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Abstract 

Fibronectin is believed to play a directional role in the migration of precardiac 

mesodermal cells and m~y be involved in other aspects of cardiogenesis. In this study we 

investigated the role of fibronectin in the development development of heart beat by employing a 

chick precardiac explant culture system. Fibronectin is recognized by an integrin receptor 

molecule via an RGD amino acid sequence. Using a synthetic RGD peptide we have blocked the 

ability of any existing receptor molecules to interact with fibronectin in an attempt to break 

communication of the mesodermal cells with the extracellular environment. Explanted tissues 

treated with this blocking agent failed to form contracting vesicles in vitro in a dose-dependent 

manner. This evidence suggests a role for fibronectin in precardiac cell differentiation and 

development. 

Introduction 

Cellular motility has long been known to be an important mechanism in embryogenesis, 

and cell migration also plays an important part in the development of the heart. In avian 

development, the precardiac mesoderm is formed from cells that migrate through the primitive 

groove and spread outward (Rawles, 1943). By 19 hours of development, two localized regions 

of mesodermal cells have migrated to the right and left lateral sides of the midline. These cells 

compose the precardiac mesoderm. Over the next seven to ten hours, these cells migrate in an 

arc-like, anterior direction to converge near the midline above the anterior intestinal portal 

(Rawles, 1943; DeHaan, 1963) as shown in Figure 1. By stage 9 (Hamburger and Hamilton, 

1951 ), the migrating cells have converged and certain cells dissociate from the primary 

mesodermal layer and associate with each other to form endocardial tubes (DeHaan, 1963). 

These tubes then fuse while the remaining layer condenses around them as myocardium to form 

a contracting tubular heart (33 hours) . 
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Figure 1. Migratory Crescent pattern of precardiac cell migration shown on a stage 6 embryo. 
Arrows indicate the direction of movement and cross-hatched areas represent the 
precardiac mesodermal cells. 

This migratory process is probably mediated by active cell migration, rather than by a 

passive pulling into position (DeHaan, 1963). The constraints directing the migratory process 

are speculated to reside among the molecules of the extracellular matrix within the mesoderm

endoderm interface (Linask and Lash, 1988a}. The molecules present in this matrix include 

collagens, glycoproteins, proteoglycans, and glycosaminoglycans (Borg, Raso, and Terracio, 

1991 ). Prominent among these molecules is fibronectin, a glycoprotein, which has been 

implicated in several migratory processes, including the migration of neural crest cells 

(Bronner-Fraser, 1986; Riou et al, 1990) and Drosophila wing morphogenesis (Wilcox et al, 

1989; Brower and Jaffe, 1989). In a study of Xenopus gastrulation, fibronectin was shown to 

be vital for directed active cell migration. Explants of the blastocoel roof were observed to 

move slowly and directionally over a fibronectin substrate (Winklbauer, 1990). When the 

fibronectin-integrin blocking agent RGD was added, only random movement occurred 

(Winklbauer, 1990). 

Fibronectin is a cell-cell and cell-substratum adhesion molecule (Duband, Dufour, and 
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Theiry, 1991 ). As an extracellular matrix glycoprotein it plays a critical role in cell adhesion 

and in directing cell migration. Fibronectin connects the cells of the mesoderm to the 

underlying endoderm via a highly conserved (Albeda and Buck, 1990) transmembrane receptor 

complex of the integrin family (Buck et al, 1986). The integrin receptor recognizes an amino 

acid sequence of -arginine-glycine-aspartic acid- (RGD) in the ligand molecule. lntegrins VLA-

3, VLA-4, VLA-5, CD51, and CD41 have all been shown to bind fibronectin through the RGD site 

(Albeda and Buck, 1990). The VLA-3 integrin receptor appears to be the most common of these 

integrin complexes (Elices, Urry, and Hemler, 1991 ). These integrins are only expressed 

transiently in motile cells (Duband et al, 1986). 

As an adhesion molecule, fibronectin has been implicated in directing the migration of 

chick precardiac cells. Linask and Lash (1986) have provided some evidence for an anterior to 

posterior gradient of fibronectin in the chick embryo which correlated with the general 

direction of migration of the precardiac cells. From this evidence, they concluded that 

precardiac cells follow the gradient of fibronectin by a haptotactic mechanism, ie. movement 

toward areas of greater cell adhesiveness (Linask and Lash, 1986). Later studies showed 

disruption of the directional orientation of precardiac cell migration in the presence of anti

fibronectin antibodies, while antibodies against other extracellular matrix molecules had no 

effect (Linask and Lash, 1988a). In a later experiment, Linask and Lash (1988b) removed the 

area of precardiac mesoderm and accompanying endoderm and reinserted the explants with the 

anterior to posterior polarity reversed. This resulted in precardiac cell migration in a 

posterior direction and the formation of two hearts (Linask and Lash, 1988b). Other authors 

have disputed this haptotactic migratory hypothesis by noting that the distribution of 

fibronectin is too widespread in the embryo to be directing this process (Winklbauer, 1990). 

Other studies have reported interference in the development of beat in response to 

disruption by other extracellular matrix molecules. In one report, chick embryo precardiac 
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explants displayed an inability to develop contractions in response to a curtailing of collagen 

synthesis (Wiens et al, 1984). Fibronectin, as a molecule connecting the extracellular matrix 

to the cytoskeleton, may also play a role in the transduction of differentiation signals. If the 

blocking of fibronectin's binding to its receptor produced a result similar to that reported by 

Wiens et al, such a result could implicate fibronectin in the differentiation process. 

We propose to observe the changes in chick embryo cardiac development in response to 

the blocking of fibronectin's binding site on the integrin molecule with the synthetic RGD 

· peptide. At high concentrations, the RGD peptide binds all available integrin receptors to block 

any putative role fibronectin may play in heart development. In these studies we have observed 

a dose-dependent effect of the RGD peptide on early chick cardiac development in the form of an 

inhibition of development of heart beating. This may indicate fibronectin's involvement in 

cellular differentiation or in allowing the cells to initiate or perform the electrochemical 

depolarization required for contraction. 

Methods 

Chemicals 

The RGD sequence used for the blocking step was added as a pentapeptide gly-arg-gly-asp

ser (GRGDS) suspended in Medium-199 (SIGMA, St. Louis, MO). The control pentapeptide, arg

lys-asp-val-tyr (RLDVT), was also suspended in Medium-199. Earl's Balanced Salt Solution 

(EBSS) was used as the dissection buffer and Medium-199 was used as an incubation buffer. 

Nile blue sulfate (HARLECO) was used as an aqueous solution for toxicity experiments. 

Fertilized eggs of white leghorn chickens were purchased from HyVac Labs, Gowrie, Iowa. 

Exp/ant Dissection 

Eggs were pre-incubated at 330c for approximately 32 hours prior to dissection to 

achieve the appropriate Hamburger-Hamilton stage. Eggs were removed from the incubator and 
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wiped with 70% ethanol to prevent contamination. The eggs were then windowed by cutting off 

the top circle of shell with sterile forceps. The thick albumen was decanted to leave the embryo 

exposed on the surface. Extra albumen was blotted with a Kim-wipe@ from the embryo's 

surface to enhance the membrane's adhesiveness to paper. 

Once the position of the embryo had been identified, a paper ring (Whatm_an filter paper 

#3) was placed on the yolk surface encircling the embryo. The embryo was then removed from 

the yolk by cutting the yolk membranes with sterile scissors around the circumference of the 

paper ring . The entire unit (paper ring and adhering embryo) was then transferred, ventral 

side up, to a sterile dish containing prewarmed (3?oC) EBSS for the dissection. At this time the 

embryos were staged by the Hamburger-Hamilton staging method. Embryos of stages six to 

eight were chosen for the experiments. 

Fine glass needles were prepared for the microdissection. The right and left areas 

containing the precardiac mesoderm were removed by making straight cuts through the 

endodermal and mesodermal cell layers. Each explant, consisting of the precardiac mesoderm 

and the accompanying endoderm was then peeled away from the ectodermal layer and transferred 

to an individual well in Corning tissue culture plastic microtiter 96-well trays. Figure 2. 

shows an embryo immediately following explant dissection. The paired explants from each 

embryo were treated as experimental and control pairs. 
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Figure 2. H-H stage 8 embryo with precardiac mesoderm removed. 

Treatment and Incubation 

Each plastic microtiter well contained 45 ul of pre-warmed (3?oC) Medium-199. In 

each microtiter well, additional Medium-199 containing either the RGD peptide or the non-RGD 

peptide was added to produce final concentrations of 1.0 mg/ml, 0.1 mg/ml, or 0.05 mg/ml. In 

a separate study, explants were also treated with Medium-199 alone in the plastic microtiter 

wells (Zars, unpublished resu lts) . 

The microtiter trays were then placed in a high humidity incubator at 3aoc and 5% CO2 

for a twenty-four hour incubation. Following the twenty-four hour period, the explants were 

removed and observed visually by stereo dissecting microscope. The explants were inspected 

for the presence or absence of vesicles, the ability to contract, and general morphology and 

cellular adhesiveness. Contraction was evaluated by observing either spontaneous beating or the 

ability to beat in response to mechanical stimulus (eg. prodding with a glass bulb) . If the 

explants failed to contract in response to a mechanical stimulus, a negative result was scored. 
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The results were recorded by line diagrams and photographs. 

Nile Blue Sulfate Evaluation of Cell Toxicity 

An experiment was performed to determine the possible toxic effects of the peptides on 

the precardiac cells. Explants treated and incubated with 1.0 mg/ml of the RGD or with the 

control peptide were rinsed and treated with a Nile blue sulfate vital stain for 30 minutes to one 

hour. Following this incubation the explants were rinsed with PBS and placed in a wash solution 

of PBS to remove any unbound dye. The cells were then observed for any evidence of color. 

Further Research 

Ongoing research on this project is focusing on observing the explants in cross-section 

to determine the presence or absence of vesicles in RGD-treated explants. The effect of anti

fibronectin antibodies is also being studied to further observe the role of fibronectin in this 

migratory process. 

Results 

The results of this study were quantitated with respect to the presence or absence of 

contracting tissue. A table of results contains the total percent of explants which were inhibited 

from beating at each dosage (Table 1.). This table shows the large dose-dependent effect of the 

GRGDS treatment on explants Twelve to fourteen explants were observed at the two higher 

doses. Six explants were observed at the lower dose. 
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Table 1. Percent Inhibition (As Determined from Observable Contraction) in RGD-treated 
Explants. 

1.0 mg/ml 

0.1 mg/ml 

0.05 mg/ml 

PERCENT INHIBITION 
GRGDS Peptide RLDVT Peptide 

100% 42% 

60% 25% 

33% 16% 

Figure 3. is a graphical depiction of the inhibition data showing the dose-dependent 

nature of the effect of the GRGDS peptide. The curve shows the minimum concentration of RGD 

required to produce 100% inhibition at 0.4 mg/ml. The inhibition of the control peptide was 

-
plotted on the same graph and shows a different characteristic slope. From th is curve, it 

appears unlikely that 100% inhibition could ever be achieved by treatment with the RLDVT 

peptide. 
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Figure 3. RGD and Control Peptide Dose-Response Curves. The RGD Curve Shows a Maximum 
Required Dose at 0.4 mg/ml. Notice the Shallow Slope of the Control Peptide Curve. 

Figure 4. also depicts the effect of the GRGDS peptide on development. Shown in the 
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figure are a control explant with a fully functioning , contracting vesicle and a treated explant 

which has failed to develop a contracting vesicle. This figure shows the typical appearance of 

treated and control explants. Control explants often appear to have one or more bulbous lobes, 

one of which is the vesicle. An endocardium is usually visible through the transparent outer 

cell layer. Normally developed explants contain firm, healthy tissues. In the some explants 

treated with GRGDS at concentrations of 1.0 mg/ml or higher that failed to contract, cellular 

disso·ciation was reported around the borders of the explant. This was possibly caused by the 

RGD interaction with the integrin binding. The reported dissociation took the form of loose cells 

around the explants perimeter and an overall lack of integrity of the explant. This was observed 

when prodding the explant to stimulate contraction caused the cells to break contact easily 

allowing the probe to puncture or perforate the tissue. 
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Figure 4. Explants following the 24 hour incubation. A) A fully functioning explant treated 
with the random control peptide, arrow indicated the contracting vesicle. B) A non
functioning RGD-treated explant with no observable vesicle formation. 

Another finding is the apparent effect of the random control peptide, RLDVT, on heart 

development. Other investigators have used control peptides in analogous experiments and have 

observed normal development at much higher doses. Our observation of an apparent dose

dependent inhibition of physiological contraction suggests that there is a specific effect of RDLVT 

on some developmental process of the precardiac mesoderm. The effect is 41-48% less potent 

than that of GRGDS, but the mechanism of its effect is very likely mediated similarly at the cell 

surface. The results suggest the existence of an additional cellular recognition sequence within 

the extracellular matrix which may alter the development of cardiac function. The sequences of 

extracellular matrix molecules might give some indication of this interaction. 

In order to explore the possibility that the inhibited development was caused by cell 

death, an experiment was performed using the vital stain, Nile blue sulfate. The test was 
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performed on explants treated with 1.0 mg/ml GRGDS or 1.0 mg/ml control peptide following 

the incubation process. The results showed no evidence that the cells had taken up the vital 

stain, thereby establishing that the treatment was not altering development of heart beat by 

inducing a toxic effect upon the cells. 

Discussion 

Using a pentapeptide with a recognition sequence for the integrin receptor site for 

fibronectin, the GRGDS peptide, we were able to break communication between the precardiac 

mesoderm and the fibronectin of the extracellular matrix. This created a condition in which the 

precardiac mesoderm was not only blinded to any specific distribution of fibronectin which 

might be playing a directional role in the cell's migratory process, but was also unable to 

adhere and respond to this important extracellular signal. The overall appearance of the RGD

treated explants in comparison to the controls and the inhibition of contraction would suggest 

that fibronectin and other extracellular matrix molecules have a more profound role in 

cardiogenesis than merely providing orientation to the migration process. 

Other experiments of this type have been performed in whole embryo cultures. One 

such study reported partial cardiabifida in embryos treated with 20 ug/ml RGD (Linask and 

Lash, 1988a). The precardiac mesodermal cells appeared to have migrated to the lateral sides 

of the anterior intestinal portal and formed multiple heart vesicles. The fusion of the tissues to 

form a single heart, however, was prevented. While this data shows more organized movement 

and coherent cellular action than we report in response to RGD, the explant method which we 

utilized may be more effective at introducing the blocking peptide to the mesoderm-endoderm 

interface than by methods used in whole embryo culture. In addition, the RGD dose used in our 

experiments was significantly higher than the 20 ug/ml used by Linask and Lash (1988a). 

The generally healthy appearance of RGD-treated explants and the results of the Nile 
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blue sulfate experiment suggest that these explants are viable. The morphogenic properties of 

the GRGDS pentapeptide are, therefore, mediated through an interference of mesodermal

endodermal communication via the fibronectin receptor and cell death is not responsible for the 

differences observed between .the treated and control explants. The dose-dependent effect 

suggests that these receptor molecules are present and are important in early chick cardiac 

development. Furthermore, the absence of beating tissue suggests an important role for the 

fibronectin molecule as a stimulus or signal for the development. Fibronectin may indirectly 

mediate gene expression to elicit the contraction of the precardiac cells. Recent findings (J. 

Rathmell, Unpublished Results) have identified a localized region of fibronectin concentration 

during the migratory stages of the precardiac cells and shown a high degree of stage specificity 

in fibronectin distribution. These results suggest that fibronectin may invoke a stage-specific 

response in the precardiac cells, possibly in the realm of gene expression to regulate precardiac 

cell differentiation. In this way, fibronectin may be a molecular signal of the differentiation 

process. Cellular binding to extracellular matrix components like fibronectin may also 

promote differentiation by way of cytoskeletal changes communicated through receptor 

integrins, myofibril assembly, gap junction formation, or the synthesis of myofibrillar 

proteins (Wiens, Personal Communication). 

Extracellular matrix proteins are likely candidates as signalling components in the 

precardiac cell differentiation process. The findings reported by Wiens (1984) implicate 

collagen in this precardiac cell differentiation process. Our findings suggest that fibronectin is 

also an integral component of the processes involved in the development of heart beat. 
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