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Cathodoluminescence as a Means for Distinguishing Hydrothermal from 
Pre-hydrothermal Quartz in Sulfide-Bearing Mineral Deposits on the 
Northern Fringe of the Upper Mississippi Valley Zinc-Lead District, 

NE Iowa and SW Wisconsin 

PAUL L. GARVIN 

Department of Geology, Cornell College, Mount Vernon, Iowa 52314 

Sulfide-bearing mineral deposits, located on the northern fringe of the Upper Mississippi Valley Zinc-Lead District, are contained in 
early Ordovician carbonate rocks that are extensively silicified and dolomitized. Some silica and dolomite appear ro be products of the 
hydrothermal processes that also formed fracture-filling and cavity-lining sulfides and other cogenetic minerals; other silica and dolomite 
appear to result from low-temperature, pre-hydrothermal regional diagenesis. Distinguishing hydrothermal quartz (jasperoid) from 
pre-hydrothermal quartz (chert) solely by hand specimen and thin section petrography is difficult because these two types of miner
alization are often intimately associated with each other. Polished slabs from several of these deposits were studied using cathodolu
minescence (CL). Demonstrable chert exhibits light to dark blue CL, while demonstrable jasperoid exhibits red-brown to tan CL. It 
appears that intimately-associated jasperoid and chert can be distinguished with CL. A result is that much of what was previously 
described as jasperoid in the Upper Mississippi Valley Zn-Pb District is very likely non-hydrothermal chert. 

INDEX DESCRIPTORS: cathodoluminescence, quartz, Upper Mississippi Valley Zinc-Lead District. 

The Upper Mississippi Valley Zinc-Lead District (UMV) has been 
studied extensively during the last half century, with recent efforts 
focusing on hydrothermal fluid dynamics and the sources of metals, 
sulfur and oxygen. However, since the landmark study by Heyl et 
al. (1959), little has been reported concerning the nature and dis
tribution of wall rock alteration associated with UMV mineraliza
tion. The report of prominent silicification in the northern part of 
the district, to the extent of wholescale replacement of some dolomite 
layers (Heyl et al. 1959), has been questioned on the basis of pet
rographic evidence (Garvin 1982). The close spatial association of 
hydrothermal quartz (jasperoid) and pre-hydrothermal quartz (chert) 
makes it difficult to determine the extent of hydrothermal silicifi
cation by petrography alone. 

The purpose of this study is to investigate the utility of catho
doluminescence, in combination with hand specimen and thin sec
tion petrography, as a means for distinguishing hydrothermal jas
peroid from pre-hydrothermal chert in UMV deposits. Mineral de
posits and their host rocks in the northern fringe of the UMV Dis
trict (northeastern Iowa and west-central Wisconsin) were selected 
for this study because hydrothermal silicification is reported to be 
extensive there (Heyl et al. 1959). These deposits are exposed at the 
Mineral Creek, Lansing, Plum Creek and Demby-Weist mines (Fig. 
1). Comparisons with petrographic observations of other mineralized 
occurrences in the northern fringe (e.g., Copper Creek Mine, Bridge
port Quarry, Mount Sterling Quarry) indicate that hydrothermal al
teration throughout the area is broadly similar. 

GENERAL GEOLOGY AND DESCRIPTIONS OF THE 
MINERAL DEPOSITS 

The four mineral deposits of this study are hosted by the Oneota 
Formation of early Ordovician (Tremadocian) age (Fig. 2). The Oneo-

ta is divided into two members, the Stockton Hill and the overlying 
Hager City. Descriptions of these units are given by Ludvigson 
(1976). In brief, the Stockton Hill is a dolomitic quartz sandstone. 
Its composition ranges from nearly pure quartz to nearly pure do
lomite. It contains ooliths, algal stromatolites, intraclasts, chert and 
glauconite (Ludvigson 1976). The Hager City is a medium crystal
line saccharoidal dolomite, containing minor chert and shale. Pri
mary structures are poorly preserved. Vugs lined with calcite crystals 
and/or drusy quartz are commonly observed on a regional basis. 

Detailed descriptions of the four deposits are given in Heyl et al. 
(1959), Ludvigson (1976), Garvin (1982) Heyl et al. (1982) and 
Garvin et al. (1987). All primary sulfide minerals have been variably 
altered to oxidized species. Summary descriptions follow. 

Mineral Creek Mines 

The Mineral Creek Mines are located in central Allamakee County, 
Iowa (Fig. 1). The mineralization is hosted by dolomite of the Oneota 
Formation and is contained in northeast-trending fold-associated ex
tensional fractures, and in areas of collapse breccia that are scattered 
along the fold crest (Fig. 3). Primary vein-filling and cavity-lining 
minerals are marcasite (FeS2), pyrite (FeS2), galena (PbS), sphalerite 
(ZnS) and calcite (CaC03). 

Lansing Mine 

The Lansing Mine is located in eastern Allamakee County, Iowa 
(Fig. 1). Mineralization is contained within a north-trending vertical 
fracture ("gash vein") in the Oneota Formation, which extends down
ward into the underlying Jordan Sandstone (Fig. 3). Primary min
erals are quartz, pyrite, marcasite, galena, and sphalerite, with minor 
calcite. 
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Fig. l. Map showing locations of mineral deposits used in this study. 

Demby-Weist Mines 

The Demby-Weist Mines are located in northern Iowa County, 
Wisconsin (Fig. 1). Mineralization is contained within vertical north
west-trending en echelon fractures in the Oneota Formation, which 
extend downward into the Jordan Sandsrone (Fig. 3). Primary min
erals are marcasire, pyrite, galena and sphalerire. 

Plum Creek Mine 

The Plum Creek Mine is located in central Crawford County, Wis
consin (Fig. 1). Mineralization is contained in fold-controlled paleo
karsr depressions in the Oneora Formation near its contact with the 
overlying St. Peter Sandsrone (Fig. 3). Primary minerals are pyrite, 
matcasite, chalcopyrite and minor calcite. 

PETROGRAPHIC ANALYSIS OF HOST ROCK DOLOMITE 
AND QUARTZ 

The mineralogy of the host rocks for all four deposits consists of 
dolomite, quartz, and rare celadonite. 

Dolomite 

Regional diagenetic (low temperature, pre-hydrothermal) and hy
drothermal dolomite are abundant in the Oneota Formation in areas 
where it is mineralized (Smith et al. 1996). The most reliable criteria 
for distinguishing between the two types of dolomite are crystal size 
and presence or absence of crystal zoning. Hydrothermal dolomite is 
relatively coarse, and crystals are commonly euhedral and zoned, es
pecially where rhey line dissolution cavities or are scattered in quartz 
(Figs. 4a, b). Zoning is especially prominent at the Demby-Weist 
and Plum Creek Mines. Aggregations of coarse hydrothermal dolo
mite in a matrix of fine, equigranular regional dolomite occur locally, 
resulting in a somewhat mottled texture. 

Quartz 

Quartz is also abundant in rhe Oneota Formation, as pre-hydro
thermal chert and hydrothermal jasperoid. Based on crystal habit five 

Ore Distri-
Formation Member Lithology bution 

Pb Zn 

QI Galena 
QI Dolomite 
Q. 
·2 
c: 
iii 

Decorah Sh 

Platteville Fm 

c: Qi St. Peter 

"' (,) Sandstone Tonti ·c:; c: 
·:; < 
0 eadst 

"E 
0 Shakopee River 

c: Fm 
.!!! 
.c 
0 
:i 
'tl 
QI 

Oneota ·;:: 

·~ Fm 

c.. 
Stockton 

Hill 

c: di Jordan 

"' Sandstone ·;:: Q. :i 
..0 E ns 
E QI .9! St Lawrence .... 
"' ... Fm 

Data modified from Heyl et al, 1959; Heyl et al, 1970; Ludvigson, 1976 

Fig. 2. Stratigraphic section of Cambrian and Ordovician host rocks 
for mineral deposits in this study. Modified from Heyl et al. (1959), 
with additional data from Ludvigson (1976). 

types are recognized (Neyberr and Garvin 1979): cryprocrysralline 
(C), microcrystalline (M), fibrous (chalcedonic) (F), drusy (D) and 
detrital (T). 

C-quartz occurs as pseudomorphic replacements of oolitic, peloidal 
and skeletal grains and of matrix in rhe original carbonate rock (Figs. 
4c, d, g, and i). It also appears as irregular, structureless masses (Figs. 
4g, h). Optically it is nearly isotropic and may contain minute Buid 
inclusions or solid impurities. It appears more or less chalky due ro 
dissolution and replacement by dolomite. 

M-quartz replaces carbonate matrix, fossil shells (particularly bra
chiopods and gastropods) and locally, oolirhs, and it lines dissolution 
cavities and open fractures (Figs. 4c, d, e, f, g). Locally it occurs as 
irregular parches in C-quarrz. M-quartz g rades into C-quarrz and D
quarrz. Where lining open cavities it generally coarsens inward ro 
D-quarrz. 

F-quarrz exhibits typical banded, colloform and locally spheruliric 
habit (Fig. 4f). Ir may display what appear ro be shrinkage cracks, 
suggesting colloidal origin. It is interlayered with M-quartz in cavity 
fillings and occurs as islands in dolomite. Locally it forms narrow 
bands within, and lines interstices between, silicified ooliths, which 
were later filled with M-quarrz. 

D-quartz lines or fills dissolution cavities or open fractures (Fig. 
4h). Ir is commonly banded, a consequence of changes in crystal size 
and color during deposition. It stands our as fresh veinlets in chalky 
C-quartz. It commonly lines or fills cavities that were previously 
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Fig. 3. Block diagram showing structural and stratigraphic controls on distribution of mineral deposits in this study. Modified from Ludvigson 
et al. (1983). 

lined with F-quartz. It is especially abundant at the Lansing and 
Demby-Weist mines. D-quartz is gradational with M-quartz. At the 
Plum Creek and Demby-Weist mines D-quartz is locally pink to 
red, probably due to the presence of sub-microscopic inclusions of 
hematite. 

T-quartz occurs as nuclei of ooliths or is interstitial ro them (Fig. 
4i). In both cases detrital grains are sub-rounded to well-rounded. 
It is a minor constituent in all of the deposits studied, except Lan
sing. 

PETROGRAPHIC ANALYSIS OF QUARTZ 

Detailed petrographic analysis of the interrelationships among the 
varieties of quartz and their relationships to dolomite in Prairie du 
Chien host rocks reveals that much quartz, perhaps the greatest 
amount in volumetric terms, was deposited prior to the onset of 
hydrothermal activity. This observation applies to all T-quartz and 
C-quartz, and much of the M-quartz and F-quartz. Evidences for the 
pre-hydrothermal origin of this quartz are: 1) (-quartz and some M
quartz occur in what appear to be chert nodules, having typical 
smooth, sharp contacts with dolomite. Nodule boundaries are locally 
corroded because of replacement by dolomite. The fine-grained na
ture of, and the absence of zoned euhedral crystals in, the replacing 
dolomite indicate that it is also regional diagenetic and pre-hydro
thermal (Garvin 1982). Nodular chert and pervasive dolomite are 
typical of unmineralized Oneota Formation. 2) (-quartz and M
quartz frequently replace ooliths and peloids. Preservation of fine
scale concentric banding in ooliths is common. Ooliths are rare in 
adjacent dolomite and, where present, are poorly preserved. Preser-

vation of ooliths indicates that C- and M-quartz preceded pre-hy
drothermal dolomitization. 3) Fossil remains, like ooliths and pel
oids, are restricted to areas of C-quartz and M-quartz, a further in
dication that this quartz formed before pre-hydrothermal dolomiti
zation. 4) Breccia clasts in solution-collapse pockets contain 
(-quartz, M-quartz and F-quartz. This silicification clearly predates 
collapse, which predates hydrothermal activity. 5) F-quartz islands 
in dolomite have embayed boundaries and otherwise show evidence 
of replacement by pre-hydrothermal dolomite. 6) The chalky nature 
of much of the (-quartz is due to dissolution and partial replacement 
by pre-hydrothermal dolomite. 

Based on hand specimen and thin section petrography, all D
quartz and coeval M-quartz and F-quartz appear to be hydrothermal; 
all other quartz is pre-hydrothermal. Hydrothermal quartz occurs in 
fractures and vugs that cut across preexisting C, M and F quartz. It 
is also found in open fractures and vugs in dolomite. In some open
ings mineral sulfides are found directly upon D-quartz linings. The 
possibility of hydrothermal remobilization of some pre-hydrothermal 
C, M and F quartz cannot be ruled out. 

QUARTZ CATHODOLUMINESCENCE 

General Considerations 

Cathodoluminescence is observed when a substance is irradiated, 
while under vacuum, with a beam of electrons. Excitation of elec
trons in the substance and their subsequent return to ground-state 
energy levels cause selective absorption of visible light. The trapping 
of electrons in excited states requires defects in the crystal lattice 
and/or the presence of so-called impurity activator elements, notably 



CATHOOOLUMINESCENCE IN QUARTZ, UMV 25 

Fig. 4. Photomicrographs of thin sections showing quartz types and quartZ-dolomite relations. Abhreviations: C = ct:yptocrystalline quartz; 
M = microcrystalline quartz; F = fibrous quartz; D = dmsy quartz; T = detrital quartz; dol = dolomite; mine names given in parentheses. a: 
eubedral dolomite replacing ccyptocrystalline quartz (Demby-Weist); h: zoned euhedral dolomite (Demby-Weist); c andtf: peloids replaced by 
cryptocrystalline quartz with microcrystalline quartz pore fillings (Lansing); e: microcrystalline fracture filling in dolomite (Plum Creek); f 
cryptocrystalline and microcrystalline quartz engulfed by Fe-sulfide (Lansing); g; peloids replaced by cryptocrystalline quartz with microcrys
talline and fibrous quartz pore fillings (Mineral Creek); h: cryptocrystalline quartz containing vug lined with drusy quartz (Demby-Weist); i: 
ooliths, some with dettital quartz nuclei, replaced by cryptocrystalline quartz; note concentric banding (Demby-Weist). 

transition metals, lanthanides and actinides. In a crystal lattice these 
elements experience crystal field splitting, the magnitude of which 
is influenced by characteristics of the crystal structure (e.g., bond 
type, coordination number) and the valence of the impuritK element. 
Certain elements called quenchers (e.g. Fe 2+, Fe 3+, Co +, Ni 2+) 

reduce crystal field splitting and, in turn, reduce the intensity of 
luminescence (Ramseyer and Mullis 2000). 

Cathodoluminescence (CL) in quartz has been investigated exten
sively (Hagni 1987, Marshall 1988, Ramseyer and Mullis 2000). 
Quartz· CL has proven to be particularly useful in sedimentological 
studies (for example to distinguish detrital quartz from diagenetic 
or metamorphic overgrowths [Smith and Stenstrom 1965, Sippel 
1968, Grant and White 1978, Krinsley and Tovey 1978, Bruhn et 
al. 1996, Demars et al. 1996, Tennison et al. 2001}, and to deter
mine provenance of quartz in sandstone and mudrocks [Milliken 
1994, Seyedolali et al. 1997, Walderhaug and Rykkje 2000, Boggs 
et al. 2002, Kwon and Boggs 2002}), in studies of magmatic and 
hydrothermal systems (Graupner et al. 2000, Muller 2000, Pennis
ton-Dorland 2001, Peppard et al. 2001, Rusk and Reed 2002), in 
studies of diagenesis (Walker and Burley 1991, Goetze et al. 1999), 
radiation damage (Owen 1988) and in identification of shock meta-

morphism (Owen and Anders 1988, Seyedolali et al. 1996, Boggs 
et al. 2001). 

Spectral CL colors in a-quartz are dominantly shades of red and 
blue. The origin of CL coloration has received considerable attention, 
but is still not well understood. Bruhn et al. (1996) attempted to 
correlate quartz CL color with trace element composition of detrital 
grains and diagenetic cement in sandstones. They found that orange
brown cement had a relatively high content of Fe (up to 192 ppm), 
whereas in non-luminescing cement the Fe content was significantly 
lower. They also discovered that red-brown detrital grains had a 
relatively high Fe content (up to 455 ppm), while violet-blue grains 
had a relatively high content of Ti (up to 298 ppm). Red CL emission 
might be due to substitutional incorporation of Fe 3+ in the quartz 
lattice (Sprunt 1981, Muller 2000) or Mn 2+ (Claffy and Ginther 
1959, Nickel 1978). Substitution of Fe for Si increases with an in
crease in temperature of formation. Thus hydrothermal quartz might 
show more red CL than quartz formed at lower temperature (Muller 
2000). This interpretation is equivocal, because it is well established 
that blue-luminescing quartz also forms under magmatic conditions. 
Quartz CL color may vary with crystallographic orientation (Wald
erhaug and Rykkje 2000). 



26 ]OUR. IOWA ACAD. SCI. 110(2003) 

Fig. 5. Phocomicrographs of polished slabs showing differences in cathodoluminescence colors for different types of quartz. Abbreviations: C 
= cryptocrystalline quartz; M = microcrystalline quartz; F = fibrous quartz; D = drusy quartz; T = detrital quartz; dol = dolomite; gt: goethite 
(altered Fe-sulfide); mine names given in parentheses. a: peloids replaced by crypcocrystalline quartz (Lansing); b: peloids replaced by crypco
crystalline quartz with pore fillings of microcrystalline quartz; some alteration of original blue CL color co tan (Plum Creek); c: crypcocrystalline 
quartz with fracture filled with fibrous quartz (Lansing); d: peloids replaced by crypcocrystalline quartz with pore fillings of fibrous and drusy 
quartz; some alteration of original blue CL color (Plum Creek); e: cryptocrystalline quartz containing vug lined with drusy quartz; some alteration 
of original blue CL color (Plum Creek); f crypcocrystalline quartz containing vugs lined with drusy quartz; some dolomite replacement; some 
alteration of original blue CL color (Demby-Weist); g: crypcocrystalline quartz containing vugs lined with fibrous and drusy quartz; some 
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The blue CL color in some varieties of quartz alters irreversibly 
to varying shades of brown during irradiation of the sample by the 
electron beam. In some cases intermittent flashes of blue light are 
observed, in others the change is gradual, though quite rapid (a few 
minutes or less). The unstable blue color appears to correlate with 
high Al 3+ content (Ramseyer and Mullis 1990); and possibly Li + 
or Na +, which compensate for the substitution of Al 3+ for Si 4+ 

(Perney et al. 1992). The rate of blue CL alteration is influenced by 
electron beam voltage and the amount of beam focusing. A thorough 
treatment of the causes of CL color in quartz is given by MUiler 
(2000). 

Methods 

Observations of quartz CL were made using a Nuclide ELM-2E 
luminoscope, with the viewing chamber mounted on a standard pet
rographic microscope. Alteration of initial color of blue-luminescing 
quartz during exposure ro the electron beam was rapid, particularly 
with fine-grained C-quartz and F-quartz (less than two minutes). 
Efforts were made ro reduce the rate of blue-color alteration and the 
time of exposure of the sample ro the beam, while at the same time 
providing sufficient light to the camera film, which is necessitated 
by the low intensity of quartz CL. The rate of alteration was slowed 
substantially by means of the following procedures. 1) Polished slabs 
(2-7 mm thick) were used in order to dissipate heat more effectively. 
2) The operating voltage and beam current were kept as low as 
possible (10 kV, 0.1 to 0.2 mA, respectively). 3) An unfocused beam 
was used. Film exposure concerns were addressed as follows. 1) A 
low power objective lens (3.5x) was used to increase the amount of 
light received by the microscope and the camera lens, hence to de
crease the exposure time. 2) A film with a high ISO rating was used. 
3) The film was push processed in order to increase the effective ISO. 
Best results in terms of color fidelity and resolution were obtained 
with 3M Color 1000, push-processed ro ISO 1600. Exposure times 
ranged from 30 to 240 seconds. 

Results and Interpretations 

The results described here are generalizations for all four deposits. 
There is great uniformity among the deposits. 

1. D-quartz and associated M-quartz and F-quartz. Initial CL colors 
range from dark to light brown. Lighter colors are restricted to 
more finely crystalline bands. Colors do not change during irra
diation (Figs. 5d, e, f, g, h, i, j, k, 1, m). 

2. C-quartz and associated M-quartz. Initial CL colors are generally 
blue. Structureless isotropic varieties are dark blue and are seen 
where the petrography indicates a chert nodule (Figs. 5c, e, f, g, 
i). Colors change during irradiation to purple, then brown. C
quartz and M-quartz CL colors in silicified ooliths are initially 
blue, except where the ooliths contain visible impregnations of 
iron oxide, as at Demby-Weist (Figs. 5a, b, d, o). Here, initial 
CL colors are brown to red-brown. Iron oxide appears to have 
been introduced during weathering. Locally, where C-quartz is 

f-

Table 1. Initial and post-irradiation cathodoluminescent col
ors for different varieties of quartz. 

Quartz Prehydrothermal/ Postirradiation 
Typea Hydrothermal Initial CL Colors CL Colors 

c Prehydrothermal Dark to medium Brown 
blue 

MIC Prehydrothermal Blue Brown 
FIC Prehydrothermal Light to medium Tan to orange 

blue tan 
T Prehydrothermal Medium blue Same as initial 
D Hydrothermal Dark to light Same as initial 

brown 
MID Hydrothermal Dark to light Same as initial 

brown 
FID Hydrothermal Orange brown to Same as initial 

tan 

a C = cryptocrystalline quartz; MIC = microcrystalline quartz in 
association with cryptocrystalline quartz; D = drusy quartz; FIC 
= fibrous quartz in association with cryptocrystalline quartz; F/D 
= fibrous quartz in asociation with drusy quartz; MID = micro
crystalline quartz in association with drusy quartz; T = detrital 
quartz. 

invaded by D-quartz, there appears to be a brown CL halo ex
tending a fraction of a millimeter into the blue C-quartz (Figs. 
5e, g). Elsewhere, the contact between the two is sharp. 

3. F-Quartz. F-quartz is of two types. For F-quartz that is coeval 
with C-quartz, the initial CL colors range from relatively intense 
light to medium blue (Fig. 5h). This rype exhibits concentric 
banding and occurs as islands in C-quartz or dolomite. It is also 
interstitial to ooliths. During irradiation, CL colors change quite 
rapidly to purple, tan, and finally orange-tan. At high beam cur
rent the color change goes to completion in a very few minutes 
and is permanent. For F-quartz that is coeval with D-quartz, 
initial CL colors are orange-brown to tan (Figs. 5d, j). The best 
examples come from the Lansing Mine. Brown-luminescing F
quartz remains brown during irradiation. 

4. T-quartz. Initial color of detrital quartz grains is medium blue. 
Color change does not occur during irradiation; hence, the con
trast between detrital quartz and adjacent silicified ooliths be
comes progressive greater during irradiation as the ooliths turn 
brown (Figs. 5n, o). 

See Table 1 for comparisons of initial and post-irradiation CL colors 
for the different varieties of quartz. 

In the absence of trace element and crystal structure analyses, the 
causes of CL coloration in quartz from the four deposits cannot be 
determined with certainty. Based on other studies, initial brown lu
minescence may indicate the presence of substituent Fe 3+ in the 

alteration of original blue CL color (Mineral Creek); h: drusy quartz-filled fracture in fibrous quartz; significant alteration of original blue CL 
color (Lansing); i: drusy quartz-filled fracture in cryptocrystalline quartz; significant alteration of original blue CL color (Plum Creek); j: cryp
tocrystalline quartz with fracture lined with fibrous and drusy quartz; some alteration of original blue CL color (Lansing); k: dolomite containing 
vug lined with drusy quartz (Plum Creek); /: euhedral dolomite rhombs and drusy quartz (Demby-Weist); m: dolomite with drusy quartz vein 
(Plum Creek); n: breccia, consisting of ooliths replaced by cryptocrystalline quartz with microcrystalline quartz pore fillings; detrital quartz 
quartz nucleus; breccia cement is goetite (altered Fe-sulfide); strong alteration of original blue CL color in cryptocrystalline and microcrystalline 
quartz, but no alteration in detrital quartz (Plum Creek); o: peloids replaced by cryptocrystalline quartz and detrital quartz grains, with pore 
fillings of microcrystalline quartz; significant alteration of original blue CL coloration in cryptocrystalline and microcrystalline quartz, but no 
alteration in detrital quartz (Plum Creek). 
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quartz lattice (Bruhn et al. 1996), while unstable blue luminescence 
may indicate the presence of substituent Al 3+, along with compen
sating Na + or Li + in the lattice (Perney et al. 2000). 

CONCLUSIONS 

Initial CL colors of the several varieties of quartz occurring in the 
Oneota Dolomite, supported by petrographic evidence, indicate three 
different origins of quartz: 1) Medium blue-luminescing detrital 
quartz grains, presumably derived from Precambrian crystalline rock, 
were transported into an Ordovician depositional basin, where they 
became nuclei for oolith formation. 2) Dark- to medium-blue-lu
minescing cryptocrystalline, microcrystalline, and fibrous quartz 
(pre-hydrothermal chert and chalcedony) appear to have originated 
by the diagenetic replacement of limestone prior to regional dolo
mitization. 3) Brown-luminescing drusy, microcrystalline, and fi
brous quartz (hydrothermal jasperoid), which are localized as vein 
fillings and small cavity linings, were probably introduced into the 
chert-bearing Oneota Dolomite during early stages of hydrothermal 
activity, probably during the late Paleozoic. 

Volumetrically, chert is far more abundant than jasperoid in these 
deposits. Thus, hydrothermal silicification, while pervasive, is not as 
prominent as earlier reported (Heyl et al. 1959). 

It appears that cathodoluminescence can be a useful tool for dis
tinguishing hydrothermal from non-hydrothermal quartz in carbon
ate-hosted zinc-lead deposits. 
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