Virtual vs. In-Person Instruction: The Impact of Teachers' Understanding of Physics

Madelyn Johnson
University of Northern Iowa

Jeff Morgan Ph.D.
University of Northern Iowa

See next page for additional authors

Copyright ©2021 Madelyn Johnson, Jeff Morgan, and Lawrence Escalada

Follow this and additional works at: https://scholarworks.uni.edu/surp

Part of the [Science and Mathematics Education Commons](https://scholarworks.uni.edu/surp), and the [Secondary Education and Teaching Commons](https://scholarworks.uni.edu/surp)

Recommended Citation

Johnson, Madelyn; Morgan, Jeff Ph.D.; and Escalada, Lawrence Ph.D., "Virtual vs. In-Person Instruction: The Impact of Teachers' Understanding of Physics" (2021). *Summer Undergraduate Research Program (SURP) Symposium*. 35.
https://scholarworks.uni.edu/surp/2021/all/35

This Open Access Poster Presentation is brought to you for free and open access by the CHAS Conferences/Events at UNI ScholarWorks. It has been accepted for inclusion in Summer Undergraduate Research Program (SURP) Symposium by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.
Author
Madelyn Johnson, Jeff Morgan Ph.D., and Lawrence Escalada Ph.D.
Virtual vs. In-Person Instruction: The Impact on Teachers’ Understanding of Physics

Madelyn Johnson, Lawrence Escalada, and Jeffrey Morgan
Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614

Abstract
Covid-19 forced nearly all U.S. schools to switch to virtual instruction in March of 2020. With students around the country and world now “Zooming” into class, it begs the question, does this new learning environment impact student learning? Conceptual assessments and observations were used to make conclusions about the differing effectiveness of instructional methods for professional development programs. Although results may indicate in-person instruction is more effective, I believe the most effective method of instruction is hybrid as it takes advantage of both virtual and in-person methods.

In-Person Summer Programs
From 2006-2008 and 2009-2011 UNI held professional development programs for secondary science teachers looking to complete a physics endorsement. Many teachers had limited physics and math courses prior to joining either program. In these programs, the UNI Physics Department, with support of external funding, provided summer workshops, courses during the academic year, and resources, adding to the department’s rich history of supporting Iowa science teachers through professional development programs. In the summer workshops, teachers engaged with their peers in laboratory investigations, discussions of pedagogy, and much more.

Virtual Summer Courses
In order to continue to support teachers seeking a physics endorsement without the funding previously available, the UNI Department of Physics offers two professional development courses through UNI Continuing Education on a continual basis, one focused on mechanics and one focused on electricity and magnetism. The courses are taught in alternating years. Originally, the courses were designed to include one week of face-to-face labs and three weeks of virtual meetings, but due to the Covid-19 pandemic, the 2020 and 2021 courses were taught entirely online. Twelve 3-hour Zoom sessions were held with the teachers during the summer. To help complete the modules virtually, videos, data, and online simulations were shared with the teachers.

PRISMS PLUS and Modeling

Physics Resources and Instructional Strategies for Motivating Students (PRISMS PLUS) and Modeling instruction consist of learning and Modeling cycles that engage students in learning about forces, light, and electricity as well as many other topics using methods aligned with physics education research. The teachers completed selected learning and Modeling cycles in PRISMS PLUS and Modeling and reflected with their professors and peers on how to effectively implement these curricula in their own classrooms.

Conceptual Assessments

The teachers in each of these programs and courses were given pre and post conceptual assessments. The Force Concept Inventory (FCI) assesses student understanding of mechanics. To compare the scores from these three programs, the average gain and average normalized gain were found using the equations shown below.

\[
\text{average gain} = \frac{\text{average post} \times 100}{\text{average pre}}
\]

\[
\text{average normalized gain} = \frac{\text{average gain}}{\text{average pre} \times 100}
\]

The teachers of the in-person programs were also given the Conceptual Survey of Electricity and Magnetism (CSEM) and the 2021 virtual course participants were administered the Basic Electricity and Magnetism Assessment (BEMA). The scores from the Electricity and Magnetism 2021 virtual course’s conceptual assessment are not yet available as the class is still in progress.

Results

The table below includes the Force Concept Inventory data.

<table>
<thead>
<tr>
<th></th>
<th>Instruction Method</th>
<th>Year</th>
<th>Pre-test Average</th>
<th>Post-test Average</th>
<th>Average Gain</th>
<th>Average Normalized Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Person</td>
<td></td>
<td>2006</td>
<td>54%</td>
<td>71%</td>
<td>17%</td>
<td>36%</td>
</tr>
<tr>
<td>In-Person</td>
<td></td>
<td>2009</td>
<td>51%</td>
<td>67%</td>
<td>15%</td>
<td>30%</td>
</tr>
<tr>
<td>Virtual</td>
<td></td>
<td>2020</td>
<td>58%</td>
<td>66%</td>
<td>8%</td>
<td>6%</td>
</tr>
</tbody>
</table>

After analyzing data and observing virtual instruction, I believe both modes have distinct advantages.

Advantages of In-Person Instruction:
• Hands-on labs can be completed fully by the teachers
• Demonstrations can involve and engage students
• Teachers can easily share information and data with fellow classmates
• Whiteboarding sessions and discussions can be done efficiently and effectively

Advantages of Virtual Instruction:
• Teachers can complete the course from home, making it more accessible for participants
• Provides the teachers with virtual instruction skills to take back to their classes
• Teachers gain experience using online resources

Conclusions

The positive gain shown in the table for the in-person and virtual programs show that both of these instructional methods are effective. One reason why the gain is much larger for the in-person programs could be because of the time spent in class or the backgrounds of the teachers. Another reason could be because of the virtual or in-person instructional method, but I don’t feel that there is enough data to definitively conclude this. Based on the observed advantages and data, I believe that in-person instruction may be slightly more effective. But, in order to take advantage of the strengths of both methods, I believe that a hybrid instructional method would be most effective, combining in-person and virtual instruction, which the future summer courses plan on utilizing.

References & Acknowledgements

American Modeling Teachers Association (2020). AMTA Instructional Resources.
https://www.amta.org/pros/amtamembership/prompts/prep/2013

Cegielski, T. M., Escalada, L., Ursch, J. D. (2018). PRISMS PLUS: University of Northern Iowa Physics Department, Cedar Falls, IA.

Escalada, L., Morgan, J. (February, 2015). Iowa Physics Teacher Instruction and Resources (IPTR) (PowerPoint Slides).

I want to say thank you to the University of Northern Iowa Department of Physics, Jerry and Chris Fleissman, and the NASA Iowa Space Grant Consortium for funding this project. Also, thank you to Jeff Morgan and Lawrence Escalada for not only helping and supporting me, but also for pushing and challenging me. And finally, thank you to my family and friends who supported me this summer, especially the Bilousec and the Fleissman.