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ABSTRACT 

Elevated levels of homocysteine in maternal blood and amniotic fluid are 

associated with cardiovascular, renal, skeletal, and endocrine diseases and also with 

embryonic malformations related to neural crest cells.  Neural crest cells are necessary 

for the formation of tissues and organs throughout the body of vertebrate animals.  The 

migration of neural crest cells is essential for proper development of the target tissues.  

When migration is disrupted, abnormalities may occur.  Migration is affected by 

transcriptional factor LIM3 protein, which regulates the dynamic components of the 

neural crest cell cytoskeleton.   

The objective of this study was to test the hypothesis that exogenous 

homocysteine would induce greater LIM3 protein expression in neural crest cells.  We 

predicted homocysteine increases the expression of LIM3 protein in migrating neural 

crest cells, causing improper assembly and organization of actin filaments during cellular 

migration.   

We dissected homocysteine treated and control chick embryos at developmental 

stage 15.  The explants were immunostained and sectioned on to slides.  We found that 

the expression of LIM3 protein was significantly enhanced in the areas surrounding the 

neural tube, the pharynx, and in the periocular mesenchyme of embryos that were 

subjected to elevated plasma homocysteine when compared to control embryos.  Our 

results support that homocysteine can enhance or alter the migration and behavior or 

neural crest cells by affecting the cytoskeleton regulation of LIM3 protein. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW  

Neurulation 

During early vertebrate development, the ectodermal germ layer becomes divided 

into three embryonic tissue components.  The epidermis is the outermost tissue layer; it 

will surround the surface of the embryo and give rise to the skin.  The neural tube and 

neural crest will form the majority of the nervous system.  Cells of the neural tube 

differentiate into neurons and glial cells to form the central nervous system, whereas 

neural crest cells develop into the sensory neurons, autonomic neurons, and glial cells of 

the peripheral nervous system (Le Douarin 1982).  

Neurulation is the formation of the neural tube and is a process undergone by 

vertebrate embryos early on in development.  It is the basis of the entire adult central 

nervous system.  This process is activated by the notochord, a flexible rod-shaped cellular 

structure that is found in all developing chordates and is derived from the mesoderm.  

The notochord serves as the foundation for the primordial axis of the embryo and a 

precursor for axial skeleton development (Lawson et al. 2001).  Primary neurulation 

contains three major stages, including the formation of the neural plate, invagination of 

the neural plate and the advancement of the neural groove and neural folds, and is 

completed by the fusion of the neural folds forming a hollow tube, separating the roof of 

the neural tube and the overlying epithelium (Schoenwolf 1982).  In chick embryos, this 

separation progresses caudally and terminates at somite pair 27 (Lawson et al. 2001).  
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Secondary neurulation is a process in which the caudal neural tube is formed through 

cavitation of the tail bud proceeding in the posterior direction from somite pair 28 

(Schoenwolf 1991).  In chicks, primary neurulation continues more dorsally while 

secondary neurulation occurs more ventrally creating a region of overlap.  In this region 

the two neural tubes conjoin to form a single neural tube (Schoenwolf and Delongo 

1980).  

Neural Crest Cells 

 Neural crest cells (NCCs) were first studied by the Swiss embryologist, Wilhelm 

His, in 1868. NCCs were identified in chick embryos as a population of cells that 

emanate from the crest of the neural tube, a region between the neural tube and ectoderm 

which later develops into the central nervous system (His 1868). NCCs are now described 

as multipotent neuroectodermal cells that originate between the neural tube and epidermis 

of vertebrates.  

NCCs undergo an epithelial-to-mesenchymal transition (EMT), in which the cells 

disassemble and reorganize their actin cytoskeletons to become migratory.  NCCs will 

migrate individually or in groups. Migratory NCCs follow distinct pathways directed by 

certain molecules associated with extracellular matrices, such as collagen, hyaluronic 

acid, and fibronectin.  When NCCs reach their target destinations they begin to 

differentiate (Kirby and Hutson 2010).  Ephrin ligands are also imperative for directing 

the migration pathways for many cell types during development.  Transmembrane 

ephrins act as a bifunctional guidance cue by either blocking or stimulating the migration 
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of NCCs (Santiago and Erickson 2002).  Ephrin-B proteins stimulate and guide the 

migration of NCCs destined to form melanoblasts along the dorsolateral pathway.  

However, early in development, ephrin-B proteins block the dorsolateral migration of 

NCCs before they are designated to migrate, preventing them from invading the 

pathways of other migratory cells and disrupting development.  Ephrin-B proteins also 

repel NCC migration through posterior somite domains, thereby guiding them through 

the anterior domains only (Santiago and Erickson 2002).   

Occludin is a protein associated with neurulation.  As demonstrated 

experimentally in mice during the time the neural tube begins to close and EMT occurs, 

occludin is downregulated and causes tight junctions to become ineffective (Aaku-Saraste 

et al. 1996).  As a result, the cadherin-based adherens junctions alter their configuration 

and distribution.  This event allows the cells to disengage and become migratory.  

Stationary NCCs contain Ca2+ adherens N-cadherin and cadherin-6B, but when EMT 

occurs they are downregulated (Revel and Brown 1976; Newgreen and Gooday 1985; 

Akitaya and Bronner-Frasier 1992; Nakagawa and Takeichi 1995; Nakagawa and 

Takeichi 1998).  Cadherins associated with migration, such as cadherin-7 and cadherin-

11, are upregulated and the NCCs become mobile (Tanihara et al. 1994; Hoffman and 

Balling 1995; Nakagawa and Takeichi 1998; Vallin et al.1998).  

NCCs generate a variety of different structures in the developing embryo. They 

contribute to the dorsal root sensory ganglia and autonomic ganglia of the peripheral 

nervous system, and the aortic arch branches and aorticopulmonary septum of heart.  
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NCCs are also known to form craniofacial connective tissue, smooth muscle cells, skin 

melanocytes, the pituitary, cartilage, the bones that compose the floor of the skull and the 

middle ear, the connective tissues within the thymus, thyroid, and parathyroid (Le 

Douarin et al. 1993; Marsot-Dupuch et al. 2004; Shah et al. 1996).   

NCCs also give rise to the ganglia of numerous cranial nerves. The nerves 

associated with the first, second, third and fourth pharyngeal arches are the facial (VII), 

glossopharyngeal (IX), vagus (X), and the trigeminal (V) with its three branches 

(ophthalmic, maxillary and mandibular) (Kirby et al. 1985). 

In addition, NCCs play a pivotal role in the development of the eye.  NCC 

derivatives include structures such as the iris, ciliary body, choroid, stroma of the cornea, 

sclera and portions of the extra-ocular muscles that control the movement of the eye 

(Creuzet et al. 2005). 

As demonstrated experimentally through transplantation and cell cultures, 

extracellular signaling mechanisms can affect the fate of neural crest cells (Dorsky et al.  

1998; Bronner-Fraser 1993; Stemple and Anderson 1993; Le Douarin et al. 1994). 

Growth factors have been proven to influence the migration, proliferation and 

differentiation of uncommitted neural crest cells. Experimentally, a deletion of the gene 

that codes for platelet-derived growth factors has been shown to result in mutant mice 

that display malformations of the cranial bones (Soriano 1997). It was also found that 

glial growth factor promotes glial differentiation of rat neural crest stem cells by 

suppressing neuronal differentiation, supporting the idea that growth factors may choose 
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the fate of some neural crest cells at the expense of others (Shah et al. 1994). Similarly, 

Wnt-1 and Wnt-3a are genes found to influence the fate of neural crest cells. These genes 

are expressed by medially located neural crest cells. In zebrafish, the Wnt signaling 

pathway and its role in neural crest cell fate was assessed by injecting cytoplasmic β-

catenin messenger RNA into lateral neural crest cells before they became migratory. The 

injected cells were induced to form pigmented cells instead of neurons or glial cells 

(Dorsky et al. 1998).  

Cardiac Neural Crest Cells 

Cardiac NCCs comprise a subpopulation of NCCs that originate in the posterior 

cranial region of the neural tube.  Cardiac NCCs migrate bilaterally along the pharyngeal 

arches toward the cardiac outflow tract of the heart (Kirby et al. 1983; Poelmann and 

Gittenberger-de Groot 1999; Hutson and Kirby 2003, Kaartinen et al. 2004).  Cardiac 

NCCs are responsible for forming the great vessels, cardiac ganglia, and the 

aorticopulmonary septum that divides the aortic and pulmonary trunks and separates the 

cardiac outflow tracts (review by Rosenquist 2013). Cardiac NCCs also responsible for 

shaping the pharyngeal arches and their derivatives, and they contribute to forming the 

walls of the proximal coronary arteries (Kirby and Waldo 1995; Poelmann et al. 1998; 

Poelmann and Gittenberger-de Groot 1999). Cardiac NCCs provide structure and 

guidance that is vital for normal cell development of the heart and great vessels. 

Congenital heart defects that model those observed in humans can be generated 
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experimentally through disturbing the cardiac NCC population in animals (Rosenquist 

and Finnell 2001).  

 It has been suggested that the migratory NCCs that enter the heart and reach their 

target destination will then stop differentiating and commit to an apoptotic pathway 

(Poelmann and Gittenberger-de Groot 1999).  It is because of this well-regulated, 

programmatic cell death and change in the electrophysiological behavior of the heart that 

cardiac NCCs are believed to mediate the formation and separation of the cardiac 

conduction system and the surrounding myocardium (Poelmann and Gittenberger-de 

Groot 1999). It is also speculated that apoptotic cardiac NCCs are responsible for the 

separation of the outflow tract and the atrioventricular regions of the heart. Failure of the 

NCCs to undergo normal development and then enter apoptosis could result in cardiac 

outflow tract abnormalities and atrioventricular septal malformations in the heart, which 

are among the most frequently occuring abnormalities of all birth defects (Poelmann and 

Gittenberger-de Groot 1999).   

Neural Crest Cell Migration Pathways 

Traditionally, the neural crest was divided into two major regions known as the 

cranial and neural crest (Kirby and Waldo 1990).  The cranial neural crest is located in 

the area between the mid-diencephalon and the caudal limit of somite 5.  The truck neural 

crest extends from somite 5 to the caudal end of the embryo (Kirby and Waldo 1990).  

However, in recent years it has become apparent that there is another population of neural 
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crest cells emanating posteriorly from the rhombencephalic region, commonly called the 

circumpharyngeal neural crest or cardiac neural crest (Carlson 2013).  

The cardiac neural crest is a region within the cranial neural crest between the 

midotic placode and the caudal limit of somite 3.  The neural crest cells that migrate into 

the cardiac outflow tract and form the aorticopulmonary septum are derived from the 

cardiac neural crest.  The cells of the cardiac neural crest migrate from the neural fold 

and populate in pharyngeal arches 3, 4, and 6 (Miyagawa et al. 1990). While in the 

pharyngeal arches, the NCCS shape the endothelium of the aortic arch arteries 

(Bockmam et al. 1989).  The NCCs from pharyngeal arch 4 are involved in the 

development of cardiac outflow septation (Thompson and Fitzharris 1979).   

 During the development of the anterior portion of the eye, successive waves of 

neural crest cells invade the area between the lens and the corneal epithelium. These 

mesenchymal NCCs contribute to the tissues that line anterior chamber, such as the 

cornea, the iris stroma, the anterior chamber angle and the trabecular meshwork (Hay 

1980).  In chick embryos, neural crest cells migrate toward the border of the optic cup by 

stage 18 (Bard and Hay 1975).  Approximately 24 hours later, around stage 23, the first 

wave of NCCs, the cells closest to the lens, migrate between the lens and corneal 

epithelium.  The NCCs form a simple cuboidal epithelium and separate the primary 

corneal stroma from the lens (Bard and Hay 1975).  By stage 26, this layer develops into 

the corneal endothelium.  At stage 27, another wave of NCCs migrate to the primary 

corneal stroma and take residence in the stroma where they later become the fibroblasts 

of the cornea (Fitch et al. 1998; Hay 1980).   
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In a study by Beebe and Coats in 2000, the relationship between the lens and 

NCCs was examined.  Removal or replacement of lens led to formation of a disorganized 

mass of mesenchymal NCCs accumulating under the corneal epithelium.  The tissues that 

are derived from NCCs were not found in the eyes missing their original lenses.  When 

the lens was replaced shortly after removal, within 48 hours after surgery, the corneal 

endothelium and anterior chamber were formed beneath the lens.  When only a portion of 

the lens was removed, the mesenchymal cells differentiated into corneal endothelium 

under the remaining part of the lens.  Beebe and Coats (2000) discovered that the 

mesenchymal NCCs that come into contact with the anterior epithelial cells of the lens 

express the cell adhesion molecule N-cadherin, and can form an organized layer.  These 

studies support the theory that the formation of the corneal endothelium is regulated by 

signals from the lens and the expression of N-cadherin.  N-cadherin may be a key factor 

in the mesenchymal-to-epithelial transition that is necessary for NCCs to undergo prior to 

the formation of the corneal endothelium.  

Homocysteine 

Congenital malformations, such as atypical development of the cardiac outflow 

tract, great vessels, and associated valves, can be due to abnormal proliferation, migration 

and differentiation of cardiac NCCs that occurs in the presence of elevated levels of 

maternal serum homocysteine (Hcys) (Kirby 1987).  

Hcys is a sulfur-containing, non-essential amino acid found in the blood that acts 

as a metabolite in the formation of the essential amino acid, methionine (Miller 2003).  
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Hcys serves a fundamental role as an intermediate in the folic acid cycle, existing 

between S-adenosylmethionine, the methyl donor, and the synthesis of folic acid and 

vitamin B12 (Miller 2003).  Hcys is either irreversibly degraded to cysteine via the 

transsulphuration pathway or it requires folate to be remethylated and converted back to 

methionine (review by Blom and Smulders 2011, review by Rosenquist 2013).   

In 1969, Kilmer McCully observed vascular lesions in two patients suffering from 

severe hyperhomocysteinemia due to separate complications of homocysteine 

metabolism (McCully 1969).  McCully proposed the “homocysteine theory,” which 

stated that elevated plasma concentrations of Hcys, or a derivative of Hcys, yield 

potentially detrimental effects on the vascular wall.  Later studies have confirmed that 

there is a well established link between elevated plasma homocysteine concentrations and 

the risk of developing cardiovascular diseases (reviewed by Blom and Smulders 2011; 

Miller 2003).  

The teratogenic effects of Hcys are due to its ability to alter the cytoskeleton of 

NCCs, thus changing the cells’ normal differentiation and migration.  The findings in a 

study done by Boot et al. in 2003 gave evidence that elevated Hcys is involved with 

enhancing the EMT of NCCs.  Neural tube explants treated with folic acid were found to 

have increased NCC differentiation into nerve and smooth muscle cells, while the neural 

tube explants treated with Hcys exhibited increased migration and outgrowth and reduced 

differentiation of NCCs.  These results suggest that neural tube, orofacial and conotrucal 

defects can be explained by abnormal behavior of NCCs exposed to 
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hyperhomocysteinemia and the critical role folic acid plays in NCC differentiation and 

migration (Boot et al. 2003). 

It is known that adequate intake of folic acid through diet and/or dietary 

supplements throughout a pregnancy can significantly lower the risk of congenital 

embryonic neural tube and cardiovascular malformations (Milinsky et al. 1989).  

Although the protective effects of folic acid during embryonic development are not 

entirely understood, it is established that that homocysteine metabolism is involved in the 

underlying mechanism.   

In a study done by Rosenquist et al., in 1996, varying concentrations of Hcys, 

comparable to those found in humans, were administered to avian embryos and a dose 

response was established.  Of the embryos treated with a teratogenic dose of 200 mM 

D,L-homocysteine or 100 mM L-homocysteine thiolactone during days 0, 1 and 2 of 

incubation, 27% showed neural tube defects.  Embryos were also exposed to teratogenic 

doses during incubation days of 2, 3 and 4 to determine the effects of Hcys on the 

septation process of the heart.  Ventricular septal defects were apparent in 23% of the 

surviving embryos, while 11% showed neural tube defects.  However, the embryos that 

were administered a supplementary daily dose of 0.1 mg (100.0 ng) of folic acid 

following the doses of Hcys were spared of the teratogenic effects (Rosenquist et al.  

1996).    
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Folic Acid Cycle 

 A review by Rosenquist, (2013) explains folate as a collective term used to 

describe a collaborative set of compounds and intermediates that have similar metabolic 

activities in the folate cycle.  Folate enters the cycle by binding to folate receptors on the 

surfaces of cells (review by Minoux and Rijli 2010).  Folic acid is a general term coined 

to describe the synthetic form of water-soluble B-vitamin folate.  Dietary supplemental 

folates are the most stable form of folates.  Folates exist predominantly as 

polyglutamates, which must be hydrolyzed to monoglutamates in order to be transported 

into the cycle (review by Minoux and Rijli 2010).  Rapidly dividing cells, such as cardiac 

neural crest cells, express a high-affinity folate receptor on their surface (review by 

Rosenquist 2013).  Folate is converted into tetrahydrofolate (THF) and then to 5,10-

methylene-THF by action of enzyme serine hydroxymethyltransferase (SHMT) (review 

by Minoux and Rijli 2010).  This conversion supplies the methyl groups needed for 

nucleotide synthesis in cell division (Wagner 1995).  The enzyme 5,10-

methylenetetrahydrofolcate reductase (MTHFR) reduces 5,10-methylene-THF to 5-

methyl-THF (Wagner 1995).  The methyl group of 5-methyl-THF is then used to transfer 

Hcys into the S-adenosylmethionine (SAM) Cycle to regenerate methionine from Hcys 

by the enzyme methionine synthetase and coenzyme vitamin B12 (Wagner 1995).  The 

SAM Cycle uses coenzyme Vitamin B6, enzyme cystathionine beta-synthase ultimately, 

and intermediates SAM and S-adenosylhomocysteine to convert Hcys into methionine 

and release cystathionine (reviewed by Rosenquist 2013).  
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Insufficient levels of folate, faulty folate receptors, or inhibition of folate receptor 

expression may each or in combination result in a reduced availability of THF, which 

then causes fewer methyl groups to be used for DNA synthesis in cells such as cardiac 

NCCs (reviewed by Rosenquist 2013).  Deficiencies or mutations of any of the key 

enzymes used in the cycles may lead to elevated levels of Hcys, which has been 

experimentally connected to neural tube defects (NTD) and congenital heart defects 

(CHD) (reviewed by Rosenquist 2013).  

Congenital Heart Defects 

Congenital heart defects (CHDs) are the most common developmental 

abnormality in newborns and are the leading non-infectious cause of mortality (Garg et 

al. 2003).  In the United States, out of every 1,000 live births approximately 8 to 10 

babies are affected by a CHD (Botto et al. 2003).  Less than 15% of heart defects can be 

determined from a known cause (review by Minoux and Rijli 2010).  Congenital heart 

defects can be attributed to exposures to environmental effects, maternal factors and 

genetic disposition (Shaw et al. 2001, Botto et al. 2003).  According to a study by Hobbs 

et al. (2010), women with functional polymorphisms in genes responsible for encoding 

the function of folate metabolism pathways increase the risk of carrying a fetus with 

CHD when maternal lifestyle factors such as obesity, smoking, and/or drinking alcohol 

are present.  Several studies have shown a correlation between the development of neural 

tube and CHDs in embryos exposed to increased maternal plasma homocysteine present 

in conditions of folate depletion.  Folate deficiency can lead to CHDs, neural tube defects 
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(NTDs), recurrent early pregnancy loss, late pregnancy complications, and orofacial 

clefts (review by Minoux and Rijli 2010).  Elevated maternal homocysteine is also 

associated with neurodegenerative and psychiatric disorders, osteoporosis and cancer (see 

reviews by Rosenquist 2013; Hobbs et al. 2005; Minoux and Rijli 2010). 

It is characteristic of successful NCCs to rapidly divide and proliferate because 

they have a higher mitotic index compared to neighboring embryonic cells in the neural 

tube region (Salvarezza and Rovasio 1997; Tierney et al. 2004; Rosenquist et al. 2010).  

NCCs and cardiac NCCs must begin to enter the S-phase of mitosis before they can 

initiate EMT (Burstyn-Cohen and Kalcheim 2002; Tierney et al. 2004).  As reviewed by 

Rosenquist (2013), folate is used as a transportation system for methyl groups in the 

SAM cycle and has a vital role in nucleotide synthesis, therefore a deficiency in folate 

will block this key step in cell division and impair NCC proliferation and migration.  

Early in development, demethylated maternal and paternal genes undergo a 

widespread re-methylation that occurs in a predetermined, coordinated sequence 

associated with differentiation (reviewed by Rosenquist 2013).  Enzymes DNA (cytosine-

5)-methyltransferase 3a (DNMT3a) and DNMT3b control the fate and migration of 

NCCs during this time of re-methylation (reviewed by Martins-Taylor et al. 2012).  

Demonstrated experimentally by Martins-Taylor, et al. (2012), when folate is depleted 

the expression of DNMT3b is inhibited and the re-methylation of DNA is reduced.  As a 

result, the genes needed for the sequenced regulation of NCCs are not silenced in an 

orderly manner, causing several genes to be abnormally expressed or over-expressed.  

These findings support the hypotheses that a folate deficiency could play a pivotal role in 
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decreased DNA methylation causing CHDs due to abnormal development of cardiac 

neural crest, and that folate supplementation may have a protective effect by rejuvenating 

DNA methylation (reviewed by Rosenquist 2013).  

The majority of congenital heart defects (CHD) are due to abnormal development 

of the cardiac outflow tracts.  The development of the cardiac outflow tracts is dependent 

on normal migration and differentiation of Cardiac NCCs.  

 

LIM3 Protein 

The LIM domain is a particular cysteine-rich polypeptide sequence motif that 

creates a double zinc finger structure with a conserved consensus sequence of 

(CXXCX16–23HXXCXXCXXCX16–21CXX(D/H/C)).  This domain is found in proteins 

that act as transcription factors or as components of focal adhesions or the actin-based 

cytoskeleton (Nishiya et al. 1999).  Transcription factors (TFs) have essential roles in the 

foundation, structure and maintenance of cellular phenotypes (Edqvist et al. 2009).  

Proteins containing LIM domains often have other domains, including 

homeodomain, kinase, SH3, and LD domains.  The association of the tyrosine-based 

motif of the insulin receptor with the LIM 3 domain of the Enigma protein is a commonly 

described LIM domain mediated interaction.  Likewise, the LIM 2 of Enigma interacts 

with the Ret receptor tyrosine kinase.  These interactions demonstrate that each 

individual LIM domain needs to recognize and interact with other specific protein 

domains.  For example, LIM 3 domain of paxillin, a signal transduction adaptor protein, 

is essential for the targeting of focal adhesions (Côté et al. 1999). 
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In a study conducted by Rosenquist et al. (2007), microarray analysis and 

expression profiling was performed on chick embryos to identify 65 transcripts of genes 

of known function that were altered by Hcys.  The genes involved in cellular migration 

and adhesion were greatly affected.  LIM3 (also known as cysteine and glycine rich 

protein 3, CPR3) mRNA was found to have increased to 176 times greater in the Hcys 

treated cells than in the controls.  LIM3 protein participates in the complex control of the 

dynamic process of assembling and organizing the cell’s actin cytoskeleton during EMT 

of the NCCs.  LIM3 protein works as a transcriptional factor for the differentiation of 

motor neurons and interneurons (Khurana et al. 2002).  LIM3 has a potential role in 

transcriptional regulation of certain genes during morphogenesis of the pituitary and 

pineal gland (Khurana et al. 2002).  LIM3 has been found in nuclei, focal adhesions, and 

in the cytoplasm of NCCs (Khurana et al. 2002).   

Hypothesis 

Mwakikunga et al. (2011) found that levels of LIM3 around nuclei and in focal 

adhesion of migrating chick embryo NCCs was enhanced in the presence of Hcys in 

vitro, suggesting that it may be involved in modulating the signal that adjusts the 

cytoskeleton for the enhanced migration.  And given that Boot et al. (2003), have shown 

that Hcys enhances EMT, it may be that Hcys causes an upregulation of LIM3, which 

could be present in at least some cardiac NCCs, and if upregulated, may be responsible 

for enhanced (or otherwise altered) migration leading to malformations.  In this study, the 

expression of LIM3 in migrating cardiac NCCs will be analyzed using confocal 
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fluorescence microscopy in conjunction with the marker antibody HNK-1 for NCCs to 

determine whether these NCCs (and others nearby) do show enhanced LIM3 expression.  
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CHAPTER 2 

MATERIALS AND METHODS 

Culture and Fixation 

Chicken eggs of the crossed strains Black Astrolorps/New Hampshire Red were 

purchased from Sunray Hatchery, Hazelton, IA. The eggs were incubated at 38˚C for 48 

hours. The embryos were found to be between stages 11 to 14 (Hamburger and Hamilton 

1992). The eggs were windowed after removing 4 mL of ovalbumin using a 20 gauge 

needle and syringe. Strips of Scotch tape were placed over one half of the egg covering 

the puncture hole, and a portion of the shell was removed by cutting a large oval window 

through the shell and the tape. To treat embryos, they were injected with 1µl of 100 µM 

Hcys into their amnions at the level of the 4th somite pair, under the developing heart. 

Control embryos were injected with 1 µl of Earl’s Balanced Salt Solution (EBSS) in the 

same area. The windows were closed with Scotch tape and the embryos returned to 

incubate at 38˚C with high humidity. After 24 hours, the embryos were removed using 

3MM filter paper rings and were rinsed in sterile plastic dishes with Chick Ringer’s 

saline. The embryos were fixed by transferring to ice-cold 20% DMSO in methanol for 1 

hour.  

Dehydration, Embedment and Sectioning 

After fixation embryos were washed three times, two minutes each in phosphate 

buffered saline (PBS) (4% NaCl, 0.1% KCl, 0.1% KH2PO4, 0.575% NaHPO4, pH 7.4). 
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The embryos were dehydrated in a series of six ethanol solutions, including 25%, 50%, 

70%, 90%, and twice in 100% for five minutes each. The embryos were then incubated in 

a 1:1 mixture of Protocol Safeclear II (Fisher Scientific, Chicago, IL) and ethanol for 

fifteen minutes, and then 100% Protocol Safeclear II for ten minutes at room temperature 

followed by ten minutes at 60˚C. The embryos were then transferred to 1:1 paraffin and 

Protocol Safeclear II overnight at 60˚C, and then to 100% paraffin for an overnight 

incubation at 60˚C. The explants were finally transferred to fresh 100% paraffin and 

allowed to cool. They were mounted on wooden blocks and the paraffin was trimmed 

into a trapezoid blockface over the embryo. They were sectioned into six µm thick slices 

using a Reichert-Jung Histocut 820 microtome. The sections were floated on water at 42-

45˚C on glass slides prepared with tissue section adhesive. The sections were allowed to 

dry and adhere on to the slides overnight.  The slides were submerged for five minutes 

each in Coplin jars containing 100% Xylene (2x), 1:1 Xylene and 100% ethanol twice, 

100% ethanol, 95% ethanol, 70% ethanol, 50% ethanol, deionized H2O twice, and then 

PBS.  

Immunohistochemistry 

The sections were incubated in blocking solution (0.5% bovine serum albumin, 

1% Tween-20, and 1% non-fat dry milk in PBS) for ten minutes at room temperature. 

Monoclonal anti-LIM3 antibody purchased from the Developmental Studies Hybridoma 

Bank was diluted 1:100 in blocking solution and applied to the sections for two hours at 

room temperature or 24 hours at 4˚C. Primary antibody incubation was then followed by 
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three PBS washes for five minutes each. The binding of the anti-LIM3 antibody was 

detected using Alexaflour 488 tagged anti-mouse IgG (2 mg/Ml, Molecular Probes, Inc., 

Eugene, OR) diluted 1:500 in blocking solution for two hours at room temperature or 24 

hours at 4˚C. The secondary antibody incubation was followed by three PBS washes for 

five minutes each. HNK-1 primary antibody (American Type Culture Collection, 

Manassas, VA), obtained from hybridoma cell cultures was used to detect neural crest 

cells. It was diluted 1:100 in blocking solution and applied to the slides for two hours at 

room temperature for 24 hours at 4˚C. The HNK-1 primary antibody was a gift from Dr. 

Alicia Paulson at the University of South Dakota. This was followed by three PBS 

washes for five minutes each. To detect the HNK-1 primary antibody, the slides were 

incubated in Alexafluor 594 tagged anti-mouse IgM with minimal cross-reactivity to 

human, bovine, and horse (1.4mg/ml, Jackson ImmunoResearch Laboratories Inc, West 

Grove, PA) diluted 1:500 in blocking solution for two hours at room temperature or 24 

hours at 4˚C. This was followed by three PBS washes for five minutes each. To stain the 

nuclei of the cells, the slides were incubated in 1μg/ml bisbenzamide (Hoescht No. 33258 

Sigma Chemical Co, St. Louis, MI) for ten minutes in the dark at room temperature, then 

rinsed in deionized water for 10 seconds. Two to three drops of Dapi Fluoromount-G 

anti-fade mounting medium (Southern Biotech, Birmingham, AL) was added to each 

slide. The slides were then covered with microscope cover glass (22x50-1.5, Fisher 

Scientific), and allowed to dry.  
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Image Analysis and Microscopy 

 The slides were viewed using a Zeiss LSM 510 confocal microscope and Zen 

2011 software for each of the two fluorescent labels. Images were captured with 

excitation and emission wavelengths chosen by the software after adjusting the pinhole 

and laser intensities.  The fluorescence intensity of LIM-3 immunostaining was measured 

using the 2-D option, dragging the cursor over each cell and recording the intensity value 

that was given on a scale of 0-255. Background reference intensity was measured by 

determining the average brightness values of 20 points on the neural tube in the same 

image. The values of the neural crest cell brightness were divided by the average 

background brightness to obtain a fluorescence ratio.  
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CHAPTER 3 

RESULTS 

Chick embryos were incubated to the stages of 11-14.  The treated chick embryos 

were injected with 1µl of 100 µM Hcys into their amnions.  The control embryos were 

injected with 1 μl of Earl’s Balanced Salt Solution.  The embryos were dehydrated, 

embedded in paraffin, and sectioned into 6 μm thick slices.  The sections were labeled 

with monoclonal anti-LIM3 primary antibody, Alexafluor 488 secondary antibody, HKN-

1 primary antibody and Alexafluor 594 secondary antibody.  The sections were examined 

under Zeiss confocal microscope and intensity analysis was done using Zen 2011 

software.  During the course of this study 16 control embryos and 15 treated embryos 

were analyzed for LIM3 expression.   

Neural crest cells are known to migrate and contribute to the development of 

tissues and structures in the heart, the eye and around the axial skeleton.  These three 

areas were chosen for this study.  The results are divided into findings for each of the 

tissue types.  

Paraxial Mesenchyme 

The LIM3 stained cells observed in the mesenchyme around the neural tube in 

Hcys treated embryos exhibited higher intensity staining of Alexafluor 488 compared to 

the LIM3 positive cells seen in control embryos.  The number of LIM3 positive cells 

existing in the control and treated specimens is comparable. As seen in Figure 1A and 
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1B, the intensity of the stained cells is bright compared to the background staining in the 

mesenchyme, however, in Hcys-treated embryos the intensity was consistently much 

higher. Whereas, Figures 1C and 1D exhibit a low level of background staining and 

highly intense staining of LIM3 positive cells.  

 

 Figure 

(Figure Continues) 
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Figure 1. Sections through the trunk of HH stage 11-14 embryos stained with anti-LIM3 
protein revealing paraxial mesenchyme with migratory cells.  LIM3 is shown with green 
fluorescence and HNK-1 is shown with magenta fluorescence.  A and B.  Control embryo 
sections showing LIM3 positive cells present in the paraxial mesenchyme.  Note that 
background fluorescence varied with section thickness (and possibly other factors) and is 
very low in A, higher in B.   Red blood cells in the descending aorta show strong 
autofluorescence.  C and D.  Similar sections through Hcys treated embryos.  Background 
fluorescence is similar to that in A.  Fluorescence of scattered LIM3-positive migratory 
cells is considerably more intense.  E and F.  Negative control embryos.  E is a negative 
control for anti-LIM3 primary antibody.   F is a negative control for HNK-1 primary 
antibody.  NT= Neural Tube; NC= Notochord; S= Somite; DA= Descending Aorta; Scale 
Bar= 100 μm. 

 

 

The intensity of positively stained cells was measured using the confocal 

microscope image analysis software.  The numerical intensity of each cell on a scale of 0 

to 255 was converted to a ratio by dividing it by the average intensity measured in the 

neural tube in order to control for section thickness and other factors that might cause 

section-to-section variability.  These ratios were recorded and analyzed statistically.  A 

histogram plotting their frequency distribution is displayed in Figure 2. The ratios were 
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found to be not normally distributed but skewed with greater numbers of ratios having 

lower intensity.  It was apparent that the ratios were more intense over the entire 

frequency distribution in Hcys-treated embryo sections.  Box plots (Figure 3) showing 

medians, quartiles, maxima and minima reveal the magnitude of this difference.  Because 

the data was not normally distributed it was compared using the Wilcoxon rank sum test.  

The difference in the paraxial region was highly significant. 

 

Figure 2.  A histogram depicting the frequencies of the intensity ratio values of LIM3 
positive cells observed in the paraxial mesenchyme of stage 11-14 chick embryos treated 
with 1µl of 100 µM Hcys or 1 µl of EBSS.   
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Figure 3.  Box plots depicting the intensity ratio of LIM3 positive cells observed in the 
paraxial mesenchyme of stage 11-14 chick embryos treated with 1µl of 100 µM Hcys or 
1 µl of EBSS (control).  The heavy line in the box indicates median, the top and bottom 
lines of the box indicate third and first quartiles, respectively, and the whiskers connected 
to the box by dotted lines show maximum and minimum.  
*Significantly different, P< 2.2e-16 

 

Periocular Mesenchyme 

The mesenchymal tissue surrounding the early developing eye is also an 

important site where NCCs must migrate in and eventually form the corneal endothelium 

and other structures.  The number of LIM3 positive cells entering the periocular 

mesenchyme was similar in the control and treated embryos.  As seen in Figure 4C and 

D, the stained cells of the treated embryos exhibited a greater intensity of staining 
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compared to the intensity of the stained cells seen in the control group (A and B).  The 

pattern observed around the ocular mesenchyme was similar to that of the paraxial 

mesenchyme.  Although the intensity of stained cells was generally quite intense in 

controls, higher overall than in the paraxial mesenchyme, it was clearly augmented in 

Hcys-treated embryos. 
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Figure 4.  Sections revealing LIM3-positive cells in the periocular mesenchyme around the optic cup.  A 
and B.  Control embryo sections at low (A) and higher background intensity (B) likely due to section 
thickness.  LIM3 stained cells are scattered and clearly visible.  Some are quite near the sensory retina.  C 
and D.  Hcys-treated embryo sections of moderate and similar background fluorescence.  Stained cells are 
intense.  Le= Lens; OC= Optic Cup; OS=  Optic Stalk; Di= Diencephalon; Line= 100 μm. 
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The intensity ratio data associated with the periocular mesenchyme, as with the 

paraxial mesenchyme, was not found to be normally distributed.  The data are shown in 

Figure 5.   

 

Figure 5.  A box plots depicting the intensity ratio of LIM3 positive cells observed in the 
periocular mesenchyme of stage 11-14 chick embryos treated with 1µl of 100 µM Hcys 
or 1 µl of EBSS (control). Heavy lines indicate medians, top and bottom lines third and 
first quartiles, and whiskers show maximum and minimum.   
*Significantly higher than control, P < 2.2e-16, Wilcoxon rank sum test.  

 

Pharynx Region 

NCCs migrate from the neural tube region between rhombomeres 6 and 8 to the 

third somite in a ventral direction and enter the regions around pharyngeal arches 3, 4, 
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and 6 (Sato and Yost 2003). Some NCCs migrate even further towards the heart and into 

the outflow tracts where they participate in forming the aorticopulmonary and truncal 

septa (Sato and Yost 2003).  These are known as cardiac neural crest cells.  We found 

fewer NCCs in the pharynx region of both control and treated embryos than we found in 

the periaxial and periocular regions.  This may be due to the fact that the chick embryos 

were only allowed to develop to HH stage 12-14 and the majority of neural crest cells do 

not reach this pathway until after the development of the pharyngeal arches, which occurs 

after HH stage 14 (Bellairs and Osmond 2005).  Of the LIM3 positive cells that were 

observed in the pharynx region, the intensity ratios were stronger in the treated embryos 

in comparison to the control embryos.  
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Figure 6.  Sections through the pharynx region of HH stage 11-14 embryos stained with 
monoclonal anti-LIM3 primary antibody and Alexafluor 488 secondary antibody.  A and 
B.  Control embryos at low (A) and higher (B) magnification.  C and D.  Embryos treated 
with homocysteine.  Autofluorescence of blood within the aortic arches is evident.  
LIM3-positive cells were scarce in both control and treated embryo sections.  DA= 
Descending Aorta; ACV= Anterior Cardinal Vein; AA1= 1st Aortic Arch; AA2= 2nd 
Aortic Arch; AA3= 3rd Aortic Arch; AA4= 4th Aortic Arch; PP1= 1st Pharyngeal Pouch; 
PP2= 2nd Pharyngeal Pouch; PP3= 3rd Pharyngeal Pouch; Scale Bars= 100 μm; Arrows 
indicate possible LIM3 positive NCCs.  
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The intensity ratio data associated with the LIM3 positive cells found in the 

pharynx region was also not normally distributed.  Box plots display the intensity ratios 

(Figure 7) of cells found in the pharynx region.  The LIM3-positive cells in the Hcys 

treated group showed significantly greater intensity ratios than those of the control group. 

 
Figure 7.  Box plots depicting the intensity ratio of LIM3 positive cells observed in the 
pharynx region of stage 11-14 chick embryos treated with 1µl of 100 µM Hcys or 1 µl of 
EBSS (control).  
*Significantly greater than control, P < 0.000001. 
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Wilcoxon Rank Sum Test and P-Values 

 Because the fluorescence intensity ratio was not normally distributed, it was 

assessed using the nonparametric Wilcoxon Rank Sum test.  The results are shown in 

Table 1.  The p-values associated with the Wilcoxon test confirm that the intensity ratios 

of the treated embryos are significantly different when compared to the ratios of the 

control group.  

Table 1. The Results of the Wilcoxon Rank Sum Test with P-Values 
Location Wilcoxon Sum P-Value 

Pharynx Region 11046 < 2.2e-16 
Paraxial Mesenchyme 31281 < 2.2e-16 

Periocular Mesenchyme 3629.5 < 2.2e-16 
 

Double Staining 

Double staining with the antibodies to LIM3 and to NCCs (HNK-1) allowed us to 

identify cells that can be recognized as NCCs expressing LIM3 and to determine how 

many cells were NCCs not expressing LIM3 and how many cells expressed LIM3 but 

were not NCCs.  Furthermore, it would allow us to determine whether Hcys treatment 

had any effect on the proportions of expressing cells.  The majority of LIM3 stained cells 

did not display double staining with HNK-1.  Approximately 27% of stained cells located 

in the paraxial mesenchyme were labeled by both Alexafluor 488 and Alexafluor 594.  Of 

the neural crest cells in the periocular mesenchyme, 26% of the stained cells exhibited 

double staining.  Only about 12% cells in the pharynx region were double stained.  The 

percentage of double stained cells found in the paraxial mesenchyme, periocular 
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mesenchyme and pharynx region are listed by treatment in Table 2.  The proportion of 

NCCs expressing LIM3 and HNK-1was lower than we expected and it may be that more 

NCCs come to express LIM3 later in their migration or developmental progress.  

Treatment with Hcys did not appear to alter the percentage of cells that double stained.  

Table 2. Percent of NCCs expressing LIM3 by Location and Treatment 

Region Treatment Percent of NCCs expressing LIM3 

Pharynx Region Control 31/223  (14%) 

Pharynx Region Hcys 22/189  (13%) 

Paraxial Mesenchyme Control 22/189 (28%) 

Paraxial Mesenchyme Hcys 56/236 (27%) 

Periocular Mesenchyme Control 56/236 (23%) 

Periocular Mesenchyme Hcys 64/216 (30%) 
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(Figure Continues) 
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Figure 8.  Sections through the trunk, optic cup and pharynx of HH stage 11-14 embryos 
labeled with monoclonal anti-LIM3 primary antibody, Alexafluor 488 secondary 
antibody, HKN-1 primary antibody and Alexafluor 594 secondary antibody.  The light 
gray or white portions signify a cell that expresses LIM3 protein and is a possible neural 
crest cell.  (A) is the neural tube of a control embryo.  (B) the neural tube of a 
homocysteine treated embryo.  (C) is the periocular mesenchyme region of a control 
embryo.  (D) is the periocular mesenchyme region of a homocysteine treated embryo.  
(E) is the pharynx region of a control embryo.  (F) the pharynx region of a homocysteine 
treated embryo.  NT= Neural Tube; NC= Notochord; DA= Descending Aorta; S= Somite; 
OC=Optic Cup; OS= Optic Stalk; Di= Diencephalon; Le= Lens; AA2= 2nd Aortic Arch; 
AA3= 3rd Aortic Arch; AA4= 4th Aortic Arch; PP2= 2nd Pharyngeal Pouch; MP= 
Mandibular Process; St= Stomodium; Scale Bar= 100 μm.  

 

Neural Crest Cell Staining with HNK-1 

HNK-1 is a mouse monoclonal antibody developed against quail ciliary ganglion 

and a human leukemic cell-line (Tucker et al.1984).  HNK-1 labels migrating NCCs in 

avian embryos that are 1 to 3 days old.  In addition to staining NCCs, nonspecific staining 

of neuroepithelial cells and neurons is observed in older animals (Tucker , 1984).  As 

seen in Figure 9, HNK-1 labeled the NCCs migrating from the dorsal side of the neural 
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tube, thus providing an identification for NCCs and the opportunity to identify NCCs that 

were LIM3-positive via double staining.  We observed that it also labeled the outer 

perimeters of the neural tube itself, the notochord, and some of the neuroepithelium as 

expected.  Such labeling was not useful, however it did not interfere with interpretation. 

 

 

 

 

Figure 9.  Sections through the trunk of HH stage 11-14 embryos labeled with 
monoclonal anti-LIM3 primary antibody, Alexafluor 488 secondary antibody, HKN-1 
primary antibody and Alexafluor 594 secondary antibody.   Images (A) and (B) show 
non-specific staining of HNK-1 on the neural tube, notochord, and other neuroepithelial 
structures.  (A) A homocysteine treated embryo stained with only HNK-1 primary 
antibody and Alexfluor 594 secondary antibody.  (B) The image is of a control embryo.  
This embryo was double stained with monoclonal anti-LIM3 primary antibody, 
Alexafluor 488 secondary antibody, HKN-1 primary antibody and Alexafluor 594 
secondary antibody.  NT= Neural Tube; NC= Notochord; DA= Descending Aorta; S= 
Somite; DRG= Dorsal Root Ganglion; Scale Bar= 100 μm. 
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Autofluorescence of Erythrocytes 

Autofluorescence of erythrocytes is caused by the accumulation of Schiff base 

compounds conjugated on the cell surface (Stoya et al.2002).  Schiff base compounds are 

intermediates that originate from the aldehydes derived from lipid peroxidation and from 

the amino groups of phospholipids (Stoya et al.2002).   

As seen in Figure 10A and B, the red blood cells and NCCs differ in size, shape 

and pattern of fluorescence.  Red blood cells are larger than NCCs, disc shaped and 

display a more consistent fluorescence.  NCCs are known for having irregular, web-

shaped cells due to their migratory activity.  NCCs also exhibit a spotted pattern of 

fluorescence as a result of LIM3 expression in focal adhesions and the nucleus.   

  

Figure 10.  These sections have been labeled with monoclonal anti-LIM3 primary 
antibody and Alexafluor 488 secondary antibody.  (A) is the eye of a control embryo.  (B) 
is the dorsal aorta of a control embryo.  POM= Periocular Mesenchyme; Re= Retina; Di= 
Diencephalon; NCC= Neural Crest Cells; DA= Dorsal Aorta; RBC= Red Blood Cells; 
Scale Bar= 50 μm.   
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CHAPTER 4 

DISCUSSION 

 Hcys, an amino acid normally present in the blood, is a known terratogen causing 

primarily neural tube and cardiac outflow malformations when present at concentrations 

higher than normal in maternal blood.  In a microarray study of the effect of Hcys on the 

mRNA expression from known genes, Rosenquist et al.(2007) found that many coding 

for proteins involved in cell adhesion and migration were altered by Hcys, suggesting that 

it exerts its teratogenic effects by perturbing NCCs as they migrate.  One of these genes 

products is the LIM3 protein, a molecule of dual function, acting as a transcription factor 

and a focal adhesion protein.  It was found to have expression 176 times greater than 

control level (Rosenquist et al.2007).  In our study, chick embryos at HH stage 11-12 (40-

50 hours of development, a time when NCC migration is getting well underway) were 

exposed to Hcys by injecting a solution of Hcys in saline (EBSS) into the amnion.  They 

were exposed within the eggs for 24 hours of further development, advancing them to 

HH stage 17-18 (about 70 hours).  Control embryos were treated identically but injected 

with the saline only.  We identified neural crest cells in transverse sections of these 

embryos using the HNK-1 antibody and we identified and quantitatively measured the 

expression of LIM3 protein in the individual NCCs (HNK-1 positive) as well as in other 

positively staining cells.  For this analysis, we chose three regions where NCC migration 

is known to be abundant and important for organ development:  the paraxial region of 

mesenchyme near the spinal cord through which NCCs migrate and where some 
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aggregate to form the dorsal root ganglia, the mesenchyme near the optic cups where 

NCCs migrate en route to form the corneal endothelium, and the pharynx, through which 

NCCs migrate to form major thoracic arteries with associated connective tissues, and the 

aortico-pulmonary and truncal septa at the heart’s outflow. 

 The primary antibodies used in this study were effective in labeling their specific 

target cells, as demonstrated by presence of intense staining of cells in the expected 

locations and the absence of staining in the negative controls (primary antibody omitted 

during the staining procedure), shown in Figure 1.  After observing the cranial and 

cardiac sections of the chick embryos it was apparent that populations of neural crest 

cells emanate from the dorsal neural tube in successive waves.  Multiple waves of 

migrating NCCs labeled with HNK-1 were often observed in the paraxial mesenchyme, 

as seen in Figures 8A and B.  We observed positive cells in some sections of the 

predicted mesenchyme but absence of such staining in other sections through the same 

mesenchyme.  Significantly, we also observed that not all HNK-1 labeled NCCs 

expressed LIM3 protein.  Likewise, not all LIM3 protein expressing cells were double 

stained with HNK-1.  This may indicate that the NCCs that do not express LIM3 protein 

may express it later on in development, but it also shows that Hcys is enhancing the 

LIM3 expression of many cells that are not NCCs, cells that may or may not contribute to 

known affected tissues and organs. 

 In paraxial mesenchyme surrounding the neural tube, the intensity of positively 

stained LIM3 cells was significantly greater in Hcys treated embryos than in the control 
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embryos.  Our images show that in some sections the background staining was low but 

visibly variable, likely due to differences in section thickness.  We controlled for 

variability by expressing all measured cell intensities as ratios—proportions of neural 

tube average intensity.  The results support our hypothesis that elevated serum Hcys will 

increase the expression of LIM3 protein in NCCs.  Hcys did not seem to affect the 

number of NCCs migrating into the paraxial mesenchyme labeled with HNK-1 nor the 

number of cells expressing LIM3 protein.  Thus the effect was likely not re-directing 

differentiation of determined cells but was enhancing expression in cells already 

expressing LIM3. 

 The NCCs found in the periocular mesenchyme around the optic cup 

demonstrated a pattern of staining and intensity similar to that found in the paraxial 

mesenchyme.  Generally, the cells of the treated embryos were observed to emit stronger 

intensities of LIM3 fluorescence compared to the control embryos.  The results are 

consistent with our hypothesis that elevated plasma Hcys will cause an over-expression 

of LIM3 protein.  If there were sequential waves of NCCs migrating into the periocular 

mesenchyme, it was not as apparent as it was in the paraxial mesenchyme.  However, if 

the embryos were allowed more time to develop it may have been possible to observe 

multiple waves moving around the optic cup.    

 The number of NCCs observed in the pharynx region was smaller in comparison 

to the number in the paraxial and periocular mesenchyme.  This may be because the chick 

embryos were only allowed to develop until HH stages 13-14, which may be too early in 
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development for a substantial number of NCCs to migrate into the pharynx.  If the chick 

embryos were allowed to develop past HH stages 13-14 it is possible there would be 

more NCCs found in the tissue.  The NCCs that were observed in the pharynx of the 

Hcys treated embryos exhibited stronger LIM3 expression than the control embryos.  The 

findings support the hypothesis that elevated Hcys causes over-expression of LIM3 

protein among NCCs.  However, measuring the intensities of a greater number NCCs in 

the pharynx of a further developed embryo might reveal a more strongly supported result.   

The findings are consistent with the concept that elevated maternal Hcys may 

alter the migration pattern of NCCs by causing them to over express LIM3 protein, thus 

affecting the focal adhesions and organization of the cytoskeleton.  Past studies have 

suggested that neural tube defects and congenital heart defects can be induced by 

hyperhomocysteinemia (Rosenquist et al.1996; review by Steegers-Theunissen et al. 

1991).  In another study Rosenquist et al. showed that when NCCs were treated in vitro 

with exogenous Hcys, the genes affected were those corresponding to cell migration and 

adhesion, cellular metabolism, DNA and RNA interaction, and cell proliferation and 

apoptosis (Rosenquist 2007).  Furthermore, Rosenquist et al.carried out a study in 2007 

that identified the transcripts of genes of known function that were significantly altered 

by elevated Hcys.  Of these genes, LIM3 mRNA was found to have increased to a level 

176 times greater in Hcys treated embryos compared to the controls.  Our findings are 

support and extend this finding. 
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In conclusion, our data and other studies are consistent with the idea that LIM3 

protein has a role in assembling and organizing NCCs actin cytoskeleton during EMT, 

and show that elevated levels of Hcys magnify LIM3 expression.  This offers a possible 

mechanism to explain at least in part how Hcys misguides development and leads to 

congenital embryonic neural tube and cardiovascular malformations. 
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