Assessment of DNA Concentration and Degradation from Extracted Bumble Bee Thorax Muscle 2023

Joel Lado
University of Northern Iowa

Ai Wen
University of Northern Iowa

See next page for additional authors

Let us know how access to this document benefits you

Copyright ©2023 Joel Lado and Dr. Ai Wen
Follow this and additional works at: https://scholarworks.uni.edu/surp

Recommended Citation
https://scholarworks.uni.edu/surp/2023/all/12

This Open Access Poster Presentation is brought to you for free and open access by the CHAS Conferences/Events at UNI ScholarWorks. It has been accepted for inclusion in Summer Undergraduate Research Program (SURP) Symposium by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.
Author
Joel Lado, Ai Wen, and Kenneth Elgersma
Assessment of DNA Concentration and Degradation from Extracted Bumble Bee Thorax Muscle 2023

Joel Lado, Ai Wen, Ph.D.

Department of Biology, University of Northern Iowa, Cedar Falls, IA

Objectives

- Determine the correlation between concentration measured by NanoDrop vs. Qubit methods.
- Determine presence of RNA in extracted wild bee DNA samples and whether it contributes to the difference of NanoDrop and Qubit measurement.
- Treat DNA samples with RNase to improve extraction outcome.
- Compare the quality, quantity, purity, & overall concentration of the samples extracted from bees collected in 2022 compared to 2023.

Introduction

DNA is the foundation of an organism’s ability to develop, survive, and reproduce. High genomic DNA is imperative for many scientific studies and applications such as Biotechnology, Genetics, & Pharmaceuticals. The separation of genomic DNA once purified from other cellular components (RNA, protein) can be sequenced to study entire genomes, develop antibodies, and limit genetic mutations.

Although a very stable molecule, DNA is susceptible to degradation under normal cellular conditions to various factors. Hence it is essential to properly extract genetic material from bee specimens, to better understand their population genetics.

DNA often needs to be stored for various lengths of time. To produce reliable and reproducible results, stability without contamination needs to be ensured to prevent degradation. In this study the goal is to show the stability & difference in quality of DNA purified from wild bees using the QIAGEN DNeasy® Blood & Tissue kit.

Methods

- **DNA Extraction:** DNA was extracted and purified from 48 wild bees using the QIAGEN DNeasy® Blood & Tissue Kit Protocol: Purification of Total DNA from Animal Blood or Cells (Spin-Column Protocol).
- **DNA Analysis & Quantification:** DNA samples were quantitated using agarose gel electrophoresis analysis. Indicating the presence of high-quality DNA where no smears appear. PCR amplification was performed on extracted samples.
- **DNA Yield:** DNA yield was analyzed by the measurement of absorbance in a Nanodrop spectrophotometer machine. Absorbance readings are performed at 260nm (A260) where DNA absorbs the greatest amount of light. In addition, a Qubit 2.0 Fluorometer was also used to measure the concentration of DNA samples. This measures DNA concentrations based on fluorescence of molecular probe dyes to provide an absorbance reading.
- **RNase treatment:** In order to test the presence of RNA in the DNA extractions and to examine the difference between the NanoDrop and Qubit measurement. We selectively treated four DNA extractions using a standard RNase protocol. The treated samples were measured using NanoDrop again to evaluate the change of DNA concentration. A RNase cocktail was used to treat the DNA samples, followed by an alcohol (chloroform & ethyl) wash. Treated samples were then eluted using the QIAGEN DNeasy® Blood & Tissue kit day 2 extraction protocol.

Results

![Correlation between Nanodrop and Qubit Concentration Measurement](image1.png)

Figure 1. Linear Regression line plot showing a significant positive linear correlation between Nanodrop and Qubit purity concentration readings in nanogram/microliter. (p-value=0.00365, R^2=0.6565339)

![Lanes 1,3,5,7 RNase treated samples. Lanes 2,4,6,8 untreated samples. Smears were reduced when treated with RNase with a direct decrease in DNA concentration.](image2.png)

Figure 2. Lanes 1,3,5,7 RNase treated samples. Lanes 2,4,6,8 untreated samples. Smears were reduced when treated with RNase with a direct decrease in DNA concentration.

Figure 3. ![1 kb DNA Ladder; Lanes 1,4,7,8,11,12 (Male Bees) DNA extracted from 2022 bees treated and untreated samples. Lanes 9, 11 are the same lanes extracted from untreated bees.](image3.png)

Figure 4. PCR amplification of genomic DNA. Lanes 1-8 are newly extracted bees captured from UNI campus. Lanes 9, 11 are the same bees captured from untreated bees.

Figure 5. Samples from DNA gel electrophoresis image (Figure 2.) showing a decrease in DNA contamination directly correlated with an overall decrease in DNA concentration, prior to and after RNase treatment.

Data

<table>
<thead>
<tr>
<th>Lane Samples</th>
<th>Initial Nanodrop DNA Concentration (ng/μl)</th>
<th>Initial Qubit DNA Concentration (ng/μl)</th>
<th>RNA Treated Nanodrop Concentration (ng/μl)</th>
<th>RNA Treated Qubit Concentration (ng/μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane 1 & 2</td>
<td>AW2022CRP3</td>
<td>43.3</td>
<td>2.98</td>
<td>3.15</td>
</tr>
<tr>
<td></td>
<td>AW2022CRP3</td>
<td>62.8</td>
<td>4.18</td>
<td>2.95</td>
</tr>
<tr>
<td>Lane 5 & 6</td>
<td>AW2022CRP4</td>
<td>43.0</td>
<td>33.6</td>
<td>2.65</td>
</tr>
<tr>
<td>Lane 7 & 8</td>
<td>AW2022CRP4</td>
<td>60.8</td>
<td>10</td>
<td>2.45</td>
</tr>
</tbody>
</table>

Conclusions

- DNA purified with the QIAGEN DNeasy® Blood & Tissue kit proved to be stable after prolonged storage.
- However, DNA extracted in 2022 showed higher levels of degradation than 2022 specimens extracted in 2023. Indicating preserving DNA in animal tissues is better than extracted and eluted DNA.
- Newly captured and extracted bees showed the least DNA degradation.
- RNA was detected in extracted DNA. Which largely contributes to much higher DNA concentration reading using NanoDrop than Qubit.
- Samples treated with RNase reduced RNA contamination; however also decreased overall DNA yield.
- RNAs reduced the Nanodrop reading close to the Qubit reading, indicating the presence of RNA in extracted DNA samples.

References