Science Innovation in 45 Minutes or Less

Leslie Flynn
University of Iowa

Pamela Joslyn
Muscatine Community School District

See next page for additional authors

Copyright ©2023 Dr. Leslie Flynn, Pamela Joslyn, and Maria Hasken-Averkamp

Follow this and additional works at: https://scholarworks.uni.edu/sciedconf_documents

Part of the *Science and Mathematics Education Commons*

Recommended Citation

Flynn, Leslie; Joslyn, Pamela; and Hasken-Averkamp, Maria, "Science Innovation in 45 Minutes or Less" (2023). *Science Education Update Conference Documents*. 41.
https://scholarworks.uni.edu/sciedconf_documents/41

This Slideshow is brought to you for free and open access by the Science Education Update Conference at UNI ScholarWorks. It has been accepted for inclusion in Science Education Update Conference Documents by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.
WELCOME! Science Innovation in 45 Minutes or Less

Dr. Leslie Flynn
Clinical Associate Professor & STEM Innovator Founder

Pamela Joslyn
Muscatine Science Educator & Fulbright Scholar

Maria Hasken-Averkamp
STEM Innovator Education Manager

John Pappajohn Entrepreneurial Center
Practices of Science & STEM Innovation Overlap

1. **Ask Questions**: Problem Identification
2. **Conduct Investigations**: Determine Value through Customer Discovery Interviews
3. **Analyze & Interpret Data**: Validate Problem & Explore Solution Feedback
4. **Develop & Use Models**: Create Rapid Prototype & Build It
5. **Engage in Argument from Evidence & Construct Explanations**: Pitch Ideas for Feedback & Use Feedback for Refinement

Data Driven Decision Making

John Pappajohn Entrepreneurial Center
Environmental Problems Rapid Prototyping

<table>
<thead>
<tr>
<th>Problem 1: Human Consumption</th>
<th>Problem 2: Sustainable Schools</th>
</tr>
</thead>
<tbody>
<tr>
<td>How can students be encouraged to recycle paper?</td>
<td>How can your school reduce electrical consumption?</td>
</tr>
</tbody>
</table>

ACTIVITY STEPS:

1. Pick a problem & team up (1 min)
2. Conduct customer discovery interviews with someone from another team (5 min)
3. Share & interpret team data results (10 min)
4. Propose a solution on butcher paper/ Your choice: Product or Process (10 min)
5. Pitch for further feedback (2 min pitches for each team/adjust as needed)
Customer Discovery Interview Log

Purpose: To capture customer feedback on a problem, the value in solving the problem, and ideas for a solution.

Project Name:

Interview by:

Problem Investigating:

<table>
<thead>
<tr>
<th>Who is the customer?</th>
<th>Does the customer have the problem?</th>
<th>Who else does the customer think has the problem?</th>
<th>What value does the customer see in solving the problem?</th>
<th>What is their suggestion for a solution?</th>
<th>What does the customer think about your solution?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name?</td>
<td>The problem we are trying to solve is _____.</td>
<td>Who else do you think has the problem? Describe the person (age, role, etc.).</td>
<td>What value is there in solving the problem?</td>
<td>What solution do you have for solving the problem? Why?</td>
<td>The solution we created is _____. What do you like about this solution? Why? What would you change? Why?</td>
</tr>
<tr>
<td>Role? (community member, teacher, student, etc.)</td>
<td>Do you have this problem? When? Why or why not?</td>
<td>What problem do they have?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age range?</td>
<td>Tell me more about this problem.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of the interview?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional data from interview #1 You will dig deeper in your interviews to understand the wants, needs and motivations of the potential customer. Add additional responses here to share with your team.
Wrap Up: Practices of Science & STEM Innovation Overlap

1. Ask Questions: Problem Identification
2. Conduct Investigations: Determine Value through Customer Discovery Interviews
3. Analyze & Interpret Data: Validate Problem & Explore Solution Feedback
4. Develop & Use Models: Create Rapid Prototype & Build It

What are your questions?

What did you learn today?

Data Driven Decision Making

IOWA

John Pappajohn Entrepreneurial Center
Environmental Problems To Consider

<table>
<thead>
<tr>
<th>Human Consumption:</th>
<th>Sustainable Cities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>● What are things or places where resources are wasted?</td>
<td>● How can your city be a vibrant place where people want to live, work, and raise a family?</td>
</tr>
<tr>
<td>Energy:</td>
<td></td>
</tr>
<tr>
<td>● How can your city diversify its energy resources?</td>
<td></td>
</tr>
<tr>
<td>Water:</td>
<td></td>
</tr>
<tr>
<td>● How can your city reduce the human impact to its watershed?</td>
<td></td>
</tr>
</tbody>
</table>
Want More Information?

- Fill out a **STEM Innovator Opportunities card** for further information about other ways to connect with us!
- You may also email **stem-innovator@uiowa.edu** with any questions, comments or feedback!