetation samples, one composite soil 

sample per species for fall and spring of both sample years was created.  The soil samples 

were tested for total plant available sodium, potassium and silica. 

Hazen provided ash analysis, gross energy, and ultimate and proximate analysis 

of the vegetation samples.  These samples were analyzed after the combustion process 

took place, so they depict an accurate account of the residue of material that would be left 

as a byproduct in a power plant.  These composite samples provided an overall value of 

the species mineral content per sample time, and will be referred to as composite site 

data. 

 Vegetation sampling in the vicinity of the nine research species was sampled at 

the four sites during August 2008 to determine species composition and richness and 

biomass productivity.  Big Woods Prairie was excluded due to severe June flooding.  

From within the population of each species, three random sample areas containing at least 

one plant of the species were selected.  A circular hoop of 0.25 meter squared area was 

centered on one plant of the target species in the three areas.  All species within the 

circular area were identified to ascertain species composition and calculate species 

richness.  To determine biomass within the vicinity of the target species, all vegetation 

within the circular area was clipped.  The clippings were separated into three categories 
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and bagged.  The three categories were target species, grasses, and other forbs.  Both 

native and non-native species were included in each category.  The plant material was 

dried in drying ovens at the Tallgrass Prairie Center (TPC) and the dry weight recorded. 

Weather Component 

Because mineral movement after dormancy can possibly be affected greatly by 

the temperature and precipitation any given year, some attention must be paid to the 

climate of each sample year.  Table 5 shows the monthly mean temperatures and total 

precipitation.  Tables 6, a and b contain the mean temperature and precipitation totals for 

the weeks within the two sample years. The mean temperature and total precipitation 

were recorded at the Waterloo Municipal Airport. 
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Table 5. Temperature and precipitation at the Waterloo Municipal Airport 2007-2009 

Month Mean Temp (F) Total Precipitation (inches) 

January-07 20.26 0.72 

February-07 14.11 1.23 

March-07 40.32 1.59 

April-07 45.97 4.24 

May-07 64.77 4.67 

June-07 70.03 5.11 

July-07 73.23 4.65 

August-07 73.42 10.32 

September-07 64.73 4.18 

October-07 54.94 3.76 

November-07 35.90 0.14 

December-07 19.19 2.51 

January-08 14.68 0.75 

February-08 15.79 2.41 

March-08 30.29 1.68 

April-08 45.50 10.79 

May-08 57.00 6.25 

June-08 69.80 8.77 

July-08 74.13 5.51 

August-08 70.13 1.61 

September-08 63.77 2.6 

October-08 50.65 1.53 

November-08 36.93 1.97 

December-08 15.00 1.65 

January-09 11.19 0.62 

February-09 25.14 0.56 

March-09 36.94 3.08 

April-09 47.00 4.63 

May-09 59.87 4.07 

June-09 69.13 3.58 

July-09 67.87 5.52 

August-09 68.68 5.36 

September-09 63.13 2.09 

October-09 44.55 5.86 

November-09 42.73 0.61 

December-09 19.23 2.34 
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Table 6 a. Year 1: Temperature and precipitation weekly in sample time at the Waterloo 
Municipal Airport 
 

Start Day End Day 
Mean Temp 

(F) 
Total Precipitation 

(inches) 
11/1/2007 11/7/2007 39.71 0 
11/8/2007 11/14/2007 40.86 0 
11/15/2007 11/21/2007 38.57 0.13 
11/22/2007 11/28/2007 28.43 0.01 
11/29/2007 12/5/2007 21.43 1.27 
12/6/2007 12/12/2007 15.43 0.68 
12/13/2007 12/19/2007 16.71 0 
12/20/2007 12/26/2007 24.71 0.18 
12/27/2007 1/2/2008 14.86 0.1 
1/3/2008 1/9/2008 28.29 0.1 
1/10/2008 1/16/2008 21.00 0.11 
1/17/2008 1/23/2008 1.00 0.5 
1/24/2008 1/30/2008 11.14 0.04 
1/31/2008 2/6/2008 23.57 0.53 
2/7/2008 2/13/2008 9.57 0.16 
2/14/2008 2/20/2008 10.29 0.84 
2/21/2008 2/27/2008 17.00 0.65 
2/28/2008 3/5/2008 24.00 0.57 
3/6/2008 3/12/2008 19.43 0 
3/13/2008 3/19/2008 36.57 0.12 
3/20/2008 3/26/2008 35.43 0.28 
3/27/2008 4/2/2008 35.43 0.94 
4/3/2008 4/9/2008 42.43 0.39 
4/10/2008 4/16/2008 43.71 1.56 
4/17/2008 4/23/2008 53.29 3.89 
4/24/2008 4/30/2008 45.57 4.95 
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Table 6 b. Year 2: Temperature and precipitation weekly in sample time at the Waterloo 
Municipal Airport. 
 

Start Day End Day 
Mean Temp 

(F) 
Total Precipitation 

(inches) 
11/1/2008 11/7/2008 55.57 0.79 
11/8/2008 11/14/2008 36.57 0.75 
11/15/2008 11/21/2008 26.71 0.01 
11/22/2008 11/28/2008 31.14 0.01 
11/29/2008 12/5/2008 20.57 0.42 
12/6/2008 12/12/2008 14.71 0.23 
12/13/2008 12/19/2008 12.14 0.7 
12/20/2008 12/26/2008 11.43 0.37 
12/27/2008 1/2/2009 22.14 0.34 
1/3/2009 1/9/2009 16.86 0.3 
1/10/2009 1/16/2009 0.00 0.3 
1/17/2009 1/23/2009 15.43 0.00 
1/24/2009 1/30/2009 6.57 0.02 
1/31/2009 2/6/2009 18.86 0.00 
2/7/2009 2/13/2009 35.29 0.05 
2/14/2009 2/20/2009 22.71 0.19 
2/21/2009 2/27/2009 25.14 0.32 
2/28/2009 3/6/2009 29.29 0.00 
3/7/2009 3/13/2009 27.71 2.46 
3/14/2009 3/20/2009 43.86 0.00 
3/21/2009 3/27/2009 44.43 0.57 
3/28/2009 4/3/2009 38.14 0.05 
4/4/2009 4/10/2009 39.43 0.28 
4/11/2009 4/17/2009 46.86 0.14 
4/18/2009 4/24/2009 53.57 0.09 
4/25/2009 5/1/2009 52.29 3.86 
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Analysis Methods of External Laboratories 

The ISU Soil and Plant Analysis Lab tested the independent sample materials.  

They conducted a microwave assisted acid digestion of the plant biomass to determine 

total potassium and sodium using Method 3051A as provided by the EPA (Environmental 

Protection Agency 2007a).   

A representative sample is extracted and/or dissolved in concentrated nitric acid, 
or alternatively, concentrated nitric acid and concentrated hydrochloric acid using 
microwave heating with a suitable laboratory microwave unit.  The sample and 
acid(s) are placed in a fluorocarbon polymer (PFA or TFM) or quartz microwave 
vessel or vessel liner.  The vessel is sealed and heated in the microwave unit for a 
specified period of time.  After cooling, the vessel contents are filtered, 
centrifuged, or allowed to settle and then diluted to volume and analyzed by the 
appropriate determinative method.  (21) 

 
The method used to test silica is classified as 3015A as provided by the EPA, but 

the procedure was the same as above for testing potassium and sodium (Environmental 

Protection Agency 2007b). 

As indicated, Hazen Research, Inc. analyzed the composite samples.  Based upon 

suggestions in papers by Florine et al. (2006), and Demirbas (2005), I requested 

proximate (ASTM D 3172) and ultimate (ASTM D 3176) analyses, ash (ASTM D 2795) 

analysis and gross energy (ASTM D 5865).  Hazen Research, Inc. used test methods 

prescribed by the Annual Book of ASTM Standards Volume 05.06 2002 and 2008. 

The proximate analysis (ASTM D 3172) is found in ASTM Standards Volume 

05.06 2008 on page 224.  This test determines the amounts of moisture, volatile matter, 

ash and circulation of fixed carbon of the samples provided.  The test results are useful to 

compare prairie forbs as fuels to fuels like coal.  The results can be used to calculate 

ratios of combustible to incombustible components. 
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The ultimate analysis (ASTM D 3176) is located in ASTM Standards Volume 

05.06 2008 on page 235.  This tests the sample’s composition of hydrogen, carbon, 

sulfur, nitrogen and oxygen, including “…the determination of carbon and hydrogen in 

the material, as found in the gaseous products of its complete combustion, the 

determination of sulfur, nitrogen and ash in the material as a whole, and the calculation of 

oxygen by difference.” 

Ash analysis (ASTM D 2795) is useful for an estimate of total fuel quality and 

ash composition.  The method for ASTM D 2795 is on page 197 of Volume 05.06 2002 

and is as follows: 

3.1 The coal or coke to be analyzed is ashed under standard conditions and ignited 
to constant weight.  Two solutions are prepared from the ash.  Solution A is 
obtained by fusing the ash with sodium hydroxide (NaOH) followed by a final 
dissolution of the melt in dilute hydrochloric acid (HCL).  Solution B is prepared 
by decomposition of the ash with sulfuric (H2SO4), hydrofluoric (HF), and nitric 
(HNO3) acids.  Solution A is used for the analysis of SiO2 and Al2O3, and 
Solution B for the remaining elements. 
3.2 The two solutions are analyzed by a combination of methods: (1) 
spectrophotometric procedures are used for SiO2, Al2O3, Fe2O3, TiO2, and P2O5; 
(2) chelatometric titration for CaO and MgO; and (3) flame photometry for Na2O 
and K2O. 
 
The standard test method for gross calorific value (ASTM D 5865) of coal and 

coke is used to determine the total calorific content of the fuel.  The method for ASTM D 

5865 is in Volume 05.06 on page 571 and is as follows: 

 
4.1 The heat capacity of the calorimeter is determined by burning a specified mass 
of benzoic acid in oxygen.  A comparable amount of the analysis sample is 
burned under the same conditions in the calorimeter.  The calorific value of the 
analysis sample is computed by multiplying the corrected temperature rise, 
adjusted for extraneous heat effects, by the heat capacity and dividing by the mass 
of the sample. 
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The soil samples were tested for plant-available sodium and potassium.  

Potassium testing required 2 grams of soil, 20 mL of extracting solution and 5 minutes of 

shaking. The resulting solutions were then filtered and analyzed with an atomic 

adsorption/emission spectrometer (Warncke and Brown 1998).  The sodium procedure 

consisted of adding water to the soil sample, mixing, filtering and applying a vacuum.  

Then they used the conductivity to assay the mineral content (Warncke and Brown 1998). 

To analyze for the plant available soil silica, the ISU laboratory used a method 

from Bair (1966).  It involves 10 grams of soil, 50 mL of .5 M NH4OAc (pH 4.8), and 30 

minutes of shaking.  The silica is soluble and can be assayed within the solution by 

atomic absorption spectrometry or colorimetric techniques (Savant et al. 1999).  The ISU 

soil lab used a process called Inductively Coupled Plasma (ICP) Optical Emission System 

(OES) ICP-OES manufactured by Spectro.  This process gives similar results to atomic 

absorption, but is more accurate (Culp 2011). 

Statistical Analysis 

The data were analyzed using SPSS.  The statistical analyses were done using the 

means of collected samples: dry weight for biomass, and combusted and analyzed means 

for the minerals.  Numerous comparisons can be made on the data collected for this 

project.  It should be noted that our analyses contain numerous missing samples and 

inconsistent samplings due to temperature and snow.  We have compared what was 

possible with the available data. 

Most of our analyses consist of one way ANOVAs and running the Tukey’s B 

analysis, comparing potassium, sodium and silicon in vegetation and soil samples from 
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one species to another, within each species from fall to spring, and also comparing them 

by species from fall to spring.  One way ANOVAs were also used to compare the sizes of 

the samples in terms of their biomass, or what they would contribute in terms of bulk.  

We also compared the soil samples to the vegetation samples with a correlation analysis.   

After the tests were run, the data was transformed (square-root) to check if the 

violates of equality of variance and normality were important.  Big Woods Prairie could 

not be included in the comparison due to small sample sizes as a result of incomplete data 

sets due to flooding. 
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CHAPTER 3 

RESULTS 

Biomass and Species Richness 

The five study sites included a prairie remnant, and four prairie reconstructions of 

varying ages.  Biomass and species richness provide a means to compare the vegetation 

at the sites (Tables 7 and 8).  Biomass varied significantly among species, and was 

sampled in the summer to determine how different the sites were.  Biomass at the 

Dunkerton site was 2-3 times less than all other sites tested (Table 7).  Biomass of 

vegetation of the compass plant, Silphium laciniatum, was significantly higher than the 

vegetation adjacent to other species (Table 7). 

 Dunkerton Prairie has the highest levels of species richness as compared to the 

other sites (Table 8), but the differences were not significant.   

 



 
 

 
 

Table 7.  Mean biomass of vegetation adjacent to selected forb species sampled, August 2008.  NA-no data available 

 

 

 

Table 8.  Mean species richness of vegetation sampled adjacent to selected species sampled in August, 2008.  A one way 
ANOVA was used to determine significant mean differences between species richness of sites.  The sample size was 0.25 m2.  
NA-no data available. 

 

 

Mean Biomass (g/0.25m2) 
Site / Species Deca Ecpa Hehe Leca Mofi Rapi Sila Soca Sori Total Mean Standard Dev. 
Dunkerton NA 80.1 119.6 41.3 NA 102.7 NA 72.2 73.1 81.5xz 27.11 
Campus 1331.9 139.5 NA 218.1 95.1 121.3 424.0 151.2 115.8 324.6x 420.5 
Museum NA NA 157.4 NA 197.7 130.1 362.4 348.4 388.6 264.1xy 114.90 
Pheasant Ridge 284.3 131.4 95.4 NA 94.8 133.2 350.3 104.5 132.7 165.8xyz 96.5 
Species Mean 208.1b 117.0b 124.3b 129.7b 129.2b 121.8b 378.9a 169.1b 177.6b 172.9xyz 83.35 

Mean Species Richness 
Site / Species Deca Ecpa Hehe Leca Mofi Rapi Sila Soca Sori Total Mean Standard Dev. 
Dunkerton NA 10.6 7.3 11.6 NA 10.0 NA 10.6 12.3 8.9x 1.73 
Campus 7.3 7.6 NA 9.6 8.6 7.6 4.6 5.0 6.3 7.1x 1.70 
Museum NA NA 7.6 NA 7.0 8.0 7.0 6.0 9.3 7.5x 1.12 
Pheasant Ridge 8.3 7.6 8.0 NA 7.0 10.0 6.0 NA 9.3 8.0x 1.35 
Species Mean 7.8bc 8.6abc 7.6bc 10.6a 7.5bc 8.9abc 5.9c 7.2bc 9.3ab 8.2x 1.36 

44 
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Dormant Biomass 

 Silphium laciniatum flower stalk biomass was significantly different from the 

other species in each sample time (Table 9).  All other species in this study had similar 

flower stalk biomass throughout the samplings (Table 9). 
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Table 9. Mean flowering stalk biomass (g) and standard error of selected forbs sampled in 2007-08 and 2008-09.  Means were 
derived from combining three randomly selected flower stalks, replicated a minimum of three times.  Means of each species 
were independently analyzed with an ANOVA Repeated Measures to test for significances over time.  A Tukey’s Test was 
used to determine significance differences among means. NA-No data available. 

Mean Biomass (g) 
Species Fall 2007 Spring 2008  Fall 2008 Spring 2009  
 Mean     std       N Mean     std       N Difference Mean     std       N Mean     std       N Difference
Deca  38.4       7.74     18 17.6     4.36      18 -20.8 29.5      4.36     18 47.3     10.72    18 17.8 
Ecpa    9.7       1.75     45   8.2     1.27      45 -1.5   6.5      0.87     36   8.4       1.08    36 1.9 
Hehe  12.2       3.56     18   7.8     1.47        9 -4.4   5.3      1.15     18   8.6       1.57      9 3.3 
Leca 40.0        7.89       27 36.4     7.85       27 -3.6 16.0      3.27     27 28.3       7.12     27 12.3 
Mofi    9.5       2.19     45   9.3     2.63       45 -0.2   8.1      2.38     36 10.9       2.90     36 2.8 
Rapi  32.0       7.09     45  30.3     8.28       45 -1.7 23.0      9.18     36 33.0      10.67    36 10 
Sila 120.1   14.65      45 143.6 16.15       45 23.5 95.7      7.20     27 97.3      12.27    27 1.6 
Soca NA NA NA NA NA NA 
Sori 51.3    12.28      45 43.0   11.25       45 -8.3 31.4      9.22     36 NA NA 
p-value <.001 <.001  <.001 <.001  
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Potassium 

Table 10 and Figures 9 and 10 are a compilation and illustration of the 

concentrations of potassium in the nine prairie plants in the fall and spring of years 1 (fall 

2007 and spring 2008) and 2 (fall 2008 and spring 2009).  It is apparent there is a wide 

range of potassium concentrations with a high of 10,732 ppm for Solidago canadensis for 

spring 2008 and a low of 862 ppm for Desmodium canadense for fall of 2007.  In fall 

2007, the concentration of potassium in Solidago canadensis and Solidago rigida was 

significantly higher than the other species.  Silphium laciniatum was significantly higher 

than the remainder, while Desmodium canadense and Echinacea pallida concentrations 

were significantly lower.  Ratibida pinnata was significantly lower than the rest.  In 

spring 2007, the concentration in Solidago canadensis was significantly higher than all 

but Silphium laciniatum, while the concentrations of the remaining species were 

somewhat similar.  In fall 2008, Solidago canadensis was once again significantly higher 

than the others, and only Echinacea pallida was significantly lower than the others.  In 

spring 2009, concentrations in both Solidago canadensis and Silphium laciniatum were 

significantly higher than the others while there was little difference in the concentrations 

of the others. 



 
 

Table 10. Mean concentration (ppm) of potassium in selected forbs sampled during dormancy in fall 2007, spring 
2008, fall 2008 and spring 2009.  The means of each species were independently analyzed with a one-way ANOVA 
to test significance between species.  A Tukey’s Test was used to determine differences among means. 

Mean concentration (ppm) of K 
Species N F1(2007) N S1 (2008) N F2 (2008) N S2 (2009) 
Deca 12 1737.0 (232.37)r 12 9047.3 (466.42)bc 6 3223.0 (939.20)bc 6 862.0 (264.82)h 
Ecpa 9 1812.9 (125.99)r 12 8180.5 (547.91)bc 12 2774.2 (356.17)c 12 1514.6 (174.04)g 
Hehe 6 2664.0 (293.61)p 9 8082.2 (973.19)bc 12 4582.2 (565.48)b 12 2016.6 (444.78)fg 
Leca 6 3451.3 (336.26)o 9 7630.4 (972.78)c 9 4008.2 (603.88)b 9 1667.3 (251.93)g 
Mofi 9 3757.1 (165.80)o 10 7760.8 (694.90)c 12 4097.0 (368.25)b 12 2344.0 (370.44)f 
Rapi 15 2154.9 (122.59)q 12 7440.8 (720.46)c 12 2140.2 (162.61)d 12 1195.2 (169.77)gh 
Sila 15 5139.6 (468.69)n 15 10239.9 (643.39)ab 9 4769.8 (683.10)b 9 3445.3 (542.68)e 
Soca 12 6997.7 (557.90)m 9 10731.8 (674.06)a 12 5990.2 (473.43)a 12 4110.3 (471.55)e 
Sori 12 6455.0 (312.47)m 15 9148.4 (505.46)b 12 4619.2 (262.82)b 9 1756.3 (187.98)g 
p-value  <.001 .006 <.001 <.001 
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Figure 9.  Mean concentration (ppm) of potassium of selected forbs sampled fall 2007 and spring 2008.  The means of each 
species were independently analyzed with a one-way ANOVA to test significances between means.  A Tukey’s Test was used 
to determine differences among means. 
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Figure 10.  Mean concentration (ppm) of potassium of selected forbs sampled fall 2008 and spring 2009.  The means of each 
species were independently analyzed with ANOVA repeated measures to test significance between means.  A Tukey’s Test 
was used to determine differences among means. 
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Sodium 

Table 11 and Figures 11 and 12 represent the concentrations of sodium in the nine 

prairie plants in the fall and spring of year 1 (fall 2007 and spring 2008) and year 2 (fall 

2008 and spring 2009).  Unlike the potassium, the sodium concentrations are lower and 

show a much more limited range of concentrations with a maximum of 260.33 ppm in 

Ratibida pinnata in fall 2008, and a minimum of 30.96 ppm in Desmodium canadense in 

spring 1.  In fall 2007, Desmodium canadense, Heliopsis helianthoides, Ratibida pinnata, 

and Solidago rigida have significantly higher concentrations than Lespedeza capitata and 

Solidago canadensis while the concentration of Echinacea pallida is intermediate.  All 

species concentrations are within 50 ppm of the others.  In the spring of year 1, the 

concentrations of sodium were much less than those of potassium.  Solidago canadensis 

is significantly higher in sodium concentration than Desmodium canadense, Echinacea 

pallida, Heliopsis helianthoides, Monarda fistulosa, Ratibida pinnata, and Silphium 

laciniatum, but similar to Lespedeza capitata and Solidago rigida.  Interestingly, 

Solidago canadensis and Lespedeza capitata both increased in concentration from fall to 

spring and Solidago rigida stayed about the same.  All others with the exception of 

Monarda fistulosa declined considerably in sodium concentration from fall to spring. 

Concentrations of sodium in fall 2008 were higher than the previous year.  

Desmodium canadense, Lespedeza capitata and Silphium laciniatum had a significantly 

lower sodium concentration than the other six species.  Ratibida pinnata was 

significantly higher in concentration of sodium than Echinacea pallida and Solidago 

canadensis.  Spring 2009 concentration levels between species did not vary significantly. 



 

 
 

Table 11.  Mean concentration (ppm) of sodium in selected forbs sampled fall 2007, spring 2008, fall 2008, and spring 2009.  
The means of each species were independently analyzed with a one-way ANOVA to test significance between species.  A 
Tukey’s Test was used to determine differences among means. 

 

 

 

 

 

 

 

 

 

 

Mean concentration (ppm)/std. error of Na/sample time 
Species N F1(2007) N S1 (2008) N F2 (2008) N S2 (2009) 

Deca 12 80.8 (10.09) 12 31.0 (3.62) 6 82.0 (15.83) 6 130.7 (36.11) 
Ecpa 9 74.7 (9.44) 12 47.5 (7.93) 12 128.5 (28.46) 12 138.7 (35.05) 
Hehe 6 92.3 (14.09) 9 56.6 (9.87) 12 232.2 (66.66) 12 120.2 (11.40) 
Leca 6 64.9 (3.45) 9 114.9 (27.14) 9 29.3 (99.33) 9 113.8 (15.40) 
Mofi 9 80.4 (5.68) 9 75.1 (10.66) 12 181.3 (31.35) 12 134.8 (16.78) 
Rapi 15 101.6 (17.47) 12 58.1 (11.92) 12 260.3 (63.88) 12 93.7 (16.74) 
Sila 15 75.8 (10.08) 15 49.6 (6.31) 9 84.7 (11.74) 9 119.6 (44.47) 
Soca 12 75.3 (4.31) 9 152.2 (32.76) 12 160.2 (28.14) 12 141.0 (17.46) 
Sori 12 93.1 (15.18) 15 91.6 (14.67) 12 179.3 (25.97) 12 130.3 (23.69) 
p-value  .584 <.001 .039 .922 

52 



 

 
 

 

Figure 11. Mean concentration (ppm) of sodium of selected forbs sampled in fall 2007 and spring 2008. The means of each 
species were independently analyzed with a one-way ANOVA to test significance between means.  A Tukey’s Test was used 
to determine differences among means. 
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Figure 12. Mean concentration (ppm) of sodium of selected forbs sampled fall 2008 and spring 2009. The means of each 
species were independently analyzed with a one-way ANOVA to test significance between means.  A Tukey’s Test was used 
to determine differences among means. 

 

0

50

100

150

200

250

300

350

Deca Ecpa Hehe Leca Mofi Rapi Sila Soca Sori

Co
nc
en

tr
at
io
n 
of
 S
od

iu
m
 (p

pm
)

Species

Time

Fall 2008

Spring 2009
c

x b
x

ab

x c x

ab

x

a

x
c

x

b

x

ab

x

54 



55 
 

 
 

Silicon 

Table 12 and Figures 13 and 14 depict concentrations of silicon in the nine prairie 

plants in the fall and spring of years 1 (fall 2007 and spring 2008) and 2 (fall 2008 and 

spring 2009).  Like the potassium concentrations, there is a wide variation of 

concentrations ranging from a minimum of 52.14 ppm in Monarda fistulosa in spring 2, 

to a maximum for Solidago rigida in fall 1 at 1272.47 ppm.  Also like potassium, the 

concentrations tended to be higher in year 1 than year 2.  In the fall of year 1, Heliopsis 

helianthoides, Ratibida pinnata, Solidago rigida, and Silphium laciniatum were not 

statistically different from each other. The first three species were significantly higher in 

concentration than Desmodium canadense, Echinacea pallida, Lespedeza capitata, 

Monarda fistulosa and Solidago canadensis.  Desmodium canadensis, Lespedeza capitata 

and Monarda fistulosa were significantly lower than the other six species.  In spring of 

year 1, the concentrations of silicon in Ratibida pinnata, Silphium laciniatum, and 

Solidago rigida were significantly higher than the others while Desmodium canadense 

and Monarda fistulosa were significantly lower than the others.  Echinacea pallida, 

Lespedeza capitata and Solidago canadensis had a significantly higher concentration of 

silicon than Desmodium canadense and Monarda fistulosa but were significantly lower in 

concentration than the other forbs.  Heliopsis helianthoides stands alone being 

significantly higher than the lower five species, and significantly lower than the top three. 

 The concentrations of silicon in fall year 2 were less varied.  The concentrations 

of Heliopsis helianthoides, Lespedeza capitata, and Solidago canadensis were 
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significantly higher than Echinacea pallida and Monarda fistulosa, but the rest were 

similar. 

 The concentrations of silicon were low in spring year 2.  Solidago rigida showed 

significantly higher concentrations while Monarda fistulosa was significantly lower than 

the others.   Desmodium canadense, Echinacea pallida, and Silphium laciniatum were 

similar and significantly lower than all but Monarda fistulosa.  Heliopsis helianthoides, 

Lespedeza capitata, Ratibida pinnata, and Solidago canadensis were all similar at an 

intermediate level of concentration. 



 
 

 
 

Table 12.  Mean concentration (ppm) of silicon in selected forbs sampled fall 2007, spring 2008, fall 2008, and spring 2009.  
The means of each species were independently analyzed with a one-way ANOVA to test significance between species.  A 
Tukey’s Test was used to determine differences among means. 

 

Mean concentration (ppm)/std. error of Si/sample time 
Species N F1(2007) N S1 (2008) N F2 (2008) N S2 (2009) 
Deca 12 189.2 (16.08) 12 63.2 (2.96) 6 375.8 (138.13) 6 85.3 (14.47) 
Ecpa 9 729.8 (175.93) 12 158.2 (60.37) 12 240.7 (50.49) 12 83.7 (20.13) 
Hehe 6 1076.3 (177.81) 9 303.4 (29.13) 12 410.3 (87.59) 12 145.9 (27.72) 
Leca 6 360.1 (66.31) 9 151.9 (26.51) 9 421.2 (52.57) 9 142.6 (23.21) 
Mofi 9 128.2 (11.74) 9 76.0 (15.57) 12 153.0 (43.72) 12 52.1 (5.20) 
Rapi 15 1172.0 (133.79) 12 465.1 (64.07) 12 337.0 (94.11) 12 139.7 (5.67) 
Sila 15 951.7 (153.67) 15 496.2 (57.71) 9 370.8 (124.80) 9 102.7 (8.58) 
Soca 12 578.3 (86.63) 9 152.1 (25.29) 12 430.8 (100.53) 12 120.1 (7.16) 
Sori 12 1272.5 (170.08) 15 598.3 (72.26) 12 339.3 (76.83) 12 210.2 (21.31) 
p-value  <.001 <.001 .287 <.001 
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Figure 13. Mean concentration (ppm) of silicon of selected forbs sampled fall 2007 and spring 2008. The means of each 
species were independently analyzed with a one-way ANOVA to test significance between means.  A Tukey’s Test was used 
to determine differences among means. 

 

0

200

400

600

800

1000

1200

1400

1600

Deca Ecpa Hehe Leca Mofi Rapi Sila Soca Sori

Co
nc
en

tr
at
io
n 
of
 S
ili
co
n 
(p
pm

)

Species

Time

Fall 2007

Spring 2008

d

n

b

m

a

l
c

m
e
n

a

k

ab

k

b

m

a

k

58 



 
 

 
 

 

Figure 14. Mean concentration (ppm) of silicon of selected forbs sampled fall 2008 and spring 2009. The means of each 
species were independently analyzed with a one-way ANOVA to test significance between means.  A Tukey’s Test was used 
to determine differences among means. 
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Energy and Slagging 

Table 13 shows that the mineral levels of the ash deposits of combusted 

composite samples of a species across all sites.  In the first year both spring and fall 

potassium levels were the lowest in Echinacea pallida and Solidago canadensis.  

However in the second year, again both spring and fall, concentrations were lowest in 

Desmodium canadense and Solidago canadensis.  Sodium levels in species were 

much less variable.  Silphium laciniatum had the lowest amount for all four sample 

periods whereas Solidago canadensis was highest in the fall sample and Lespedeza 

capitata was highest for spring samples.  The amount of variability between species 

for silicon was more similar to that of potassium.  Monarda fistulosa had the lowest 

mineral concentration for the fall samples and Desmodium canadense was the lowest 

of the spring species.  Solidago rigida contained the highest mineral concentration for 

all four sample periods. 

 

 

 

 

 



 
 

 
 

Table 13.  Percentage mineral levels of ash of combusted composite samples  

 
 

Percent of Ash 

  K2O Na2O SiO2 

Species F1  S1 F2 S2 F1  S1 F2 S2 F1  S1 F2 S2 
Desmodium canadense 3.72 1.48 4.08 2.01 0.57 0.35 0.30 0.60 6.09 7.88 4.98 4.38 
Echinacea pallida 2.45 1.44 9.95 4.20 0.20 0.27 0.59 0.72 15.44 15.14 9.96 10.92 
Heliopsis helianthoides 9.88 3.45 10.80 3.86 0.42 0.22 0.53 0.44 18.54 23.96 17.27 12.09 
Lespedeza capitata 9.76 3.86 13.40 7.60 0.42 1.18 0.71 1.01 17.33 17.35 10.67 12.01 
Monarda fistulosa 9.01 5.18 10.30 5.26 0.37 0.49 1.23 0.91 3.83 11.99 4.61 6.44 
Ratibida pinnata 4.87 2.32 5.00 3.14 0.36 0.21 0.86 0.41 15.27 17.34 16.36 21.32 
Silphium laciniatum 7.15 3.49 6.55 6.30 0.13 0.21 0.19 0.17 16.22 22.23 9.27 10.96 
Solidago canadensis 20.80 10.70 16.40 11.9 0.76 0.76 0.76 0.98 17.99 19.86 15.57 11.82 
Solidago rigida 11.30 5.55 9.18 5.80 0.41 0.43 0.61 0.73 22.08 31.60 20.75 23.81 
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Table 14 shows the percent of dry ash and energy production from combustion of 

each species per sample time.  There doesn’t seem to be a relationship between the 

number of BTUs per pound of material and the percent of dry ash left behind.  There is 

no drastic change in energy output from the fall samples to the spring samples, although 

generally it appears that there is less ash after the combustion of the spring samples than 

of the fall samples.  Silphium laciniatum did have the highest percent of dry ash and 

tended to be lowest in energy production. 

 

Table 14.  Percent dry ash and energy output of composite samples of species per sample 
time. 
 

  % of Dry Ash BTU/lb  (HHV) 

Species F1  S1 F2 S2 Mean F1  S1 F2 S2 Mean

Desmodium  

2.77 2.44 2.81 3.79 2.95 8096 8319 8105 8138 8165canadense 

Echinacea 

3.63 2.98 3.52 2.9 3.26 8039 8202 8028 7907 8044 pallida 

Heliopsis  

4.20 3.52 4.45 2.72 3.72 8016 8164 8181 8177 8135helianthoides 

Lespedeza  

2.22 2.41 2.71 1.96 2.33 8697 8398 8261 8487 8461capitata 

Monarda 

2.80 2.32 2.96 2.33 2.6 8279 8203 8178 8067 8182 fistulosa 

Ratibida  

4.16 2.61 2.76 2.87 3.1 8225 8472 8210 8105 8253pinnata 

Silphium  

8.28 5.42 5.53 5.19 6.11 7853 8016 7904 7992 7941laciniatum 

Solidago 

4.68 2.57 2.99 2.32 3.14 8571 8705 8330 8241 8462canadensis 

Solidago 

5.48 4.75 4.07 4.11 4.6 8017 8090 8051 8109 8067 rigida 

Mean 4.25 3.22 3.53 3.13 3.53 8199 8285 8139 8136 8190
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There was little variation between species in terms of energy production per unit 

mass.  As indicated above, Silphium laciniatum was least, but only three percent less than 

the man energy production.  Lespedeza capitata and Solidago canadensis showed the 

most energy production per unit mass, but only slightly more than 3 percent above the 

man energy production. 

Tables 15 a and b illustrate the data of the sequence of calculating slagging 

potential of the species using the equation developed by Miles et al. (1995), and applies 

the data provided in Table 11 to calculate the slag index, the likelihood that slag will be 

deposited during combustion of the material.  To use the equation, the percent ash and 

percent alkali must first be converted to decimal form. 

1×106

HHV Btu Lb(Dry)⁄
×Ash%×Alkali% in Ash=Lb Alkali MMBtu⁄  = Combined Index 

Miles et al.’s equation provides a numerical value which can be used to assess the 

likelihood of slagging.  Table 15 a shows the values used as a first step of the calculation 

of the slagging potential.  Figure 15 b illustrates the slag index indicating the slag 

potential of the different species for each sample period. 
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Table 15 a.  The potassium and sodium concentrations of composite samples of species 
per sample time. 

 

 

 

 

  
Na2O  

(% of ash) 
K2O  

(% of ash) 

Species F1  S1 F2 S2 F1  S1 F2 S2 

Desmodium canadense 0.57 0.35 0.30 0.60 3.72 1.48 4.08 2.01 

Echinacea pallida 0.20 0.27 0.59 0.72 2.45 1.44 9.95 4.20 

Heliopsis helianthoides 0.42 0.22 0.53 0.44 9.88 3.45 10.80 3.86 

Lespedeza capitata 0.42 1.18 0.71 1.01 9.76 3.86 13.40 7.60 

Monarda fistulosa 0.37 0.49 1.23 0.91 9.01 5.18 10.30 5.26 

Ratibida pinnata 0.36 0.21 0.86 0.41 4.87 2.32 5.00 3.14 

Silphium laciniatum 0.13 0.21 0.19 0.17 7.15 3.49 6.55 6.30 

Solidago canadensis 0.76 0.76 0.76 0.98 20.80 10.70 16.40 11.90 

Solidago rigida 0.41 0.43 0.61 0.73 11.30 5.55 9.18 5.80 



 
 

 
 

Table 15 b.  Slagging potential value of selected species calculated from potassium and sodium ash concentrations using Miles 
el al. (1995) 

 

 

Slagging Potential Calculated 

  Total (Na2O%+K20%)/100 Slag Index (lb./MMBtu) 

Species F1  S1 F2 S2 F1  S1 F2 S2 
Desmodium canadense 0.043 0.018 0.044 0.026 0.147 0.054 0.152 0.122 

Echinacea pallida 0.027 0.017 0.106 0.049 0.120 0.062 0.462 0.18 
Heliopsis helianthoides 0.103 0.037 0.113 0.043 0.540 0.158 0.616 0.143 

Lespedeza capitata 0.102 0.051 0.141 0.086 0.260 0.145 0.463 0.199 
Monarda fistulosa 0.094 0.057 0.115 0.062 0.317 0.16 0.417 0.178 
Ratibida pinnata 0.052 0.025 0.059 0.036 0.265 0.078 0.197 0.126 

Silphium laciniatum 0.073 0.037 0.067 0.065 0.768 0.25 0.472 0.42 
Solidago canadensis 0.216 0.115 0.172 0.129 1.177 0.338 0.616 0.363 

Solidago rigida 0.117 0.060 0.098 0.065 0.800 0.351 0.495 0.331 
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The red lines in Figure 15 indicate the dividing lines between the degrees of 

slagging potential.  From 0 to 0.4 lb./MMBtu, slagging and fouling is unlikely.  Between 

0.4 lb./MMBtu and 0.8 lb./MMBtu, slagging and fouling is possible.  Values above 0.8 

lb./MMBtu indicate that slagging and fouling is certain.   

 

 

Figure 15.  Potential for slagging of selected species as indicated by slag index. 
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Solidago canadensis was the only species to be above the 0.8 level, and certain to 

slag in the first fall sampling.  Solidago rigida was right at 0.8.  According to Miles et al. 

(1995), field experience and boiler operating conditions may determine whether this 

species will certainly slag, although it is very likely.  Echinacea pallida, Heliopsis 

helianthoides, Lespedeza capitata, Monarda fistulosa, Silphium laciniatum and of course 

the two Solidago species all fall at one time or another within various samplings between 

0.4 lb./MMBtu and 0.8 lb./MMBtu.  Each species slagging potential drops from a fall to 

spring harvest. 

The slagging index for all species in both sample periods declined from fall to 

spring, and a slagging index greater than 0.4 lb/MMBtu was only observed once in the 

spring (Silphium laciniatum in spring 2 with a value of 0.42 lb/MMBtu).  Figure 16 

shows slagging changes within each species from fall to spring.  The more negative 

numbers indicate that a greater decline has occurred.  In some instances the decline from 

fall to spring was considerable (e.g. Silphium laciniatum, Solidago canadensis, and 

Solidago rigida), more so during the first year.  In other instances, the decline was greater 

in the second year (e.g. Echinacea pallida, Heliopsis helianthoides, Monarda fistulosa). 
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Figure 16.  Change in slag index value of sampled forbs from fall to spring in 2007-08 
and 2008-09 
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CHAPTER 4 

INTERPRETATION AND DISCUSSION 

The sampling of the vegetation of the five sites for species richness and biomass 

was a means of characterizing the experimental sites and providing insight into these 

factors in prairie reconstructions of varying ages.  The Dunkerton Prairie, a secondary-

succession prairie remnant with longevity of more than a century, provided a reference 

for comparison with the reconstructed sites. I assumed it would have greater diversity as 

(1) the area likely had ample time to re-establish after undergoing secondary succession 

from proximal seed sources following disturbance by rail construction in the 1880s, and 

(2) a limited number of species were planted in the reconstructions.  That assumption 

proved to be valid as it had greater species richness. 

Biomass and Species Richness 

The relationship of biomass productivity and species richness was not as 

expected.  Tilman et al. (2006) reported that prairie reconstructions with greater species 

richness produced greater biomass.  As a remnant with greater species richness, I 

assumed that the Dunkerton Prairie would therefore have the greater biomass production.  

This did not prove to be true.  In fact, while fairly diverse, individual plants appeared to 

be smaller and the site had the least biomass productivity.  There are two plausible 

explanations for this apparent deviation from the findings of Tilman et al. (2006).  One 

explanation is the lack of flowering Silphium laciniatum at the time of my study.  This 

was unusual in that the Dunkerton Prairie often has a large number of this species 

present.  Silphium laciniatum comprised a large portion of the biomass of the other sites.  
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If similar amounts had been included in the Dunkerton sample, the biomass productivity 

would have been considerably higher.  A second explanation is a possible limitation in 

the work of Tilman et al. (2006).  The maximum number of species in their research plots 

was 16, less than one-half the number (34), found in our limited sample at Dunkerton 

Prairie and well below that of a robust native prairie remnant.  It is conceivable that in 

adapting over many years to maximize niche utilization through higher species richness 

in a low nitrogen environment, biomass production has been curtailed.  If so, less species 

in a newer prairie reconstruction would have more space available, both above and below 

ground, and could develop more robustly.  

Plants can vary in size from season to season and site to site, but more notably 

from species to species. For example, the leaves and stalks of Silphium laciniatum 

provide much more biomass than other species in the study.  In terms of biomass 

production for electrical production, larger, more robust plants provide more material for 

combustion. However, size is not the only consideration.  First of all, energy yield per 

unit is important.  Secondly, plants containing a high content of minerals that contribute 

to slagging are not desirable as they can increase frequency of shutdown to clean slag 

from the furnace.  

Most of the biomass values for each species were similar over the two year 

period.  With one exception, Desmodium canadensis fall 2007 vs. spring 2008, there 

were no differences in dry-weight mass between plants harvested in the spring or fall or 

between plants harvested in different years.  However, for some species, flower stem 

biomass varied significantly over time.  For example, Desmodium canadense biomass 
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was considerably lower in spring 2008 samples than in spring 2009 samples.  In contrast, 

Lespedeza capitata biomass was much higher in fall 2007 than in fall 2008 (Table 7).   

Biomass changes from fall to spring were inconclusive.  The first dormant season 

all species declined slightly, but not significantly, except Silphium laciniatum which 

increased significantly.  Conversely in year 2, flower stem biomass increased slightly in 

all except Lespedeza capitata which increased significantly. The small sample size and 

the sampling method of locating plants could have influenced the results.  Also, in the 

spring some of the vegetation was flattened by snow and larger stems were easier to 

locate. 

Energy does not vary much between fall and spring of either year (Table 14).  The 

variation in energy appears from species to species and not from fall to spring. 

Variability of Minerals between Species 

Like most research related to causes of slagging and fouling by biofuels, this 

study focused on three elements common in plants, two alkali metals, potassium and 

sodium, and silicon.  

I hypothesized that the concentrations of the three minerals would vary from 

species to species.  The mineral concentrations of the nine species did differ, but the 

differences were not consistent for the four sample times in the two-year study.  The 

concentrations ranged as follows: potassium 862-10,732 ppm, sodium 31-260 ppm and 

silicon 52-1172 ppm.   

Potassium is an essential plant nutrient and is required in large amounts. 

Consequently it is absorbed by plants in larger amounts than any other mineral element 
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except nitrogen. For optimal growth potassium levels in plants should be between 2 and 3 

percent of the dry weight (Patterson 2015).  I observed concentrations of 0.1 to 1 percent 

remaining in the standing dead stem tissue of the nine species. 

Although the concentrations of potassium did vary from species to species as 

hypothesized, with a few exceptions, the differences were not significant. The 

concentrations of potassium for all species seemed to be unusually high in spring 2008.  

Solidago canadensis had the highest concentration of potassium at all four sample times.  

Its potassium level was significantly higher than all species in fall 2008 and at the other 

three sample times the level was significantly higher than all except that of either 

Silphium laciniatum or Solidago rigida. Although the values were not always significant, 

Desmodium canadensis, Echinacea pallida and Ratibida pinnata tended to have lower 

concentrations of potassium than the others.  

Sodium levels in plants tend to be much lower than potassium levels.  I found 

them to be lower by a factor of ten or more.  Sherrell (1978) harvested agronomic species 

when they were still vegetative and undergoing rapid growth.  He observed a wide 

difference in sodium concentrations ranging from 0.01 to 0.3 percent of dry matter.  In 

my study, sodium levels varied from species to species, as hypothesized, however, the 

range of variation was not as great as potassium, probably in part because the 

concentrations were lower.  All species had similar concentrations of sodium in spring 

2009.  In spring 2008 eight of the nine species were similar to one another although 

Solidago canadensis was significantly higher than six of the species.  There did not 
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appear to be a trend where any one species was higher or lower over the four sample 

times so they essentially did not vary from species to species as hypothesized.   

Silicon is readily absorbed so that terrestrial plants contain it in appreciable 

concentrations, but usually less than potassium.  Plants easily absorb silicon in the form 

of H4SiO4 and all plants growing in soil contain it as an appreciable fraction of the dry 

matter (Raven 1983). The concentration of silicon in plants usually ranges from 0.1 to 10 

percent although some may contain more than that.  I observed much lower silicon 

concentrations of 0.001 to 0.012 percent in my samples.  Apparently the species studied 

are not silicon accumulators.  Although my values are somewhat lower, they correspond 

to values in the review of Jones and Handreck (1967).  They noted that the 

percentage/dry weight of silicon in dicotyledons was approximately 0.1 percent and about 

1 percent in dryland grasses.   

Even at the low levels in the plants I studied, there was variation in silicon 

concentration between species.  More variation was apparent in the first year, especially 

in fall 2007, than in the second year. Three species, Heliopsis helianthoides, Ratibida 

pinnata and Solidago rigida were significantly higher than all the others except Silphium 

laciniatum.  However, those higher concentrations were only for one sample time and did 

not recur in the other three. The concentration of silicon in Monarda fistulosa was 

consistently very low at all four sample times, in fact, it was significantly lower than all 

others at three of the four sample times.  As hypothesized, there was variation between 

species; however, in most cases the variations were not consistent from sample time to 

sample time.   
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Changes in Mineral Concentrations during Dormancy 

The debate continues regarding the best harvest time for optimal fuel quality to 

minimize slagging in burning plant biomass for energy.  Both the total amount of ash as 

well as specific inorganic constituents in herbaceous biomass can be manipulated by the 

timing of harvesting.  Fuels harvested in the summer are too green and contain large 

quantities of minerals acquired during growth.  Extending harvest dates later in the 

season generally leads to lower ash content.  The delay allows time for more 

retranslocation of minerals into the roots (Ogden et al. 2010) and leaching by rain, mist or 

dew.  After a killing frost, minerals can still be leached from the standing dead stems.  In 

addition, any remaining leaves are usually shed over winter.  Consequently, the general 

recommendation has been to delay harvesting until the following spring for more mineral 

reduction and thus lower potential for slagging.   

Based upon that background information regarding spring harvesting of biomass, 

I hypothesized that the concentration of the minerals in the plants would be less in the 

spring than in the fall.  However, the changes in concentrations of the three minerals from 

fall to spring in plant samples from each site were variable, inconsistent and not as 

predicted.   

The concentrations of potassium increased significantly from fall to spring in all 

the samples of individual species in year 1.  This was unexpected and contrary to what I 

hypothesized and, also, contrary to the data of the composite of plant material from all 

sites.  On the other hand, the potassium concentrations in all samples of individual 

species dropped significantly from fall to spring in year 2 as hypothesized.  In all the 
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plant samples of the composite material, the level of potassium declined from fall to 

spring as expected.  

Potassium is a major nutrient and very important for growth of plants; high 

concentrations are common in rapidly growing plants. The concentration does commonly 

depend on growing season of the plant, e.g. in summer and spring when the growth of the 

plant takes place, the concentrations are higher than in the winter when no growth occurs. 

Much of the potassium for the initial rapid spring growth comes from storage in the roots 

than by concurrent absorption.  My late winter samples were of standing dead stems prior 

to initiation of growth; it is unlikely there would be any increase in potassium in those 

tissues. In the fall, potassium is translocated from senescing leaves into fruits, supports 

root growth and contributes to potassium storage.  Potassium ions are highly water-

soluble and can be lost from tissue by leaching.  Some grasses have been shown to be 

highly susceptible to leaching during frost (Hinnant and Kothmann 1982).  

Potassium in the dead stems declined in both the second year of the independent 

samples and in both years of the composite samples. As indicated above, potassium 

concentration would be expected to be higher in the fall than in the spring.  It is likely 

that any changes in potassium concentration in the dead stems during the winter dormant 

period is due to leaching. Due to high solubility in water, potassium loss would be more 

likely in wet winters than in dry winters and in those winters with more days above 

freezing when melting occurs. In year 2 there were six more days at 32º F or above than 

year 1.  However, I am hard pressed to explain the increase in potassium in the 

independent sample data of year 1.   
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The changes in sodium concentration from fall to spring in the independent 

samples are quite similar, although of lesser magnitude, to those of potassium.  The 

concentrations of sodium in the independent samples decreased in 8 of the 9 species from 

fall 2007 to spring 2008; in 6 species the decrease was significant.  In the composite 

samples 7 of 9 decreased.  These changes were consistent with my hypothesis.  In year 2, 

all 8 species of the independent samples increased in concentration and the increase was 

significant in 5 species.  In the composite samples, 5 of 9 species had a decrease in 

concentration.  The independent samples were opposite what I hypothesized although the 

results of the composite samples were mixed.  

Sodium is a functional plant nutrient rather than an essential one like potassium 

(Subbarao et al. 2003). Sodium occurs in plant roots and the shoot including leaves. 

Deposits occur in epidermal, strengthening, storage and vascular tissues during the 

growth and development of the shoot.  

Kronzucker and Britto (2011) note that the complexity of sodium transport in 

plants appears, in some ways, to exceed that of most other ions, resulting in models of 

influx, efflux, sequestration, long-distance transport and recirculation whose complexity 

seems disproportionate to the extremely limited value of sodium as a provisional plant 

nutrient. 

 The entry of sodium ions into plant cells is essentially a passive process due to 

electrical potential difference at the plasma membrane and low sodium concentrations in 

the cells.  In contrast, sodium extrusion from cells is an indirect active process.  With the 

death of plants after a killing frost any changes in sodium content with the plants would 
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be the result of passive movement like leaching.  Sodium and potassium are sufficiently 

soluble to leach out of the dead stems during the winter months which would explain the 

decrease in sodium concentration from fall to spring in year 1.  However, like the 

changes in potassium, it is difficult to conceive an explanation as to why it increased 

from fall to spring in year 2. 

The species data of the composite samples and the independent samples from all 

sites were not consistent for silicon.  Silicon in the independent samples from all sites 

declined in all species both years as hypothesized.  However, the changes in 

concentration of silicon data of the composite samples were contrary to that as most 

species in year 1 increased (8) as did 6 in year 2. Little is known regarding what happens 

to silicon after the plant matures, becomes dormant and is killed by freezing. 

Silicon is readily absorbed so that plants contain it in appreciable concentrations.  

It is generally thought that silica in solution as monosilicic acid is carried passively in the 

transpiration stream and is deposited in larger quantities in parts of the plant from which 

water is lost in greatest quantities.  Soluble silicon in soil solution at a pH range from 2 to 

9 is mainly present as orthosilicate.  In this form silicon is an uncharged compound and 

sensitive to leaching.  Again leaching of silicon from the plant tissue is the likely 

explanation for decreases from fall to spring.    

 

 

 



78 
 

 
 

Slagging Potential 

To address concern raised regarding slag production from trace metals and other 

minerals in plants during the combustion process of burning prairie biomass for electrical 

generation, I tested the experimental species for concentrations of potassium, sodium and 

silicon to determine their potential for slagging. The inorganic elements contribute 

directly to the quantity of ash left behind in combustion testing.   

Plant materials were sent to both the Iowa State University Soil and Plant 

Analysis Lab and to Hazen Research, Inc.  As discussed in Materials and Methods, I sent 

samples of each species from each site to the ISU Lab, but only combined plant material 

from all sites for each species to Hazen.  Although the ISU results provided more data for 

statistical analysis, the more consistent results from Hazen were more useful in 

calculating slagging index and comparing slagging potential of different species. 

Miles et al. (1995) developed a calculation using concentrations of alkaline 

metals, potassium and sodium, that combined slagging and fouling potential into one 

index.  The scale of this index can be used as a guide to assess the potential of plant 

material for both slagging and fouling.  On the combined index a value below 0.4 lb/MM 

Btu is considered a fairly low slagging risk.  Values between 0.4 and 0.8 lb/MM Btu 

indicate the probability of increasing certainty of slagging as 0.8 lb/MM Btu is 

approached.  Above 0.8 lb/MM Btu, the fuel is virtually certain to slag and foul.  

Data from the combined plant materials of the five sites applied to this scale 

indicates that fall-harvested, plant material from Solidago canadensis, Solidago rigida, or 

Silphium laciniatum is almost certain to slag.  Their slagging probability would not make 
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them good candidates for burning as biomass although they do drop to the low end of 

slagging probability in the spring.  On the other hand, Desmodium canadensis would be a 

good candidate and Echinacea pallida and Ratibida pinnata are possibilities.  The 

candidacy of Lespedeza capitata, Monarda fistulosa or Heliopsis helianthoides might 

depend on harvest time.  For spring harvesting, only Silphium laciniatum reached a level 

of possible potential for slagging and that was just in the second spring.  The two 

Solidago species did approach the minimum value for potential slagging in both spring 

samples.    

While silicon concentrations are not used in calculations to predict slagging, it is a 

major mineral constituent of plants and has been found to be a contributor to slagging 

(Demirbas 2005).  Therefore, its concentration levels should be a consideration when 

selecting species in a mix for biomass that will be burned.  As there is a fairly consistent 

pattern of decline in silicon concentration from fall to spring in all species, it appears that 

silicon content may not be a fouling or slagging problem if harvest is delayed until 

spring. 

Summary 

 A primary concern about the burning prairie biomass for electrical generation is 

the production of slag during the combustion process from trace metals and other 

minerals within plants.  The slagging potential of herbaceous plants could be high 

because they contain potassium and silicon as their principal ash-forming constituents. 

This concern is based almost exclusively on experience gained from the use of 

graminoids as biofuels.   
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This study was initiated to ascertain if forbs in prairie biomass mixtures should be 

the subject of such concern.  If so, then the next question is whether all forbs have 

potential for slagging.  Concentrations of potassium, sodium and silicon in nine species, 

Desmodium canadense, Echinacea pallida, Heliopsis helianthoides, Monarda fistulosa, 

Lespedeza capitata, Ratibida pinnata, Silphium laciniatum, Solidago canadensis and 

Solidago rigida, were examined to gain insight into their potential for slagging.  

Energy yields per unit weight upon combustion of the eight species were similar.  

However, the concentrations of the alkaline minerals in plant tissues indicate that 

Solidago canadensis, Solidago rigida, and Silphium laciniatum have high potential for 

slagging and should be avoided as biofuels.  Although the results of the independent 

samples were somewhat inconsistent, those coupled with the composite samples suggest 

Desmodium canadensis would be a good candidate for a biomass mix and Echinacea 

pallida and Ratibida pinnata are possibilities.  The use of Lespedeza capitata, Monarda 

fistulosa or Heliopsis helianthoides might depend on harvest time as their concentrations 

declined from fall to spring. 

Solidago rigida, Silphium laciniatum, Heliopsis helianthoides, and Ratibida 

pinnata concentrations of silicon tended to be somewhat high in the fall, but declined in 

the spring.  The concentration in Monarda fistulosa was consistently low.   

For a utility company planting to produce biomass for electrical generation, 

serious consideration should be given to a spring harvest.   
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Conclusion 

• Concentrations of slag inducing minerals, potassium, sodium and silicon present in the 

forb species studied vary from species to species. 

• Solidago canadensis, Solidago rigida, and Silphium laciniatum have a high potential for 

slagging and should be avoided as biofuels. 

• Desmodium canadensis has a low potential for slagging and would be a good candidate 

for a biomass mix.  The slagging potentials of Echinacea pallida and Ratibida pinnata 

are sufficiently low enough for them to also be considered for a biomass mix. 

• Concentrations of slag inducing minerals, potassium, sodium and silicon, present in 

certain forbs usually decline from fall to spring.  In that case, Lespedeza capitata, 

Monarda fistulosa and Heliopsis helianthoides could be considered for biomass 

production. 
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APPENDIX A 

COMPARISON OF MINERAL CONCENTRATIONS OF INDIVIDUAL SPECIES 

DURING TWO WINTER DORMANCY PERIODS 

In year 1, the spring concentration of potassium in each of the species was 

significantly higher than the fall concentration.  That was contrary to my hypothesis.  

However, in year 2, the concentration of potassium was significantly lower in the spring 

than in the fall.  The data for this year are consistent with the hypothesis.  It is difficult to 

explain such opposite results.  One is tempted to suggest that the lab got the samples for 

the seasons reversed, but the samples for one sampling period were sent in before the 

second sampling was done.  While issues did arise with ISU setting incorrect limits for 

the boundaries of the data, we ended with nice numbers to use.   

It appears that the greatest anomaly in the potassium results is the data for spring 

of year 1 (spring 2008).  While there are significant differences (higher or lower) between 

the two fall readings for four of the nine species, Desmodium canadense, Heliopsis 

helianthoides, Echinacea pallida, and Solidago rigida, the values are much more similar 

than the differences between the two spring readings that are quite significantly higher.  

The potassium concentrations may have been affected by variations in weather patterns.  

The summer following this spring sample time was very wet.  Figure A1 a-i shows the 

changes in concentration of potassium at each sample time. 

 

 



 
 

 
 

Figure A1, a-i. Changes in concentration of potassium in nine species in fall 2007, spring 2008, fall 2008 and spring 2009. 
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Generally speaking the concentration of sodium decreased in year 1 from fall 

2007 to spring 2008, whereas in year 2 seven of the nine species did not change 

significantly from fall to spring.  While Heliopsis helianthoides and Ratibida pinnata 

decreased significantly.  In year 1 Desmodium canadense, Echinacea pallida, Ratibida 

pinnata, Silphium laciniatum decreased significantly, Monarda fistulosa and Solidago 

rigida did not change significantly and only Lespedeza capitata and Solidago canadensis 

increased significantly.  The results of changes in sodium concentration during dormancy 

were much more consistent than those for potassium.  Overall only Lespedeza capitata 

and Solidago canadensis showed concentration changes that were significantly different 

than hypothesized.  If the decision of which species to put in the mix was determined by 

sodium alone, all of these species would be appropriate to include. Figure A2 a-i shows 

the changes in concentration of sodium at each sample time, and figure A3 a-i shows the 

changes in concentration of potassium at each sample time. 

 



 
 

 
 

Figure A2, a-i: Concentration of sodium in nine species in fall 2007, spring 2008, fall 2008, and spring 2009. 
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Figure A3, a-i: Concentration of silicon in nine species in fall 2007, spring 2008, fall 2008, and spring 2009. 
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The following graphs (Figures A4 a-i) compare the concentration of plant 

available potassium in the soil at all the sites between the four main sample times.  The 

soil associated with Desmodium canadense and Echinacea pallida were statistically 

similar from fall to spring over both sample years.  Soil associated with Heliopsis 

helianthoides had a significantly different concentration from the first year to the second, 

but the concentrations were relatively similar.  Lespedeza capitata is statistically similar 

year one, but significantly different from year two with a significant change from fall to 

spring year 2.  Soil near Monarda fistulosa is significantly different between the spring 

concentrations, but the two fall concentrations have elements of similarity.  Ratibida 

pinnata soil potassium concentrations increase from fall to spring.  The first spring and 

the second fall are significantly different, while the first fall and second spring are the 

same.  The concentrations the second fall are much lower than the first fall.  Silphium 

laciniatum concentrations are similar across all sample times.  Solidago canadensis has 

consistent concentrations across year 1, but year 2 is significantly different from fall to 

spring, with the low concentration being in the fall.  Spring concentrations are back to the 

level of year 1.  Solidago rigida soil concentration levels increase from fall to spring, 

with year 2 levels being significantly less than year 1.  Fall 2 and spring 2 levels are 

similar.  Many of these graphs indicate that from fall to spring, plant available potassium 

actually increases in the soil. 

 



 
 

 
 

Figure A4, a-i: Concentration of plant available potassium in soil surrounding nine species in fall 2007, spring 2008, fall 2008, 
and spring 2009. 

a a a

0

50

100

150

200

250

F1(2007) S1 (2008) F2 (2008) S2 (2009)

P
ot

as
si

u
m

 (
p

p
m

)

Sample Time

a.    Deca 

a
a

a a

0

50

100

150

200

250

F1(2007) S1 (2008) F2 (2008) S2 (2009)

P
ot

as
si

u
m

 (
p

p
m

)

Sample Time

b.    Ecpa 

ab
a

b
b

0

50

100

150

200

250

F1(2007) S1 (2008) F2 (2008) S2 (2009)

P
ot

as
si

u
m

 (
p

p
m

)

Sample Time

c.    Hehe 

a a

c
b

0

50

100

150

200

250

F1(2007) S1 (2008) F2 (2008) S2 (2009)

P
ot

as
si

u
m

 (
p

p
m

)

Sample Time

d.    Leca 

100 



 
 

 
 

ab
a

bc c

0

50

100

150

200

250

F1(2007) S1 (2008) F2 (2008) S2 (2009)

P
ot

as
si

u
m

 (
p

p
m

)

Sample Time

e.    Mofi 

b
a

c

b

0

50

100

150

200

250

F1(2007) S1 (2008) F2 (2008) S2 (2009)

P
ot

as
si

u
m

 (
p

p
m

)

Sample Time

f.    Rapi 

a
a a

a

0

50

100

150

200

250

F1(2007) S1 (2008) F2 (2008) S2 (2009)

P
ot

as
si

u
m

 (
p

p
m

)

Sample Time

g.    Sila 

a a

b
a

0

50

100

150

200

250

F1(2007) S1 (2008) F2 (2008) S2 (2009)

P
ot

as
si

u
m

 (
p

p
m

)

Sample Time

h.    Soca 

101 



 
 

 
 

 

 

b

a

c

b

0

50

100

150

200

250

F1(2007) S1 (2008) F2 (2008) S2 (2009)

P
ot

as
si

u
m

 (
p

p
m

)

Sample Time

i.    Sori 

102 



103 
 

 
 

The following graphs (A5 a-i) compare the concentration of plant available 

sodium in the soil at all the sites between the four main sample times.  While each soil 

profile around a species is different, the overall theme with the plant available sodium 

seems to be a decrease from fall to spring the first year, and an increase from fall to 

spring the second year.  This is different than the potassium. 

The soil around Desmodium canadense stays significantly similar across all the 

sample times.  Echinacea pallida is similar from fall 1 to spring 2, and significantly 

similar from spring 1 to 2, but these two groups are not significantly similar.  Heliopsis 

helianthoides plant available sodium soil concentrations in year 1 are statistically similar.  

Fall 2 is significantly less than the rest, and the concentration increases to spring 2.  

Lespedeza capitata has a significantly similar concentration across all times excluding 

spring 2, which has a significantly higher value.  Monarda fistulosa concentrations are all 

significantly different, except spring of year 2 which is similar to fall 2007 and fall 2008.  

Ratibida pinnata has a significantly high first year fall concentration, and a significantly 

low second fall concentration.  The spring values are in between, slightly similar but with 

their own significant value.  Silphium laciniatum concentrations are mostly similar across 

all the times, but Spring 2 is significantly less than the others.  Solidago canadensis soil 

concentrations for fall 1 and spring 2 are similar, spring 1 and fall 2 are also similar, but 

fall 2 is also similar to fall 1 and spring 2.  Solidago rigida has a concentration that is 

significantly different from each time to the next, but is a perfect representation of the 

concentrations decreasing over the first year and increasing over the second.   
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All plant available sodium in the soil decreased in concentration except for 

Lespedeza capitata, which increased slightly and was the only soil which was 

significantly similar to all other 8 soil groups.



 
 

 
 

Figure A5, a-i. Concentration of plant available sodium in soil surrounding nine species in fall 2007, spring 2008, fall 2008, 
and spring 2009. 
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The following graphs (A6 a-i) compare the concentration of plant available 

silicon in the soil at all the sites between the four main sample times.  There is not as 

clear of a pattern present in these graphs, all though most of them increase from fall to 

spring both years, or decrease the second year only slightly. 

Desmodium canadense plant available silicon soil concentration in the fall of year 

1 is significantly lower than the rest.  Spring of year 1 and year 2 are statistically similar.  

Echinacea pallida again sees the lowest concentration in the fall of year 1.  Spring 1 and 2 

are similar, fall 2 and spring 2 are similar, but spring 1 and fall 2 are significantly 

different.  Heliopsis helianthoides sees an increase from fall 1 to spring 2, with each 

sample time being statistically different from the last except for fall 2 which is similar to 

the two spring concentrations.  Lespedeza capitata concentrations are much less than all 

the others.  Fall 1 is the only significantly different value on the graph.  Monarda 

fistulosa sees concentrations significantly higher in year 2 than year one.  Year 2 the fall 

and spring values are similar, but in year 1 the fall is significantly less than spring 

concentrations.  Ratibida pinnata soil plant available silicon levels are the lowest in the 

fall once again.  Spring 1 and fall 2 are similar, and spring 2 is significantly higher than 

all the rest.  Silphium laciniatum are all significantly different from each other, with the 

first year increasing, and the second year decreasing in value.  Solidago canadensis 

increases from fall to spring both years.  The fall values are statistically similar, as are the 

spring values, but they are significantly different from each other.  Solidago rigida sees 

fall 1 to have the lowest values and spring 2 to have the highest values.  The 
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concentrations increase from fall to spring both years, and spring 1 and fall 2 have 

statistically similar values.



 
 

 
 

Figure A6, a-i: Concentration of plant available silicon in soil surrounding nine species in fall 2007, spring 2008, fall 2008, and 
spring 2009. 
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APPENDIX B 

CORRELATION BETWEEN VEGETATION AND SOIL MINERAL CONTENT 

Table B1 and Figures B1 and B2 show the mean concentrations of plant available 

potassium in soil samples collected adjacent to the forbs in the study in fall 2007, spring 

2008, fall 2008 and spring 2009.  In fall 2007, the mean concentration of potassium was 

significantly higher in soils adjacent to Monarda fistulosa, Ratibida pinnata, and 

Silphium laciniatum than in soils adjacent to Desmodium canadense, Echinacea pallida, 

and Lespedeza capitata.  The concentration in soils adjacent to Heliopsis helianthoides, 

Solidago canadensis, and Solidago rigida were between those of the other two groups.  

 There was some shifting of concentration in mean plant available potassium 

values of soils in spring 2008. Soil near Desmodium canadense contained the least 

amount of potassium, and was significantly lower in concentration than all but Lespedeza 

capitata and Solidago canadensis.  Soils adjacent to Ratibida pinnata and Silphium 

laciniatum had the highest mean potassium concentration, and were significantly higher 

than those near Desmodium canadense, Lespedeza capitata, Solidago canadensis and 

Echinacea pallida. They were similar to those near Heliopsis helianthoides, Monarda 

fistulosa, and Solidago canadensis. 

 



 
 

 
 

Soil Potassium 
 
Table B1.  Mean concentration (ppm) of plant available potassium in soil surrounding selected forbs sampled during dormancy 
in fall 2007, spring 2008 and fall 2008 and spring 2009.  The means of each soil sample were independently analyzed with a 
one-way ANOVA to test significance between samples.  A Tukey’s Test was used to determine differences among means. 
 

Mean concentration (ppm) of K 
Species N F1(2007) N S1 (2008) N F2 (2008) N S2 (2009) 
Deca 12 132.1 (13.02) 12 136.3 (12.20) na 6 148.5 (10.43) 
Ecpa 15 141.7 (13.45) 15 169.7 (15.39) 6 150.7 (15.67) 12 151.8 (9.64) 
Hehe 12 164.3(18.38) 12 191.2 (22.69) 6 134.2 (21.83) 12 120.4 (11.11) 
Leca 9 139.9 (15.12) 9 132.0 (22.48) 6 78.9 (6.35) 9 96.4 (10.66) 
Mofi 15 173.8 (11.31) 15 186.7 (15.79) 6 156.7 (9.74) 12 152.0 (8.51) 
Rapi 15 171.1 (10.80) 15 203.5 (9.79) 3 95.8 (10.97) 12 160.0 (10.25) 
Sila 15 179.9 (21.73) 15 213.4 (18.92) 9 213.4 (18.92) 9 209.3 (30.77) 
Soca 12 152.1 (19.39) 12 145.9 (18.59) 6 97.537 (18.91) 12 135.3 (9.80) 
Sori 15 163.5 (9.98) 15 200.3 (20.25) 3 101.9 (8.21) 12 143.4 (14.57) 

p-value  .302  .007  <.001  <.001 
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Figure B1. Mean concentration (ppm) of plant available potassium of selected soil samples near forbs sampled fall 2007 and 
spring 2008. The means of each sample were independently analyzed with a one-way ANOVA to test significance between 
means.  A Tukey’s Test was used to determine differences among means. 
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 Figure B2 shows the results of mean concentration of potassium in soils near the 

forbs in the fall and spring of the second year.  In fall 2008, the mean concentration of 

plant available potassium in soils adjacent to Lespedeza capitata, Ratibida pinnata, 

Solidago canadensis, and Solidago rigida was the lowest. The concentration in soils near 

these forbs was significantly less than that near Echinacea pallida, Monarda fistulosa and 

Silphium laciniatum.  The concentration of plant available potassium in the soil around 

Silphium laciniatum was significantly higher than all other species.   

Spring year 2, 2009, the plant available potassium in the soil around Silphium 

laciniatum was at the highest level of concentration significantly greater than the other 

forbs.  The potassium concentration in the soil associated with Lespedeza capitata was 

significantly lower than the other forbs.



 
 

 
 

 

Figure B2. Mean concentration (ppm) of plant available potassium of selected soil samples near forbs sampled fall 2008 and 
spring 2009. The means of each sample were independently analyzed with a one-way ANOVA to test significance between 
means.  A Tukey’s Test was used to determine differences among means. 
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Soil Sodium 

 Table B2 and Figures B3 and B4 show the results of mean concentration of plant 

available sodium content in the soils around the nine studied prairie forbs.  In the fall, the 

plant available sodium concentration in the soil around Solidago rigida is significantly 

higher than that around the other forbs except for Desmodium canadense, Monarda 

fistulosa, and Ratibida pinnata.  The concentration of sodium in the soil around 

Lespedeza capitata is significantly lower than that around all other species. 

In spring 2008, concentrations of plant available sodium in the soils near the forbs 

are more similar to each other than those in the fall.  The soil around Desmodium 

canadense and Heliopsis helianthoides has significantly higher mean plant available 

sodium concentration than Echinacea pallida, Monarda fistulosa, Ratibida pinnata, 

Silphium laciniatum, Solidago canadensis, and Solidago rigida, but is similar to that in 

the vicinity of Lespedeza capitata.   



 
 

 
 

Table B2.  Mean concentration (ppm) of plant available sodium in soil surrounding selected forbs sampled during dormancy in 
fall 2007, spring 2008 and fall 2008 and spring 2009.  The means of each soil sample were independently analyzed with a one-
way ANOVA to test significance between samples.  A Tukey’s Test was used to determine differences among means.  NA 
represents data not available. 
 

 Mean concentration (ppm)/std. error of Na/sample time  
Species N F1(2007) N S1 (2008) N F2 (2008) N S2 (2009) 
Deca 12 43.5 (12.76) 12 31.9 (8.54)   NA 6 48.1 (11.74) 
Ecpa 15 35.0 (6.35) 15 20.2 (1.58) 6 24.1 (2.87) 12 38.5 (6.16) 
Hehe 12 29.8 (4.10) 12 27.4 (3.36) 6 20.5 (2.79) 12 37.4 (4.38) 
Leca 9 21.3 (2.85) 9 25.8 (2.57) 6 23.2 (2.92) 9 36.9 (4.79) 
Mofi 15 40.2 (8.58) 15 20.3 (1.52) 6 25.8 (1.99) 12 31.1 (3.67) 
Rapi 15 41.5 (4.56) 15 21.9 (1.94) 3 18.4 (1.65) 12 25.5 (2.40) 
Sila 15 26.2 (1.60) 15 20.2 (1.18) 9 26.9 (1.32) 9 28.2 (2.70) 
Soca 12 27.1 (2.67) 12 21.0 (1.77) 6 25.2 (2.64) 12 31.2 (5.16) 
Sori 15 51.5 (8.14) 15 19.8 (1.23) 3 24.2 (2.55) 12 32.4 (2.58) 
p-value  .052  .093  .334  .141 
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Figure B3. Mean concentration (ppm) of plant available sodium of selected soil samples near forbs sampled fall 2007 and 
spring 2008. The means of each sample were independently analyzed with a one-way ANOVA to test significance between 
means.  A Tukey’s Test was used to determine differences among means. 
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 In fall 2008, there were two different concentrations of plant available sodium in 

the soils around the sampled forbs.  The sodium in the soils around Monarda fistulosa 

and Silphium laciniatum had the highest concentration, but only differed significantly 

from Heliopsis helianthoides and Ratibida pinnata.  Sodium concentration in other soils 

tested fell in the middle. 

 In the spring of year 2, 2009, sodium concentration in the soil around Desmodium 

canadense was the highest of all, significantly higher than Ratibida pinnata, Monarda 

fistulosa, Silphium laciniatum and Solidago rigida.  Echinacea pallida, Heliopsis 

helianthoides, Lespedeza capitata and Solidago canadensis fall between, and are similar 

to both levels. 

 



 
 

 
 

 

Figure B4. Mean concentration (ppm) of plant available sodium of selected soil samples near forbs sampled fall 2008 and 
spring 2009. The means of each sample were independently analyzed with a one-way ANOVA to test significance between 
means.  A Tukey’s Test was used to determine differences among means. 
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Soil Silicon 

Table B3 and Figures B5 and B6 below show the mean concentrations of plant 

available silicon in soils adjacent to the test forbs during year 1, fall 2007 and spring 

2008.   

In the fall, the concentration of silicon in the soil surrounding Heliopsis 

helianthoides was the highest level of the soils sampled.  It was significantly higher than 

that in the soils around Lespedeza capitata, Solidago canadensis, and Echinacea pallida.  

Silicon concentration in the soils around Desmodium canadense, Monarda fistulosa, 

Ratibida pinnata, Silphium laciniatum, and Solidago rigida were at intermediate levels.  

The concentration of silicon in the soil around Lespedeza capitata was significantly less 

than the other species.  

In spring 2008, silicon concentration was again highest in the soil surrounding 

Heliopsis helianthoides, as in the fall.  This silicon concentration was significantly higher 

than that in the soil around Lespedeza capitata and Solidago canadensis.  Concentration 

in the soils around Desmodium canadense, Echinacea pallida, Monarda fistulosa, 

Ratibida pinnata, Silphium laciniatum, and Solidago rigida was similar to both levels, 

high and low.   
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Table B3. Mean concentration (ppm) of plant available silicon in soil surrounding 
selected species sampled during dormancy in fall 2007, spring 2008, fall 2008 and spring 
2009.  The means of each soil sample were independently analyzed with a one-way 
ANOVA to test significance between samples.  A Tukey’s Test was used to determine 
differences among means.  NA represents data not available. 
     

 

 

Mean concentration (ppm)/std. error of Si/sample time  
Species N F1(2007) N S1 (2008) N F2 (2008) N S2 (2009) 
Deca 12 45.1 (4.79) 12 71.4 (9.13)   NA 6 78.0 (15.68)
Ecpa 15 38.2 (3.95) 15 59.1 (7.07) 6 83.7 (17.51) 12 81.8 (17.12)
Hehe 12 48.1 (3.66) 12 73.8 (8.21) 6 75.2 (17.81) 12 99.7 (15.44)
Leca 9 30.2 (1.89) 9 47.9 (14.80) 6 47.9 (3.20) 9 42.2 (2.03) 
Mofi 15 43.2 (3.05) 15 59.7 (6.97) 6 110.3 (21.62) 12 89.0 (14.88)
Rapi 15 42.4 (3.31) 15 60.9 (6.75) 3 58.8 (9.07) 12 80.6 (10.40)
Sila 15 41.2 (3.22) 15 61.2 (6.87) 9 96.9 (6.40) 9 75.8 (7.43) 
Soca 12 40.2 (3.95) 12 53.8 (10.74) 6 39.1 (2.09) 12 65.7 (9.39) 
Sori 15 45.1 (3.13) 15 58.9 (6.52) 3 53.2 (2.69) 12 79.2 (11.85)
p-value  .122  .627  .003  .187 



 
 

 
 

 

 
Figure B5. Mean concentration (ppm) of plant available silicon of selected soil samples near forbs sampled fall 2007 and 
spring 2008. The means of each sample were independently analyzed with a one-way ANOVA to test significance between 
means.  A Tukey’s Test was used to determine differences among means. 
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In fall 2008, the concentration of silicon in the soils around Echinacea pallida, 

Monarda fistulosa, and Silphium laciniatum was statistically higher than that around 

Lespedeza capitata, Solidago canadensis and Solidago rigida. The concentration of 

silicon in the soil around Solidago canadensis was significantly lower than the soil 

around the other forbs.   

 In spring 2009, the mean silicon concentrations in the soil around Heliopsis 

helianthoides and Monarda fistulosa were the highest.  Their level was significantly 

higher than that in the soils adjacent to Silphium laciniatum, Solidago canadensis, and 

Lespedeza capitata.  The silicon concentration in the soil around Lespedeza capitata was 

significantly lower than the soil around all the other forbs.



 
 

 
 

 

Figure B6. Mean concentration (ppm) of plant available silicon of selected soil samples near forbs sampled fall 2008 and 
spring 2009. The means of each sample were independently analyzed with a one-way ANOVA to test significance between 
means.  A Tukey’s Test was used to determine differences among means. 
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Table B4.  Concentration of minerals present in composite samples from soils adjacent to selected forbs. 

 

 

 

 

 

Mg of plant available mineral/kg of soil 
  Potassium Sodium Silicon 

Species F1  S1 F2 S2 F1  S1 F2 S2 F1 S1 F2 S2 
Desmodium canadense 225 193 NA 204 30 33 NA 21 21 17 NA 20 
Echinacea pallida 216 293 172 185 37 33 15 18 21 24 20 25 
Heliopsis helianthoides 255 352 106 155 33 42 18 21 26 31 23 36 
Lespedeza capitata 207 257 107 125 47 53 19 20 18 19 21 15 
Monarda fistulosa 251 377 224 209 31 41 19 23 21 28 31 28 
Ratibida pinnata 288 388 144 247 28 40 21 17 20 26 21 20 
Silphium laciniatum 304 333 269 273 29 37 18 16 24 24 28 23 
Solidago canadensis 229 271 83 155 33 49 16 24 21 20 17 21 
Solidago rigida 267 323 158 183 25 37 19 19 21 20 18 20 
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In most instances there is an increase in the mineral levels in the soil around the 

plants from fall to spring.  Plant available potassium concentration decreased in the soil 

near Desmodium canadense from fall to spring.  Due to a lack of sample data, we cannot 

compare the levels associated with this species in the next year.  Desmodium canadense 

is the only species in the first year where this seasonal decrease takes place but it occurs 

again the second year for potassium in the soil near Monarda fistulosa.  Plant available 

soil concentrations of sodium and silicon also decrease in several species each year, 

including Echinacea pallida, Ratibida pinnata, Silphium laciniatum, and Lespedeza 

capitata.  When potassium or sodium levels decrease from fall to spring, silicon levels 

frequently do the same (two-thirds of the time), although some fluctuation in silicon 

concentration seems to occur independently



 
 

 
 

Table B5 a.  Percent of potassium in ash and plant available potassium in composite soil samples. 

Potassium Fall 2007 Spring 2008  Fall 2008  Spring 2009  
Species  Ash (%)  Soil mg/kg  Ash (%)  Soil mg/kg  Ash (%)  Soil mg/kg  Ash (%)  Soil mg/kg 
Deca 3.72 225 1.48 193 4.08 NA 2.01 204
Ecpa 2.45 216 1.44 293 9.95 172 4.2 185
Hehe 9.88 255 3.45 352 10.8 106 3.86 155
Leca 9.76 207 3.86 257 13.4 107 7.6 125
Mofi 9.01 251 5.18 377 10.3 224 5.26 209
Rapi 4.87 288 2.32 388 5 144 3.14 247
Sila 7.15 304 3.49 333 6.55 269 6.3 273
Soca 20.8 229 10.7 271 16.4 83 11.9 155
Sori 11.3 267 5.55 323 9.18 158 5.8 183
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Table B5 b.  Percent of sodium in ash and plant available sodium in composite soil samples. 

Sodium Fall 2007  Spring 2008  Fall 2008 Spring 2009  

Species  Ash (%)  Soil mg/kg   Ash (%)  Soil mg/kg  Ash (%)  Soil mg/kg  Ash (%)  Soil mg/kg  

Deca 0.57 30 0.35 33 0.3 NA 0.6 21

Ecpa 0.2 37 0.27 33 0.59 15 0.72 18

Hehe 0.42 33 0.22 42 0.53 18 0.44 21

Leca 0.42 47 1.18 53 0.71 19 1.01 20

Mofi 0.37 31 0.49 41 1.23 19 0.91 23

Rapi 0.36 28 0.21 40 0.86 21 0.41 17

Sila 0.13 29 0.21 37 0.19 18 0.17 16

Soca 0.76 33 0.76 49 1.76 16 0.98 24

Sori 0.41 25 0.43 37 0.61 19 0.73 19

 

 

 

 

 

 

 

 

 

131 



 
 

 
 

Table B5 c.  Percent of silicon in ash and plant available silicon in composite soil samples. 

Silicon Fall 2007  Spring 2008  Fall 2008  Spring 2009  

Species  Ash (%)  Soil mg/kg   Ash (%)  Soil mg/kg  Ash (%)  Soil mg/kg  Ash (%)  Soil mg/kg 

Deca 6.09 21 7.88 17 4.98 NA 4.38 20

Ecpa 15.44 21 15.14 24 9.96 20 10.92 25

Hehe 18.54 26 23.96 31 17.27 23 12.09 36

Leca 17.33 18 17.35 19 10.67 21 12.01 15

Mofi 3.83 21 11.99 28 4.61 31 6.44 28

Rapi 15.27 20 17.34 26 116.36 21 21.32 20

Sila 16.22 24 22.23 24 9.27 28 10.96 23

Soca 17.99 21 19.86 20 15.57 17 11.82 21

Sori 22.08 21 31.6 20 20.75 18 23.81 20
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Tables B6-B8 summarize the mineral concentration changes of potassium, sodium 

and silicon from fall to spring within the forbs and the adjacent soils.  Organized by 

mineral, values in these tables are positive when a mineral increased in the tested material 

from fall to spring, and negative when the concentration fell from fall to spring. 

Table B6.  Change in concentration (ppm) of potassium in composite samples from forbs 
and adjacent soils from fall 2007 to spring 2008 and fall 2008 to spring 2009.  Positive 
values indicate an increase from fall to spring and negative values indicate a decrease 
from fall to spring. 

 

 

 

 

 

 

 

 The first year, potassium increased across the board in plant and plant available 

soil concentrations (Table B6).  Just two soil samples decreased in concentration.  The 

second year, each of the plants sampled decreased in potassium concentration from fall to 

spring.  Soil concentrations were apparently unrelated to plant concentrations, with some 

increasing and some decreasing over time. 

Changes in potassium concentration (ppm) 
Fall 2007-Spring 

2008 
Fall 2008-Spring 

2009 
Plant Soil Plant Soil 

Deca 7310.3 4.2 -2361.0 NA 
Ecpa 6367.6 28.1 -1259.6 1.1 
Hehe 5418.2 26.8 -2565.6 -13.8 
Leca 4179.1 -7.9 -2340.9 17.6 
Mofi 4003.7 12.9 -1753.0 -4.6 
Rapi 5285.9 32.3 -944.9 64.2 
Sila 5100.3 33.5 -1324.5 -4.1 
Soca 3734.1 -6.2 -1879.8 37.6 
Sori 2693.4 36.7 -2862.8 41.5 
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Table B7.  Change in concentration (ppm) of sodium in composite samples from forbs 
and adjacent soils from fall 2007 to spring 2008 and fall 2008 to spring 2009.  Positive 
values indicate an increase from fall to spring and negative values indicate a decrease 
from fall to spring. 

 

 

 

 

 

 

 

Concentrations of sodium in all of the plant material except Lespedeza capitata 

and Solidago canadensis decreased from fall to spring the first year (Table B7).  The 

second year all of the soil concentrations increased but the concentrations decreased in 

vegetation for half of the species. 

 

 

 

 

 

 

 

Changes in  sodium concentration (ppm) 

  
Fall 2007-Spring 

2008 
Fall 2008-Spring 

2009 
  Plant Soil Plant Soil 

Deca -49.9 -11.6 48.7 NA 
Ecpa -27.3 -14.8 10.2 14.4 
Hehe -35.7 -2.4 -112.0 16.9 
Leca 50.0 4.6 84.5 13.7 
Mofi -5.3 -20.0 -46.5 5.3 
Rapi -43.5 -19.6 -166.7 7.1 
Sila -26.2 -6.1 34.9 1.3 
Soca 77.0 -6.1 -19.2 6.0 
Sori -1.5 -31.7 -49.0 8.2 
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Table B8.  Change in concentration (ppm) of silicon in composite samples from forbs and 
adjacent soils from fall 2007 to spring 2008 and fall 2008 to spring 2009.  Positive values 
indicate an increase from fall to spring and negative values indicate a decrease from fall 
to spring. 

 

 

 

 

 

 

 

 

 

 Silicon behaves most consistently within plants, always decreasing from fall to 

spring.  Plant available silicon in the soil increased in each soil sample the first year as 

my hypothesis suggested, but in several instances there was a decrease in plant available 

silicon in the soil the second year. 

 To assess whether or not there is a correlation between soil and vegetation 

mineral concentrations, simple Pierson's Correlation Coefficient statistical analysis has 

been done. 

 

Changes in silicon concentration (ppm) 

  
Fall 2007-Spring 

2008 
Fall 2008-Spring 

2009 
  Plant Soil Plant Soil 

Deca -126.0 26.3 -290.6 NA 
Ecpa -571.6 20.9 -157.0 -2.0 
Hehe -772.9 25.8 -264.4 24.5 
Leca -208.2 17.7 -278.6 -5.7 
Mofi -52.2 16.4 -100.8 -21.3 
Rapi -706.9 18.5 -197.2 21.8 
Sila -455.5 19.9 -268.1 -21.1 
Soca -426.2 13.6 -310.8 26.3 
Sori -674.1 13.8 -129.1 26.1 
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Table B9.  Correlation between mineral concentrations of plant species and adjacent soils 
of individual sites. 

 
P-Value 

Species (Soil/vegetation) 
Samples Potassium Sodium Silicon 

1 0.413 0.199 0.005
2 0.026 0.512 0.012
3 0.005 0.730 0.014
4 0.025 0.125 0.345
5 0.008 0.057 0.011
6 0.000 0.517 0.002
7 0.159 0.685 0.004
8 0.717 0.712 0.120
9 0.000 0.108 0.013

 

The data of samples from individuals sites presented in the following three graphs 

are comprised of the mean of the samples each species. (Ex. The mean of all the 

Desmodium canadensis for fall 1 would be 1 point.  This data was used to create the year 

1 and year 2 graphs in the previous section.   

Comparing the plant available mineral content of soil directly to the mineral 

content of the vegetation in a scatter plot, it is easier to see if the soil affects the plant 

material or not.  Figures B7-B9 are comprised of the data from individual sites.  Figures 

B10-B12 are numbers provided by the composite data.



 
 

 
 

 

Figure B7.  Scatter plot of potassium concentration in vegetation and plant available potassium in the soil from individual sites. 
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Figure B8. Scatter plot of sodium concentration in vegetation and plant available sodium in the soil from individual sites. 
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Figure B9.  Scatter plot of silicon concentration in vegetation and plant available silicon in the soil from individual sites. 
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 Figures B10-B12 show that there is very little if any correlation between 

vegetation mineral content and soil available mineral content.  In general, the data show 

horizontal patterns indicating that over the total range of plant available minerals at each 

site, the minerals stay the same.  The only slight deviations of this are potassium in spring 

1, and sodium in fall 2.  These show a slight pattern, but not in any consistent way.  

Figure 31 has similar data except for fall 1, which has a similar plant available soil 

concentration for all concentrations of vegetation. 



 
 

 
 

 

Figure B10.  Scatter plot comparing potassium concentrations in plant species and adjacent soils of composite samples. 
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Figure B11.  Scatter plot comparing sodium concentrations in plant species and adjacent soils from composite samples. 
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Figure B12.  Scatter plot comparing silicon concentrations of plant species and adjacent soils from composite samples. 
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Using the composite data, or minerals after combustion, fall 2008 potassium in 

Figure 34 shows a slight reverse correlation that was not present in the individual site 

data.  Spring 2008 sodium and silicon both show a bit of a correlation as well, but not 

entirely.  Again, the other times and minerals do not show a correlation. 

Relationship of Minerals in Soils With Minerals in Plants 

The mineral concentrations varied when comparing mineral content of the plants 

with the mineral content of the soils.  Potassium and sodium concentrations of the plants 

tended to be 5-20 times higher, occasionally more, than concentrations in the adjacent 

soil.  Silicon concentrations of the plants tended to be about 2-3 greater than the adjacent 

soil although in spring 2009 there were a few instances in which the concentration in the 

plants was quite similar to that of the adjacent soil. 

I hypothesized that amount of mineral in the soil would affect the mineral content 

of the plant tissue.  I assumed that decreases in minerals in plants would be reflected by 

increases in adjacent soils. I further assumed that high mineral concentrations in the soil 

would result in higher mineral concentrations in the adjacent plants unless something 

prevented uptake of the minerals. 

Overall there is very little correlation between the concentration of the minerals in 

the plants and in the adjacent soils for the individual species samples.  In the composite 

samples, the correlation of sodium in plants and soils is evident in the individual species 

samples in that five of the nine species (Echinacea pallida, Heliopsis helianthoides, 

Ratibida pinnata, Silphium laciniatum, and Solidago canadensis) show a positive 

correlation, two of the species (Heliopsis helianthoides and Solidago canadensis) have a 
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very strong positive correlation and Solidago laciniatum is almost a strong positive.  In 

the individual species samples the only correlation was a very strong one between 

potassium in Solidago canadensis and the adjacent soil.    

According to Bakker and Elbersen (2005), the deposition of inorganic elements in 

the plant tissue is dependent on the texture of the soil in which it is grown.  Switchgrass 

grown on sandy soil consistently showed lower potassium content.  When sampled under 

natural conditions species from infertile sites generally have lower tissue nutrient 

concentrations than species from fertile sites, owing to reduced availability and 

absorption of nutrients (Auclair 1977).  This raise suggests that the concentration of 

minerals in plant tissue is affected by the concentration of the minerals in the soil.   

Conversely, if the mineral content within the plants is high and large amounts are leached 

out of the dead plant this could affect the concentrations of the minerals in the soil 

adjacent to the plants.  Therefore, it is possible that the concentrations determined by any 

of the following; the amount of mineral available in the soil, how much of the mineral is 

taken up, and utilized and/or how much re-enters the soil from the plant.     

Interpretation of the relationship between plants and soils may not be as 

straightforward as originally anticipated.  Mineral concentrations in soil solution and 

therefore mineral absorption by plants fluctuate considerably during the year.  In 

nonagricultural soils there is generally a predictable spring nutrient flush and in some 

areas also an autumn or winter flush associated with the leaching and breakdown of fresh 

litter, a spring increase in microbial activity, and freeze-thaw or wetting-drying cycles 
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that dissolve microbial cells.  As sampling was done well after the first killing frost (Oct. 

25, 2007 and Oct. 21, 2008) and before re-growth in the spring, changes in mineral 

concentration would be physical in nature and not involve metabolic processes.  

Therefore, moisture and temperatures related to freezing and thawing would be factors 

affecting leaching of the minerals from the plants and soils.   

Potassium ions within plants do not enter into permanent organic combinations, 

but exist as highly mobile soluble organic and inorganic salts (Lawton and Cook 1954).  

In early fall as senescence is occurring, potassium ions move from older dormant tissue 

in the phloem to the roots and diffuse into the soil.  Furthermore, potassium ions are 

readily leached from dormant tissue by rain or dew.  Hinnant and Kothmann (1982) 

found that as little bluestem reached senescence potassium was translocated and readily 

leached early in the fall. The higher concentrations in tissue of the plants than the soils I 

observed suggest that leaching from the soils may have already occurred prior to the first 

sampling each year. This may also be true for sodium and silicon although they are not as 

mobile as potassium.  

“The difference in total ash content among these soil types can be largely 

explained by the higher soluble silica level in clay soils, which results in higher ash levels 

in crops grown on clay soils,” (Bakker and Elbersen, 2005). 

 


	Variation in mineral content of prairie forb species and content changes over winter related to slagging potential
	Recommended Citation

	Microsoft Word - Jennifer Rupp Thesis

