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ABSTRACT 

     Thomomydoecus minor is an ectoparasitic chewing louse that lives in intimate 

association with the pocket gopher Thomomys bottae. Chewing lice are wingless, 

obligate, host specific parasites that spend their entire life cycle on the fur of their host. 

Pocket gophers are fossorial and asocial, cut off for most of their lives even from 

members of their own species. Thus, the life histories of both chewing lice and pocket 

gophers have been predicted to limit transmission of lice from host to host, thus limiting 

gene flow among louse infrapopulations found on different hosts and increasing the effect 

of louse population bottlenecks that occur when lice colonize new host individuals. The 

geographic location of special interest in this study was a section of the Rio Grande 

Valley in New Mexico called the San Acacia constriction. This is a zone of secondary 

contact where two subspecies of pocket gophers meet and hybridize to a limited extent. 

Restricted hybridization between these hosts was predicted to influence genetic structure 

of the corresponding louse populations.  

     In the present study, genomic DNA was isolated from 118 chewing lice collected in 

2011 from 3 localities surrounding the San Acacia constriction and from 39 samples of 

lice collected in 1992 from one of the same localities. A portion of the mitochondrial 

cytochrome-c oxidase subunit I (COI) gene was sequenced and used to construct a 

phylogenetic tree, which indicated two distinct haplotypes, with one of these occurring 

north of the host hybrid zone and the other occurring south of it. These two haplotypes 

likely diverged 78,000-200,000 years ago. Haplotype distribution coincides with the 

geographic break in suitable pocket gopher habitat imposed by the San Acacia 



 
 

constriction, indicating that either geography or limits on host hybridization in this region 

cause an impediment to gene flow between northern and southern chewing louse 

populations. Eight novel microsatellite loci developed for this study revealed greater 

levels of genetic variation than were available in previous studies of chewing louse 

populations, which relied on allozymes. Like the mtDNA data, microsatellite data 

supported a distinct separation between northern and southern louse populations 

coincident with geography. Furthermore, distinct infrapopulations on different host 

individuals were detected in microsatellite genetic distance measures and AMOVA 

analyses, thus supporting previous predictions of louse population subdivision resulting 

from a life history whereby host pocket gophers serve as isolated islands of habitat for 

chewing lice with horizontal transmission of lice between unrelated hosts being relatively 

rare. Contrary to previous predictions, louse populations appeared to be in Hardy-

Weinberg Equilibrium and showed little or no evidence of population bottlenecks or 

inbreeding. Despite a life history that has been thought to impose frequent bottlenecks on 

chewing louse populations, relatively stable genetic diversity was maintained over a 19.5-

year, 175-generation time span between collection dates at the same sampling locality.  
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CHAPTER 1 

INTRODUCTION 

The Importance of Parasites 

     The field of parasitology is predominantly concerned with the study of symbiosis, 

which refers to a relationship in which two organisms live in intimate association, usually 

with one organism living in or on the body of another organism (Schmidt and Roberts 

1989). According to classical definitions, a parasite is a symbiont that lives at the expense 

of its host causing harm in any number of ways (Schmidt and Roberts 1989). However, 

some parisitologists have pointed out problems with this definition since harm is relative 

and often difficult to quantify (Esch and Fernández 1993). There are many cases of 

symbiosis in nature that do not involve clear harm to the host but that are typically 

regarded as parasitism (Schmidt and Roberts 1989).  

     Parasitism is an extremely successful mode of life having evolved independently 

many times. By conservative estimate, nearly half of all living animals could be 

considered parasites (Price 1980). However, parasites have received comparatively little 

attention from biologists relative to free-living forms.  

     The constraint of being tied to another living organism for survival adds a layer of 

complexity to symbiont population structure that is not seen in free-living organisms. For 

this reason, the field of parasitology requires the definition of a unit of population 

structure not required by other disciplines in biology. The term “infrapopulation” 

describes all of the parasite individuals of a species on an individual host (Esch et al. 

1975). Transmission of parasites among hosts (i.e., from one infrapopulation to another) 
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may be considered horizontal if it involves transmission between unrelated hosts or 

vertical if it involves transmission from parent to offspring (Stewart et al. 2005). 

Horizontal transmission would make inbreeding effective population size very large in 

parasites relative to vertical transmission. Additionally, mode of transmission is thought 

to impact the virulence of parasites, with vertical transmission potentially imposing a 

stronger advantage to parasites with lower virulence so these parasites don’t kill their 

host before being transferred to a new host (Lipstich et al. 1996; Stewart et al. 2005).  

     Mode of transmission of parasites among hosts and degree of host specificity 

displayed by the parasite both can influence gene flow among parasite infrapopulations 

and populations, which has at least three important ramifications. First, restricted gene 

flow among parasite populations can lead to an especially intimate association between 

host and parasite, which could allow the parasite to share a macroevolutionary history 

with its host. This macroevolutionary pattern is reflected in Fahrenholz's rule which states 

"…the natural classification of some groups of parasites corresponds with that of their 

hosts" (Eichler 1948: 588), a pattern often referred to as cophylogeny or cospeciation. 

Second, gene flow among parasite populations and genetic drift within each individual 

infrapopulation also can influence the ability of a parasite to adapt to its local 

environment. Finally, small effective population (Ne) size and vertical transmission can 

initiate founder effect speciation, while large Ne could allow natural selection to cause 

adaptive or ecological speciation (Huyse et al. 2005). Therefore, an understanding of 

parasite population genetics is relevant to studies of speciation, cospeciation, and 

adaptation, yet parasite systems are critically understudied at the genetic level.  
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The Ectoparasitic Chewing Lice of Pocket Gophers 

Ancient Association      

     One host-parasite system that has been studied extensively is pocket gophers and their 

ectoparasitic chewing lice. Pocket gopher and chewing louse phylogenies are more 

similar to one another than would be expected by chance, indicating a long history of 

association between these lineages (Demastes and Hafner 1993; Hafner et al. 1994; 

Hughes et al. 2007; Demastes et al. 2011). Although congruence between these 

phylogenies is not perfect, the pocket gopher-chewing louse system has been referred to 

as a textbook example of cospeciation (Esch and Fernández 1993; Page and Holmes 

1998). The degree of phylogenic congruence displayed by pocket gophers and their lice is 

greater than that seen in other host-parasite systems such as birds and lice, and this 

congruence is likely the result of unique biological features of both pocket gophers and 

chewing lice (Clayton et al. 2004). Importantly, many of these same life history traits 

would be expected to impact the population genetics of these parasites.  

Pocket Gophers 

      Pocket gophers (Rodentia: Geomyidae) are named for the fur lined pouches outside 

the mouth that are used to store food (Hall 1981). They are fossorial mammals that spend 

their entire lives in closed burrow systems. Features that have made them well suited to a 

subterranean lifestyle include reduced eyes and ears and powerful forelimbs and incisors 

used in digging (Hall 1981). Pocket gophers are restricted to friable soils with sufficient 

depth and food resources. The soil must be porous to allow for gas exchange, contain 

enough moisture to maintain the integrity of tunnel systems, and have sufficient depth to 
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aid in temperature regulation. Patch size and available resources typically determine 

population size. Because of these stringent requirements, pocket gophers occur in 

genetically distinct groups with patchy distributions (Hall 1981). Pocket gophers are 

asocial; multiple burrow occupancy happens only during the reproductive period 

allowing for brief contact during mating and while the mother nurses her young (Hall 

1981).  

     Pocket gophers exhibit a strictly New World distribution from Canada to northern 

Columbia, and species distributions are largely parapatric or allopatric (Hall 1981). Six 

genera, 35 species, and more than 400 subspecies are included in the family (Hall 1981). 

All extant taxa are members of the subfamily Geomyinae, which contains two tribes 

Geomyini and Thomomyini. The Thomomyini tribe is made up of seven species of the 

genus Thomomys. One species of Thomomys, T. bottae, is the host of the chewing lice 

that are the focus of this study. 

Chewing Lice 

     Chewing lice of pocket gophers are obligate parasites that live their entire life cycle in 

the fur of their host. They feed on skin detritus and apparently cause little, if any, harm to 

their host (Rust 1974). For this reason, these obligate symbionts could be considered 

relatively harmless parasites, or they could be considered commensals. Generation time is 

40 ± 6 days with an average life span of approximately 30 days (Rust 1974). Chewing 

lice have several characteristics that seem well suited for a subterranean existence, 

including being eyeless, wingless, and having specialized antennal sensory organs. 

Chewing lice also have a well-developed head groove that is used in attachment to the 
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host and that may play a role in host specificity (Reed and Hafner 1997). Many of these 

traits would be expected to reduce dispersal ability. Therefore, transmission of lice is 

thought to be primarily vertical, from mother to offspring (Rust 1974), with horizontal 

transmission occurring at times, possibly with the direct host-to-host contact that occurs 

during mating (Demastes et al. 1998).  

     There are 122 species and subspecies of pocket gopher-dependent chewing lice, all 

belonging to the genera Gemoydoecus or Thomomydoecus (Mallophaga: Trichodectidae; 

Hellenthal and Price 1991; Page et al. 1995; Demastes et al. 2011). Thomomydoecus was 

elevated to generic status by Hellenthal and Price in 1984, an arrangement that was 

supported by Nadler and Hafner (1989), because these taxa exhibit genetic divergence 

typical of different genera of insects. The 17 recognized species of Thomomydoecus 

chewing lice are found only on pocket gophers in the genus Thomomys (Price and 

Hellenthal 1980). Thomomydoecus lice often co-occur on the same host individuals with 

Geomydoecus lice (Hellenthal and Price 1984). Thomomydoecus are more slender with a 

tapered body and are generally smaller than Geomydoecus (Hellenthal and Price 1991). 

One species of Thomomydoecus (T. minor) is the focus of this thesis. 

Chewing Louse Population Genetics 

Previous Research 

     Despite the attention given to cospeciation between pocket gophers and chewing lice, 

the fine scale population genetics of chewing louse populations that may allow 

cospeciation has been the subject of only two studies (Nadler and Hafner 1989; Nadler et 

al. 1990). Both of these studies used allozymes to examine genetics of lice. Data 
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representing four species of chewing lice from the genera Geomydoecus and 

Thomomydoecus indicated that these genera are, indeed, distinct genera with genetic 

divergence values similar to those seen between other insect genera (Nadler and Hafner 

1989). Within species, allozymes showed limited polymorphism. Only two of eleven 

allozyme loci examined showed any genetic variation within T. minor, and two of the 

five infrapopulations were monomorphic for all loci (Nadler and Hafner 1989). 

Intraspecific variation was similarly limited for Geomydoecus actuosi populations 

examined (Nadler and Hafner 1989). However, sufficient genetic variation among 

individuals of G. actuosi exists to show that infrapopulations are subdivided from one 

another, even at the same locality, as evidenced by high and significant FST values 

between lice on different hosts (FST = 0.039 – 0.162; Nadler et al. 1990). Between-

locality FST for G. actuosi was even higher (FST = 0.24), indicative of limited gene flow 

between lice at different localities. This result was similar to the population subdivision 

observed between pocket gopher host populations (FST = 0.236). Therefore, Nadler et al. 

(1990) proposed that louse gene flow is limited by gopher gene flow and cannot exceed 

gene flow of the host, but rather, must lag behind that of their host. Because G. actuosi 

louse infrapopulations exhibit low levels of population heterozygosity compared to other 

insect species, Nadler et al. (1990) suggested that founder events at initial host 

colonization and the seasonal population bottlenecks in louse populations observed by 

Rust (1974) both may serve to decrease genetic diversity in chewing lice.  
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Available Tools for Population Genetics 

     Molecular markers with different rates of substitution will capture population 

processes at different depths of evolutionary history (Wang 2010; Diniz-Filho et al. 

2008). Since different types of data are only informative over specific temporal scales, it 

is important to apply the appropriate methods of analysis for the data being examined and 

the type of question(s) being addressed. Common types of data that have been used in 

population studies include allozymes, mitochondrial DNA (mtDNA) sequence variation, 

and microsatellite polymorphisms (Parker et al. 1998). There is a 104-fold difference in 

mutational rate between mtDNA and microsatellite DNA, with microsatellite DNA 

having the faster mutational rate; therefore, mtDNA is excellent for capturing molecular 

signatures of historical processes, and microsatellites give resolution to recent and 

ongoing processes on microevolutionary scales (Wang 2010).  

     Mitochondrial DNA haplotype sequences were examined in this research as a tool for 

identification of historical isolation in populations and to aid in estimation of time since 

divergence of those populations. Mitochondrial genes are located on a circular 

chromosome, which is inherited maternally. These genes contain no introns and have an 

accelerated rate of mutation compared to nuclear genes (Moritz and Brown 1987). The 

cytochrome-c oxidase subunit I (COI) gene of the mtDNA was chosen for amplification 

and sequence comparison for this study. The COI gene has often been used in research as 

a model gene (Lunt et al. 1996) because it is one of the most conservative protein-coding 

genes in the mitochondrial genome of animals (Folmer et al. 1994). The COI gene 

commonly is used to identify insect species, and it has been shown to be extremely 
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informative in population genetics and phylogenetic analysis (Folmer et al. 1994; Virgilio 

et al. 2010).  

      In the past twenty years, evidence of exceptions to maternal inheritance of mtDNA 

has accumulated (White et al. 2008). Heteroplasmy refers to the condition in which more 

than one mtDNA variant is found within a cell, tissue, or individual. Paternal leakage, 

which is the transmission of a paternal mtDNA genome along with the maternal mtDNA 

genome, is the cause of heteroplasmy, which is not entirely uncommon among insects 

(Harrison et al. 1985; Kvist et al. 2003; White et al. 2008). Heteroplasmy is increasingly 

being seen as an important contributing factor to genetic diversity in eukaryotes (Goto et 

al. 2011). Heteroplasmic mtDNA genome size variants have been observed in the hybrid 

offspring of two closely related species of crickets (Harrison et al. 1985). Heteroplasmy 

in this case was heritable; ten offspring of a heteroplasmic female all were found to be 

heteroplasmic as well. Once heteroplasmy is established in a lineage, it can take up to 

500 generations to return to homoplasmy (White et al. 2008). Therefore, in the absence of 

multigenerational data, it is difficult to determine whether a heteroplasmic individual was 

the result of paternal leakage or if it has inherited heteroplasmy from previous 

generations (Kvist et al. 2003). 

     Microsatellite regions of the nuclear genome are also known as simple sequence 

repeats (SSRs) or short tandem repeats (STRs). These loci have proven useful in 

numerous studies of recent gene flow and population diversity owing to their high level 

of polymorphism (e.g., Roberts et al. 2004; Tapio et al. 2010; Caballero et al. 2011). 

These loci consist of nucleotide units that are from two to six nucleotides long, which are 
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repeated a variable number of times in different individuals (Goldstein and Polluck 1997; 

Ellengren 2004; Guichoux et al. 2011). The high polymorphism characteristic of many 

microsatellite regions within a population is caused by selective neutrality and a 

relatively high mutation rate that is two to three orders of magnitude higher than that of 

allozymes (Jarne and Lagoda 1996). Mutations in microsatellites may arise due to a 

replication slippage mechanism that results in insertion and/or deletion of repeat 

sequences relative to the template strand (Ellengren 2004). It is hypothesized that loci 

with perfect repeats result in higher polymorphism than do loci at imperfect repeats as a 

result of interference with slipped-strand mispairing by imperfect repeats, which 

increases their stability (Jeffreys et al. 1988). 

     Microsatellite loci are typically flanked by more stable sequences for which primers 

are designed to bind and assist in amplification by polymerase chain reaction (PCR). 

Once primers have been developed, it is important to test target loci for variation among 

individuals and for reliability. Undetected genotyping errors can lead to inaccurate allele 

frequencies that result in a deviation from Hardy-Weinberg Equilibrium (HWE), mis-

assignment of population substructure, and over-estimation of inbreeding (Bonin et al. 

2004). Microsatellite analyses are prone to problems resulting from allelic dropout, false 

alleles, possible contamination, or human error (Bonin et al. 2004). Given the potential 

for these problems, 5-10% of a microsatellite data set should be re-screened to check for 

accuracy of genotyping (Bonin et al. 2004; Pompanon et al. 2005; DeWoody et al. 2006); 

however only 26% of the studies surveyed by Guichoux et al. (2011) included an attempt 

to quantify genotyping errors. Other quality control measures include evaluation of blind 
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samples, use of standard laboratory protocols, use of negative controls for contamination 

screening, favoring of automatic scoring over scoring by hand, elimination of low quality 

DNA samples and suspicious markers, and analysis of error rates with a report of these 

findings in the final work (Bonin et al. 2004).  

Specific Aims 

     The system of special interest in this research lies along the Rio Grande Valley of 

New Mexico with particular focus placed on a location 23 km north of Socorro in Central 

New Mexico (Figure 1). This area has been referred to as the San Acacia constriction for 

its proximity to the town of San Acacia, New Mexico (Hafner et al. 1998). This region of 

the Rio Grande Valley is only 300 meters wide compared to 15 km in width near 

Albuquerque. It is surrounded largely by open desert and provides limited suitable habitat 

for pocket gophers, resulting in an exceptionally patchy distribution of pocket gophers at 

the constriction (Smith et al. 1983). At this site, there is limited overlap and hybridization 

between two pocket gophers, T. b. connectens and T. b. opulentus, which come in from 

north and from south of this region, respectively (Smith et al. 1983). These two 

subspecies of gophers show only a 69% allozyme-based genetic similarity, and are easily 

distinguished by a sharp discontinuity in hind foot length, body size, pelage color, and 

number of bi-armed autosomes (Smith et al. 1983).  Despite the genetic, morphological, 

and karyotypic differences displayed by these subspecies, Smith et al. (1983) regarded 

these gophers as members of the same species given what they thought was ongoing 

hybridization as evidenced by shared allozyme alleles. 
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     The overarching goal of this study was to expand knowledge of chewing louse 

population genetics by examining populations of T. minor inhabiting the two subspecies 

of pocket gophers, T. b. connectens and T. b. opulentus, which come into contact and 

hybridize near San Acacia, New Mexico. Achievement of this goal required fine-scale 

genetic data, which previously have not been available for chewing lice. Therefore, an 

important first step in this study was the development of new microsatellite markers for 

T. minor. 

     The first objective of this study was to determine the degree of mitochondrial DNA 

and nuclear genetic variation in T. minor at sites spanning the San Acacia constriction to 

determine if lice from different subspecies of pocket gophers are genetically different 

from one another. Based on current taxonomy, there is no reason to suspect genetic 

differences between lice north and south of the San Acacia constriction (Hellenthal and 

Price 1991). However, given that pocket gopher hybridization is limited between T. b. 

connectens and T. b. opulentus, and because patterns of pocket gopher breeding should 

have an impact on louse population genetics, then some genetic isolation between lice 

north and south of this contact zone could be expected. Alternatively, T. minor lice may 

show genetic subdivision within the species, but that subdivision may not correspond 

with the host contact zone.  This latter situation was observed for Geomydoecus aurei 

chewing lice, which are native to the northern subspecies of pocket gopher near San 

Acacia, but which are actively colonizing the southern subspecies of pocket gopher 

(Hafner et al. 1998). 
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     A second objective of this study was to determine if there is additional genetic 

subdivision between louse infrapopulations on neighboring pocket gophers or between 

lice collected at different localities. If pocket gopher hosts represent "islands" of habitat 

for lice, with vertical rather than horizontal transmission being the rule for lice moving 

from one host island to another, then population structure should reflect infrapopulation 

boundaries.  

     The final objective of this research was to determine if lice collected at different times 

from the same locality would show genetic differences. For this comparison, lice 

spanning a 19.5-year, 175-generation difference in time were compared. Few natural 

populations have been studied over similar numbers of generations, but severe 

bottlenecks are expected to reduce heterozygosity, to alter allele frequency distributions, 

and to cause the loss of alleles over time, leaving “ghost” alleles in more recent 

populations (e.g., Harper et al. 2003, Harper et al. 2006, Ugelvig et al. 2011). If seasonal 

population bottlenecks and population bottlenecks at host colonization have a large 

impact on chewing louse populations, as proposed by Nadler et al. (1990), then these 

processes should be evident at the genetic level.  
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CHAPTER 2 

MATERIALS AND METHODS 

Fieldwork 

     Fieldwork was conducted at locations north and south of San Acacia constriction near 

San Acacia, New Mexico (Table 1; Figure 2). Locations were chosen to facilitate 

comparisons with chewing louse specimens collected in the course of previous studies. 

The New Mexico Department of Game and Fish (NMDGF) approved collection of 

specimens (permit # 3500).  Procedures used in the field and laboratory followed all 

guidelines set by the University of Northern Iowa Institutional Animal Care and Use 

Committee and the American Society of Mammalogists (Sikes and Gannon 2011).  

 
 
 
Table 1. Gopher and Louse Specimens. Specimen collection numbers are given by 
collection year along with collection locality and numbers of T. minor lice used (n) in this 
study. Individual lice were sequenced for mtDNA sequence variation and genotyped in 
microsatellite analyses; pooled lice were combined for microsatellite primer 
development. 
 

 

1992 
Gophers 

2011 
Gophers 

Socorro Co. Locality Individual Lice (n) Pooled Lice (n) 

 749 1.4 mi S, 0.8 mi W Las Nutrias — 28 
 750 1.4 mi S, 0.8 mi W Las Nutrias — 84 
 751 1.4 mi S, 0.8 mi W Las Nutrias 20 — 
 752 1.4 mi S, 0.8 mi W Las Nutrias 10 — 
 753 1.4 mi S, 0.8 mi W Las Nutrias 10 5 
 754 1.4 mi S, 0.8 mi W Las Nutrias — 7 
 755 1.4 mi S, 0.8 mi W Las Nutrias — 36 
 756 1.1 mi S, 0.75 mi E Lemitar 19 — 
 757 1.1 mi S, 0.75 mi E Lemitar 20 — 
 759 0.9 mi S, 0.1 mi W La Joya 19 — 
 761 0.9 mi S, 0.1 mi W La Joya 20 — 

434  1 mi S La Joya 20 — 
435  1 mi S La Joya 19 — 
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     Gophers were collected using Macabee traps (Z.A. Macabee Gopher Trap Company, 

Los Gatos, CA) placed in tunnel systems after mounds were opened. The traps were 

secured by placing a wire engineer flag through a link of a chain attached to the trap to 

prevent the trap from being carried off by the gopher or a predator. Traps were checked 

approximately every twenty minutes. Once GPS location was recorded and sample 

numbering was complete (Appendix A), deceased gophers were individually placed in a 

sealed container with chloroform soaked cotton in order to quickly and efficiently 

Figure 2. Visual Representation of Sampling Strategy. Ovals represent distinct louse 
populations on individual pocket gophers collected from each locality. Letters represent 
locality name and numbers represent pocket gopher specimen.          
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euthanize their parasitic chewing lice, causing lice to detach from the host's fur. 

Subsequent combing of gopher pelage allowed for collection of an entire louse 

infrapopulation. Combing was done in an area with little to no airflow to prevent loss of 

specimens. Collected lice and gopher tissues were placed in labeled 1.0 ml Nunc 

CryoTube vials (Nalge Nunc International, Denmark) and stored on dry ice until return to 

the laboratory at the University of Northern Iowa, where lice and gopher tissues were 

then stored in an ultra-cold freezer at (-80ºC). 

     Pocket gopher weight, measurements, and reproductive history were recorded. Tissues 

were collected and vouchers were prepared. Later, cleaned pocket gopher skulls were 

examined for defining characteristics of the cranium according to Hendrickson (1972) in 

order to estimate age of specimens (Appendix B). Dr. Mark Hafner aged pocket gopher 

skulls for host specimens 434 and 435 from Louisiana State University's 1989 New 

Mexico specimen collection.  

Louse Preparation 

Individual DNA Isolation 

     Lice from a single CryoTube vial were poured onto a clean ice pack in small portions 

for work under a dissecting microscope. T. minor lice were identified according to 

characteristics listed by Hellenthal and Price (1991) and separated from Geomydoecus 

lice, other parasitic inhabitants (such as mites), and dirt. 

     Lice (n = 157) from five gophers north of the constriction and two gophers south of 

the constriction (Table 1) were placed individually in 0.5 ml labeled centrifuge tubes 

indicating the louse number, host number, and collection locality. Genomic DNA was 
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extracted from individual lice using a QIAamp DNA Micro Kit (Qiagen, Valencia, 

California). Manufacturer’s recommendations were followed with the following 

exceptions: Prior to DNA extraction, individual louse bodies were placed on a freezer 

block under the dissecting microscope and punctured a total of six times in the head, 

neck, and shoulders (punctured twice in each region) using a #2 insect pin. Carrier RNA 

was added to AL Buffer before addition of ethanol. All centrifuge times were increased 

by thirty seconds and incubation before elution was increased from one to five minutes. 

In the final step, each louse was eluted in 30 µl H2O. Louse DNA yield was quantified for 

several test lice on a QubitTM  2.0 Fluorometer (Invitrogen, Eugene, Oregon).  

Louse Vouchers 

     Upon completion of DNA extraction, cleared louse bodies were stored in ethanol for 

preservation and dehydration. In preparation for slide mounting, ethanol was removed 

and the louse body was placed in xylene for 20 minutes. Under a dissecting microscope, 

the body was positioned ventral side up and permount was used to permanently attach a 

cover slip for storage (Appendix C). Slides were dried for three weeks before being 

stored in a microscope slide box. Photographs were taken of one male and one female for 

reference of T. minor morphology including sex characteristics (Figure 3). 
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Mitochondrial DNA 

Mitochondrial DNA Sequencing 

     Following DNA extraction, a 710-bp fragment of the mitochondrial cytochrome 

oxidase subunit I gene (COI) was amplified using published universal insect primers 

LCO1490: 5'-GGTCAACAAATCATAAAGATATTGG-3' and HCO2198: 5'-

TAAACTTCAGGGTGACCAAAAAATCA-3' (Folmer et al. 1994). Polymerase chain 

reactions (PCR) contained 1.0 µl of DNA (approximately 0.47-2.0 ng/µl), 0.5 µl of each 

primer (10µm), 10.0 µl Hotstart GoTaq Green Master Mix (Promega, Madison, WI), and 

8.0 µl sterile water for a final volume of 20.0 µl per reaction. Thermocycler conditions 

were as follows for all samples: denaturation at 94ºC for 45 seconds, annealing at 45ºC 

for 45 seconds, and elongation at 72ºC for 45 seconds for a total of 40 cycles, followed 

by extension at 72ºC for 10 minutes.  

Figure 3. Photographs of Thomomydoecus minor Voucher Specimens. Left two photos are 
of the same male specimen (753.3, Las Nutrias). Right two photos are of the same female 
specimen (753.5, Las Nutrias). Color photographs taken using dark field on Zeiss 
AxioScopeA1 compound microscope. Black and white photographs taken on a Zeiss 
Axiostar plus compound microscope. 
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     PCR products were screened for amplification and contamination though gel 

electrophoresis using 1.2% agarose (Fischer Scientific, Fair Lawn, NJ) and 1X Sodium 

Boric Acid (SB) Buffer (Fischer Scientific, Fair Lawn, NJ). Successfully amplified PCR 

products were purified using ExoSAP-IT (USB, Cleveland, OH) to remove 

unincorporated primers and dNTPs. Cleaned PCR products were sent to Iowa State DNA 

Facility (ISU) for sequencing on an Applied Biosystems 3730xl DNA Analyzer.  

Mitochondrial DNA Analysis 

   Sequences were screened for error and edited manually using Geneious Pro (version 

5.4.6, Biomatters Ltd), yielding a 577 bp fragment of sequence common to all 

individuals. For outgroup comparison, Verity Mathis (Louisiana State University) 

provided a mitochondrial COI sequence from T. genowaysi collected in Chihuahua, 

Mexico in 2008 (Thomomys umbrinus pocket gopher host, #LSUMZ 36721). Average 

uncorrected sequence divergence between unique haplotypes was calculated using the 

software MEGA (version 5; Tamura et al. 2011). 

     The software jModelTest (version 2.1.1; Darriba et al. 2012) was used to determine 

the best-fit model for use in phylogenetic analyses of mtDNA. Likelihood scores were 

computed for 40 models, and the corrected Akaike Information Criterion (AICc) was 

implemented for model selection. The selected model was then used in phylogeny 

reconstruction using MEGA (version 5; Tamura et al. 2011) for maximum likelihood 

(ML) analysis with Nearest-Neighbor Interchange heuristic searches for 500 bootstrap 

replicates. Bayesian analysis was conducted using the MrBayes plugin (Ronquist et al. 

2012) for Geneious Pro implementing the substitution model indicated by the same 



20 
 

jModelTest analysis described above. Chain length was set to 1,500,000 with 4 heated 

chains, a 0.1 heated-chain temperature, and a sub-sampling frequency of 300. Burn-in 

was set to 100,000 using unconstrained branch lengths for priors. Output was evaluated 

to assess the quality of runs using three criteria recommended in the program 

documentation: 1) ESS values of frequency histograms were a minimum of 100-200, 2) 

log likelihood of run_1 showed distribution of likelihood scores had reached stationarity, 

and 3) standard deviation (StdDev) for posterior output had a value ≤ 0.01. 

Microsatellites 

Microsatellite Development 

     To discover microsatellite loci in the genome of T. minor, a 454 sequencing approach 

was used. A pool of 160 T. minor lice was collected from 5 gophers from a single 

collection site for use in creation of a microsatellite library through genome sequencing 

(Table 1). A DNeasy Blood & Tissue Kit (Qiagen, Valencia, California) was used on the 

pool of lice. Manufacturer’s recommendations were followed with the following 

exceptions: lice were used directly from the ultra-cold freezer and use of liquid nitrogen 

was eliminated. After four hours of incubation in ATL buffer, an additional 20 µl 

Proteinase K was added with additional crushing performed before continued incubation 

overnight at 56ºC. All centrifuge times were increased by thirty seconds at an increased 

speed from 6.0 to 6.6 rcf. Final elution in AE Buffer was decreased from 200 µl to 50 µl 

with incubation increased from one to five minutes.  DNA concentration was measured 

using a QubitTM  2.0 Fluorometer (Invitrogen, Eugene, Oregon). 
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     Steven M. Bogdanowicz at Cornell University used the restriction enzyme Hinc III to 

digest genomic DNA, which was then ligated to a double stranded SNX linker. The 

ligation procedure was modified to generate Pme I sites if linkers ligated to themselves. 

Digested, ligated fragments were enriched for microsatellites by hybridization to 3' 

biotinylated di-, tri-, and tetra-nucleotide repeat probes. PCR amplified products were 

ligated to 1.0 µl of a Titanium Rapid Library MID adapter (10 µm adapter stock), and 

small fragments were removed with Ampure beads. Libraries were submitted to the 

Sequencing and Genotyping Facility at Cornell Life Sciences Core Laboratory Center for 

FAM-quantification and Titanium 454 sequencing. 

     Output fasta and excel files from Cornell University showed single sequence reads 

and contigs from analysis of 454 sequencing data. These files were analyzed at 

University of Northern Iowa. Loci were chosen for amplification if they had a tetrameric 

repeat structure with a minimum of five repeats. Loci chosen based on multiple sequence 

reads were given "names"; loci chosen based on single sequence reads were numbered 

based on sequencing read number. Primerselect software (Lasergene Core Suite package, 

DNAStar, Madison, WI) was used to identify suitable primers to amplify each locus. A 

long M13 tag (5’-CGAGTTTTCCCAGTCACGAC-3’) was added to the 5’ end of all 

locus-specific forward primers to allow concurrent amplification with a fluorescent 

primer (Schuelke 2000). A short M13 tag (5'-GTTTCTT-3') was added to all locus-

specific reverse primers to promote adenylation and reduce stutter (Brownstein et al. 

1996). Fluorescent tags (6-FAM, HEX, NED) were added to the 5’ end of universal M13 

primers (5’-CGAGTTTTCCCAGTCACGAC-3’) to allow three-primer amplification of 
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PCR products and subsequent multiplex genotyping (Schuelke 2000). Fluorescent dyes 

were assigned to locus-specific primer pairs based on locus amplification lengths in order 

to maximize the number of loci that could be run together for genotyping at the ISU DNA 

Facility on an Applied Biosystems 3730 DNA analyzer.  

Microsatellite Genotyping of Individual Lice 

     For all 157 louse individuals included in mtDNA analysis, nine microsatellite loci 

were amplified using microsatellite primers developed for T. minor (Table 2) in a dye-

labeled, nested, 3-primer amplification technique (Schuelke 2000). All reactions 

contained 0.5µl DNA, 0.4 µl each primer, 0.4 µl designated fluorophore-labeled M13 

primer (Table 2), 5.0 µl GoTaq Clear Master Mix (Promega, Madison, WI), and 3.3 µl 

sterile water for a 10.0 µl reaction. Thermocycler conditions were as follows for all 

samples: 10 cycles of denaturation at 94ºC for 40 seconds, annealing at 58ºC for 40 

seconds, and elongation at 72ºC for 40 seconds followed by 30 cycles of denaturation at 

94ºC for 40 seconds, annealing at 53ºC for 40 seconds, and elongation at 72ºC for 40 

seconds. The final step was extension at 72ºC for 15 minutes.  

     Representative samples from each infrapopulation, including all negative PCR 

controls, were screened for amplification and contamination on 1.2% agarose gels 

following the same procedure used in mtDNA screening. Successfully amplified products 

were sent to the Iowa State University DNA Facility for analysis on an Applied 

Biosystems 3730 DNA Analyzer. For comparison, all microsatellite procedures were 

repeated on 12 sympatric G. aurei pocket gopher chewing lice from La Joya, New 

Mexico. 
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    Output fsa files received from Iowa State University were scored using the software 

GeneMarker (version 1.90, SoftGenetics, State College, PA), coupled with visual 

inspection and editing. The software Convert (version 1.31; Glaubitz 2004) was used to 

reformat all data files for use in additional genetic analysis programs. 

Locus Quality Evaluation 

     Genotyping errors occur when a genotype assigned following molecular analysis does 

not correspond to the actual genotype of the individual being assessed.  Rates of error are 

determined by repeated genotyping of a subset of individuals.  Any observed allelic 

difference in repeated samples is reported as a ratio of number of mistyped alleles over  

the total number of allelic comparisons performed.      

     In order to check the accuracy of genotyping assignments and estimate error rate, 15 

randomly chosen DNA samples out of the 157 samples (10%) were chosen for accuracy 

screening. At least two lice per host individual were included in this re-assessment. New 

extractions could not be performed since louse bodies were used in  

entirety during original isolation of mitochondrial and genomic DNA, but new dye-

labeled, 3-primer PCR was performed and amplified products were submitted to Iowa 

State University for analysis alongside a subset of previous PCR products.  

     The software Microchecker (version 2.2.3; Van Oosterhout et al. 2004) was used for 

identification of genotyping errors due to null alleles, large allele dropout, and stutter in 

preparation for further genetic analysis. For microchecker analysis, lice were assigned to 

populations in two ways: 1) by location and collection date, with La Joya lice collected in 

2011 designated as a different population than lice collected from the same location 
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previously, yielding a total of 4 populations, and 2) by gopher for a total of 9 

infrapopulations. 

Population Genetics Analysis 

     Arlequin (version 3.5.1.2; Excoffier and Lischer 2010) was used to assess linkage 

disequilibrium between all pairs of loci using 104 permutations and 2 initial conditions for 

the Expectation-Maximization algorithm (EM) used in point estimations of parameters 

given a set of variables (Dempster et al. 1977). Hardy Weinberg Equilibrium (HWE) also 

was assessed using Arlequin; the Markov chain Monte Carlo method (MCMC) was used 

to calculate p-values using 106 steps in the forecast chain and 105 dememorization steps 

to calculate departures from HWE. Global tests of Hardy-Weinberg heterozygote 

deficiency were assessed by infrapopulation in GENEPOP (version 1.2; Raymond and 

Rousset 1995; Rousset 2008). Markov chain parameters were set to 1000 dememorization 

steps and 100 batches with 1000 iterations per batch. Additionally, linearized pairwise 

FST values, RST (Slatkin 1995), and analysis of molecular variance (AMOVA) were 

assessed in Arlequin. The inbreeding coefficient FIS was evaluated for significant 

heterozygosity deficit and excess using the program FSTAT (version 2.9.3.2; Goudet 

2001); p-values for FIS were calculated per locus and sample. In all statistical 

comparisons involving multiple tests of the same hypothesis, a Benjamini-Yekitieli (B-Y; 

Benjamini and Hochberg 1995) correction of the critical p-value was used (Narum 2006). 

These corrections were necessary for linkage disequilibrium tests, HWE, global tests of 

heterozygote deficiency, FST, and FIS. This method was used in place of Bonferroni 
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corrections to provide a less stringent significance correction method that is more 

appropriate for evaluation of population genetic data (Narum 2006).              

     Structure (version 2.3.4; Pritchard et al. 2000; Falush et al. 2003; Hubisz et al. 2009) 

was used to implement a Bayesian algorithm to identify genetically homogenous clusters 

of individuals. Burn-in period was set at 3 x 105 followed by 3 x 106 MCMC repetitions. 

Population admixture and correlated allele frequencies were assumed. Five runs were 

evaluated for each cluster value. Infrapopulation identity was used as a prior for the 

LOCPRIOR model for some analyses in order to enhance clustering when genotypic 

signal is weak (Hubisz et al. 2009). For this model, assignment of louse individuals to 

populations was made by gopher for a total of 9 louse infrapopulations. Additionally, 

data were analyzed without the LOCPRIOR model by combining lice from all localities 

as a single population. Structure Harvester (web version 0.6.92; Earl and vonHoldt 2012) 

was used to implement the Evanno et al. (2005) method to evaluate the appropriate 

number of clusters (K) for each analysis by examining the mean log-likelihood scores and 

the ∆K for each cluster value. 

        Variation in population sample size has been shown to cause Structure analysis to 

group individuals into too few clusters, resulting in an inaccurate assessment of the value 

of K (Kalinowski 2010).  Therefore, population structure was further assessed by 

clustering populations using the software POPTREE2 (Takezaki et al. 2010). For each of 

the nine louse infrapopulations studied, four genetic distance measures were calculated 

between louse infrapopulations, DA (Nei et al. 1983), GST without sample bias correction 

(Nei et al. 1983), FST (Wright 1951), and RST (Slatkin 1995). To visualize population 
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similarity, Neighbor-joining (NJ; Saitou and Nei 1987) trees were built in PopTree2 for 

matrices of genetic distance using 1000 bootstrap replicates in each case. 

     The software Bottleneck (version 1.2.02; Piry et al. 1999) was used to assess the 

likelihood of recent reductions in effective population size using 10,000 replicates for a 

two-phase model. The Wilcoxon sign-rank test was used to assess heterozygote excess 

(Luikart et al. 1998). Multiple tests of the two-phase model were examined for 

heterozygosity excess in Bottleneck using the pre-set default parameters (TPM; Di 

Rienzo et al. 1994); 3,000 replicates were performed for each trial in which 70% of 

mutations were assumed to be single steps, and the variance among multiple steps was set 

at a value of 30.  
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CHAPTER 3 

RESULTS 

Mitochondrial DNA Analysis 

Maximum likelihood analysis of mtDNA COI sequences using a Hasegawa-

Kishino-Yano model (HKY; Hasegawa et al. 1985) resulted in a tree that indicated two 

clades with high bootstrap support.  Bayesian analysis generated an identical tree with 

high posterior probabilities (Figure 4). These two groups of mtDNA sequences will 

hereafter be referred to as haplotype A and haplotype B.  Haplotypes correspond tightly 

to geography: lice bearing A-group haplotypes were found at localities Las Nutrias and 

La Joya, north of the San Acacia constriction, and the B haplotype was found at Lemitar, 

south of the San Acacia constriction (Figure 5). 

Average pairwise uncorrected nucleotide divergence between haplotypes in group 

A and haplotype B was 2.2%, with 0.2% divergence among haplotypes in group A 

(north) and no variation among lice south of the constriction (haplotype B). Sequence 

divergence between T. minor and T. genowaysi ranged from 5.1 to 5.7%. 
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Figure 4. Mitochondrial DNA Haplotype Tree. Representation of 149 Thomomydoecus 
minor lice plus one outgroup (T. genowaysi). Leading each line of data is a gopher collection 
number (corresponding to Table 1), followed by louse specimen number (or ranges of 
numbers) exhibiting a common sequence. Locality information is indicated by J (La Joya) N 
(Las Nutrias), or L (Lemitar). The tree with the highest log likehood is shown with bootstrap 
values above branches and posterior probabilities from Bayesian analysis below branches.  
Representative louse photos shown are T. minor (male on the left and female on the right).  
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Microsatellite Library Development 

      DNA extraction from pooled lice yielded a concentration of 58 ng/µl, which exceeded 

the 50 ng/µl requested by Cornell University for microsatellite development. From these 

lice, Cornell University provided a file of 19,542 sequence reads with 7,768 

corresponding primer pair suggestions. Of these, twenty-five loci were originally chosen 

for testing based on presence of tetra-nucleotide repeats, which should exhibit less stutter 

from enzyme slippage during amplification than would shorter repeat stretches. Only loci 

with five (or more) but less than sixteen repeats were chosen to increase the chance of 

capturing polymorphism while reducing the drawbacks of increased allelic dropout and 

stutter that can accompany a higher number of repeat units (Guichoux et al. 2011). This 

approach yielded twenty-four loci that were subsequently tested for amplification and 

genetic variability using six lice (three from north of the San Acacia constriction and 

three from south of it). Loci were eliminated from further analysis if they had a high 

failure rate for initial amplification, displayed a high degree of stutter, lacked 

polymorphism, or were difficult to score. This resulted in nine microsatellite loci that 

were chosen for assessing genetic variation within and among louse populations.  

Microsatellite Genotyping of Individual Lice 

Locus Quality Evaluation 

     After microsatellite amplification was completed for 157 louse individuals, a subset 

representing 10% of these samples was re-amplified and re-scored for all nine loci. No 

genotyping errors were observed in which allele size was incorrectly identified. Five 

genotyping errors were identified in the individuals that were re-screened. In these 5 
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cases, an individual louse was originally scored as a homozygote and later re-scored as a 

heterozygote or vice versa, resulting in an estimated allelic error rate of 1.88% (Table 3).  

 

 
Table 3. Calculation of Allelic and Locus Specific Genotyping Error Rates.  
 

Loci Names Miscalled 
Alleles 

Error Rate/Allele Miscalled 
Genotypes 

Error 
Rate/Genotype 

1451 0/30 0% 0/15 0% 

4189 1/30 3.3% 1/15 6.6% 

3495 0/28 0% 0/14 0% 

1569 2/28 7.0% 2/14 14.3% 

851 1/30 3.3% 1/15 6.6% 

4011 0/30 0% 0/15 0% 

Jan 1/30 3.3% 1/15 6.6% 

Belle 0/30 0% 0/15 0% 

Allie 0/30 0% 0/15 0% 

Total Errors 5/266 1.88% 5/133 3.76% 

 

 

     Of the nine loci that were originally tested for microsatellite analysis in individual 

lice, only locus 4189 showed evidence of null alleles as assessed by Microchecker.  

Primers for this locus also did not amplify louse DNA as reliably as other did other 

primer pairs; 16 of 157 (10%) louse samples did not yield sufficient PCR product on 

initial amplification with primers for locus 4189.  Therefore, this locus was deemed 

unreliable and was eliminated from further analysis. The eight remaining loci examined 

indicated no evidence of null alleles, allelic drop-out, or stutter. Furthermore, limited 

significant linkage disequilibrium was detected between any pairs of loci. The critical p-
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value for these tests was adjusted to p ≤ 0.009 using the B-Y correction suggested by 

Narum (2006). The two cases of significant linkage disequilibrium were loci 1451 and 

4011 at Las Nutrias and loci Jan and Allie at La Joya in 1992. Given that there was no 

consistent pattern of linkage disequilibrium between loci at multiple localities, no other 

loci were excluded from downstream analysis. 

 Population Genetics 

     Loci 4011 and Belle had the highest polymorphism with five alleles each (Appendix 

D). For each locus, there were noticeable frequency differences between southern 

populations and northern populations. Loci 1451, 851, 4011, Belle, and Allie each 

showed one allele private to a single population.  

      Analysis of molecular variance (AMOVA) was used to assess population subdivision 

in four unique comparisons (Figure 6). Comparisons by host, locality, and host 

subspecies (Tests A-C) all explained substantial portions of the existing genetic variation 

(Table 4). Comparison D indicated that time was not a significant factor contributing to 

the genetic variation of the louse populations examined (Table 4).  
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Figure 6. Visual Representation of Sampling Strategy for AMOVA Analysis. 
Population subdivision in louse populations was analyzed in the following ways: (A) 
between louse infrapopulations on each gopher within sampling localities, (B) 
between louse infrapopulations at different sampling localities, (C) between louse 
infrapopulations on opposite sides of the San Acacia constriction, and (D) between 
louse infrapopulations sampled at the same locality 19.5 years apart.         
 

Table 4. Analysis of Molecular Variance (AMOVA) Results. Comparisons A, B, C, and 
D correspond with Figure 6. Component of genetic variation and p-values are given for 
comparisons of A-D. 
 
 Percent 

variation  
p-value Population Comparisons 

A 4.36 <0.001 751 vs. 752 vs. 753, 759 vs. 761, 434 vs. 435, and 
756 vs. 757 

B 8.77 <0.001 751, 752, and 753 vs. 759 and 761 
C 42.98 0.04 751, 752, 753, 759, and 761 vs. 756 and 757 
D -1.08 0.66574 759 and 761 vs. 434 and 435 
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     Structure Harvester (2012) indicated a peak in the log likelihood of the data set from 

Structure analysis output at K = 2, indicating two major clusters. One cluster consisted of 

louse individuals from north of the San Acacia constriction (n = 114), and the other 

cluster consisted of lice from south of the constriction (n = 39, Figure 7A). Further 

analysis in the absence of a priori louse population locality definitions detected these two 

major clusters in addition to detection of a much smaller log likelihood peak indicating 

more subtle clustering at K = 9, a number equivalent to the number of infrapopulations. 

With infrapopulation identities defined by host used as priors, structure analysis for K = 9 

was suggestive of weak among-host population structure in chewing lice (Figure 7B). 
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     With louse populations defined by host individual, genetic distance (DA) was low 

between southern populations (0.019) and showed a wide range among northern 

populations (0.012 - 0.097), but had consistently higher values between northern and 

southern populations (0.173 - 0.269; Table 5). Of 36 pairwise FST comparisons, 31 

indicated a statistically significant impediment to gene flow (B-Y adjusted critical value p 

< 0.01; Table 5). All FST comparisons between northern and southern populations were 

Figure 7. Structure Analysis Results. Collection localities are listed above graphs and 
pocket gopher host numbers are listed at the bottom of graphs with N or S indicating 
direction north or south of the San Acacia constriction. Each individual louse is 
represented by a bar, and the proportion of each color in a bar represents a coefficient of 
cluster membership. (A) Two main clusters (K = 2) found for all nine infrapopulations 
defined a clear separation between northern and southern localities. (B) More subtle 
clustering was detected for nine groups indicating population structure by 
infrapopulations. 
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statistically significant, as were the majority of values between northern infrapopulations. 

When infrapopulations at the same locality were combined, significant FST values were 

observed between all localities (FST = 0.04 - 0.50, p < 0.0001), but not between 

populations collected at the same locality approximately 20 years later (FST = 0.00, p = 

0.07). Pairwise comparisons of RST yielded similar patterns of significance. Neighbor-

joining trees of DA and FST values (Figure 8) showed distinct differences between louse 

infrapopulations north of the constriction versus south of the constriction. However, 

among the seven populations from north of the constriction, there was no grouping 

consistent with locality or time of collection. GST analysis yielded numbers very similar 

to FST and the same arrangement of populations in a neighbor-joining tree (data not 

shown). 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Distance Matrices for DA and FST. Divergence of Alleles (DA) statistics are given 
above diagonal and population subdivision statistics (FST) are given below. FST values in 
bold are statistically significant (p < 0.01) after B-Y correction for multiple tests. Shaded 
values represent differences between northern and southern populations. 
 

Las Nutrias; North Lemitar; South La Joya '11; North La Joya '92; North 

 751N 752N 753N 756L 757L 759J 761J 434J 435J 
751N — 0.097 0.058 0.245 0.232 0.043 0.056 0.039 0.071 
752N 0.178 — 0.073 0.255 0.254 0.077 0.061 0.048 0.095 
753N 0.097 0.096 — 0.212 0.206 0.064 0.044 0.042 0.052 
756L 0.507 0.510 0.445 — 0.019 0.269 0.231 0.195 0.174 
757L 0.436 0.429 0.370 0.005 — 0.251 0.220 0.188 0.173 
759J 0.041 0.195 0.116 0.580 0.511 — 0.025 0.019 0.046 
761J 0.078 0.153 0.086 0.489 0.427 0.035 — 0.012 0.029 
434J 0.030 0.108 0.075 0.450 0.386 0.013 0.007 — 0.030 
435J 0.118 0.193 0.077 0.424 0.368 0.089 0.025 0.049 — 
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     Global Hardy-Weinberg Equilibrium (HWE) tests for heterozygote deficits indicated 

that the observed number of heterozygotes was lower than expected in populations from 

southern localities (Table 6). A similar pattern of inbreeding was indicated by per 

population FIS values which were significant in one southern infrapopulation and high 

(FIS = 0.10 and 0.23), but not significantly different than zero for two of the seven 

northern infrapopulations and the other southern infrapopulation. FIS values also were 

significant for lice from Lemitar when all lice from the same locality were considered as 

a single population (Table 7; p ≤ 0.024 using B-Y correction method). Genetic diversity, 

as measured by expected heterozygosity, ranged from 0.29 to 0.38 (Table 7). 

 

Figure 8. Neighbor-joining Trees for Distance Measures DA and FST. Trees were generated for 
both (A) divergence distance; DA and (B) FST pairwise distance. Bootstrap values are given 
above branches. 
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     Allele frequency distribution tests performed in Bottleneck displayed shifted modes 

for three infrapopulations (Table 8). The Wilcoxon sign-rank test also was used to assess 

Table 6. Hardy-Weinberg Equilibrium Tests by Population. Values in bold are 
statistically significant (p ≤ 0.018 based on B-Y correction method).  
 

North 751N 752N 753N 759J 761J 434J 435J 

p-value 0.2311 0.0354 0.8426 0.9444 0.6233 0.0300 0.4465 
South 756L 757L      

p-value 0.0089 0.0016      
 

Table 7. FIS and Heterozygosity Values. FIS values are given for all loci and infrapopulations 
and for each locality.  Expected heterozygosity is given by locality. Significant p-values (p ≤ 
0.018 for nine populations and p ≤ 0.024 for four locations using B-Y correction method) are 
shown in bold.  
 

Las Nutrias; North La Joya; North La Joya '92 ; North  Lemitar; South 

 751N 752N 753N 759J 761J 434J 435J 756L 757L 

1451 0.057 0.024 -0.200 -0.302 -0.149 -0.154 0.104 0.000 -0.027 

3495   0.337 0.000 -0.125 -0.029 -0.056 -0.056 -0.029 -0.333 0.027 

1569 -0.073 1.000 0.217 -0.200 0.240 0.022 0.297 -0.059 -0.027 

851 -0.039 0.333 -0.047 0.064 0.088 0.542 0.036 0.654 -0.026 

4011 -0.063 0.286 -0.071 NA -0.188 0.360 -0.038 0.667 0.410 

Jan -0.027 0.000 -0.200 -0.029 -0.365 0.307 -0.053 -0.091 0.587 

Belle -0.013 0.000 0.169 -0.091 0.159 -0.152 -0.104 0.064 0.212 

Allie 0.022 -0.111 -0.370 -0.059 0.224 0.022 -0.166 NA 1.000 

AVERAGE 0.017 0.227 -0.073 -0.127 -0.033 0.107 0.007 0.151 0.309 

FIS By 
Locality 

 
0.097 

 
-0.051 

 
0.082 

 
0.246 

Expected 
Heterozygosity 

 
0.380 

 
0.303 

 
0.359 

 
0.286 

 



40 
 

recent reductions in effective population sizes, because this test retains high statistical 

power with as few as four loci and any number of individuals, although it should be noted 

that a minimum of fifteen individuals and ten polymorphic loci is recommended to 

achieve full statistical power (Luikart and Cornuet 1998). There was no significant 

heterozygote excess in any infrapopulation of lice after B-Y correction for multiple tests 

(Table 8), but two infrapopulations fell short of the recommended for minimum number 

of individuals (752, n=6; 753, n=10), and only eight polymorphic loci could be used in 

this analysis. 

 
 
 
 
 

 

 

 

 

 

 

 
 
 
 
Aberrant Data 

     Eight of the 157 lice examined herein yielded mtDNA sequences that were 

incompatible with certain aspects of downstream analysis due to mixed mtDNA 

Table 8. Bottleneck results. Detection of possible recent reductions in effective 
population size by allele distribution modes indicated in bold. No significant 
bottlenecks in Wilcoxon test detected after B-Y correction for multiple tests. 
 
 Shifted or L 

Shaped 
Distribution Mode 

Wilcoxon 
Het Excess 

p-value 

Host 
Sex 

Host Reproductive 
Status 

Host 
Weight 

Life Stage 

751N Normal L shaped 0.67969 Male Scrotal, T ≡ 15mm ≡ 210g Adult 
752N Normal L shaped 0.90234 Female Parous, swollen, no embs ≡ 174g Subadult 
753N Shifted 0.09766 Female Parous, swollen, no embs  ≡ 160g Subadult 
759J Shifted 0.59375 Female Null, no embs ≡ 175g Young 
761J Shifted 0.02734 Female Parous, 4 embs, cr = 6mm ≡ 197g Subadult 
434J Normal L shaped 0.27344 Female Non-parous, closed ≡ 140g Subadult 
435J Normal L shaped 0.37109 Female Non-parous, no embs ≡ 174g Adult 
756L Normal L shaped 0.76563 Female Null, no embs ≡ 123g Subadult 
757L Normal L shaped 0.27344 Female Null, no embs ≡ 145g Subadult 
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sequences and/or conflicts between mtDNA sequences and morphological assessment 

(Appendix E). Comparative analysis of microsatellite alleles seen in T. minor and G. 

aurei indicated additional conflicting data from the nuclear genome for some of these 

individuals (Appendix F). Three distinct patterns of data conflict emerged among the 

eight aberrant individuals examined in this study. 

     The first type of data conflict came from one louse from Las Nutrias gopher 752, 

which showed a mixture of mtDNA sequences that repeatedly coamplified when COI 

primers were used. This mixture appeared to be a combination of a normal T. minor A 

haplotype combined with a noncoding COI-like sequence normally only otherwise seen 

in G. aurei (data not shown). Despite repeated amplification and sequencing, this 

specimen never yielded a completely readable mtDNA sequence. This specimen’s 

morphological characteristics identify it as G. aurei, and it showed microsatellite alleles 

private to G. aurei for two loci (851 and 1451; Appendix F). Additionally, microsatellite 

PCR reactions that normally failed for G. aurei (locus 3495) also failed for this specimen. 

Therefore, given the resemblance of this specimen to G. aurei, it was not included in 

either mtDNA analyses or microsatellite analyses. 

     The second type of data conflict came from three lice, also from Las Nutrias gopher 

752, which showed unmixed mtDNA sequences typical of T. minor haplotype B, but a G. 

aurei morphology and microsatellite characteristics similar to those of G. aurei (details in 

Appendix E). In light of their morphological and nuclear DNA resemblance to G. aurei, 

these three individuals also were eliminated from mtDNA analyses and from 

microsatellite analyses. 
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     The last type of data conflict came from four lice from Las Nutrias gopher 753, which 

all showed a mixture of mtDNA sequences that repeatedly coamplified when COI 

primers were used.  This mixture appeared to be a combination of normal T. minor A and 

B haplotypes (Appendix G). All four of these lice were identified as T. minor 

morphologically, and they showed normal Thomomydoecus microsatellite alleles. Thus, 

these individuals were included in microsatellite data analysis, but they were excluded 

from mtDNA analysis because individual haplotypes could not be identified from the 

mixture of sequences given the methodology used in this study.  
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CHAPTER 4 

CONCLUSIONS AND DISCUSSION 

Development of Genetic Markers for Thomomydoecus minor  

     This study represents the first examination of the population genetics of chewing lice 

using molecular techniques that are ideal for examining genetic variation among 

individuals within an infrapopulation as well as among lice from different host 

subspecies. Population-level assessments prior to this study were limited to allozyme 

studies of genetic variation, which showed little measurable variation within a species 

(Nadler and Hafner 1989). In the current study, genetic assessment was made possible 

using previously available universal insect mitochondrial DNA primers in conjunction 

with eight novel microsatellite loci developed for the purposes of this study. These 

genetic markers revealed substantial polymorphism within T. minor louse populations. 

Microsatellite data were more variable within T. minor (observed heterozygosity 

averaged over all loci = 0.31) than were allozyme data for the same species (observed 

heterozygosity averaged over all loci = 0.01; Nadler and Hafner 1989). This pattern of 

greater variability in microsatellite data than in allozymes is typical of many organisms 

(i.e., Atlantic salmon, Sánchez et al. 1996; fruit flies, Irvin et al. 1998; dusky grouper, De 

Innocentiis et al. 2001).  

     Importantly, the quality of the newly generated microsatellite markers was carefully 

checked as part of this study. In this study, 10% of samples were rescreened to evaluate 

repeatability, and all loci were subjected to analysis for null alleles and large-allele 

dropout.  One of the nine loci used for genotyping was eliminated from population 



44 
 

genetic analysis because of probable null alleles. The eight remaining loci showed high 

repeatability with an allelic error rate of only 1.88%. When considering whether to 

discard loci with higher error rates in order to lower the overall genotyping error rate, it is 

important to keep in mind the level of precision required given the nature of the study; for 

example, studies of population structure are less affected by genotyping errors than are 

studies of parentage (Bonin et al 2004; Pompanon et al. 2005). The genotyping allelic 

error rate of 1.88% obtained for the microsatellite data described herein likely provides 

an acceptable assessment of population genetic parameters.       

Population Genetics of Thomomydoecus minor 

The Effects of the San Acacia Constriction 

     Within T. minor, substantial geographically structured genetic variation exists in both 

the nuclear and mitochondrial genomes. Mitochondrial A haplotypes occurred 

exclusively in locations north of the San Acacia constriction, and haplotype B occurred 

south of it (Figure 4). Separation of the haplotypes was complete with the exception of 

seven individual lice collected from two hosts from Las Nutrias, north of the San Acacia 

constriction (Appendix E). These seven lice showed evidence of southern mtDNA 

haplotype B, but these samples have been puzzling for their mixture of morphological 

and genetic characteristics (interpretation discussed below). Assessment of the frequency 

of southern haplotypes north of the San Acacia constriction will have to await further 

sampling as part of an extended study that is already underway.  

    Nuclear microsatellite data indicate genetic structure that is concordant with mtDNA 

and geography. Microsatellite allele frequencies for all loci tested differed noticeably 
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between individuals collected north of the San Acacia constriction vs. south of it 

(Appendix D). Basal clustering in Structure analysis showed clear support for two groups 

of lice with individuals falling in groups that mirror the grouping generated from mtDNA 

(Appendix H).  Likewise, pairwise genetic distance measures DA and FST supported 

division of louse populations into two distinct groups (Figure 8), with FST being high 

(0.37 - 0.58) and statistically significant in all comparisons between northern and 

southern populations. AMOVA analysis indicated that differences between northern and 

southern populations of lice accounted for 43% of the genetic variance (p = 0.04). Thus 

by all analyses, both mtDNA and nuclear microsatellite data indicated distinct genetic 

differences in louse populations from north of the San Acacia constriction and south of it. 

      Existence of two distinct genetic groups of T. minor that transition at or near the 

geographical location of the San Acacia constriction was not predicted based on 

morphology (Hellenthal and Price 1991), but it does make sense in light of host 

distribution and breeding behavior. Genetic differences in northern and southern 

populations of T. minor could be attributed to the barrier to gene flow caused by the 

constriction itself. Although the Rio Grande Valley is lush and provides suitable soils for 

pocket gophers along much of its length, the San Acacia constriction is prone to flooding 

and provides limited hospitable habitat along the river and adjacent bajadas, which results 

in patchy distribution of the host subspecies that meet there (Smith et al. 1983). Because 

host density is low at the San Acacia constriction, lice have few opportunities for 

switching from the northern subspecies of host to the southern one. Hybridization 

between the two host subspecies, which differ in their chromosome numbers and in 
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several allozyme loci, appears to be restricted (Smith et al. 1983). Therefore, restricted 

interaction between host subspecies also may play an important role in limiting 

opportunities for dispersal of lice from one subspecies of pocket gopher to another. It is 

difficult to tease the effect of geography and host distribution apart from the effect of host 

breeding behavior, but genetic data from T. minor clearly indicate one or both of these 

factors limits migration of T. minor across the San Acacia constriction. 

     Estimating the time of divergence between northern and southern T. minor is difficult. 

There is no fossil record available for these pocket gophers or their chewing lice that 

would help in estimating the timing of divergence within either group. However, 

sequence divergence values allow a rough approximation of divergence time. These 

approximations are complicated by significant heterogeneity in rate of molecular 

evolution among species of pocket gophers (Spradling et al. 2004) and among species of 

lice (Light and Hafner 2007). Therefore, any molecular-clock based estimates of time of 

divergence are especially susceptible to error. As a rough approximation, however, the 

observed sequence divergence between T. bottae and T. umbrinus for COI is 11.4% 

(based on data from Spradling et al. 2004), and the divergence time of these taxa is 

estimated to be 1.6 mya (Spradling et al. 2004). Therefore, the estimated rate of COI 

evolution in this group of gophers is 7.125% per million years. While this rate is faster 

than the 2% per million-year rate of substitution that is often used for animal mtDNA, 

mammals exhibit a 100-fold difference in mtDNA substitution rates, with rodents 

exhibiting a higher substitution rate than that of most other mammals (Nabholz et al 

2008). Additionally, pocket gophers have a higher rate of mutation than most rodents 
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(Spradling et al. 2001). Given this 7.125% per million year rate of evolution, and the 

5.5% COI sequence divergence observed between the host subspecies (Spradling 1997), 

these two host subspecies diverged approximately 770,000 years ago, a time frame that 

seems reasonable for subspecies and well within the Pleistocene as postulated by Smith et 

al. (1983). Northern and southern T. minor differ by only 2.2% of their COI sequence 

(less than the 5.5% observed in their corresponding hosts), likely indicating a more recent 

divergence in these lice than in their hosts. This discrepancy in host and parasite 

divergence times is rather dramatic given that all species of lice examined to date show a 

higher substitution rate than do their corresponding hosts (1.5-4 fold higher rates of 

evolution; Light and Hafner 2007). Therefore, T. minor may have an approximate rate of 

COI evolution of 11-28% per million years. While this rate is faster than the maximum 

4.2% per million years rate of mtDNA evolution previously calculated in insects, 

substantial differences in mutation rate have been observed among insects (Papadopoulou 

et al. 2010), and lice exhibit a far higher rate of mtDNA substitution than is seen in other 

insect orders (Johnson et al. 2003). Thus, the calculated rate of evolution for chewing lice 

of 11-28% per million years places the divergence between northern and southern lice 

(which differ by 2.2% of their mtDNA COI sequence) at 78,000-200,000 years ago, well 

after divergence of their hosts.  

     The disparity in divergence times of the two host subspecies and the two haplotypes of 

T. minor indicates that they probably did not co-diverge, but that T. minor switched from 

one subspecies of T. bottae to another after host divergence. Whether this host switch 

happened in the vicinity of the San Acacia constriction is a matter of speculation until 
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broader sampling can be done, but genetic data from this study clearly indicate the 

importance of host distribution and/or interactions to louse gene flow. 

Genetic Variation Within and Among Infrapopulations 

     Microsatellite data indicate that horizontal transmission of T. minor chewing lice from 

one infrapopulation to another (i.e., from one host individual to another) is somewhat 

limited (AMOVA test A; Table 4). This pattern is corroborated by several other measures 

of population differentiation. When a priori louse populations were left undefined, 

structure analysis showed weak sub-structure of 9 clusters consistent with the number of 

host pocket gophers (Figure 7B). Population pairwise comparisons of genetic distance 

measures DA and FST (Table 5) also demonstrated that each gopher carries a somewhat 

isolated infrapopulation of lice, because differentiation was high and significant even 

between several infrapopulations of lice collected in the same field. Population 

subdivision by infrapopulation also was observed in another chewing louse, G. actuosi, 

as assessed using allozyme loci (Nadler et al. 1990).  Pocket gophers are asocial animals 

except during brief mating encounters (Hall 1981), so transfer of lice likely is rare with 

mode of transmission being predominantly vertical from mother to offspring (Rust 1974).      

     Lice collected from different nearby localities (Las Nutrias and La Joya) exhibited 

evidence of reduced gene flow as measured by AMOVA and FST, but the proportion of 

genetic variation observed between these populations (8% of variance, Table 4) was not 

much greater than that between infrapopulations from the same field (4% of variance, 

Table 4). Neighbor-joining trees of distance measures (FST and DA) illustrate that  
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neighboring host gophers do not necessarily have the most closely related louse 

infrapopulations (Figure 8). Therefore, these data provide additional support for the idea 

that horizontal transmission of these parasites, even among neighboring hosts, is limited. 

     Time was not a significant factor in the genetic variation observed among lice despite 

the 19.5 year time span and approximately 175 generations between collection dates 

(AMOVA Test D, Table 4; FST not significantly different from zero for 3 of 4 pairwise 

comparisons; Table 5). However, heterozygosity dropped slightly in louse populations at 

La Joya (He 1992 = 0.36, He 2011 = 0.30; Table 7). Two alleles recovered from the 1992 

population were not recovered in the 2011 population (Appendix D), but one of these 

alleles was exceptionally rare in 1992 (Frequency = 0.025) in the initial sample. 

Therefore, it is not clear if these missing alleles represent sampling error or ghost alleles 

truly lost from the population. Few other studies of insect population genetics have been 

done using historical samples. In the studies that have been done, relatively stable genetic 

diversity was maintained in the populations observed over periods of time ranging from 

20 to 100 years, even in the face of acute population declines (Harper et al. 2003; Harper 

et al. 2006; Mizuki et al. 2010; Ugelvig et al. 2011).  

     If chewing louse transmission occurs primarily from a female host to her offspring 

(vertical transmission), the potential for founder effects may be unusually large for this 

parasite (Nadler et al. 1990), with additional population bottlenecks also occurring 

seasonally (Rust 1974). Because G. actuosi chewing lice showed less allozyme 

variability than had been reported for other sexually reproducing insects, Nadler et al. 

(1990) suggested that seasonal bottlenecks and/or founder events may play an important 
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role in the genetics of chewing louse populations. However, in the current study based on 

highly variable microsatellite data, heterozygote deficits resulting in global departures 

from HWE were detected in only two of the nine infapopulations examined, and 

significant inbreeding was detected in only one infrapopulation and its locality when 

infrapopulations were pooled (Table 7). No evidence of bottlenecks was detected for 

infapopulations except as indicated by a shifted mode for allele frequency distribution in 

three infrapopulations, and these cases did not appear to be correlated with reproductive 

status of the host (Table 8). However, bottleneck analysis is somewhat hampered by 

population sample sizes in this study; only two infrapopulations were sampled south of 

the San Acacia constriction and two of the nine infrapopulations examined had very 

small sample sizes (n = 10), meaning that the recommended number of individuals for 

maximum statistical power in Bottleneck was not met by these two infrapopulations 

(Luikart and Cornuet 1998).  Also, the data collected herein fell just short of the 

recommended number of loci for maximum statistical power in Bottleneck analyses (8 

instead of 10; Luikart and Cornuet 1998). Therefore, it is possible that sampling more 

loci and increased population sample sizes could indicate population bottlenecks, but for 

now, genetic data in T. minor seem to reflect relatively stable population sizes and an 

absence of pronounced inbreeding despite the relative isolation of louse infrapopulations 

on individual hosts. 

Interpretation of Mixed Sequences  

     Of the 157 individuals genotyped in this study, eight lice displayed "mixed" or 

otherwise aberrant genetic and morphological data. Laboratory error may account for 
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these mixed patterns, but laboratory error seems unlikely given the order in which sample 

were handled. Alternatively, several biologically interesting phenomena could account 

for these patterns, but determining the cause(s) of these patterns will require further 

sampling that is beyond the scope of this project. 

     All of the eight louse samples with aberrant data were from Las Nutrias, north of the 

San Acacia constriction. Seven of these eight samples showed mitochondrial haplotype B 

in some form (either alone, in a mixture with haplotype A, or in a mixture with 

Geomydoecus mtDNA; Appendix E). These cases were the only samples for which B 

haplotypes were found on the north side of the constriction, so it is puzzling why the B 

haplotype did not show up in otherwise normal samples. The apparent presence of 

haplotype B in the north may be the result of incomplete lineage sorting; in other words, 

both haplotypes A and B could have been present in ancestral louse populations from 

north of the constriction, and both haplotypes remain there today, with haplotype B in 

low frequency. Another explanation for the apparent presence of haplotype B in the north 

is host switching, whereby lice from south of the constriction have been transmitted 

across the constriction into northern louse populations, bringing haplotype B with them. 

Interestingly, Geomydoecus lice from the San Acacia constriction have switched hosts  

with the northern Geomydoecus species having invaded pocket gophers south of the San 

Acacia constriction; the northern species of Geomydoecus is now steadily expanding its 

range southward at a consistent rate (Hafner et al. 1998). The same host interactions that 

have allowed transmission of northern Geomydoecus onto southern pocket gophers could 

also be allowing southern Thomomydoecus haplotypes to expand northward. 
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     Four of the eight aberrant samples displayed Thomomydoecus mtDNA in lice that 

were morphologically characterized as Geomydoecus and that also showed nuclear 

microsatellite evidence of being Geomydoecus. Chewing lice are known to feed on skin 

detritus of their pocket gopher hosts, but it is not known if chewing lice also feed on other 

lice, shed exoskeletons, eggs, or egg casings. So it is possible that these mixed patterns of 

morphology/nuclear DNA vs. mtDNA have arisen as a result of Geomydoecus 

individuals having fed on Thomomydoecus (or their eggs) that carried haplotype B. The 

fact that Geomydoecus mtDNA was not recovered in PCR amplification of three of these 

four individuals may be explained by the fact that the PCR primers used to amplify 

mtDNA in this study are more effective at amplifying Thomomydoecus DNA than 

Geomydoecus DNA. 

      If feeding behaviors don’t explain the Thomomydoecus mtDNA sequences found in 

Geomydoecus individuals, then past intergeneric hybridization between Geomydoecus 

and Thomomydoecus may, although it seems rather unlikely given the genetic divergence 

between these genera. Mitochondrial DNA sequence divergence indicates that these 

sympatric species, G. aurei and T. minor, are quite differentiated (25% uncorrected 

sequence divergence from 545bp of COI; Spradling 1997). Given the estimated rate of 

COI evolution discussed above, divergence between these genera would have occurred 

900,000 - 2.3 million years ago. Allozyme divergence values between T. minor and G. 

aurei are in line with divergence between other genera of insects (Nadler and Hafner 

1989). Morphology of these lice also is quite different; while Geomydoecus males have 

genital sac spines, Thomomydoecus males do not (Price and Hellenthal 1980). The 
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function of the genital sac spines is not known, but because these structures are species 

specific and associated with the reproductive tracts of male Geomydoecus, it seems they 

may be functionally related to reproduction, and lack of such structures in 

Thomomydoecus males may indicate reproductive incompatability. Thus, intergeneric 

hybridization may not be impossible, but it likely is very rare that successful mating with 

live reproductive offspring would occur between these two genera of lice. Therefore, the 

mixed morphology and mtDNA sequences seen in these samples are more likely the 

result of Geomydoecus having fed on Thomomydoecus or their eggs. 

    The remaining four of eight aberrant samples occurred in lice that were identified as 

Thomomydoecus based on morphology, and their nuclear genotypes also indicated that 

they were Thomomydoecus. However, these four lice showed mixed (approximately at a 

1:1 ratio) Thomomydoecus haplotypes A and B. Again, feeding habits could explain the 

presence of two Thomomydoecus haplotypes if one Thomomydoecus individual ate 

another with a different haplotype. A second possibility is past hybridization between two 

divergent lineages of Thomomydoecus with retained heteroplasmy. All four lice with 

mixed Thomomydoecus haplotypes came from the same gopher host and could be first 

order relatives given their microsatellite genotypes. Heteroplasmy is not a rare 

phenomenon in insects (Harrison et al. 1985; Kvist et al. 2003; White et al. 2008), 

particularly at hybrid zones (Kvist et al. 2003). Therefore, the mixed mtDNA sequences 

seen in these lice could be a result of hybridization with retained heteroplasmy. 

        Further sampling of louse individuals from north of the San Acacia constriction is 

already underway as part of an extension to this study. If the presence of haplotype B 
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north of the San Acacia constriction is confirmed, migration estimates will be examined.  

If mixed haplotypes and/or mixed morphology and genetics occur in further sampling, 

experiments will be designed to analyze the possible impact of feeding habits on genetic 

analysis in chewing lice, perhaps by isolating DNA from louse heads and louse bodies 

separately to determine whether mixed haplotypes result from hybridization (if so, mixed 

sequences should come from both the head and the body) or from feeding (in which case 

the mixed sequences should only come from the gut). 

Conclusions  

     Microsatellite data and mitochondrial sequence data have proven useful tools for 

population genetic analysis in chewing lice. These tools have revealed significant genetic 

variation that corresponds with geography and host type and provides evidence for 

limited horizontal transmission of lice among host individuals. Comparisons across time 

indicated that the level of heterozygosity decreased only slightly in the populations 

examined, leaving overall genetic variation relatively stable despite 19.5 years and 175 

generations between collection of samples.  
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APPENDIX A 
HOST AND PARASITE COLLECTION INFORMATION 
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APPENDIX B 
LOUSE SPECIMEN VOUCHERS 

 
2011 Louse specimens collected in New Mexico. Specimens are stored in the 
Evolutionary Biology Lab at the University of Northern Iowa. Sex of each individual 
louse is given and any significant problems with voucher preparation are noted.  

Specimen ID Sex Problems Locality 
751.01_N 

 

Female  Las Nutrias 
751.02_N Unknown Body unusable, crystallized in precipitate Las Nutrias 
751.03_N Unknown Body unusable, crystallized in precipitate Las Nutrias 
751.04_N 

 

Unknown Body unusable, crystallized in precipitate Las Nutrias 
751.05_N Female Terminalia region missing Las Nutrias 
751.06_N Male Body dried twisted Las Nutrias 
751.07_N 

 

Male Mounted in two pieces Las Nutrias 
751.08_N Female  Las Nutrias 
751.09_N Male  Las Nutrias 
751.10_N 

 

Female Head only Las Nutrias 
751.11_N Male  Las Nutrias 
751.12_N Unknown Body lost Las Nutrias 
751.13_N 

 

Female Mounted in three pieces Las Nutrias 
751.14_N Unknown Body only Las Nutrias 
751.15_N Female  Las Nutrias 
751.16_N 

 

Male  Las Nutrias 
751.17_N Male  Las Nutrias 
751.18_N Male  Las Nutrias 
751.19_N 

 

Male  Las Nutrias 
751.20_N Female  Las Nutrias 
752.02_N 

 

Male  Las Nutrias 
752.03_N Female  Las Nutrias 
752.04_N Unknown Head only Las Nutrias 
752.07_N 

 

Unknown Body lost Las Nutrias 
752.08_N Male  Las Nutrias 
752.13_N Unknown Body lost Las Nutrias 
752.20_N Male *Geomydoecus; Mounted in two pieces  Las Nutrias 
752.22_N 

 

Male *Geomydoecus Las Nutrias 
752.23_N Unknown *Geomydoecus; Body lost Las Nutrias 
752.25_N Male *Geomydoecus; Dried folded Las Nutrias 
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Specimen ID Sex Problems Locality 

753.01_N 
 

Male  Las Nutrias 
753.02_N Male  Las Nutrias 
753.03_N Male Used for photo representation Las Nutrias 

753.04_N 
 

Unknown Head only Las Nutrias 
753.05_N Female Used for photo representation Las Nutrias 
753.06_N Male Dried twisted Las Nutrias 
753.07_N Female Dried folded  Las Nutrias 

753.08_N 
 

Female  Las Nutrias 
753.09_N Female  Las Nutrias 
753.10_N Male Dried folded Las Nutrias 

756.01_L 
 

Unknown Body lost Lemitar 
756.02_L Male Head and pro-thorax region only Lemitar 
756.03_L Male  Lemitar 
756.04_L 

 

Unknown Body lost Lemitar 
756.05_L Male  Lemitar 
756.06_L Female Body dried twisted Lemitar 
756.07_L 

 

Female  Lemitar 
756.08_L Male  Lemitar 
756.09_L Female  Lemitar 
756.10_L 

 

Unknown Body lost Lemitar 
756.11_L Female  Lemitar 
756.12_L Male Head and pro-thorax region only Lemitar 
756.13_L 

 

Male  Lemitar 
756.14_L Female  Lemitar 
756.15_L Male  Lemitar 
756.17_L 

 

Unknown Body lost Lemitar 
756.18_L Female  Lemitar 
756.19_L Male   Lemitar 
756.20_L 

 

Female  Lemitar 

757.01_L 
 

Male  Lemitar 
757.02_L Female  Lemitar 
757.03_L Male  Lemitar 
757.04_L 

 

Unknown Body lost Lemitar 
757.05_L Male  Lemitar 
757.06_L Female  Lemitar 
757.07_L 

 

Female  Lemitar 
757.08_L Female  Lemitar 
757.09_L Male  Lemitar 
757.10_L 

 

Female  Lemitar 
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Specimen ID Sex Problems Locality 
757.11_L Female  Lemitar 
757.12_L Female  Lemitar 

757.13_L 
 

Male  Lemitar 
757.14_L Male  Lemitar 
757.15_L Male  Lemitar 

757.16_L 
 

Male Mounted in two pieces Lemitar 
757.17_L Male Body dried twisted Lemitar 
757.18_L Female  Lemitar 
757.19_L 

 

Female  Lemitar 

757.20_L 
 

Male Body dried twisted Lemitar 

759.01_L 
 

Male  La Joya 
759.02_L Female  La Joya 
759.03_L Unknown Dried folded La Joya 

759.04_L 
 

Unknown Body lost, excess xylenes melted tubes La Joya 
759.05_L Male  La Joya 
759.06_L Unknown Body lost, excess xylenes melted tubes La Joya 

759.07_L 
 

Unknown Body lost, excess xylenes melted tubes La Joya 
759.08_L Unknown Body lost, excess xylenes melted tubes La Joya 
759.09_L Male  La Joya 

759.10_L 
 

Female  La Joya 
759.11_L Male  La Joya 
759.12_L Male  La Joya 

759.13_L 
 

Male  La Joya 
759.14_L Female  La Joya 
759.15_L Female Dried twisted La Joya 

759.17_L 
 

Male  La Joya 
759.18_L Male  La Joya 
759.19_L Female  La Joya 

759.20_L 
 

Male  La Joya 

761.01_J 
 

Unknown Mount failed La Joya 
761.02_J Unknown Mount failed La Joya 
761.03_J Unknown Mount failed La Joya 

761.04_J 
 

Unknown Mount failed La Joya 
761.05_J Unknown Louse destroyed from xylenes La Joya 
761.06_J Male  La Joya 

761.07_J 
 

Female  La Joya 
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1992 Louse specimens from host pocket gophers 434 and 435; La Joya, New Mexico. 
DNA extraction, mtDNA amplification and sequencing, and voucher mounting done by 
Courtney Calhoun, Biology undergraduate thesis. 
Specimen ID Sex Problems Locality 

434.01_J 
 

Male  La Joya 
434.02_J Male  La Joya 
434.03_J Male  La Joya 

434.04_J 
 

Male  La Joya 
434.05_J Male  La Joya 
434.06_J Male  La Joya 

434.07_J 
 

Male  La Joya 
434.08_J Male  La Joya 
434.09_J Unknown Mount failed La Joya 

434.10_J 
 

Unknown Head only La Joya 
434.11_J Female  La Joya 
434.12_J Male Dried folded La Joya 

434.13_J 
 

Male  La Joya 
434.14_J Unknown Dried folded La Joya 
434.15_J Female  La Joya 

Specimen ID Sex Problems Locality 
761.08_J Female  La Joya 
761.09_J Unknown Body lost La Joya 

761.10_J 
 

Female  La Joya 
761.11_J Female  La Joya 
761.12_J Female  La Joya 

761.13_J 
 

Male  La Joya 
761.14_J Male  La Joya 
761.15_J Unknown Body lost La Joya 
761.16_J Female  La Joya 

761.17_J 
 

Female  La Joya 
761.18_J Female Body dried twisted La Joya 
761.19_J Male Head only La Joya 

761.20_J 
 

Male  La Joya 
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434.17_J Female  La Joya 

434.18_J 
 

Male  La Joya 
434.19_J Male Dried folded La Joya 
434.20_J Unknown Dried folded La Joya 

434.21_J 
 

Female  La Joya 

435.01_J 
 

Male  La Joya 
435.02_J Male Dried folded La Joya 
435.03_J Male Dried folded La Joya 

435.04_J 
 

Female  La Joya 
435.05_J Female  La Joya 
435.06_J Male  La Joya 

435.07_J 
 

Male Dried folded La Joya 
435.08_J Male  La Joya 
435.09_J Male  La Joya 

435.10_J 
 

Male  La Joya 
435.11_J Male  La Joya 
435.12_J Female  La Joya 

435.13_J 
 

Female  La Joya 
435.14_J Male Dried folded La Joya 
435.15_J Female  La Joya 
435.17_J Male  La Joya 

435.18_J 
 

Male  La Joya 
435.19_J Unknown Dried folded La Joya 
434.20_J Female  La Joya 
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APPENDIX C 
POCKET GOPHER HOST CRANIAL AGE CHARACTERS  

AS LISTED BY HENDRICKSON (1972) 
 
Juvenile - Deciduous premolars (or if permanent premolars present, not in line with 
remainder of toothrow and showing no wear); temporal ridges not yet formed; bones of 
cranium porous and cranial sutures unfused; juvenile pelage. 
 
Young -  Permanent premolars functional; temoral ridge absent or faintly present; bones 
of cranium porous; exoccipital-supraoccipital and basisphenoid-basio sutures unfused; 
juvenile pelage or in process of molt from that pelage. 
 
Subadult - Temporal ridges faintly to well developed; some bones of cranium still 
porous; exoccipital fused with supraoccipital, but sutures sometimes not completely 
obliterated; basisphenoid-basioccipital sutures unfused; usually in adult pelage. 
 
Adult - Exoccipital-supraoccipital sutures obliterated; basisphenoid firmly ankylosed to 
basioccipital but suture sometimes not completely obliterated; remainder of cranial 
sutures well fused; pitting and sculpturing of basioccipital well developed; Geomys 
bursarius lutescens-(females) temporal ridges discernible to naked eye and detected by 
running thumbnail over cranial surface, width between ridges less than (or equal to) 
maximum width of nasals, or (males) temporal ridges well developed and width between 
them less than maximum width of nasals; Geomys bursarius majusculus (females) 
temporal ridges less than maximum width of nasals and sagittal crest sometimes formed, 
or (males) temporal ridges in contact and sagittal crest thus present.  
 
Old adult - Skull extremely rugose; basisphenoid-basioccipital suture completely 
obliterated; sagittal crest well developed (forming a strong, blade-like structure in males 
of G. b. majusculus), characterized by strong vertical ridging in occipital region.  
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APPENDIX D 
ALLELE FREQUENCIES BY POPULATION 

 
Louse microsatellite allele frequencies by infrapopulation. Columns representing 
southern populations are highlighted in gray. Frequencies in bold are possible 
contributors to the disparity between northern and southern populations due to private 
possession of alleles or sharp contrast in frequency of allele in northern vs. southern 
populations. 

 
 

 

North South 

Locus Allele 
Size 
(bp) 

751N 
 

752N 753N 759J 761J 434J 435J 756L 757L Private 
allele 

1451 337 0.550 0.250 0.800 0.605 0.650 0.425 0.789 0.026 0.050  
 341 0.425 0.250 0.200 0.184 0.225 0.400 0.184 0.974 0.950  
 345 0.025 0.500 - 0.211 0.125 0.150 0.026 - -  
 349 - - - - - 0.025 - - - 434J 
3495 192 0.875 0.917 0.850 0.947 0.925 0.925 0.947 0.737 0.675  
 196 0.125 0.083 0.150 0.053 0.075 0.075 0.053 0.263 0.325  
1569 198 0.650 0.833 0.600 0.816 0.850 0.775 0.763 0.079 0.050  
 206 0.350 0.167 0.400 0.184 0.150 0.225 0.237 0.921 0.950  
851 436 0.300 - - - - - - - - 751N 
 440 0.125 0.667 0.650 0.222 0.200 0.300 0.395 0.921 0.800  
 444 0.575 0.333 0.350 0.778 0.800 0.700 0.605 0.079 0.200  
4011 360 0.025 0.500 0.250 - 0.175 0.075 0.026 - -  
 364 - 0.083 - - - - - - - 752N 
 368 0.075 0.083 0.050 - - 0.050 0.053 0.158 0.056  
 372 0.900 0.333 0.700 1.000 0.825 0.875 0.921 0.710 0.694  
 376 - - - - - - - 0.132 0.250  
Jan 198 0.050 0.083 0.200 0.053 0.375 0.225 0.421 0.895 0.775  
 202 0.950 0.917 0.800 0.947 0.625 0.775 0.579 0.105 0.225  
Belle 223 0.025 - 0.100 - - - - - -  
 227 0.950 0.917 0.800 0.895 0.825 0.850 0.632 0.263 0.275  
 231 - - - - - - - - 0.025 757L 
 235 0.025 0.083 0.100 0.105 0.175 0.150 0.368 0.658 0.600  
 239 - - - - - - - 0.079 0.100  
Allie 211 - - - - - - 0.132 - - 435J 
 215 0.225 0.167 0.450 0.263 0.250 0.225 0.079 - -  
 219 0.775 0.833 0.550 0.737 0.750 0.775 0.789 1.000 0.850  
 223 - - - - - - - - 0.150 757L 
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APPENDIX E 
ABERRANT DATA 
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APPENDIX F 
ALLELE COMPARISONS 

  
Microsatellite alleles by locus for T. minor, G. aurei, and aberrant lice from host pocket 
gophers 752 and 753 (Appendix E) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1451 3495 1569 851 4011 Jan Belle Allie 
T. minor 337 192 198 436 360 198 223 211 
 341 196 206 440 368 202 227 215 
 345   444 372  235 219 
     376  239 223 
         
G. aurei 353   512 368 198 227 223 
 357    372 206 231  
 369      235  
       239  
       254  
         
752 Aberrant lice  357  196 512 360 194 235 223 
 369  198  372 198 239  
   206   202 254  
       263  
         
753 Aberrant lice 337 192 198 440 360 198 227 215 
 341 196 206 444 368 202  219 
     372    
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APPENDIX G 
MIXED SEQUENCE DATA 
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APPENDIX H 
MTDNA AND STRUCTURE RESULTS 
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