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ABSTRACT 

 

Biodiversity and ecosystem function research (BEF) suggests species richness 

may provide high levels of ecosystem functions. However, few studies have applied a 

BEF perspective of restoration, which utilizes biodiversity to achieve increases in 

ecosystem functions. In this study, we test the application of the BEF perspective of 

restoration in the design of tallgrass prairie plantings as a biomass crops. Specifically, we 

examine the effects of planted species richness on biomass production, resistance to 

disturbance, and resistance to invasion by weeds. 

Four seed mixes which range in species richness (1, 5, 16 and 32 species) were 

established in four, field-scale (0.33-0.55 ha) plots on three soil types. Over four years, 

the seed mixes produced similar amounts of biomass (8.27 ± 0.65 to 7.46 ± 0.65 Mg/ha). 

Seed mixes had relatively high yields compared to estimates from fertilized monocultures 

of perennial crops in the region.  Species rich planting (16-32 species) may produce more 

biomass than less species rich plantings in years without flooding or drought. However, 

the effects of species richness on productivity are complicated by soil type. The mix with 

the highest species richness (32 species) had the lowest biomass production on the 

Waukee loam soil, but the highest biomass production on Spillville-Coland clay loam 

soil. Plantings with higher species richness were also less resistant to drought. However, 

species rich mixes (16 and 32 species) produced similar amounts of biomass compared to 

less species rich mixes (5 species) with the same dominant species.  Finally, I found that 

increased species richness increased resistance to invasion by weeds and as few as five 



species may provide high levels of resistance to invasion by weeds.  The study suggests 

that the application of the BEF perspective of restoration may lead to weed resistant crops 

which are as productive, or more productive than low diversity crops.
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CHAPTER 1 

INTRODUCTION 

Recent interest in the use of diverse mixtures of plants as biomass feedstocks 

(Tilman et al. 2006a) has raised questions about the applicability of biodiversity and 

ecosystem function (BEF) research to ecological restoration. The Society for Ecological 

Restoration (SER; 2004) defines ecological restoration as “the process of assisting the 

recovery of an ecosystem that has been degraded, damaged, or destroyed.”  Naeem 

(2006) breaks down the perspectives and goals of restoration into three categories: the 

community ecology perspective, the ecosystem function perspective and the Biodiversity-

Ecosystem Function (BEF) perspective.   

The community ecology perspective attempts to restore species and species 

persistence; biodiversity itself is often the goal of this perspective (Naeem 2006). The 

ecosystem function perspective is based on an ecosystem ecology view, being concerned 

with resource and energy and their movement in the system (Naeem 2006). Some 

distinguish ecosystem functions from ecosystem properties such as temporal stability, 

and the ability of a community to maintain function (resistance) or return to a similar 

level of a function (resilience) after perturbation (Naeem 2006).  I will be using 

ecosystem function to include all these meanings. Finally, restoration from the BEF 

perspective alters abiotic conditions to achieve ecosystem function. Instead of viewing 

the community and ecosystem aspects of a system as separate, BEF research attempts to 

determine the separate influences of species richness, species function, and species 

interactions on ecosystem functions (Naeem 2006). Restorations from this perspective 
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attempt to achieve ecosystem function by restoring biodiversity. Naeem (2006) is careful 

to point out that the perspective which will be most effective will depend on the context 

and goals of the restoration. For example, many ecosystem functions in aquatic systems 

are more strongly affected by hydrology than biodiversity, and an ecosystem function 

perspective may be most appropriate. 

Experiments have suggested that greater diversity may provide increased 

ecosystem function in many systems (Balvanera et al. 2006, Cardinale et al. 2007). 

However, the implications of BEF research for ecological restoration have been largely 

unexplored (Naeem 2006). Wright et al(2009) points out that only a few experiments 

have tested the BEF hypothesis in a restoration setting (Bullock et al. 2007, Bullock et al. 

2001, Callaway et al. 2003). For example, Bullock et al. (2007) restored cereal crop fields 

with the goal of increased hay production and quality using a seven species grass mix, a 

government recommended grassland planting, and a 39-species mix of grasses and forbs 

which was designed to resemble local reference communities.   Except for the first year 

after planting, the more species rich plots had higher productivity in all years examined 

(Bullock et al. 2001, Bullock et al. 2007).  This study represents the application of the 

BEF perspective of restoration for three reasons. Seed mixes in the study resemble 

commonly used seed mixes for the site being studied; the ecosystem functions being 

examined are set by the goals of the restoration rather than arbitrary functions selected by 

the researcher; and seeding rates and plot maintenance reflect practical large-scale 

plantings as opposed to high seeding rates and hand-weeding of plots in some BEF 

research (Tilman et al 2006b).  
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The BEF perspective may be the most appropriate for the design of tallgrass 

plantings as sustainable replacements for fossil fuels (Tilman et al 2006a). A diverse mix 

of tallgrass species may supply important ecosystem functions for energy crops, 

specifically, high biomass productivity, low rates of invasion by weeds, and resistance to 

disturbance. Additionally, high diversity plantings may be multifunctional, providing 

additional benefits beyond these three specific goals. Compared to row crops, diverse 

perennial crops may have positive impacts on soil quality, water quality and wildlife 

populations (Robertson et al. 2008, Blanco-Canqui 2010, Meehan et al. 2010, Myers et 

al. 2011).  

While the need for crops to supply biomass as a feedstock to replace oil 

consumption is growing (DOE 2005, DOE 2011, EPA 2010, EPA 2013), it is unclear 

how well BEF theory can currently inform the design of species rich plantings for 

biomass feedstocks. In this study, I attempt to apply a BEF perspective of ecological 

restoration to the design of tallgrass prairie plantings for use as low input biomass crops. 

Biodiversity and Productivity 

A number of experiments suggest increasing biodiversity leads to increased 

biomass productivity (Cardinale et al 2007; Balvanera et al 2006). These experiments 

explore the effect of biodiversity on ecosystem functions by growing a number of species 

in monoculture and comparing them with mixed species plots.  Each species mixture is 

created by randomly selecting species from a pool of species grown in monocultures. 

This is done for a number of levels of species richness. Biomass productivity, pest 
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resistance and other ecosystem services provided by biodiversity are measured over time. 

Two long-term experiments which used these methods are the Biodiversity II experiment 

at the Cedar Creek Ecosystem Science Reserve, Minnesota, and the BIODEPTH 

experiment in Europe (Tilman et al. 2006a, Hector et al 1999).  

In the Biodiversity II experiment, Tilman et al. (2006a) established 168 plots 

containing 1, 4, 8 or 16 species on sandy, nitrogen-poor soil at the Cedar Creek 

Ecosystem Science Reserve. Species included in mixes were randomly selected from a 

pool of 18 native perennials. These mixes were seeded at a rate of 10 g/m2 in 9m X 9m 

plots that were burned annually (Tilman et al. 2006b). After ten years, the study showed 

energy production from biomass increased with increasing species richness (Tilman et al. 

2006a).  After observing the effects of biodiversity on productivity, Tilman et al. (2006a) 

calculated that diverse tallgrass restorations on marginal farmland could potentially 

produce 1.5 times more energy than corn grain ethanol from corn grown on fertile soil. 

The BIODEPTH experiment used methods similar to the biodiversity II 

experiment, but was replicated at eight sites in seven European countries using 2x 2m or 

2x5 m plots (Spehn et al. 2005). Overall, a log-linear relationship was found between 

above-ground biomass productivity and species richness; doubling the number of species 

increased productivity by 80 g/m2 (Hector et al. 1999). Additionally, productivity 

increased linearly with an increased number of functional groups represented in the 

species mix. More specifically, the addition of a functional group increased yield by 100 

g/m2 (Hector et al. 1999). 
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A meta-analysis of BEF experiments by Cardinale and others (2007) found that 

diverse mixtures tended to produce more biomass than the average of all component 

species in monocultures (i.e., overyielding), but rarely produced more biomass than the 

single most productive monoculture of a component species (i.e., transgressive 

overyielding). In the 44 studies analyzed by Cardinale and colleagues (2007), diverse 

communities produced 1.7 times more biomass than the average of monocultures of all 

component species. By contrast, transgressive overyielding was only reported in 35% of 

mixtures which produced, on average, 12 percent less biomass than the most productive 

monoculture of any component species. This may seem discouraging for proponents of 

diverse bioenergy crops because it suggests that the most productive monocultures would 

be the most productive crops. However, diverse communities were more likely to show 

transgressive overyielding as time progressed (Cardinale et al. 2007). Therefore diverse 

plantings may outperform single species when average productivity is considered over 

time. 

Biodiversity and Resistance to Disturbance 

Greater diversity may also increase the stability of biomass productivity in a 

community. The insurance hypothesis predicts that in more diverse communities there is 

a higher chance that species will respond differently to environmental variation (Yachi 

and Loreau 1999). With some species responding positively and others negatively to any 

environmental variation, increasing diversity should dampen the effect of any disturbance 

(Tilman 1996; Yachi and Loreau 1999).   
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The first implication of this hypothesis is that diverse communities should have 

lower variation in productivity over time compared to less diverse communities. Hooper 

and colleague’s qualitative review (2005) of experiments supported the lower long-term 

variability in diverse communities. Long running grassland experiments also suggest that 

diverse communities have lower variability in function over time (Caldeira et al. 2005, 

Tilman, Reich and Knops 2006). 

Another implication of the insurance hypothesis is that diverse communities 

should have higher resistance to any single disturbance. Resistance compares the stock 

and rates of a community from pre-disturbance to disturbance conditions (Griffin et al 

2009). For example, diverse plots were more resistant to drought than less diverse plots in 

grassland plots which differed in diversity due to nutrient gradients (Tilman and Downing 

1994). When using tallgrass restorations to provide biomass feedstocks, resistance to 

disturbance may lead to a more consistent yields, decreasing the financial risk involved 

with growing such crops. 

However, results of experiments examining the effect of diversity on stability are 

mixed. In a meta-analysis which examined 446 measurements of biodiversity and 

ecosystem function, Balvanera and colleagues (2006) found that the effect of biodiversity 

depends on the identity and intensity of the environmental variation. While biodiversity 

provided stability with variations in nutrients, biodiversity had no effect or negative 

effects with drought, temperature treatments, or with high levels of environmental 

variation. For example, Pfisterer and others (2004) experimentally induced drought in 

plots of the Swiss site of the BIODEPTH experiment. They found larger impacts of 
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drought on species rich grasslands than on lower diversity planting.  While theory 

suggests that greater diversity will lead to more stable biomass productivity as the 

environment varies, the type and intensity of disturbance may be major factors in the 

stability of diverse communities.    

Biodiversity and Resistance to Invasion 

 Many experiments have found that species-rich plantings are more resistant to 

invasion by weeds than less diverse plantings (Hooper et al. 2005 and Balvanera et al 

2006). The mechanisms which cause species-rich communities to be more resistant to 

invasion include occupied functional space (Hooper and Duke 2010, Symstad 2000), a 

lower amount of light reaching the ground, and reduced availability of soil nutrients 

(Knops et al. 1999). Invasion decreases with increasing species richness as less resources 

are available for invading species to utilize. 

 Resistance to invasion is especially beneficial in diverse mixtures because the 

establishment of non-native and weedy species may undermine the positive effects of 

species richness on productivity. Invasion by non-natives may disrupt the complementary 

effects of native biodiversity thereby reducing productivity (Pfisterer et al. 2004). While 

increasing native diversity in a planting tends to increase productivity, increasing non-

native diversity in plantings may not (Isbell and Wilsey 2011).  

The suppression of weeds using herbicides is a common agricultural expense. 

BEF research suggests that the cost of weed suppression may be greatly reduced in 

diverse mixtures of native plants. The application of BEF theory to low input feedstocks 
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predicts that weeds will be less abundant in species rich plantings, reducing the 

maintenance cost of such crops. 

The Relationship of Biodiversity to Ecosystem Function 

The research described above indicates that species rich plantings will be 

productive, resistant to disturbance, and have low rates of invasion by weeds. However, 

these experiments also suggest that the effect of increasing biodiversity may level off 

with increasing species richness. In fact, most of the benefits of diversity may be present 

with relatively low species richness. In the BIODEPTH experiment, Hector and Bagchi 

(2007) pointed out that only 8 to 16 species were needed to achieve similar levels of eight 

ecosystem functions compared to more diverse plantings. Hooper and colleague’s review 

(2005) found that high levels of most ecosystem functions were achieved with five to ten 

species, but high levels of some functions were attained with as few as two species. 

Hector and colleagues (1999) found a log linear relationship between species richness 

and biomass productivity when analyzing results from eight sites across Europe, with a 

doubling of species needed for a certain amount of increase of the function in question. 

Evidence suggests that increasing biodiversity increases ecosystem function, but the 

amount of diversity required to achieve high levels of function may depend on the 

function being measured. 

 The relationship of biodiversity to ecosystem function may also be context-

dependent. In the BIODEPTH experiment, the BEF relationship was found to be log-

linear, when considering all seven countries together. However, when field sites were 
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considered individually, three sites had no detectable relationship between species 

richness and biomass production, while two sites had linear relationships, with each 

additional species in a mixture making similar contributions to ecosystem functioning 

(Hector et al. 1999). In their meta-analysis, Balvanera and others (2006) also found the 

location of a study had a strong influence on the result of the BEF experiment. While a 

general trend that increasing biodiversity leads to increased ecosystem function is clear, 

the relationship may be dependent on variables associated with location. 

In situations where a BEF perspective of restoration is appropriate, restoration 

goals for certain ecosystem functions may be met with relatively few species compared to 

the species richness of remnant communities, as the known benefits of species richness 

typically begin to reach saturation at relatively low species richness (Hector and Bagchi 

2007, Cardinale et al. 2006). However, the BEF relationship may vary at smaller spatial 

scales (Hector et al. 1999). Additionally, with little evidence to suggest precisely how 

much species richness is needed to attain an adequate level of the function or functions 

needed to meet restoration goals, BEF theory remains only a general guiding concept 

rather than a semi-predictive tool (Naeem 2006). Detailed studies of the application of the 

BEF perspective of restoration are lacking, but are needed to test BEF theory and to 

inform the practice of ecological restoration (Naeem 2006). 
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The Application of BEF to Restoration 

The random selection of species from species pools in BEF experiments allows 

researchers to apply their findings to the general function of biodiversity. Experiments 

that use these methods suggest that species rich tallgrass plantings could be productive 

crops with more resistance to disturbance and invasion by weeds than less diverse 

plantings. However, experiments like those described above have been criticized, as it is 

unclear how well random species assemblages reflect natural communities. Exploring all 

possible combinations of species in a BEF experiment may not resemble the way 

communities are assembled and species are lost in natural communities (Hooper 2005, 

Weiher and Keddy 1999). This criticism also applies to plantings in which seed mixes are 

designed as in most applications of the BEF perspective of restoration. These designed 

mixes are typically not random selections of local species. Rather, they reflect reference 

communities or seed mixes from previously successful restorations (Smith et al. 2010, 

Bullock et al 2007).  While results from the BEF experiments described above may apply 

to restorations, well recorded applications of the BEF perspective of restoration are rare 

(Wright et al 2009, Naeem 2006), and such experiments are needed to test BEF theory 

and inform ecological restoration.  

In this study, I examine the effectiveness of the BEF perspective of restoration in 

the design of native tallgrass plantings as biomass crops. The ecosystem functions that I 

measure are those that are important for the use of the plantings as biomass crops. Seed 

mixes were designed rather than randomly constructed.  Additionally large scale (0.33 to 

0.55 ha) plots were used, seeding rates were typical of native plantings in the region 
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(Smith et al. 2010), and plots were not hand weeded. Using these methods, this 

experiment tests the application of BEF theory in a restoration setting. Specifically, I test 

whether planting tallgrass prairie restorations with seed mixes which vary in species 

richness affects some ecosystem functions which are important for the success of 

tallgrass prairie plantings as biofuel feedstocks. I compare biomass productivity (Mg/ha 

of biomass), resistance to invasion by weeds (g/m2 of weed biomass), and resistance to 

drought (absolute change, Mg/ha, in biomass from pre to drought conditions) of four 

designed seed mixes which range in species richness. Based on the experiments reviewed 

above, I predict that more species-rich plantings will have higher levels of these three 

ecosystem functions. 

 

 

 

 

 

 

 

 

 



12 
 

 

CHAPTER 2 

METHODS 

Site Description 

In 2008, the Tallgrass Prairie Center (TPC) of the University of Northern Iowa 

established a biomass research site on a portion of the Cedar River Natural Resource 

Area (CRNRA) south of Waterloo, IA (N_42.3861, W -92.22241). The TPC rented the 

study site from the Black Hawk County Conservation Board, which acquired the property 

in 1973.  Since purchasing the area, the conservation board had leased the fields of the 

study site for corn and soybean production. The fields at CRNRA are separated by 

wooded fencerows consisting largely of Siberian elm (Ulmus pumila). At a larger scale, 

the site is near the Cedar River and surrounded by riparian woodland and row-crops 

(Figure 1). The mean of daily mean temperature from 1980 to 2010 at the site was 8.80 C 

(SD= 0.81) and the 30 year mean annual precipitation was 87.0 cm (SD=18.14, NOAA 

2014). 

The configuration of soils at CRNRA allowed me to test the productivity and 

weed resistance of tallgrass prairie plantings over three soil types that vary in drainage 

and fertility (Table 1, Figure 1). All three soils are relatively flat with 0-2% slope. 1) The 

excessively drained, Flagler sandy loam soil has a Corn Suitability Rating (CSR) of 55 

and sandy composition, 64.6% sand, 14.8% clay, and 20.6% silt (NRCS 2014).  2) The 

well-drained Waukee loam soil has a CSR of 72 and is composed of 38.5% sand, 21.7% 

clay, and 39.8% silt (NRCS 2014). 3) The Spillville-Coland alluvial complex is a poorly 

drained soil with a weighted average composition of 29.5% sand, 26.3% clay and 44.2% 

silt with an average CSR of 74 (NRCS 2014). Before planting the seed mixes, the surface 
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soil was measured for soil organic carbon, total nitrogen, and carbon to nitrogen ratio 

(Table 1, Cambardella, personal communication, 2008). The above soils will be referred 

to respectively as sand, loam and clay. 

 

 
 
Figure 1: Map of CRNRA research area. Plot names, soils, and treatments are included. 
(With permission from Jim Mason) 
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Table 1: Soil characteristics of the three soils used in this study. Soil composition (silt, 
clay, and loam), corn suitability rating (CSR), Total Nitrogen (TN), Soil Organic Carbon 
(SOC), and Carbon to nitrogen ration (C/N). SOC and TN are mg/g. Composition and 
CSR from NRCS (2014). SOC, TN and C/N courtesy of Cynthia Cambardella (Personal 
communication, 2008). 

 

           SOIL TYPE     SAND  CLAY    SILT CSR    TN  SOC     C/N 

                SAND   64.6% 14.8%  20.6% 55 1.44 14.24 9.88

               LOAM 38.5% 21.7% 39.8% 72 2.14 23.37 10.93

               CLAY 29.5% 26.3% 44.2% 74 2.29 24.9 10.86

 

 

Seed Mixes 

Perennial, native seed mixes compared in this study were designed with four 

levels of species-richness. The seed mixes were: (1) Switch1: a monoculture of Panicum 

virgatum, (2) WSgrass5: a five species mix of carbon-4 photosynthesis (C4) grasses 

native to the tallgrass prairie, (3) Prairie16: a 16 species mix including C4 and carbon-3 

photosynthesis (C3) grasses, legumes and non-leguminous forbs, and (4) Prairie32: a 32 

species mix including C4 and C3 grasses, sedges, legumes and non-leguminous forbs. 

Seed mixes include the species from lower diversity treatments. For example, the prairie 

treatment contains all species from the biomass treatment plus 16 additional species. 

Mixes were seeded at 561 to 869 pure live seed per m2 (Table 2). Species, functional 

group and seeding rate for each seed mix can be found in Table 2. 
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Table 2: Species, functional groups, and seeding rates of the four treatments used in this 
study (units are pure live seed per square meter). 
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Perennial, native seed mixes were designed based on the following criteria. Since 

a monoculture of switchgrass has been recommended as a productive, perennial energy 

crop, it was included to compare with more diverse plantings. Native C4 grasses, 

especially big bluestem (Andropogon gerardii) and little bluestem (Schizachyrium 

scoparium), were observed to be very productive in previous research. As such, a mix of 

C4 grasses was designed. In addition to these five C4 grasses, the Prairie16 mix adds 11 

species including cool-season grasses, forbs and legumes. Species selection for the 

biomass treatment was based on nine criteria.  The selected plants were adapted to a wide 

range of habitats, widely distributed, easy to establish, long lived, vegetatively productive 

with readily available seed, biomass which would remain upright until spring, and the 

ability to coexist with other species. Various species exhibiting a range of phenologies 

were included in the seed mix (Appendix A). In addition to including the species from the 

Prairie16 mix, the Prairie32 mix was designed to resemble a diverse prairie planting in 

the region.  

Design, Establishment, and Maintenance 

Four replicates of each seed mix were randomly assigned to plots on each of three 

soil types for a total of 48 plots.  Plots ranged from 0.33 to 0.55 ha (0.8 to 1.4 acres). All 

research plots were seeded in late May and early June of 2008, but shortly thereafter were 

inundated for more than two weeks by the Cedar River. Due to large scale scouring and 

siltation by the flood, it was necessary to replant the plots in 2009.  In order to reduce 

weed pressure and insure that the previous planted seeds would not be present to 

influence the results of the study, the fields were planted with glyphosate resistant 
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soybeans (Glycine max) after the flood had receded in July of 2008.  Glyphosate was 

applied in July and August to control weed pressure and eliminate any effect of the 2008 

planting. 

The site was reseeded in spring 2009.  Seed was drilled directly into soy bean 

stubble between May 25 and June 5, 2009.  Plots were planted from the least diverse mix 

to most diverse mix using a Truax native seed drill. The drill boxes were cleaned between 

planting of the seed mixes. Establishment mowing was conducted on June 26, 2009. 

While many plantings require multiple mowing during the first growing year, the site had 

lower then typical weed establishment during the first growing season (see Smith et al. 

2010, for establishment mowing guidelines). The presence of less weeds was likely due 

to the limited disturbance from drilling into stubble and years of chemical weed 

suppression on the site.   

Non-plot areas were planted in fall 2008 with a mix similar to the prairie 

treatment but at double the seeding rate (Figure 1). To limit the colonization of plants 

from one plot to another, a 2m wide strip was planted with a commercial pasture mix. 

This 2m wide lane around each plot was maintained by multiple mowings each growing 

season. Research plots were burned on April 5, 2011. Plot A7 (Figure 1) was hayed on 

November 12, 2011 to provide biomass for a pelletization test. All research and non-plot 

areas were hayed, except A7, from March 26 to March 30, 2012 to provide material for 

pelletization and conducting a test burn at Cedar Falls Utilities. In 2013, plots received no 

management. 
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Sampling Methods 

Basal area for each species was annually estimated in each plot. Two, 10 m 

transects were randomly located in each plot, one running East to West, the other North 

to South. To avoid edge effects, no transect was placed within one meter of any plot 

edge.  Ten 0.1m2 quadrats (20cm X 50cm) were sampled at one meter intervals along the 

South or West side of the transect. Percent cover of each species was estimated at 2.5 cm 

above the ground.  Presence of species not included in the seed mix for a plot were 

recorded. Basal area sampling was conducted from June 17 to 24, 2010; July 8 to July 22, 

2011; July 16 to July 27, 2012 and July 8 to 19, 2013. 

Above-ground biomass was measured by clipping plants at ground level, sorting 

plant material by functional group, drying plant biomass at 65°C for 72 hours, and 

weighing the dried plant biomass in each functional group. Dead material on the ground 

was excluded from the sample, but standing dead material was included. The functional 

groups considered were C4 grasses, C3 grasses, legumes, non-leguminous forbs and 

weeds (Table 2). Any plant which was not included in the seed mix for a plot was 

included in the weeds functional group. The sampling protocol differed slightly in 2013 

versus years 2010 – 2012. More specifically, in 2010-2012, 10 sub-samples were 

collected from randomly located 0.1m2 quadrats. In 2013, quadrat size was increased to 

0.3 m2 to provide enough plant material for combustion analysis. Biomass samples were 

taken from August 25 to September 3 in 2010; August 29 through September 12, 2011; 

August 28 to Sept 13, 2012, and from Sept. 2 to Sept. 27, 2013. These dates reflect the 

time of peak biomass production of switchgrass in the region (Heaton et al 2004).  
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Statistical Analysis 

The above-ground biomass of all functional groups including weeds and the weed 

biomass alone were compared using univariate repeated measure ANOVAs with years as 

the repeated measure and seed mix and soil type as factors. Univariate repeated measures 

ANOVA is appropriate when the same trait is measures multiple times on the same 

subject, plots in my case (SYSTAT 2009). The assumptions of repeated measures 

ANOVA include normality and compound symmetry, which includes the homogeneity of 

variances and the similarity of the covariance of all pairs of repeated measures (SYSTAT 

2009).  

I evaluated normality within cells with the Anderson-Darling test and evaluated 

the assumption of compound symmetry with the Huynh-Feldt � statistic using the 

corresponding correction to p-values when appropriate (SYSTAT 2009). Total biomass 

data was normal (p > 0.15), and met the assumption of compound symmetry (� = 1.00). 

Weed biomass was log+1 transformed to meet the assumption of normality, even after the 

log+1 transformation the WSgrass5 and Prairie16 on the sand soil in 2013 violated 

normality. The log+1 transformation was retained since violations were minor. After the 

log +1 transformation the weed data also met the assumption of compound symmetry (� 

= 1.00).   

Post-hoc tests for repeated measures are complex and methods for calculating 

confidence intervals and inference tests have only recently been developed (Lofus and 

Mason, 1994; Jarmasz and Hollands, 2009; Hollands and Jarmasz 2010). Since more data 

about the variability of a cell is available with repeated measures than is available in 
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ANOVA models without repeated measures, it is beneficial to retain this information 

when creating confidence intervals and when conducting post hoc comparisons (Lofus 

and Mason, 1994). For each repeated measures ANOVA, confidence intervals were 

calculated following Jarmasz and Hollands (2009) using MS of the error term from the 

repeated measure ANOVA as an estimate of variability. Post-hoc tests follow Lofus and 

Mason (1994) by multiplying the 95% confidence intervals by √2  and comparing this to 

the difference in means between pairs. In results “n” represents trials (measurements of 

plots) and “N” represents subjects (plots). 

I explored the resistance of seed mixes to disturbance by drought by calculating 

the difference in mean biomass production of each plot between 2011, a relatively normal 

year, and 2012, a drought year. The absolute difference in biomass production was 

compared using a two-way ANOVA with soils and treatments as factors. Data met the 

assumptions of normality (Shapiro-Wilk p = 0.90) and homoskedastiaty (Levene’s test 

p=0.952). Soil and the two-way interaction were not significant, and the model with the 

lowest Akaike Information Criteria was used, which included only the seed mix term. A 

Fisher’s LSD test was used for post-hoc comparisons of seed mixes. Repeated measures 

ANOVA for total biomass production was conducted in Minitab 16. All other statistics 

were computed using Systat 13 except for those in Appendix B which were conducted in 

PRIMER 6. All Graphs were created using SigmaPlot 10, except for Appendix B which 

was created in PRIMER 6. 
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CHAPTER 3 

RESULTS 

Yearly Temperature, Precipitation, and Flooding 

The average growing season (February to September)  precipitation from 2010 to 

2013 was 82.63 cm, slightly higher than the thirty year average for the area of 75.63 cm 

(SD = 18.00, NOAA 2014).  The annual growing season precipitation for 2010 to 2013 

was 97.36 cm in 2010, 59.54 cm in 2011, 40.46 cm in 2012, and 87.73 cm in 2013 

(NOAA 2014). I will be using the term drought to refer to 2012 since that year had 

precipitation that was 1.95 standard deviations lower than the 30 year mean growing 

precipitation for the site. Although above average rainfall occurred in the summer of 

2010, the site did not flood. On May 31, 2013, the Cedar River adjacent to the research 

site had it’s 12th highest flood crest on record (NWS 2014). The research site flooded, 

with water remaining over the clay soil from May 24 to June 30. The loam was inundated 

in the first week of June, with less than 30 cm of water (Myers and Hoksch, personal 

communication, 2013). The sandy soil did not flood in 2013 (Myers and Hoksch, 

personal communication, 2013). I will be referring to the events of 2013 as disturbance 

by flooding.  

The timing of precipitation also varied with an especially wet summer in 2010, a 

wet spring in 2013 and dry summers in 2011, 2012, and 2013 (NOAA 2014, Figure 2). 

The 30-year average temperature for the growing season at the site was 13.20 C (NOAA 

2014). Except for 2013, most years of the study had above average temperatures (NOAA 

2014, Figure 3). 
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Figure 2: Monthly precipitation from 2009 to 2013 and 30 year average. Data was 
recorded by the Waterloo Airport weather station, 16 miles northwest of the research site 
(NOAA 2014).  
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Figure 3: Monthly temperature (from daily average temperature) for 2010 to 2013 with 
the 30-year average recorded by the Waterloo Airport weather station, 16 miles northwest 
of the research site (NOAA 2014). 
 

 
Biomass Yield 

The average biomass yield (total of all functional groups including weeds) of all 

plots over the four years was 8.06 Mg/ha. Mean Biomass productivity and ranged from 

3.42 Mg/ha, the WSgrass5 on sand in 2012, to 14.57 Mg/ha, the Prairie16 on clay in 2011 

(Appendix E). Over the three soils and four years, no significant difference in biomass 

yield was detected between seed mixes (p = 0.266, Table 3). Over the three soils and four 
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years, Switch1 had the highest mean biomass yield with 8.274±0.647 Mg/ha, followed by 

the Prairie16 mix with 8.257±0.6427 Mg/ha, the Prairie32 mix with 8.227±0.647  Mg/ha, 

and the WSgrass5 with 7.492±0.647 Mg/ha. However, seed mixes reponded differently to 

soils (p < 0.028) and  years (p < 0.017, Table 3). 

 

Table 3: Repeated measures ANOVA table for total biomass yield (Mg/ha) from 2010 to 
2013. Comparing mean biomass production of all functional groups sampled including 
weed biomass (n=192, N=48). 

 
 
Between Subjects            SS     df            MS     F-Ratio   p-Value 
Soil 171.471 2 85.735 17.592 <0.001
Seed Mix 20.864 3 6.955 1.427 0.251
Soil*Seed Mix 79.516 6 13.253 2.719 0.028
BS error  175.448 36 4.874  
      
Within Subjects           SS     df           MS     F-Ratio   p-Value 
Year 736.597 3 245.532 55.719 <0.001
Year*Soil 157.096 6 26.183 5.942 <0.001
Year*Seed Mix 94.298 9 10.478 2.378 0.017
Year*Soil*Seed 
Mix 

50.28 18 2.793 0.634 0.824

WS error 475.911 108 4.407  
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Biomass yields differed between seed mixes within each year of the study. In 

2010, Praire32 produced 24.3% more biomass than Switch1(Figure 4, Table 4). In 2011, 

Prairie16 produced 16.1% more biomass than Switch1 and 27.3% more than WSgrass5 

(Figure 4, Table 4). In 2011,  Prairie32 produced 16.0% more biomass than Switch1 and 

27.2% more than WSgrass5. In 2012, the Switch1 produced 20.8% more biomass than 

WSgrass5, 19.1% more than Prairie16,and 23.0% more than Prairie32 (Figure 4, Table 

4). In 2013, the Switch1 produced 22.3% more biomass than WSgrass5, 17.7% more than 

Prairie16,and 26.0% more than Prairie32 (Figure 4, Table 4). 

Over the four years, the Prairie32 mix was more productive then the WSgrass5 

and Prairie16 on the loam soil (Figure 5, Table 5). However, the Prairie32 mix produced 

significantly less biomass than the Prairie16 mix on the clay soil (Figure 5, Table 5). 

Throughout the study, all four mixes produced similar amounts of biomass on the sand 

soil (Figure 5, Table 5). 
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Figure 4:  Mean yield (Mg/ha) of the four seed mixes for each year of the study averaged 
over soils, with 95 % confidence intervals (n = 48, N=12). Letters represent significant 
differences between seed mixes within years. 
 
 
 
Table 4: Mean yield (Mg/ha) of seed mixes for each year of the study averaged over soils 
(n = 48, N=12). Significant differences were detemined using Least Significant 
Difference (LSD) following Hollands and Jarmaz (2010) and Lofus and Mason (1994). 
Letters represent significant differences between seed mixes within years. 
 
  Switch1 WSgrass5 Prairie16 Prairie32    LSD 
2010 6.06a 6.83ab 6.90ab 7.53b    1.06 
2011 10.36a 9.45a 12.03b 12.02b    1.06 
2012 6.68a 5.53b 5.61b 5.43b    1.06 
2013 9.99a 8.17b 8.49b 7.93b    1.06 
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Figure 5: Mean yield (Mg/ha) of the four seed mixes for each soil averaged over the four 
years with 95% confidence intervals (n=16, N=4). Letters represent significant 
differences between seed mixes within soil types. 

 
 
Table 5: Seed mix means (MG/ha) and pair-wise significance of seed mix for each soil 
averaged over the four years (n=16, N=4). Significant differences were detemined using 
Least Significant Difference (LSD) following Hollands and Jarmasz (2010) and Lofus 
and Mason (1994). Letters represent significant differences between seed mixes within 
soils. 

 
    Switch1  WSgrass5 Prairie16  Prairie32   LSD 
Loam 9.46ab 8.74a 8.36a 10.61b   1.58 
Clay 8.44ab 7.56ab 8.74a 6.88b   1.58 
Sand 6.92a 6.18a 7.68a 7.20a   1.58 
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Drought Effects on Biomass Yield 

The drought in 2012 decreased biomass production in all seed mixes. From 2011 

to 2012 biomass production decreased by 36% in Switch1, 42% in WSgrass5, 55% 

percent in Prairie16, and 54% in Prairie32. The absolute decline in biomass production 

differed by seed mixes (p = 0.044, Table 6). Prairie16 and Prairie32 had significantly 

larger declines in absolute biomass production than Switch1 and WSgrass5 seed mixes 

(Figure 6).  

 

 

Table 6: ANOVA comparing the decrease in biomass production (Mg/ha) from 2011, a 
relatively average year, to 2012, a drought year (N= 48). The soil factor and the seed mix 
by soil interaction were not significant and were removed, improving the model. 

 

Source Type III SS df Mean Squares F-Ratio p-Value 

Seed Mix 88.507 3 29.502 2.935 0.044 

Error 442.333 44 10.053     
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Figure 6: The decline in biomass production (Mg/ha) between four seed mixes from 2011 
to 2012 (N=12). Error bars are 95% confidence intervals from standard deviation. Letters 
represent significantly different groups based on Tukey’s test. 
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Weed Biomass 

Averaging over the four years, the percentage of weed biomass to total biomass in 

the seed mixes was 6.1% in Switch1, 2.9% in WSgrass5, 2.3% in Prairie16, and 1.8% in 

Prairie32. Over four years, switchgrass monocultures had significantly more weed 

biomass then all other seed mixes (Table 7, Figure 7, Table 8). In all seed mixes, weed 

biomas decreased significantly each year until 2013, with a large drop in 2012 (Figure 8, 

Table 9).   

Weed biomass responded differently to combinations of seed mixes, soils and 

years (p < 0.001, Table 7). Switch1 had significantly higher weed biomass then the other 

three seed mixes on most soils in most years (Figure 7). However, Switch1 was not 

significantly different than other mixes on loam soil in 2011 (Figure 7-B). On clay soil, 

Switch1 had lower weed biomass than WSgrass5 in 2010, and lower weed biomass than 

Prairie 16 in 2013.  
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Table 7: Repeated Measures ANOVA table for weed biomass (g/m2) from 2010 to 2013. 

Data were log+1 transformed before analysis (n=192, N=48).  

 
Between Subjects    SS     df             MS     F-Ratio                p-Value 
Soil 4.930 3 2.465 7.458 <0.001
Seed Mix 13.775 2 4.592 13.892 0.002
Soil*Seed Mix 0.648 6 0.108 0.327 0.919
BS error  11.899 36 0.331  
  
Within Subjects SS df MS F-Ratio p-Value
Year 8.192 3 2.731 16.829 <0.001
Year*Soil 1.825 9 0.304 1.875 0.004
Year*Seed Mix 4.221 6 0.469 2.890 0.092
Year*Soil*Seed Mix 8.720 18 0.484 2.986 <0.001
WS error 17.524 108 0.162  
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(figure continues)
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Figure 7: Weed biomass by seedmix, soil and year. Back-transformed (geometric) means 
of weed biomass of seed mixes by year (g/m2) with 95 % confidence intervals for A)Sand 
B)Loam and C)Clay soils (n = 16, N = 4). Letters represent significant differences 
between seed mixes within years based on LSD following Hollands and Jarmasz (2010) 
and Lofus and Mason (1994).  
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Table 8: Weed biomass by seed mix. Back-transformed (geometric) means, means of 
log+1 transformed data (Mg/ha), and LSD value for the log mean (n=48, N=12). Letters 
represent significant differences (LSD = 0.198). 

 Switch1 WSgrass5 Prairie16 Prairie32 

Geometric mean 32.36 10.47 8.13 6.46 

Log +1 mean      1.51a         1.02b        0.91b        0.81c 

 

Table 9: Weed biomass(Mg/ha) by year. Back-transformed (geometric) means, means of 
log+1 transformed data, and LSD value for the log means (n=48, N=12). Letters 
represent significant differences (LSD = 0.239). 

 

  2010 2011 2012 2013
Geometric mean 20.99 12.27 5.55 12.25

Log +1 mean 1.322a 1.089b 0.744c 1.088b

 LSD 0.081 0.081 0.081 0.081
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CHAPTER 4 

DISCUSSION 

Biomass Productivity 

Biodiversity and ecosystem function research suggests that, over time, low input 

species rich plantings would produce more biomass than plantings with few species 

(Tilman et al. 2006a, Hooper et al. 2005, Cardinale et al. 2007, Balvanera et al. 2006). I 

found that over four years, biomass yields were similar between seed mixes. In fact, there 

was only a 0.5% difference in the four year mean biomass production between the least 

and most diverse mixes. However, biomass production of the seed mixes was affected 

differently by soil and by years. 

Diverse mixes may be more productive than mixes with few species in years 

without disturbance by drought or flooding. Prairie16 and Praire32 produced more 

biomass in the early years of the study, 2010 and 2011, while Switch1 produced more 

biomass than all other mixes in the last two years of the study, 2012 and 2013. Annual 

differences in biomass production were likely caused by environmental variation. 

Praire16 and Praire32 had higher yields than other seed mixes in 2010, a wet year without 

disturbance from flooding. The growing season precipitation in 2011 was the most 

similar to the thirty year average and Prairie16 and Prairie32 produced more biomass 

than Switch1 or WSgrass5.  In 2012 drought may have affected the productivity of 

Prairie16 and Prairie32 more strongly than that of Switch1 or WSgrass5. Switch1 

produced the highest yields in 2013 with disturbance by flooding on two of the three soil 

types.  If 2010 and 2011 reflect the relationship of planted species richness to biomass 
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productivity in years without disturbance by drought or flooding, then my results support 

a positive biodiversity-productivity relationship. However, this relationship may break 

down in years with disturbance from drought or flooding, as evidenced by the higher 

productivity of Switch1 plots compared to other seed mixes in those years.  

Productivity was affected differently by soil type in the two most diverse mixes. 

The Prairie32 mix had the highest mean yield of all mixes over four years on the loam 

soil, but produced the least biomass of all mixes over four years on the clay soil. 

Conversely, Praire16 had the highest mean yield on the clay soil while producing the 

least on the loam soil. These two mixes produced similar amounts of biomass on the sand 

soil. While it is becoming clear that biodiversity increases ecosystem function at a large 

scale (Cardinale et al. 2007, Balvanera et al. 2006), it is also becoming evident that 

factors related to location (Hector et al. 1999, Balvanera et al. 2006) have large impacts 

on that relationship at smaller scales. The productivity of our most diverse plots shows 

that soil type is a factor in the relationship of planted species richness and productivity. 

These results suggest that the relationship between the species richness of a seed mix and 

biomass productivity may change with soil type, thus complicating the application of the 

BEF perspective of restoration.  

Contrary to my hypothesis, increasing species richness from 16 to 32 significantly 

reduced biomass productivity on the clay soils. The composition of species in seed mixes 

may explain the different responses of Prairie 16 and Prairie32 to the soil types. While 

both mixes were dominated by indian grass, big bluestem and little bluestem, the 

Prairie16 mix contained 2.14 times the basal cover of ox-eye sunflower compared to 
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Prairie32 (Appendix B). Both the basal cover and biomass of C4 grass was greater in 

Prairie32 than Prairie16 (Appendix B, Appendix C). If C4 grasses or ox-eye sunflower 

differed in productivity due to soil type, these differences in composition of Prairie16 and 

Prairie32 may explain the difference in productivity between seed mixes due to soil. 

Over four year, the seed mixes produced similar amounts of biomass. However, 

our study examined two years with rare disturbance events, the 12th largest flood crest of 

the Cedar River in 2013 and, the drought of 2012 that was 1.95 standard deviations below 

normal precipitation (NWS 2014, NOAA 2014). As our study only encompassed four 

years, disturbance events are over represented in this study.  Additionally, the first year of 

the study, 2010, may have had reduced biomass production as only one year had passed 

after the site was planted.  This suggests that the biomass productivity of 2011 may 

represent a better estimate of average biomass productivity over time or for similar 

diverse plantings in the region. If this is the case, long-term averages for species rich 

tallgrass plantings (16-32 species) may be closer to 12 Mg/ha instead of the 8 Mg/ha 

suggested by the average of the four years in this study, and possibly as high as 14 Mg/ha 

on soils with moderate corn suitability ratings, such as the clay and loam in our study. If 

2011 is a more accurate representation of the long-term productivity of seed mixes, then 

our results support my hypothesis that increased planted species richness increases 

biomass productivity. 
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Resistance to Drought 

Contrary to the predictions of BEF theory, Prairie16 and Prairie32 had 

significantly larger absolute declines in biomass production due to drought than 

WSgrass5 or Switch1. This conclusion is consistent with Pfisterer and others (2004), who 

experimentally induced drought in plots of the Swiss site of the BIODEPTH experiment. 

They found larger impacts of drought on species rich grasslands than on lower diversity 

planting. Likewise, biodiversity was found to lower resistance to drought in a meta-

analysis by Balvanera and colleagues (2006).  These results are contrary to models which 

predict higher resistance in diverse communities (Tilman 1996; Yachi and Loreau 1999). 

My research provides additional supporting evidence that biodiversity does not provide 

increased resistance to drought.  One explanation for the discrepancy between BEF 

models and experimental results is that the models assume there is little covariance in 

species’ response to environmental variation (Yachi and Loreau 1999), but this may not 

be true in many situations (Hooper et al. 2005).  

For Prairie16 and Prairie32, biomass production may resemble the productivity of 

a seed mix’s dominant species in years with disturbance by drought or flooding. While 

Prairie16 and Prairie32, were less resistant to drought than Switch1 or Wsgrass5, the 

biomass production of Prairie16 and Prairie32 in the drought year was similar to that of 

WSgrass5 (Figure 4). The same result was observed when the plots were disturbed by 

flooding in 2013 (Figure 4).   Wsgrass5, Prairie16, and Prairie32 mixes were more  
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similar in dominant species composition than Switch1 plots (Appendix B).The basal 

cover of these plantings were dominated by indiangrass, big bluestem and little bluestem 

(Appendix B).   

The mechanisms which cause the positive effects of biodiversity are placed in two 

categories.  The selection effect, the effects caused by dominance of certain species, and 

complementarity effects, or positive species to species interaction (Hooper et al 2005). 

Our results suggest that complementarity effects may be stronger in years without 

disturbance, since diverse mixes produced more biomass in these years then the 

WSgrass5 mix which was dominated by the same three species as Prairie16 and Prairie32 

(Appendix B). Also, selection effects may be stronger in years with disturbance by 

flooding or drought, as diverse plots produced similar amounts of biomass compared to 

WSgrass5. As Switch1 plots were drastically different in species composition then the 

other three seed mixes, it is reasonable that the biomass yields of Switch1 would respond 

differently to climatic variation than those of seed mixes with similar dominant species. 

Although Prairie16 and Prairie32 had lower resistance to drought, their productivity was 

only reduced to levels similar to that of a lower diversity mix dominated by the same 

species. 

Resistance to Invasion 

 I predicted more species rich plantings would have less weed biomass than seed 

mixes with lower richness. I found that Switch1 plots had higher amounts of weed 

biomass than all other seed mixes across all years of the study. Similar levels of weed 
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biomass detected in WSgrass5, Prairie16 and Prairie32 suggests that high level of 

resistance to invasion by weeds can be achieved with few species, as little as five. The 

percentage of weed biomass to total biomass was low in all seed mixes and decreased 

through time until 2013 with disturbance by flooding. Weed biomass ranged from 6.1% 

in Switch1 to 1.8% in Prairie32 should be of little concern to many methods of 

processing biomass. However, switchgrass monocultures may require chemical 

suppression of weeds if invading woody species become a problem, thus decreasing the 

monetary and environmental profits of such crops. Our results suggest that high levels of 

resistance to invasion by weeds may be achieved with few species. 

 In the final year, Switch1 had the highest frequency of Siberian elm trees, Ulmus 

pumila (Apendix C). While woody species may be only minor problems when sites are 

annually harvested, they may be large problems for switchgrass monocultures if a harvest 

is missed due to poor weather or other factors.  

Species rich communities may limit invasion because increased species richness 

may increase the chance that planted species and invading species occupy the same 

functional niche (Symstad 2000). We found that WSgrass5, consisting of only the C4 

grass functional group, had similar resistance to invasion as Prairie16 and Prairie 32. This 

suggests that little functional diversity is necessary to achieve levels of invasion 

resistance similar to more species and functional group rich communities.  This supports 

the conclusion of Farigone and collegues (2003), who suggest C4 grass dominance may 

be more important in limiting invasion than the similarity of function between present 

and invading species. 
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Biomass Yields Compared to Other Studies 

 The results of this experiment confirm that above ground biomass yields from 

restored prairie plantings are regularly underestimated. Even the least productive soil 

produced 2.8 times more biomass then was recorded for harvests from conservation 

reserve program plantings in western Minnesota from 2009 to 2011(2.5 Mg/ha, Jungers et 

al. 2013). The results from the Prairie32 (10.61±1.12 Mg/ha) on loam soil (CSR 72) were 

similar to the results from Jarchow and Liebman’s (2013) unfertilized plots containing 34 

species (9.1±1.0 Mg/ha) on soil with a CSR of 75. Additionally, I found biomass yields 

from low input plantings to be much higher, even on the low fertility sandy soil which 

averaged 7.68±1.120 Mg/ha over four years, than estimates of 3.92 Mg/ha for native 

grassland used by the United States Department of Energy (DOE 2011).  

 Seed mixes in this study produced more biomass over time than most fertilized 

switchgrass cultivars grown in the region. Biomass yields from ‘Cave in Rock’ 

switchgrass plots in southern Iowa, USA, averaged 3.9 MG/ ha for unfertilized plots and 

5.2 Mg/ ha for plots receiving 224 kg N/ha year from 1998 to 2002 (Lemus et al 2008). 

Even on the least fertile soil, the yields of the unfertilized seed mixes (from 6.18 to 7.68 

Mg/ha) in this study exceeded those of fertilized switchgrass cultivars growing at a more 

southern latitude.  
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Another study examined yields from 1998 to 2001of 20 fertilized cultivars of 

switchgrass on fertile (CSR 75) soil (Lemus et al 2002). Although the highest producing 

cultivar, ‘Alamo’, averaged 12.1 Mg / ha, similar to the biomass yields of diverse plots in 

2011, only five of the fertilized cultivars had higher yields than the four year mean 

production of Switch1 and only three had higher yields than Priairie32. It should be noted 

that Lemus et al. (2002) grew the cultivars in small, 3x4.6 m plots. During this study, I 

observed strong edge effects especially on Switch1 and WSgrasss5 plots. In switchgrass 

plots, plants near the edge of plots would commonly be larger than plants growing in the 

interior of the plot. This raises some skepticism of biomass yield estimates from small 

plots like those used by Lemus and colleagues (2002), as edge effects may lead to 

overestimation of possible yields under field conditions.  

I found that, even with no fertilizer inputs, both switchgrass monocultures with 

diverse native genetics and species rich prairie plantings out produced many fertilized 

switchgrass cultivars in the region. While I expected diverse tallgrass prairie plantings to 

be as or more productive then fertilized switchgrass cultivars, the high productivity of 

Switch1 compared to fertilized cultivars of switchgrass monocultures was unexpected. 

One explanation for the high productivity of Switch1 compared to fertilized cultivars of 

switchgrass in the region is that we used genetically diverse, local-ecotype seed (Smith et 

al 2010) rather than switchgrass cultivars. Genetic diversity and local adaptation may 

lead to switchgrass plantings which are more productive than low-diversity fertilized  
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plantings. My results re-enforce Jarcow and Leibman’s (2013) conclusion that policy 

makers may severely underestimate the potential for diverse native plantings as 

productive energy crops. 

Summary 

With close to normal precipitation, species rich seed mixes may yield higher 

biomass productivity than species poor plantings. The effect of species richness on  

productivity may be complicated due to soil type. Doubling the species richness of 

Prairie16 on the clay soil significantly reduced biomass production, however, this is in 

contrast with the high productivity of the Prairie32 on loam soil. I found that increased 

species richness decreases resistance to drought, but increases resistance to weed 

invasion. I also note that all of the seed mixes were more productive than previous 

estimates for the yields of switchgrass or tallgrass species plantings in the region. Thus 

low input plantings are potentially competitive with fertilized switchgrass cultivars.  

I recommend a seed mix that is similar to the Prairie16 or Prairie32 mix for the 

production of biomass, as these mixes may produce more biomass in years without 

disturbance by flooding or drought. However, producers should be aware of the strong 

interaction of soil type and seed mix which was detected in this study. When grown on 

appropriate soils these two mixes are expected to produce more biomass over time than 

grass-only mixes. Further exploration of diverse tallgrass plantings is needed to identify 

the cause of the differences in productivity in diverse mixes between soils. Currently, I 

suggest that the Prairie16 mix be used on soil types which are similar to the clay and sand 
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soil used in this study, while Prairie32 would be recommended for soils like the loam.  

Additionally, when high resistance to invasion by weeds is beneficial, Switchgrass 

monocultures should be avoided.  

 

Conclusions 

Testing predictions of biodiversity and ecosystem function in a field-scale restoration 

setting resulted in the following conclusions: 

• Over four years including one-year post seeding, a flood year, and a drought year; 

Biomass productivity was similar in all seed mixes.  

• Diverse mixes (16-32) may be more productive than mixes with few species in years 

without disturbance by drought or flooding. 

• Productivity in the two most diverse mixes was affected differently by soil type and 

may be influenced by species composition. 

• Plantings with higher species richness were less resistant to drought, but their 

productivity was only reduced to levels similar to that of a lower diversity mix dominated 

by the same species. 

• High levels of weed resistance was achieved with five or more species in a planting. 

• Unfertilized, genetically diverse switchgrass monocultures and diverse native tallgrass 

plantings produced more biomass then most fertilized cultivars of switchgrass grown in 

the region. 
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APPENDIX A 
 

CRITERIA FOR THE SELECTION OF SPECIES FOR PRAIRIE16 
 
 

Prepared and evaluated by Dave Williams 
 

1.Historic/Geographic Distribution – Only tallgrass prairie species, native to Iowa’s 
pre-European landscape were chosen for this project.  We believe that these plants, 
which have evolved with Iowa’s climate and soils for 1000’s of years, are the best-
adapted plants for the state.  In addition, we used only species with a statewide 
distribution.  The best estimates of species distribution have been determined through 
observing local remnants and herbarium specimens (Christiansen and Muller, 1999. An 
Illustrated guide to Iowa Prairie Plants). 

 
2.Productivity – Species were selected were based upon having a high amount of above 
ground biomass production.  In preliminary investigations, we compared monoculture 
plantings of various prairie grasses and forbs, to determine which species had the 
highest above ground biomass production. 

 
3. Availability of ‘Source Identified’ seed – We chose only species that were certified as 
‘Iowa Yellow Tag’. This ensured that genetics of the seed used for the project originated 
from Iowa prairie remnants. 

 
4.Easily grown from seed – It is well known that some prairie species can be difficult to 
grow from seed.  Since 1990, the Iowa Ecotype Project at the Tallgrass Prairie Center 
has been greenhouse growing many prairie species from seed for campus production 
plots.  This process has given us the ability to determine which species are easy and 
difficult to grow from seed. 

 
5.Standability – In order to maximize harvest of above ground biomass, vegetation has 
to be standing at the time of harvest so the hay mower can windrow the material.    
Harvesting times for prairie biomass have yet to be determined, but there is some 
evidence that harvesting prairie hay in late-winter/early spring rather than fall 
harvesting can reduce harmful minerals that cause slagging/fouling.  Based upon 
observations of many planted prairies, we chose species that remained standing over-
winter. 

 
6.Adapted to various habitat types - Every plant species has evolved to grow within a 
certain range of soil moisture conditions.  Iowa has 440 different soil types (Iowa 
Natural Resources and Conservation Service 2010).  We chose species that have the 
broadest range of habitat types to maximize the potential for establishment and 
persistence for most Iowa locations. 
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7.Species phenology - Prairie plants have evolved to take advantage of available 
resources throughout the growing season.  Generally, grasses and forbs that actively 
grow and flower in spring are not large biomass producing species as compared to 
species that actively grow and flower summer/early fall, so many of the species that 
were chosen for this project were from the latter group.  In addition, with the goal of 
creating a plant community without the need for fertilizer, nitrogen fixing legume 
species were also included. 

 
8.Life span – It has been observed that as a prairie planting matures, abundance of some 
species declines while abundance of other species increases.  We chose species that can 
persist and increase in abundance as the planting matures. 

 
9.Ability to co-exist with other species – We chose species that appeared to co-exist 
with the prairie grasses.  This was determined by observation of mature prairie 
reconstructions that were originally planted with grasses and forbs.  We avoided 
colonizing species that appear to reduce the abundance of other species growing around 
it.  A good example of a colonizing species that was avoided was Canada goldenrod 
(Solidago Canadensis). 
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APPENDIX B 
 

COMPOSITION OF SEED MIXES 
 

I analyzed the composition of seed mixes using SIMPER in PRIMER 6 based on 

Bray-Curtis Dissimilarity. Data included each measurement taken from a plot from 2010-

2013. Data were not transformed for this analysis. Over all soils, WSgrass5, Prairie16, 

and Prairie32 had more similar composition then Switchgrass1 (Figure B3, Table B3). 

Switchgrass was 93.75% dissimilar to WSgrass5, 96.54% dissimilar to Prairie16, and 

97.01% dissimilar to Prairie 32 (Table B1). WSgrass5, Prairie16, and Prairie32 had 

pairwise dissimilarities ranging from 50.80% to 59.85% (Table B1).  
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Figure B1: Non-metric Multidimensional Scaling of a Bray-Curtis resemblence matrix of basal cover estimates of planted 
species for each plot from 2010 to 2013. No transformation was applied to the basal cover data. The overlay shows species 
which are correlated with areas of the plot. 

5
3
 



54 
 

 

 
 
Table B1: SIMPER results based on Bray-Curtis Dissimilarity of basal cover data. Data 
included each measurement taken from a plot from 2010-2013. Data were not 
transformed for this analysis. Within and between group similarity/dissimilarity and the 
species which contribute highly to similarity/dissimilarity are listed. 

 
Group Switch1 
Average similarity: 81.73 
 
Species Av.Abund Av.Sim Sim/SD Contrib%  Cum.% 
Switchgrass    35.41  81.73   5.06   100.00 100.00 
 
Group WSgrass5 
Average similarity: 67.56 
 
Species Av.Abund Av.Sim Sim/SD Contrib% Cum.% 
Big Bluestem    18.34  25.11   1.76    37.16 37.16 
Indian Grass    14.41  24.31   2.40    35.99 73.16 
Little Bluestem     8.06  10.05   1.16    14.87 88.03 
 
Group Prairie16 
Average similarity: 56.83 
 
Species Av.Abund Av.Sim Sim/SD Contrib% Cum.% 
Big Bluestem     7.40   9.97   1.08    17.55 17.55 
Indian Grass     6.91   9.41   1.38    16.57 34.12 
Little Bluestem     5.25   9.13   0.96    16.06 50.18 
Ox-eye Sunflower     5.27   8.48   1.19    14.92 65.10 
Showy Tick Trefoil     3.31   5.83   1.31    10.25 75.35 
 
Group Prairie32 
Average similarity: 56.95 
 
Species Av.Abund Av.Sim Sim/SD Contrib% Cum.% 
Indian Grass     8.86  14.03   1.95    24.64 24.64 
Big Bluestem     8.65  10.78   1.24    18.93 43.57 
Little Bluestem     4.36   5.80   0.91    10.18 53.75 
Carex spp     2.52   4.57   0.91     8.02 61.78 
Showy Tick Trefoil     3.02   4.00   1.32     7.03 68.81 
Ox-eye Sunflower     2.46   3.57   1.06     6.27 75.07 
 
Groups Switch1  &  WSgrass5 
Average dissimilarity = 93.75 
 
  Group 1  Group 2                                
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 
Switchgrass    35.41     2.70   39.54    2.95    42.17 42.17 
Big Bluestem     0.00    18.34   21.33    1.83    22.76 64.93 
Indian Grass     0.00    14.41   17.74    2.53    18.92 83.85 
 
 
      (table continues) 
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Groups Switch1  &  Prairie16 
Average dissimilarity = 96.54 
 
  Group 1  Group 3                                
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 
Switchgrass    35.41     1.26   46.24    3.70    47.90 47.90 
Big Bluestem     0.00     7.40    9.08    1.24     9.41 57.30 
Indian Grass     0.00     6.91    8.67    1.29     8.98 66.29 
Little Bluestem     0.00     5.25    7.69    1.10     7.97 74.25 
Ox-eye Sunflower     0.00     5.27    7.54    1.23     7.81 82.07 
 
Groups WSgrass5  &  Prairie16 
Average dissimilarity = 59.85 
 
  Group 2  Group 3                                
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 
Big Bluestem    18.34     7.40   15.43    1.34    25.78 25.78 
Indian Grass    14.41     6.91   11.92    1.42    19.91 45.70 
Little Bluestem     8.06     5.25    6.66    1.12    11.12 56.82 
Ox-eye Sunflower     0.00     5.27    6.26    1.17    10.47 67.28 
Side-oats Grama     4.35     1.52    4.16    1.30     6.95 74.24 
Showy Tick Trefoil     0.00     3.31    3.73    1.42     6.23 80.46 
 
Groups Switch1  &  Prairie32 
Average dissimilarity = 97.01 
 
  Group 1  Group 4                                
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 
Switchgrass    35.41     1.06   43.78    3.43    45.13 45.13 
Indian Grass     0.00     8.86   11.24    2.06    11.59 56.72 
Big Bluestem     0.00     8.65   10.03    1.50    10.34 67.06 
Little Bluestem     0.00     4.36    5.95    1.05     6.14 73.20 
Showy Tick Trefoil     0.00     3.02    3.60    1.43     3.72 76.91 
 
Groups WSgrass5  &  Prairie32 
Average dissimilarity = 56.90 
 
  Group 2  Group 4                                
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 
Big Bluestem    18.34     8.65   13.76    1.31    24.17 24.17 
Indian Grass    14.41     8.86    9.01    1.23    15.83 40.01 
Little Bluestem     8.06     4.36    6.70    1.17    11.77 51.78 
Side-oats Grama     4.35     1.26    3.71    1.17     6.52 58.30 
Showy Tick Trefoil     0.00     3.02    3.10    1.38     5.45 63.75 
Carex spp     0.00     2.52    3.06    1.02     5.37 69.13 
Switchgrass     2.70     1.06    2.78    0.90     4.88 74.00 
Ox-eye Sunflower     0.00     2.46    2.72    1.16     4.78 78.79 
 
 
     (table continues) 
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Groups Prairie16  &  Prairie32 
Average dissimilarity = 50.80 
 
  Group 3  Group 4                                
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 
Indian Grass     6.91     8.86    7.81    1.20    15.38 15.38 
Big Bluestem     7.40     8.65    7.66    1.11    15.07 30.46 
Little Bluestem     5.25     4.36    5.57    1.16    10.96 41.42 
Ox-eye Sunflower     5.27     2.46    4.91    0.98     9.66 51.08 
Carex spp     0.00     2.52    3.26    1.00     6.42 57.50 
Stiff Goldenrod     1.91     1.59    2.75    0.88     5.42 62.92 
Showy Tick Trefoil     3.31     3.02    2.69    1.23     5.30 68.21 
Elymus spp     2.19     1.85    2.47    1.05     4.87 73.08 
Yellow Coneflower     2.24     1.10    2.26    1.04     4.46 77.50 
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APPENDIX C 
 

WEED COMPOSITION 
 

Table C1: Most frequent weeds detected in each seed mix in 2013. For each species, 
numbers presented are total counts of presence in 20 0.1 m2 quadrats per plot( 240 total 
quadreats per seed mix).  

 Switch1 WSgrass5 Prairie16 Prairie32  TOTAL
Ulmus pumila 132 18 11 2 163
Solidago canadensis 41 17 15 39 112
Taraxacum officinale 47 30 11 19 107
Senecio plattensis 17 9 12 16 54
Poa pratensis 18 12 16 7 53
   
       
       
       
       

 
 
 

Table C2: ANOVA table comparing U. pumila frequency between seed mixes in 2013. 
One-way ANOVA between seed mixes for natural log+1 transformed U. pumila counts 
(N=16). After transformation, data were normally distributed (Sharpio-Wilk p = 0.203) 
but had unequal variance (Levene’s test p = 0.021). 
 

 
 

    SS     df             MS     F-Ratio                p-Value 
Seed Mix 32.194 3 10.731 26.573 <0.001
error  17.770 44 0.404  
  
  
  

 
Table C3: Pairwise comparisons of U. pumila frequency between seed mixes in 2013 
using natural log+1 transformed U. pumila counts (N=16). Letters represent significant 
differences. 
 

 Switch1 WSgrass5 Prairie16 Prairie32 

Geometric mean 2.236a 0.688b 0.448b 0.092b 
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APPENDIX D 
 

WARM SEASON GRASS 
 

Warm season grass dominated the two functional group-rich seed mixes with 

52.3% of the total biomass over the entire study. With weak statistical significance, the 

prairie mix had a higher proportion of warm season grass than the biomass mix (56% 

vs.48%, p = 0.068, Table D1). The proportion of C4 grass increased significantly in 2012 

and again in 2013 compared to prior years (Table D2). Warm season grass was also 

significantly more dominant on the sandy loam soil than the loam or clay loam soils over 

the four years (Table D2). 

 

 

Table D1: ANOVA table for logit transformed proportions of warm 
season grass vs total plot biomass from 2010 to 2013. 
 
Between subjects SS df MS Fratio pvalue 
Soil 11.510 2.000 5.755 6.474 0.008 
Seedmix 3.354 1.000 3.354 3.773 0.068 
Soil*Seedmix 0.395 2.000 0.197 0.222 0.803 
Error 16.002 18.000 0.889  
  
within subjects  
Year 35.563 3.000 11.854 24.554 <0.001 
year*Soil 5.960 6.000 0.993 2.057 0.074 
year*Seedmix 0.679 3.000 0.226 0.469 0.705 
year*soil*seedmix 1.765 6.000 0.294 0.609 0.722 
Error 26.070 54.000 0.483  
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Table D2: Proportion of warm season grass by year in prairie and biomass mixes, logit 
values, and lsd value. Letters represent significantly different groups. 

years C4grass logit LSD 
2010 42.8% 0.322a 0.278 
2011 39.1% 0.553a 0.278 
2012 54.8% 0.216b 0.278 
2013 72.4% 1.029c 0.278 

 

Table D3: Proportion of warm season grass by soil in prairie and biomass mixes, logit 
values, and lsd values. Letters represent significantly different groups. 

Soils C4grass Logit  LSD 
loam 50.0% -0.001a  0.333 
sand 62.2% 0.555b  0.333 
clay 44.6% -0.277a  0.333 
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APPENDIX E 
 

MEAN BIOMASS PRODUCTION FOR SEED MIXES BY SOIL FOR EACH YEAR 
 

Table  E1: Mean biomass yield (Mg/ha)of each seed mix by soil for each year of the 
study (N=4). 

2010  Switch1  WSgrass5 Prairie16 Prairie32 

Loam  8.56  9.10 8.63 11.13

Clay  5.49  6.83 6.21 4.87

Sand  4.15  4.57 5.85 6.59

      

2011  Switch1  WSgrass5  Prairie16  Prairie32

Loam  10.46  10.12 11.65 14.30

Clay  11.87  9.40 14.57 12.23

Sand  8.75  8.82 9.88 9.53

      

2012  Switch1  WSgrass5  Prairie16  Prairie32

Loam  7.28  6.88 4.66 7.49

Clay  7.52  6.28 7.13 5.11

Sand  5.24  3.42 5.03 3.68

      

2013  Switch1  WSgrass5  Prairie16  Prairie32

Loam  11.53  8.87 8.49 9.51

Clay  8.89  7.74 7.03 5.31

Sand  9.55  7.88 9.95 8.98
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APPENDIX F 
 

PLOT LEVEL MEANS FOR EACH YEAR OF THE STUDY 
 
Table F1: Yearly total means and functional group means for each plot. The column titles 
represent the following: WSG is the warm season grass functional group, CSG is the cool 
season grass functional group, FORB is non-leguminous forbs, LEG are plants in 
Fabaceae, and WEEDS are any plant not included in the seed mix planted in the plot. 
Units are g/m2. 

 
PLOT  YEAR  SOIL  SEEDMIX       WSG       CSG   FORB       LEG        WEEDS       TOTAL 

A1  2010  Sand  Switch1  497.30 0.00 0.00 0.00  27.30  524.60

A1  2011  Sand  Switch1  1129.40 0.00 0.00 0.00  11.40  1140.80

A1  2012  Sand  Switch1  512.30 0.00 0.00 0.00  5.16  517.46

A1  2013  Sand  Switch1  699.87 0.00 0.00 0.00  4.39  704.26

A4  2010  Sand  Switch1  438.40 0.00 0.00 0.00  6.40  444.80

A4  2011  Sand  Switch1  890.80 0.00 0.00 0.00  10.30  901.10

A4  2012  Sand  Switch1  610.50 0.00 0.00 0.00  4.89  615.39

A4  2013  Sand  Switch1  837.47 0.00 0.00 0.00  60.85  898.32

C2  2010  Sand  Switch1  208.20 0.00 0.00 0.00  146.60  354.80

C2  2011  Sand  Switch1  645.40 0.00 0.00 0.00  39.70  685.10

C2  2012  Sand  Switch1  360.90 0.00 0.00 0.00  17.74  378.64

C2  2013  Sand  Switch1  1097.60 0.00 0.00 0.00  123.37  1220.97

C3  2010  Sand  Switch1  240.00 0.00 0.00 0.00  94.20  334.20

C3  2011  Sand  Switch1  735.90 0.00 0.00 0.00  36.60  772.50

C3  2012  Sand  Switch1  574.50 0.00 0.00 0.00  10.71  585.21

C3  2013  Sand  Switch1  981.63 0.00 0.00 0.00  14.77  996.40

F1  2010  Loam  Switch1  957.80 0.00 0.00 0.00  47.30  1005.10

F1  2011  Loam  Switch1  1123.00 0.00 0.00 0.00  10.30  1133.30

F1  2012  Loam  Switch1  806.70 0.00 0.00 0.00  5.58  812.28

F1  2013  Loam  Switch1  1155.27 0.00 0.00 0.00  59.55  1214.81

F2  2010  Loam  Switch1  700.50 0.00 0.00 0.00  64.80  765.30

F2  2011  Loam  Switch1  1310.00 0.00 0.00 0.00  25.00  1335.00

F2  2012  Loam  Switch1  603.10 0.00 0.00 0.00  9.57  612.67

F2  2013  Loam  Switch1  1106.60 0.00 0.00 0.00  71.50  1178.10

F3  2010  Loam  Switch1  672.70 0.00 0.00 0.00  126.90  799.60

F3  2011  Loam  Switch1  1213.10 0.00 0.00 0.00  25.40  1238.50

F3  2012  Loam  Switch1  726.80 0.00 0.00 0.00  20.89  747.69

F3  2013  Loam  Switch1  1109.17 0.00 0.00 0.00  71.50  1180.67

F4  2010  Loam  Switch1  728.30 0.00 0.00 0.00  124.90  853.20

          table  continues
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F4  2011  Loam  Switch1  433.70 0.00 0.00 0.00  45.00  478.70

F4  2012  Loam  Switch1  726.50 0.00 0.00 0.00  14.37  740.87

F4  2013  Loam  Switch1  947.13 0.00 0.00 0.00  89.31  1036.44

G1  2010  Clay  Switch1  566.30 0.00 0.00 0.00  157.20  723.50

G1  2011  Clay  Switch1  1817.80 0.00 0.00 0.00  40.00  1857.80

G1  2012  Clay  Switch1  758.30 0.00 0.00 0.00  12.87  771.17

G1  2013  Clay  Switch1  1354.80 0.00 0.00 0.00  7.11  1361.91

H1  2010  Clay  Switch1  354.30 0.00 0.00 0.00  3.20  357.50

H1  2011  Clay  Switch1  1028.60 0.00 0.00 0.00  128.60  1157.20

H1  2012  Clay  Switch1  785.90 0.00 0.00 0.00  34.20  820.10

H1  2013  Clay  Switch1  680.63 0.00 0.00 0.00  167.56  839.33

H7  2010  Clay  Switch1  661.30 0.00 0.00 0.00  61.00  722.30

H7  2011  Clay  Switch1  620.10 0.00 0.00 0.00  99.00  719.10

H7  2012  Clay  Switch1  660.90 0.00 0.00 0.00  42.51  703.41

H7  2013  Clay  Switch1  572.07 0.00 0.00 0.00  28.17  600.23

H8  2010  Clay  Switch1  375.40 0.00 0.00 0.00  16.70  392.10

H8  2011  Clay  Switch1  867.70 0.00 0.00 0.00  147.50  1015.20

H8  2012  Clay  Switch1  675.90 0.00 0.00 0.00  37.18  713.08

H8  2013  Clay  Switch1  725.07 0.00 0.00 0.00  28.75  753.82

A3  2010  Sand  WSgrass5  449.10 0.00 0.00 0.00  74.30  523.40

A3  2011  Sand  WSgrass5  605.70 0.00 0.00 0.00  14.60  620.30

A3  2012  Sand  WSgrass5  620.40 0.00 0.00 0.00  4.75  625.15

A3  2013  Sand  WSgrass5  670.00 0.00 0.00 0.00  46.69  716.69

A6  2010  Sand  WSgrass5  460.30 0.00 0.00 0.00  6.20  466.50

A6  2011  Sand  WSgrass5  1027.90 0.00 0.00 0.00  1.10  1029.00

A6  2012  Sand  WSgrass5  311.10 0.00 0.00 0.00  0.00  311.10

A6  2013  Sand  WSgrass5  954.87 0.00 0.00 0.00  1.45  956.32

B1  2010  Sand  WSgrass5  371.70 0.00 0.00 0.00  29.70  401.40

B1  2011  Sand  WSgrass5  969.40 0.00 0.00 0.00  11.00  980.40

B1  2012  Sand  WSgrass5  199.80 0.00 0.00 0.00  0.00  199.80

B1  2013  Sand  WSgrass5  798.93 0.00 0.00 0.00  2.75  801.69

B5  2010  Sand  WSgrass5  416.30 0.00 0.00 0.00  21.40  437.70

B5  2011  Sand  WSgrass5  896.40 0.00 0.00 0.00  1.20  897.60

B5  2012  Sand  WSgrass5  230.50 0.00 0.00 0.00  2.77  233.27

B5  2013  Sand  WSgrass5  677.08 0.00 0.00 0.00  2.10  679.17

E5  2010  Loam  WSgrass5  714.00 0.00 0.00 0.00  87.30  801.30

E5  2011  Loam  WSgrass5  730.00 0.00 0.00 0.00  12.80  742.80

E5  2012  Loam  WSgrass5  664.60 0.00 0.00 0.00  1.91  666.51

E5  2013  Loam  WSgrass5  872.70 0.00 0.00 0.00  21.56  894.26

          table  continues
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F5  2010  Loam  WSgrass5  1009.10 0.00 0.00 0.00  3.60  1012.70

F5  2011  Loam  WSgrass5  880.80 0.00 0.00 0.00  38.70  919.50

F5  2012  Loam  WSgrass5  727.30 0.00 0.00 0.00  7.79  735.09

F5  2013  Loam  WSgrass5  858.90 0.00 0.00 0.00  2.87  861.77

F7  2010  Loam  WSgrass5  931.90 0.00 0.00 0.00  16.70  948.60

F7  2011  Loam  WSgrass5  853.50 0.00 0.00 0.00  39.40  892.90

F7  2012  Loam  WSgrass5  595.50 0.00 0.00 0.00  6.31  601.81

F7  2013  Loam  WSgrass5  799.00 0.00 0.00 0.00  0.29  799.29

F8  2010  Loam  WSgrass5  788.70 0.00 0.00 0.00  87.80  876.50

F8  2011  Loam  WSgrass5  1438.90 0.00 0.00 0.00  52.50  1491.40

F8  2012  Loam  WSgrass5  742.80 0.00 0.00 0.00  4.89  747.69

F8  2013  Loam  WSgrass5  987.47 0.00 0.00 0.00  5.39  992.86

G2  2010  Clay  WSgrass5  678.20 0.00 0.00 0.00  49.40  727.60

G2  2011  Clay  WSgrass5  557.10 0.00 0.00 0.00  23.30  580.40

G2  2012  Clay  WSgrass5  535.60 0.00 0.00 0.00  1.39  536.99

G2  2013  Clay  WSgrass5  912.67 0.00 0.00 0.00  0.12  912.79

G4  2010  Clay  WSgrass5  1127.30 0.00 0.00 0.00  63.90  1191.20

G4  2011  Clay  WSgrass5  987.80 0.00 0.00 0.00  47.90  1035.70

G4  2012  Clay  WSgrass5  758.90 0.00 0.00 0.00  0.88  759.78

G4  2013  Clay  WSgrass5  968.37 0.00 0.00 0.00  4.71  973.07

H5  2010  Clay  WSgrass5  197.50 0.00 0.00 0.00  132.10  329.60

H5  2011  Clay  WSgrass5  1209.70 0.00 0.00 0.00  86.60  1296.30

H5  2012  Clay  WSgrass5  591.10 0.00 0.00 0.00  26.34  617.44

H5  2013  Clay  WSgrass5  542.00 0.00 0.00 0.00  4.55  546.55

H9  2010  Clay  WSgrass5  463.10 0.00 0.00 0.00  19.50  482.60

H9  2011  Clay  WSgrass5  842.10 0.00 0.00 0.00  5.90  848.00

H9  2012  Clay  WSgrass5  592.70 0.00 0.00 0.00  3.94  596.64

H9  2013  Clay  WSgrass5  652.33 0.00 0.00 0.00  11.93  664.26

A7  2010  Sand  Prairie16  244.30 33.80 29.90 46.90  2.20  357.10

A7  2011  Sand  Prairie16  358.60 61.80 248.80 573.80  5.00  1248.00

A7  2012  Sand  Prairie16  259.29 25.18 1.14 112.23  0.91  398.76

A7  2013  Sand  Prairie16  748.63 134.13 14.50 169.87  26.87  1094.00

B2  2010  Sand  Prairie16  423.80 71.50 83.60 76.20  4.80  659.90

B2  2011  Sand  Prairie16  307.70 10.80 190.90 441.20  1.60  952.20

B2  2012  Sand  Prairie16  204.37 0.00 35.30 160.70  6.41  406.78

B2  2013  Sand  Prairie16  635.97 14.40 31.20 182.45  30.68  894.70

B4  2010  Sand  Prairie16  317.20 27.80 157.40 193.90  7.50  703.80

B4  2011  Sand  Prairie16  782.40 5.10 184.90 280.80  0.30  1253.50

B4  2012  Sand  Prairie16  350.10 0.00 28.47 142.68  3.26  524.51
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B4  2013  Sand  Prairie16  583.70 31.23 82.97 249.30  27.45  974.65

C1  2010  Sand  Prairie16  306.70 21.70 57.10 228.40  6.00  619.90

C1  2011  Sand  Prairie16  189.00 29.00 182.60 94.70  1.70  497.00

C1  2012  Sand  Prairie16  587.60 0.00 12.11 79.96  1.69  681.35

C1  2013  Sand  Prairie16  836.60 12.40 8.03 158.22  1.99  1017.25

E1  2010  Loam  Prairie16  301.20 83.40 374.20 27.50  20.60  806.90

E1  2011  Loam  Prairie16  690.20 18.10 185.40 211.40  18.20  1123.30

E1    2012  Loam  Prairie16  343.48 0.64 16.23 103.29  1.02  464.65

E1  2013  Loam  Prairie16  709.77 32.75 94.87 141.83  0.16  979.38

E2  2010  Loam  Prairie16  338.90 158.10 158.10 94.30  8.40  757.80

E2  2011  Loam  Prairie16  225.00 27.50 402.50 287.80  2.80  945.60

E2  2012  Loam  Prairie16  215.40 9.10 48.42 78.55  2.43  353.91

E2  2013  Loam  Prairie16  524.77 104.13 43.72 196.47  3.50  872.59

E3  2010  Loam  Prairie16  220.90 10.80 539.90 135.70  20.40  927.70

E3  2011  Loam  Prairie16  650.80 17.50 295.20 146.00  47.50  1157.00

E3  2012  Loam  Prairie16  258.72 2.30 34.25 155.94  3.22  454.42

E3  2013  Loam  Prairie16  638.73 67.20 26.99 75.36  0.00  808.29

E4  2010  Loam  Prairie16  262.90 93.30 503.60 90.60  9.70  960.10

E4  2011  Loam  Prairie16  191.90 177.60 538.00 472.20  54.50  1434.20

E4  2012  Loam  Prairie16  128.63 12.31 77.04 365.29  7.25  590.51

E4  2013  Loam  Prairie16  368.10 103.33 35.58 208.73  18.27  734.01

E6  2010  Clay  Prairie16  252.50 73.90 455.70 193.20  88.50  1063.80

E6  2011  Clay  Prairie16  383.40 2.40 598.10 493.50  35.10  1512.50

E6  2012  Clay  Prairie16  226.37 76.59 72.54 235.98  11.43  622.90

E6  2013  Clay  Prairie16  465.83 36.08 0.61 60.03  52.77  615.32

E7  2010  Clay  Prairie16  218.50 42.50 170.00 64.10  18.70  513.80

E7  2011  Clay  Prairie16  1382.00 15.10 271.10 241.20  5.60  1915.00

E7  2012  Clay  Prairie16  207.57 27.47 102.97 352.02  0.00  690.02

E7  2013  Clay  Prairie16  366.23 70.77 6.87 43.40  20.77  508.03

G3  2010  Clay  Prairie16  139.50 36.50 52.80 79.80  3.80  312.40

G3  2011  Clay  Prairie16  99.30 7.00 927.90 120.10  0.40  1154.70

G3  2012  Clay  Prairie16  245.10 10.50 10.22 381.70  9.74  657.26

G3  2013  Clay  Prairie16  407.37 140.93 8.66 174.23  93.67  824.86

G5  2010  Clay  Prairie16  110.20 49.80 40.70 371.30  21.60  593.60

G5  2011  Clay  Prairie16  149.60 27.20 935.30 132.20  0.10  1244.40

G5  2012  Clay  Prairie16  159.55 33.90 88.03 601.01  1.29  883.78

G5  2013  Clay  Prairie16  473.97 61.90 0.00 143.86  185.84  865.57

A2  2010  Sand  Prairie32  436.40 26.80 26.60 46.50  9.60  545.90

A2  2011  Sand  Prairie32  683.70 2.10 152.70 101.20  0.60  940.30
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A2  2012  Sand  Prairie32  205.28 14.95 6.66 38.68  0.11  265.69

A2  2013  Sand  Prairie32  769.17 38.86 73.02 197.30  1.83  1080.18

A5  2010  Sand  Prairie32  529.60 85.50 45.70 146.40  0.10  807.30

A5  2011  Sand  Prairie32  334.90 0.50 67.60 340.20  0.80  744.00

A5  2012  Sand  Prairie32  359.90 3.67 56.45 37.13  0.00  457.15

A5  2013  Sand  Prairie32  779.37 11.61 35.70 90.11  0.49  917.27

B3  2010  Sand  Prairie32  559.30 0.00 123.00 97.80  15.70  795.80

B3  2011  Sand  Prairie32  266.30 1.00 71.20 378.90  5.00  722.40

B3  2012  Sand  Prairie32  313.40 4.51 23.36 44.77  19.00  405.03

B3    2013  Sand  Prairie32  639.17 32.33 23.12 133.20  2.30  830.12

B6  2010  Sand  Prairie32  313.50 76.70 55.00 36.30  7.10  488.60

B6  2011  Sand  Prairie32  208.20 53.80 690.70 449.60  2.20  1404.50

B6  2012  Sand  Prairie32  169.71 7.02 109.93 57.50  0.63  344.80

B6  2013  Sand  Prairie32  668.90 17.90 54.94 21.76  0.00  763.50

F10  2010  Loam  Prairie32  166.40 274.10 346.10 25.60  10.60  822.80

F10  2011  Loam  Prairie32  329.70 51.00 786.30 493.60  1.50  1662.10

F10  2012  Loam  Prairie32  213.38 14.91 59.94 307.22  18.38  613.84

F10  2013  Loam  Prairie32  739.53 37.42 31.09 55.60  2.26  865.89

F11  2010  Loam  Prairie32  351.80 365.50 876.30 50.90  44.80  1689.30

F11  2011  Loam  Prairie32  1018.40 20.10 128.70 469.60  0.40  1637.20

F11  2012  Loam  Prairie32  366.16 56.55 63.45 256.40  23.06  765.60

F11  2013  Loam  Prairie32  714.13 18.69 32.80 70.27  34.43  870.32

F6  2010  Loam  Prairie32  559.70 75.40 330.40 41.40  15.80  1022.70

F6  2011  Loam  Prairie32  613.80 29.20 294.00 426.00  26.30  1389.30

F6  2012  Loam  Prairie32  661.90 0.41 101.85 157.53  0.24  921.92

F6  2013  Loam  Prairie32  923.70 46.44 26.49 75.70  0.22  1072.55

F9  2010  Loam  Prairie32  261.30 285.70 262.60 58.90  50.10  918.60

F9  2011  Loam  Prairie32  285.90 22.30 390.00 330.70  1.90  1030.80

F9  2012  Loam  Prairie32  512.47 6.00 40.10 135.73  0.00  694.30

F9  2013  Loam  Prairie32  750.53 40.83 57.87 137.87  9.42  996.52

H2  2010  Clay  Prairie32  176.10 157.30 180.70 39.10  22.60  575.80

H2  2011  Clay  Prairie32  101.30 37.00 583.10 210.10  56.50  988.00

H2  2012  Clay  Prairie32  221.60 17.71 40.89 323.81  7.81  611.81

H2  2013  Clay  Prairie32  303.80 42.58 37.00 16.00  71.32  470.70

H3  2010  Clay  Prairie32  174.70 23.60 81.40 60.00  1.30  341.00

H3  2011  Clay  Prairie32  485.30 71.70 217.20 514.30  3.30  1291.80

H3  2012  Clay  Prairie32  245.66 9.08 15.35 180.61  0.00  450.70

H3  2013  Clay  Prairie32  420.60 71.84 33.18 34.07  8.73  568.42

H4  2010  Clay  Prairie32  121.30 208.70 118.50 48.70  6.00  503.20
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H4  2011  Clay  Prairie32  1038.90 24.90 249.20 15.10  12.00  1340.10

H4  2012  Clay  Prairie32  260.66 11.92 47.16 173.47  2.70  495.91

H4  2013  Clay  Prairie32  656.90 15.00 34.59 52.37  21.15  780.01

H6  2010  Clay  Prairie32  146.60 34.00 287.40 54.40  3.80  526.20

H6  2011  Clay  Prairie32  692.60 57.20 295.40 206.70  21.10  1273.00

H6  2012  Clay  Prairie32  276.55 15.93 53.25 114.75  26.43  486.90

H6  2013  Clay  Prairie32  207.87 11.06 6.70 22.44  54.88  302.96
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