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ABSTRACT

Einstein metrics on manifolds are in some ways the “best” or most symmetric

metrics those manifolds will allow. There has been much work on these metrics in the

realm of smooth manifolds, and many results have been published. These results are very

difficult to compute directly, however, and so it is helpful to consider piecewise-linear

approximations to those manifolds in order to more quickly compute and describe what

these metrics actually look like. We will use discrete analogues to powerful preexisting

tools to do analysis on two particular triangulations of the three dimensional sphere with

the intent of finding Einstein metrics on those triangulations. We find that, in one case,

the intuitive solution we would expect from the literature holds, and in the other case it

does not. We will discuss the differences between these two objects and will suggest

possible avenues of research in the future.
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CHAPTER 1

INTRODUCTION

There are many classical problems relating what is known as the curvature of a

manifold to certain special metrics on that manifold. We generally consider what are

known as closed Riemannian manifolds. These are manifolds which are closed (that is,

they are compact and have no boundary), and Riemannian (they have a particular

structure, which we will discuss later). We know that a metric is Ricci-flat on manifolds

like this (provided they are dimension at least three) if they are are critical points of what

is known as the Einstein-Hilbert functional

EH(M, g) =

∫
M
RgdVg, (1.0.1)

where here, Rg is the scalar curvature, and dVg is the infinitesimal volume form for the

manifold (M, g). For more information on this, see [1]. Since an arbitrary manifold can be

rather nasty, it is common to constrain our manifolds to the class of manifolds with

volume equal to 1. Our functionals tend to squeeze manifolds down to degenerate

manifolds in the limit, so by doing this we are able to work with relatively nice spaces.

This way, we can simply find critical points of the functionals and extract Einstein metrics

from them. These metrics are those where the equality

Rg = nk

holds, where n is the dimension of our manifold, and k is some constant. However, instead

of restricting our manifolds as above, we can instead consider a modified version of our

functional, which takes the volume restriction into account. The functional we end up

with is related to the Einstein-Hilbert functional above, from [1]:

NEH(Mn, g) =

∫
M RgdVg(∫

M dVg
)(n−2)/n
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Some simple examples of Einstein manifolds are Euclidean space, which is

Ricci-flat, and so is a trivial Einstein manifold (k = 0). Another example is hyperbolic

space, with the standard metric, where k is usually −1 (up to some scaling). It’s simple to

prove that any space with constant sectional curvature is Einstein [5], as Rg = p for some

p ∈ R. Hence, since n is constant, we see k = n
p gives us our constant, k.

The Einstein-Hilbert functional is a powerful tool when studying manifolds, since

it is able to in some ways capture the “best” geometries on that manifold, with much less

work than would be required through other means. The tools we use are essentially

variational calculus tools and derivatives, which are very robust, and fairly simple to use.

It is the power of these functionals which motivates us to use them to tackle the problem

we would like to solve.

Rather than work with the smooth Riemannian manifolds, we can instead move to

piecewise-flat manifolds. These are useful because we are able to collect important

information about our manifolds along edges and at vertices, which reduce integrals to

sums and simplify many of our calculations. Along with this fact, we have from T. Regge,

an analogue to the EH functional on piecewise-flat manifolds [4]. The functional is named

for Regge, and will be referred to as the Einstein-Hilbert-Regge functional, denoted EHR.

In mathematics, when we study the trait on a complicated object, call it A, and we

approximate this object with simpler objects (specifically ones that look more and more

like A). We wish the traits we study on these approximations to get closer to that trait on

A. It has been shown that as the piecewise-flat manifolds are refined, EHR gets closer to

EH [4]. In fact, as the PL manifolds converge, EHR converges to EH. Since the

computation of EH is potentially very difficult, this shows just how useful these

functionals can be.

In this paper we wish to carefully construct two examples of piecewise-linear

manifolds, and to use EHR and its normalizations to find Einstein metrics on those

manifolds. These triangulations are interesting to us because in one case, we have some

much important symmetry, and in the other we lack that same symmetry. We will discuss
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the importance of this symmetry and how it relates to the Einstein metrics on those

manifolds.

In Chapter 2, we will introduce simplicial complexes in general. We will also

introduce and discuss the object we wish to triangulate, S3, and build the triangulations

we want, which we will call T8, and T5. In Chapter 3, we will discuss the idea of a metric

on simplices, and then on the triangulations as a whole. We will note that the set of all

metrics is in fact a manifold itself. Within that space we will look for certain special

metrics which we will point out. Following that, in Chapter 4, we will reintroduce the

functionals which will be our tools of analysis on the metrics on our triangulations. We

will show how they are discrete versions of the EH family of functionals, and will discuss

the normalized versions of these. Finally, in Chapter 5, we will show which metrics from

Chapter 3 are in fact critical points of our functionals, and hence that they are the

Einstein metrics which we wish to find. Finally, in Chapter 6, we will discuss a few of the

remaining problems, as well as some new ones. We will posit some potential avenues of

inquiry for their solution in some cases, and leave them open in others.
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CHAPTER 2

TRIANGULATIONS OF S3

In this section, we will introduce the three-sphere, S3, discuss some of its

properties, and relate it to the two-dimensional sphere, S2. Following this, we will discuss

the concept of a simplex, and how that relates to our study. Finally, we will use these

concepts to build two piecewise-flat approximations to S3, which we will call T8, and T5,

and will show, very carefully, how this is done.

There are many ways to think about what a three-dimensional sphere should be.

The natural thing to do would be to somehow relate it back to our familiar two-sphere,

and then generalize that definition so it can work in any dimension. In two dimensions, we

generally think of a sphere as a sort of level set of a distance function. That is, it’s the set

of points equidistant from a given point. This is a nice definition, as it’s extremely easy to

generalize. However, since we will be working with piecewise-flat manifolds, we would

prefer a more topological definition. Going back to S2, we can think of the sphere as two

disks glued together along their boundary circles.

It is somewhat difficult at first to have an intuitive sense of what it means to live

in a three-dimensional sphere. Since we’re working with spheres, it’s often useful to refer

to the more familiar S2 when we wish to gain intuition regarding those of higher

dimensions. When we think of the interesting properties of the two-sphere, often the first

to come to mind is that if one were to stand in any place on a sphere and choose a

direction, as long as the direction is not changed, eventually a walk in that direction

would return to where they started. Since we live on an approximation to a topological

sphere, this concept is not altogether hard for us to grasp. Not only do we return to where

we started on such a walk, but we end up facing the same direction we started as well. For

those familiar with the Klein bottle, we see a marked difference here. Another property of

the two-sphere is that of contractible loops. If we have an infinitely bendy and stretchy

loop, and we arrange it however we like on a sphere, we can always shrink the loop down
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Figure 2.1: How two disks glue to make a sphere

without removing it from the surface until the loop is as small as we like.

In a three-sphere, then, we should at least have these two properties. That is, any

walk in one direction (recalling that we now have three dimensions in which to walk)

should lead back to the beginning of the walk without altering orientation, and any loop

in a three-sphere should be contractible to a point. There have been other approaches to

understanding this type of object. Some are very beautiful, like the Hopf fibration, which

describes the three-sphere as a sort of bundle of fibers, each of which is a circle, on the

normal two-sphere. In building a three-sphere, we approach it very much the same way we

would the two-sphere. Where we would originally glue two disks together, we will instead

consider the three-dimensional equivalent, the three-ball. That is, the three-ball is the

interior of the two-sphere in R3. We will take two of these, and glue them together along

their boundary spheres. The unfortunate fact is, however, that there are few, if any,

elegant ways to describe this process.
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1 2
3

1
2

3

Figure 2.2: Disks made from triangles glue together to form a sphere

So far, we’ve introduced two-dimensional analogues to the three-dimensional

objects we wish to study. This makes it easier to see the objects we’re working with, as

three-dimensional objects are much more difficult to visualize. Since what we want to do

is approximate these three-dimensional objects, it makes sense to begin by introducing

approximations to our two-dimensional analogues. In exactly the same sort of process as

our gluing of disks before, we will glue two approximated disks made of triangles together

to build a two-sphere. See Figure 2.2.

The triangle is the standard example of what is known as a two-dimensional

simplex. We can generalize the idea of a simplex with a definition.

Definition 1 (Simplex). We define a k-simplex to be the k dimensional polytope, which is

the convex hull of its k + 1 vertices.

When we say convex hull, what we mean is the smallest convex set containing the

vertices of the simplex. Convex is intuitively exactly what it sounds like, in that a set is

convex if the line connecting any two points of the set does not leave the set itself. The

easiest way to see this in two dimensions is to place some vertices on the plane, and

stretch a rubber band around them. The shape contained within that rubber band is the

convex hull of our vertices. In three dimensions, we do the same thing, but with a sheet
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rather than a rubber band. We have examples of simplices in dimensions other than two,

such as the line in dimension one, and our simplex of interest, the tetrahedron in

dimension three. In fact, for any simplex we have, we call the convex hull of any

non-empty subset of the vertices of that simplex a face of that simplex. We say that the

1-faces are edges, and the (k − 1)-faces are called facets. Though this is the case, when we

work with tetrahedra, we will call the facets of the tetrahedra faces.

The object we will be building is a special case of what is known as a simplicial

complex. To discuss this further, we will need a definition.

Definition 2 (Simplicial Complex). We define a simplicial complex to be a set of

simplicies with the following conditions:

1. Any face of a simplex in the simplicial complex is also a face of the simplicial

complex.

2. Any two simplices meet only along a single face.

An example of one of these is given in Figure 2.2, where we see triangles taking the

place of our simplices, and the complex being the resulting two-sphere. There are other

examples, as well. Figure 2.1 shows triangles taking the place of our simplices, and a disk

being our final complex. In fact, any surface made in this way is a simplicial complex, like

the icosahedron, which can be realized as twenty triangles glued together in such a way

that six of them meet at each vertex. The dodecahedron is a little more complicated, as

we first need to build pentagons from triangles, but that can be seen to be five triangles

glued along their edges so that they all meet at one central vertex. We then glue twelve

such arrangements together in such a way that we get a dodecahedron. Since we can

break any polygon into a finite number of triangles glued along edges, we see that every

platonic solid is in fact a simplicial complex. Similarly, we can realize things like the

icosahedron together with its interior as a gluing together of tetrahedra along faces. This

construction is slightly more complicated, as the interior of the icosahedron becomes

quickly complicated.
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A

B

C

D

Figure 2.3: A Tetrahedron

What we will do, then, is begin to construct our own simplicial complex, which we

will call the octuple tetrahedron, T8. We will start with a group of four tetrahedra, as in

2.3. We glue in such a way that what we’re left with is also a tetrahedron, but with added

simplicial structure, see Figure 2.4. The object we’re left with after this gluing is our

piecewise-flat three-ball. Similar to how we approached the gluing together of two disks

above into a two-sphere, we will glue two of these constructed three-balls along their

boundaries by identifying corresponding exterior faces of one with those on the other. See

Figure 2.5 for an illustration of this process. We glue faces so that those sharing a letter

are glued together.

This triangulation is an excellent one to begin with, as it is a simplicial complex,

and often that is desirable. However, we immediately see that it lacks symmetry. While

constructing this triangulation, we have inadvertently created two classes of edges. One

class is what we will call the exterior class of edges, or the edges on the exterior of our
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Figure 2.4: The gluing on four tetrahedra

AB
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1

2

3
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Figure 2.5: The gluing of three-balls
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D
AB

C

D
AB C

Figure 2.6: A more symmetric triangulation

original three-balls, before they were glued together. These edges are each contained in

four tetrahedra, while the interior edges, or the edges in the interiors of our three-balls,

are only contained in three tetrahedra. This fact will come back later. For now, we will

introduce a second triangulation.

We begin our construction with two simplicial complexes. The first is just a single

tetrahedron, while the second complex is a triangulated three-ball, similar to half of T8

introduced above. We identify the faces of the single tetrahedron with the corresponding

exterior faces of the three-ball from above. That is, a single outside face from each of the

four tetrahedra which comprise our three-ball is glued to each face of a fifth tetrahedron.

We see each of those objects together in Figure 2.6. It is labeled in such a way that the

faces to be identified share a letter. We see, again, that this is a simplicial complex.

However, it has added symmetry in that every edge belongs to exactly three tetrahedra.

We will see the relevance of this fact later. We will call this new triangulation the

quintuple tetrahedron T5.
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CHAPTER 3

METRICS ON OUR TRIANGULATIONS

Since the primary object of our study will be metrics on our simplicial complexes.

We will use this section to become familiar with what such an object is. We will begin by

describing what a metric looks like on just a single simplex, and after a few examples, will

expand our horizon to metrics on the entire complex. Following this, we will discuss what

the “space of metrics” looks like, and will describe what we believe to be the special

metrics in that space.

Notation regarding simplices can get rather confusing, so to remain consistent with

work done before, we will follow the model of [1] in the following ways. We will denote the

vertices of any simplex by numbers, {1, 2, 3, 4, . . . }. The edge between vertices i and j will

be denoted by a pair of numbers, ij. The length of the edge, ij will be denoted `ij . We

will denote the dihedral angle along edge ij by βij , and the quantity 2π − βij the angle

defect along ij. The dihedral angle, βij , is the interior angle along edge ij, as measured

between the two faces of the simplex which meet at edge ij. There are a number of ways

to measure this quantity relating either to the angle between the two faces normal vectors,

or any number of other ways. We will introduce our method later. The angle defect along

the edge is essentially how ‘not flat’ the simplex is at that edge. The farther from 2π the

angles become, the more curved the space is, so the larger the angle defect will be. There

will be more quantities that we will define as we move along, but for now, this is enough

to get us started.

To begin, we will consider a triangle. As we’ve said before, this is a 2-simplex, and

is the easiest to relate to the tetrahedron, since the one-simplex is just a line segment, and

the four-simplex is much more complicated. We know, thanks to Euclid, that a triangle is

uniquely defined by the lengths of its edges, and so we call such a collection of edge

lengths a metric on the triangle. For some examples, see Figure 3.1. For those familiar

with surfaces and Riemannian manifolds in general, we remember that each surface can be
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Figure 3.1: Metrics on the triangle

thought of as a sort of change of coordinates on the n-dimensional Euclidean space it

represents. That is, a manifold is uniquely defined (up to isometry) by the metric on that

manifold. The same holds true in our piecewise-flat spaces. So, to generalize this idea, we

turn to the tetrahedron. Since a tetrahedron is determined by the triangles that compose

it, and each of those triangles are determined by their edge lengths, we also have that a

tetrahedron is determined up to some isometry by its six edge lengths. This gives us the

motivation we need for a definition. For our definitions, we will be using generalized

notation, where M is the manifold we wish to triangulate, a T with no subscript is the

triangulation of that manifold, and ` is the metric on that triangulation. For clarity, we

will only refer to our triangulations either by name or by our notation, T5 or T8.

Definition 3 (Metric). A vector ` ∈ R|E| such that each simplex can be realized as a

Euclidean simplex with edge lengths determined by ` is called a metric for the triangulated

manifold (M, T ), and (M, T , `) is called a triangulated piecewise flat manifold. The space

of all metrics will be denoted met(M, T ).

We see an interesting property of these spaces of metrics. First, we see that

met(M, T , `) ⊆ R|E|. Also, though they are used to uniquely determine triangulated

manifolds, they are themselves manifolds. In fact, we will use the following definition to

succinctly describe the space of metrics on a tetrahedron.
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Definition 4. Let {`1, `2, `3, `4, `5, `6} be the set of edge lengths on a tetrahedron, A.

Then we let

M =



0 1 1 1 1

1 0 `21 `22 `23

1 `21 0 `24 `25

1 `22 `23 0 `26

1 `24 `25 `26 0


(3.0.1)

Then let the Cayley-Menger determinant, CM3 = det(M).

We have, thanks to Colins [2], the volume of A:

V ol(A) =

√
CM3

288
.

We see, then, that on a single nondegenerate tetrahedron, A, that the space of all

metrics, met(A) =
{
~̀ ∈ R6 : CM3 > 0

}
. Though it’s unclear what the boundary of this

space is, we can see that the interior of this space is a subset of R6.

We remember that the sphere with constant curvature is somehow special. That

is, this sphere has the “best” metric on it, since other metrics would in some way cause a

loss of symmetry on the sphere. We see this by comparing Figure 3.2 to Figure 3.3. We

can think of these other metrics as parametrizations of the sphere in ways so that it is

embedded in R3 differently.

A similar situation could be expected of our triangulations. We expect metrics

where all edge lengths are equal to be somehow special. We call these metrics equal length

metrics. In the paper [1], we saw results along this line, and so we will check to see if our

added structure changes this at all.
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Figure 3.2: The standard metric on S2.

Figure 3.3: Another metric on S2.
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CHAPTER 4

THE NORMALIZED EINSTEIN-HILBERT-REGGE FUNCTIONALS

In the introduction, we talked briefly about the Einstein-Hilbert functional, EH,

and a little about what it is used for on closed Riemannian manifolds. In this section, we

will introduce a discrete version of this functional, which will work very similarly to EH,

but on our simplicial complex instead. This functional comes about thanks to Regge [4],

and we call it the Einstein-Hilbert-Regge functional. Similar to how we introduced

normalized versions of EH, we will discuss the normalized versions of this discrete

functional, EHR.

Following Regge’s model, and our previously established notation, from Chapter 2,

we will begin to build the functionals which will help us in our analysis. First, we must

define what we mean by curvature in our setting.

Definition 5 (Edge Curvature). For a triangulation with metric `, (M, T , `), and an edge

ij, we define the curvature along edge ij to be the quantity

Kij = (2π −
∑
t∈T

βij∈t)`ij ,

where t is any simplex containing edge ij.

Where the original functional, EH, was an integral over the surface of the sectional

curvatures. Since, in our triangulations, the curvatures are collected along edges in the

form of edge curvatures, we will sum the edge curvatures as an analogue to that integral.

This leads us to our definition.

Definition 6 (The Einstein-Hilbert-Regge Functional). For a triangulated manifold, M,

we define the Einstein-Hilbert-Regge Functional to be

EHR(M, T , `) =
∑
ij∈T

Kij .
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Along with this, we will need a couple more definitions. These quantities will

nearly always be used in the context of other formulas, and so will be defined together.

Definition 7. We define the total length of (M, T , `) to be

L(M, T , `) =
∑
ij∈T

`ij (4.0.1)

Let Vt be the volume of simplex t in our triangulation. Then the total volume of

(M, T , `) is

V(M, T , `) =
∑
t∈T

Vt. (4.0.2)

With these, we can now consider a pair of normalizations of our

Einstein-Hilbert-Regge functional, rather than restricting ourselves to manifolds which

behave nicely. That is, we need not restrict our triangulations to those of unit volume, or

unit total length. Instead, we introduce the following.

Definition 8 (The Length Normalized Einstein-Hilbert-Regge Functional). We define the

Length Normalized EHR to be

LEHR(M, T , `) =
EHR(M, T , `)
L(M, T , `)

.

Additionally, we will introduce the Volume Normalized functional. Though we will

not work with it very much, our approach to it would be similar, and it will be discussed

briefly later.

Definition 9 (The Volume Normalized Einstein-Hilbert-Regge Functional). We define

the Volume Normalized EHR to be

VEHR(M, T , `) =
EHR(M, T , `)
V

1
3 (M, T , `)

.

The nice thing about both of these normalizations is that if we scale the edge

lengths by a non-zero constant, the value of the functionals does not change.
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We will now refer to [4], and define the special metrics we are interested in.

Definition 10 (Einstein Metric). We say a metric, ` on (M, T , `) is L-Einstein if it is a

critical point of LEHR, and is V-Einstein if it is a critical point of VEHR.

Alternatively, we can define an Einstein Metric to be a metric such that for every

edge, ij ∈ T , Kij = λL`ij where λL does not depend on ij. That is, the total curvature

along that edge is a constant multiple of the length of that edge.

These metrics are of interest to us primarily because they are in some ways the

“best” metrics on a triangulation. Essentially, they are the most natural metrics to put on

a manifold, as they have fairly nice curvatures. We see, at the very least, that along each

edge, the curvature of that edge is some constant multiple of the length of that edge

length. Since these functionals are discrete analogues to the original Einstein-Hilbert

functionals, and since manifolds with constant curvature are Einstein metrics in that

context, we hope that any metric which induces constant curvature on our triangulations

are Einstein, as well.
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CHAPTER 5

EINSTEIN METRICS ON PIECEWISE-LINEAR THREE-SPHERES

Over the course of this paper, we’ve built the triangulations, and functionals we

need to prove some interesting facts about Einstein metrics on our triangulations. To

begin, we will require some results which follow directly from the Schläfli formula, which

can be found in [3]. We will also state it here, for clarity.

Remark 1 (Schläffli Formula). For a tetrahedron,

∑
ij

`ij∂βij = 0.

Theorem 1 (First Derivatives).

∂EHR(M, T , `)
∂`ij

= 2π −
∑
kl

βij,kl (5.0.1a)

∂LEHR(M, T , `)
∂`ij

= L−1
(
Kij

`ij
− EHR(M, T , `)
L(M, T , `)

)
. (5.0.1b)

Proof. We will begin by proving (5.0.1a). We recall that EHR =
∑

ij(2π −
∑

kl βij,kl)`ij

where the sum is taken over all kl such that ijkl is a tetrahedron in our triangulation. So,

by a simple product-rule argument, and since the derivative can move inside our sum, we

see that

∂EHR
∂`ij

=
∑
i∗j∗

(
`i∗j∗

∂

∂`ij
(2π − βi∗j∗) + (2π − βi∗j∗)

∂

∂`ij
(`i∗j∗)

)
.

From the Schläfli formula, we get that
∑

i∗j∗ `i∗j∗∂βi∗j∗ = 0, and since ∂
∂`ij

(`i∗j∗) = 0 for

all i∗j∗ 6= ij, we have ∂EHR
∂`ij

= 2π − βij .

Next, we will prove (5.0.1b). We use the quotient rule, and see that

∂LEHR
∂`ij

=
L(M, T , `)∂EHR∂`ij

− EHR∂L(M,T ,`)
∂`ij

L(M, T , `)2
. (5.0.2)
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By a similar argument as above, and by simplifying, we have that

∂LEHR
∂`ij

= L−1
(
Kij

`ij
− EHR(M, T , `)
L(M, T , `)

)
.

As in [1], we check to see if equal-length metrics are L-Einstein. That is, whether

they are critical points of LEHR. To do this, we must compute LEHR on each of our

triangulations. We will begin with T8. On equal length metrics, we see that each

tetrahedron is equilateral. Because of this, and the spherical cosine law, we know that the

dihedral angle along each edge is exactly arccos(13). So, setting every edge length to the

same constant, a, we have that

EHR(T8) = 6a

(
2π − 4 arccos

(
1

3

))
+ 8a

(
2π − 3 arccos

(
1

3

))
(5.0.3a)

LEHR(T8) =
6a
(
2π − 4 arccos

(
1
3

))
+ 8a

(
2π − 3 arccos

(
1
3

))
14a

. (5.0.3b)

Theorem 2 (Einstein Metrics on T8). Equal length metrics on T8 are not Einstein

metrics.

Proof. From equation (5.0.2), we see that a metric is Einstein here only if

Kij

`ij
= LEHR(M, T , `) (5.0.4)

for all ij. For this triangulation, we see that
Kij

`ij
= 2π − 4 arccos

(
1
3

)
for the class of

exterior edges, and for the interior edges, we have
Kij

`ij
= 2π − 3 arccos

(
1
3

)
. So, not only do

neither of these equal LEHR(T8), as in 5.0.3a, but they are not equal themselves. Hence,

an equal length metric on this triangulation is not Einstein, contrary to what might be

expected. It is exactly the lack of symmetry mentioned in §2 that causes this failure, as

the curvature along each edge is not the same.

We then turn to our second triangulation, T5, and check the same quantities. In
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this example, we see that since each edge belongs to the same number of tetrahedra, our

computation of LEHR is much less complicated. We will, again, let each edge be of length

a, where a is some positive constant. We then see the following equalities:

EHR(T5) = 10a

(
2π − 3 arccos

(
1

3

))
(5.0.5a)

LEHR(T5) =
10a

(
2π − 3 arccos

(
1
3

))
10a

(5.0.5b)

=

(
2π − 3 arccos

(
1

3

))
. (5.0.5c)

We see, almost immediately, then, that equal length metrics satisfy our equality 5.0.4,

since in T5, we have
Kij

`ij
= 2π − 3 arccos(13) for all ij.

Theorem 3 (Einstein Metrics on T5). 1. Equal length metrics are Einstein metrics on

T5.

2. The eigenspaces and eigenvalues for the Hessian matrices of LEHR at equal length

metrics (where the edge lengths are all equal to a) are the following:

Table 5.1: Eigenanalysis of T5

eigenspace spanning vectors eigenvalues

Vλ1 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) λ1 = 19
√
6−12

√
2

30 a−2 ≈ 0.9856a−2

Vλ2

(1, 0, 0, 0, 13 ,
1
3 ,

1
3 ,−

2
3 ,−

2
3 ,−

2
3)

λ2 = 4
√
6−2
√
2

30 a−2 ≈ 0.2323a−2
(0, 1, 0, 0, 13 ,−

2
3 ,−

2
3 ,

1
3 ,

1
3 ,−

2
3)

(0, 0, 1, 0,−2
3 ,

1
3 ,−

2
3 ,

1
3 ,−

2
3 ,

1
3)

(0, 0, 0, 1,−2
3 ,−

2
3 ,

1
3 ,−

2
3 ,

1
3 ,

1
3)

Vλ3

(1, 0, 0,−1, 0, 0,−1,−1, 1, 1)

λ3 =
4
√
6( 3

3
−2)−3

√
6

30 a−2 ≈ −0.7095a−2

(0, 1, 0,−1, 0, 0, 0,−1, 0, 1)

(0, 0, 1,−1, 0, 0, 0,−1, 1, 0)

(0, 0, 0, 0, 1, 0,−1,−1, 0, 1)

(0, 0, 0, 0, 0, 1,−1,−1, 1, 0)
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Proof. For equal length metrics on T5, where each edge length is equal to some constant,

a, we have that
Kij

`ij
= 2π − 3 arccos

(
1
3

)
. From (5.0.5b), we see that, for equal length

metrics on T5, Kij

`ij
= LEHR(T5) for all ij. Hence, equal length metrics are Einstein on T5.

We will now prove the second statement in our theorem. To compute the Hessian

of LEHR, we will begin by computing the general second derivatives of LEHR. Using a

general product-rule argument, we see

∂2LEHR
∂`2ij

= −L−2
[
Kij

`ij
− LEHR

]
+ L−1

[
∂

∂`ij

(
Kij

`ij

)
− L−1

(
Kij

`ij
− LEHR

)]
.

Since we are interested in evaluating this only on equal length metrics, we see the first

term on the right hand side disappears, as will the second term in the second set of

parenthesis. So we are left with the following

∂2LEHR
∂`2ij

= L−1
(

∂

∂`ij

Kij

`ij

)

= L−1
[
∂

∂`ij

(
2π −

∑
kl

βij,kl

)]

= −L−1
(∑

kl

∂

∂`ij
βij,kl

)

= −L−1
(

∂

∂`ij
βij

)
.

We must also calculate the general mixed partial derivative, when the two edges

which we vary are different. The argument is similar, and we see the following:

∂2LEHR
∂`ij∂`i∗k∗

= −L−2
[
Kij

`ij
− LEHR

]
+ L−1

[
∂

∂`i∗j∗

(
Kij

`ij

)
− L−1

(
Ki∗j∗

`i∗j∗
− LEHR

)]
.

By a similar argument as above, we get:

∂2LEHR
∂`ij∂`i∗k∗

= −L−1
(

∂

∂`i∗j∗
βij

)
.
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Since we need only find the derivative of each dihedral angle with respect to each

edge, we will use the spherical cosine law again to do this. There are three classes of

derivatives we need to find. The first is when the dihedral angle we measure and edge we

vary are the same. We begin by denoting the area of the triangle between vertices ijk by

Aijk =
1

4

√
(`2ij + `2ij + `2jk)− 2(`4ij + `4ik + `4jk).

On equal length metrics, we see that
∂Aijk

∂`i∗j∗
is the same, regardless of our choice of `i∗j∗ ,

provided they are two of ijk. Otherwise, the partial derivative would be zero.

We then consider the following

∂Aijk
∂`ij

=
1

4

[(
2`ij(2(`2ij + `2ik + `2jk)

)
− 8`3ij

] [ 1

8Aijk

]

Since we’re considering equal length metrics, `ij = `ik = `jk = a, and we have

∂Aijk
∂`ij

∣∣∣∣
`ij=`ik=`jk=a

=
1

4
(2a(2(3a2))− 8a3) · 1

2
√

3a2

= (3a3 − 2a3) · 1

2
√

3a2

=
a

2
√

3
∀i, j, k.

We notice that for the case when either or both l,m 6∈ {i, j, k}, that
∂Aijk

∂`lm
= 0.

We introduce a new quantity

B2
ij,kl =

1

16

(
4`2ij`

2
kl −

(
(`2ik + `2jl)− (`2il + `2jk)

)2)
.
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Thanks to the symmetry we have, we get the following equalities:

∂Bij,kl
∂`ij

=
∂Bij,kl
∂`kl

∂Bij,kl
∂`ik

=
∂Bij,kl
∂`jl

∂Bij,kl
∂`il

=
∂Bij,kl
∂`jk

.

From this, we see that

∂Bij,kl
∂`ij

∣∣∣∣
a

=
a

4

∂Bij,kl
∂`il

∣∣∣∣
a

=
∂Bij,kl
∂`ik

∣∣∣∣
a

= 0.

So, using the spherical cosine law, we get that the dihedral angle along edge ij, in

tetrahedron ijkl is given by

βij,ijkl = arccos

(
A2
ijk +A2

ijl −B2
ij,kl

2AijkAijl

)
.

We then take a derivative and have

∂βij,ijkl
∂`i∗j∗

=
−
(
2AijkAijl

(
2Aijk

∂Aijk
∂`i∗j∗

+2Aijk
∂Aijl
∂`i∗j∗

−2Bij,kl
∂Bij,kl
∂`i∗j∗

)−2(A2
ijk+A

2
ijl−B

2
ij,kl)

(
Aijl

∂Aijk
∂`i∗j∗

+Aijk
∂Aijl
∂`i∗j∗

)))
4A2

ijkA
2
ijl

√
1−cos2(βij,ijkl)

.

(5.0.6)

By the above, we have on equal length metrics that Aijk = 1
4

√
9a4 − 6a4 =

√
3
4 a

2

∀i, j, k. Since B2
ij,kl = a4

4 ∀ij, kl, we have Bij,kl = a2

2 .

We already have that
∂Aijk

∂`ij

∣∣∣
`ij=`ik=`jk=a

= a
2
√
3
. Since these quantities are



24

evaluated at equal length metrics, we get that

∂β12
∂`12

∣∣∣∣
a

=
∂β12,1234
∂`12

∣∣∣∣
a

+
∂β12,1235
∂`12

∣∣∣∣
a

+
∂β12,1245
∂`12

∣∣∣∣
a

=
3∂β12,1234
∂`12

∣∣∣∣
a

=
−3√

2
3

((
3
8a

4
) (

1
4a

3
)
−
(
7
8a

4
) (

1
2a

3
)

9
64a

8

)

=
2
√

6

3
a−1.

Because of our symmetry, and the fact that these are evaluated at equal-length metrics,

we have
∂βij
∂`ij

= ∂β12
∂`12

for all ij ∈ T5.

We now look at derivatives where the dihedral angle is taken along an edge which

shares exactly one vertex with the length we vary. We see that these derivatives are of the

form
∂βij
∂`ik

. We know, from symmetry and since these are evaluated at equal length metrics

the following for all i, j, k:

∂βij
∂`ik

=
∂β12
∂`13

=
∂β12,1234
∂`13

∣∣∣∣
a

+
∂β12,1235
∂`13

∣∣∣∣
a

+
∂β12,1245
∂`13

∣∣∣∣
a

= (?)

Since
∂β12,1245
∂`13

∣∣∣
a

= 0, because edge 13 is not in tetrahedron 1245, we have:

(?) =
2∂β12,1234
∂`13

∣∣∣∣
a

.

By (5.0.6), we get that for all i, j, k,

2∂β12,1234
∂`13

∣∣∣∣
a

=
8

3
√

2
(1−

√
3)a−1 =

∂βij
∂`ik

Finally, we have the derivatives in which the angle we measure shares no vertices
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with the edge we vary. These are of the form

∂βij
∂`kl

∣∣∣∣
a

.

Again, by symmetry and since the edge lengths are all equal, we have the following:

∂βij
∂`kl

∣∣∣∣
a

=
∂β12
∂`34

∣∣∣∣
a

= (†)

Since the edge we vary only affects the angle we measure in one tetrahedron, we get

(†) =
∂β12,1234
∂`34

∣∣∣∣
a

=

√
6

3
a−1

We recall that our derivatives are each multiplied by L−1, and we have our Hessian

matrix. We first let the quantity b = 2
√
3

3 − 4, and our matrix is the following:

A = −
√

6

30
a−2



2 b b b b b b 1 1 1

b 2 b b b 1 1 b b 1

b b 2 b 1 b 1 b 1 b

b b b 2 1 1 b 1 b b

b b 1 1 2 b b b b 1

b 1 b 1 b 2 b b 1 b

b 1 1 b b b 2 1 b b

1 b b 1 b b 1 2 b b

1 b 1 b b 1 b b 2 b

1 1 b b 1 b b b b 2


By solving the system of equations Av = λv, we get the following values of λ:
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λ1 =
−
√

6

30
a−2 · (4

√
3− 19) =

19
√

6− 12
√

2

30
a−2

λ2 =
−
√

6

30
a−2 ·

(
2
√

3

3
− 4

)
=

4
√

6− 2
√

2

30
a−2

λ3 =
−
√

6

30
a−2 ·

(
3− 4

(√
3

3
− 2

))
=

4
√

6
(√

3
3 − 2

)
− 3
√

6

30
a−2.

And that each of these has the following corresponding eigenspaces:

Avλ1 = λ1vλ1

where

vλ1 =



1
1
1
1
1
1
1
1
1
1


and we have

Avλ2 = λ2vλ2
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where

vλ2 =



1
0
0
0
1
3
1
3
1
3−2
3−2
3−2
3


,



0
1
0
0
1
3−2
3−2
3
1
3
1
3−2
3


,



0
0
1
0
−2
3
1
3−2
3
1
3−2
3
1
3


,



0
0
0
1
−2
3−2
3
1
3−2
3
1
3
1
3


and finally,

Avλ3 = λ3vλ3

where

vλ3 =



1
0
0
−1
0
0
−1
−1
1
1


,



0
1
0
−1
0
0
0
−1
0
1


,



0
0
1
−1
0
0
0
−1
1
0


,



0
0
0
0
1
0
−1
−1
0
1


,



0
0
0
0
0
1
−1
−1
1
0


.

These results, we see, agree with those in Table 5.1. Hence, our results are proved.

We have now shown that equal length metrics on T5 are indeed Einstein, and are

also saddle points of the length normalized Einstein-Hilbert-Regge functional.



28

CHAPTER 6

FURTHER QUESTIONS AND POTENTIAL WORK

Throughout this paper, we have introduced and discussed what the object we call a

three-sphere is, and what it looks like. We have talked about what it means to triangulate

such an object, and what it means to have a metric on such a triangulation. Our main

results centered around a certain special class of metrics on two such triangulations, the

first showing that with added structure comes added complexity. We saw this complexity

break our intuition about what types of metrics should be called the ‘best’ metrics on this

triangulation. However, when we simplified the triangulation only slightly, we saw that

added symmetry in our triangulation brought that intuition back into focus in the form of

equal-length metrics on T5. However, this still leaves many questions unanswered.

First, the obvious question to ask would be regarding Einstein metrics on T8.

This was investigated for some time while working on this problem, and it seems to be the

case that since we have two different classes of edges, (recall that we have one class of

edges on the ‘exterior’ of the triangulation, belonging to four tetrahedra each, and a class

on the ‘interior’, which each belong to three tetrahedra) the curvature along each edge on

equal length metrics is different between the two classes. Hence, since each edge length is

the same, we clearly do not meet the Einstein condition from Definition 10. Further work

could be done by using the Einstein metrics as a restriction on our metrics to see what

possible metrics could be considered Einstein. When we do this, we see the following

equality as a necessary condition, for each edge ij:

Kij

`ij
=

(
2π −

∑
kl

βij,kl

)
`ij .

While this is a succinct restriction, it is also quite complicated. Not only must this be

satisfied, but so must a large number of other conditions. For a study in the edge-length

restrictions on a tetrahedron, see e.g. [7]. There are also possible avenues of inquiry
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regarding the solid angles at each vertex, but the path forward here seems unclear.

The second question we must ask is concerning V-Einstein metrics. Though

we introduce the volume normalized functional in this paper, we limit its discussion, as

the computations of derivatives of volume with respect to edge length become quickly very

complicated. Some headway was made in this area, and will be discussed now.

We begin the discussion by recalling our quantity CM3, the Cayley-Menger

determinant, which is related to the volume of a 3-simplex, A, in the following way:

V ol(A) =

√
CM3

288
.

We wish to find the quantity ∂V ol(A)
∂`ij

, since we recall VEHR(M, T , `) = EHR(M,T ,`)
V(M,T ,`)

1
3

. To do

this, we will use the chain rule, and check ∂CM3
∂`ij

. Since CM3 = det(M), where M is the

Cayley-Menger matrix for our simplex, A, what we need is a tool for relating the

derivative of a determinant to something potentially more tractable. Fortunately, we have

precisely that tool in Jacobi’s formula [6]. We first define, since all valid Cayley-Menger

matrices are invertible, the adjugate matrix of A to be adj(A) = det(A)A−1. We see that

∂CM3

∂`ij
= tr

(
adj(A)

∂A

∂`ij

)
= tr

(
det(A)A−1

∂A

∂`ij

)
= tr

(
CM3A

−1 ∂A

∂`ij

)
.

Here, the problem arises, as the quantity CM3A
−1 is rather complicated. See

Figure 6. This is only a small part of the final computation for the derivative of volume.

It’s an important part, but the computations became far too intractable at this point, so

inquiry into the volume normalizations was halted. Further investigation should yield

results, however, and it looks fairly optimistic once this hurdle can be overcome.
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Let {a, b, c, d, e, f} be the set of edge lengths of the tetrahedron A. This is inconsistent with our previous notation, but we omit
the character ` for brevity.
Then CM3M

−1 =


c2d2−2bced−2acfd+b2e2a2f2−2abef −cd2+bcd+ced+afd+cfd−2efd−be2−af2+aef+bef −eb2+cdb+ceb+afb−2cfb+efb−af2−c2d+acf+cdf −fa2+cda+bea−2cea+cfa+efa−be2−c2d+bce+cde −fa2−2bda+cda+bea+bfa+dfa−cd2+bcd−b2e+bde

−cd2+bed+ced+afd+cfd−2efd−be2−af2+acf+bef d2−2ed−2fd+e2+f2−2ef −f2−2af+bf+cf+df+ef−bd+cd+be−ce −e2+ae−2be+ce+de+fe−ad+cd+af−cf −d2+ad+bd−2cd+ed+fd−ae+be+af−bf
−eb2+cdb+ceb+afb−2cfb+efb−af2−c2d+aef+cdf −f2−2af+bf+cf+df+ef−bd+cd+be−ce b2−2cb−2fb+c2+f2−2cf −c2+ac+bc−2dc+ec+fc−ab+be+af−ef −b2+ab+cb+db−2eb+fb−ac+cd+af−df
−fa2+cda+bea−2cea+cfa+efa−be2−c2d+bce+cde −e2+ae−2be+ce+de+fe−ad+cd+af−ef −c2+ac+bc−2dc+ec+fc−ab+be+af−ef a2−2ca−2ea+c2+e2−2ce −a2+ba+ca+da+ea−2fa−bc+cd+be−de
−fa2−2bda+cda+bea+bfa+dfa−cd2+bcd−b2e+bde −d2+ad+bd−2cd+ed+fd−ae+be+af−bf −b2+ab+cb+db−2eb+fb−ac+cd+af−df −a2+ba+ca+da+ea−2fa−bc+cd+be−de a2−2ba−2da+b2+d2−2bd

.

Figure 6.1: A Very Large Matrix
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