Rates and Patterns of Evolution in a Duplicated Genome in the Family Catostomidae [Poster]

Megann Michelle Schmidt
University of Northern Iowa, schmimax@uni.edu

Zachary Sperstad
University of Northern Iowa

See next page for additional authors

Let us know how access to this document benefits you

Copyright ©2018 Megann Schmidt

Follow this and additional works at: https://scholarworks.uni.edu/rcapitol

Part of the Genomics Commons

Recommended Citation

Schmidt, Megann Michelle; Sperstad, Zachary; and Berendzen, Peter, "Rates and Patterns of Evolution in a Duplicated Genome in the Family Catostomidae [Poster]" (2018). *Research in the Capitol*. 16.
https://scholarworks.uni.edu/rcapitol/2018/16

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.
Author
Megann Michelle Schmidt, Zachary Sperstad, and Peter Berendzen

This open access poster presentation is available at UNI ScholarWorks: https://scholarworks.uni.edu/rcapitol/2018/all/16
Whole genome duplication (WGD) is a process by which the entire genome of an organism is copied, leading to polyploidy. WGD events result in duplicate copies of genes that are subject to a variety of evolutionary forces. If there is purifying selection on the gene, all copies will retain their initial function, but under other modes of selection, the duplicated genes can develop a new function or divide the ancestral function among the duplicates. In the absence of selection, one copy can lose functionality and become a pseudogene (Fig 1). It has been widely hypothesized that WGD events are a major driving force behind diversification. However, recent studies have not supported this hypothesis in animals and have commonly observed retention of the initial gene state or loss of duplicate gene function through degenerate mutation.

Genome duplication occurs across a wide range of animals, but is particularly common in fish and amphibians. This is likely due to external fertilization in freshwater environments, exposing the zygotes to temperature stress, along with other factors such as communal breeding and large numbers of gametes.

The family Catostomidae, the suckers, is hypothesized to have evolved from a single tetraploid ancestor resulting from a WGD event. Based on early studies using isozyme data, it has been hypothesized that within the group the subfamily Ictiobinae, retained initial gene states more frequently than its sister group, the subfamily Catostominae. The objective of this study is to test this hypothesis using genomic data.

METHODS:

- Tree inference using Maximum Likelihood (GARLI)
- Maximum likelihood trees were generated for all 179 loci on the CIPRES phylogenetics portal using GARLI 2.01. All of the trees were assessed to determine which species were monophyletic for all four alleles. These data were recorded and analyzed by species, locus, and clade. These trees were also assessed to determine which loci had sequences from Ictiobinae falling into divergent clades.
- Divergence dating using fossil calibrations (BEAST2)
- The 72 loci that had Ictiobinae sequences divided into two clades were analyzed using BEAST2 on CIPRES. These analyses were calibrated using three fossil calibrations; one for all Catostomidae (61.7 Mya) and one fossil for each of the two Ictiobinae clades (33.9 Mya). The BEAST analysis produced a Bayesian inference tree containing node ages and 95% confidence intervals for each of the 72 loci.

PRELIMINARY CONCLUSIONS:

- On average, species were divergent on 80% of the loci. Further analysis is necessary to determine the evolutionary fate of the duplicates (Fig 5).
- Assessment of the maximum likelihood trees revealed that Ictiobinae has the highest percent of polymorphic loci out of all the subfamilies. This agrees with the results of Ferris and Whitt (1980), but trends of other subfamilies differ.
- Diverging alleles of Ictiobinae appear to have a most recent common ancestor between 60 and 70 Mya. This date indicates that the alleles diverged shortly after the WGD event that distinguishes the Catostomidae family.

ACKNOWLEDGEMENTS: