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ABSTRACT 
 

Wind energy development is occurring rapidly in the United States due to the 

drive for energy independence and to mitigate environmental concerns.  Wind is a clean, 

abundant, and entirely renewable source of energy and the most promising source of 

alternative energy.  Among the top wind energy producers in the nation, the state of Iowa 

is experiencing tremendous growth and it’s projected to grow.  However, despite the vast 

development, the contributing factors and spatial decision principles for optimal wind 

farms placement are not yet well understood.  This research advanced an empirical 

methodology for building site suitability assessment framework for the state of Iowa. 

Employing the information on existing turbines locations, along with environmental 

factors (slope, wind power class, elevation, land cover, proximity to neighboring turbine, 

population density, and distance to transmission line, city, highway, railroad, airport, and 

river), the study analyzed the contributing factors, their relative importance and regional 

manifestations.  This research developed a spatially explicit scale dependent modeling 

framework for wind farm suitability assessment based on Iowa context.  The framework 

is based on multiscale empirical module derived from spatial lag regression and machine-

learning algorithm coupled with normative component (regulations and policies).  The 

empirical model derived from the spatial lag logistic regression and machine-learning 

algorithm (Maxent) identified statistically significant factors at different scales.  The 

multiscale spatial lag logistic regression significantly improved modeling compared to 

standard logistic regression because it accounted for spatial autocorrelation due to the 

spatial clustering of turbines.  Scale’s impact on factors importance were examined.  At 



the Macroscale (statewide) model indicated a good fit to the model with Nagelkerke R 

square of 0.861.  Slope, wind power class, elevation, and distance to transmission line, 

city, airport, and highway as significant factors that contribute at the Macroscale level.  

Mesoscale 1 model (regional level) also indicated a good fit with Nagelkerke R squared 

of 0.801 which identified wind power class, elevation, and distance to transmission line, 

city, airport, highway and population density as significant factors that impact site 

suitability at this scale.  Mesoscale 2 model (micro-regional) with Nagelkerke R square of 

0.794 identified wind power class, elevation, distance to city, river, and transmission line 

as predictors for site suitability.  Microscale model with Nagelkerke R square of 0.784 

identified elevation, distance to river and city as significant for predicting suitable site at 

the scale.  As results illustrated, difference in scale of wind development does impact 

factors importance and changes their significance as well.  Overall, elevation, proximity 

to neighboring turbine, and distance to city are the most important factors that were not 

impact by scale while the remaining factors displayed scale dependence.  Empirical 

model was coupled with normative factors at a regional scale and the model accuracy of 

0.88 indicates a good fit.  The framework accounted for the complex technical, 

environmental, and social constraints to identify suitable sites in Iowa with high 

accuracy.  Ultimately, the framework allows for improved resource characterization to 

maximize resource utilization.  Even though the framework developed is in the context of 

Iowa, it can be modified for other geographic locations.  
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CHAPTER 1 

INTRODUCTION 

To reduce dependence on fossil fuels and mitigate environmental concerns, wind 

energy development has accelerated in the last decade (American Wind Energy 

Association [AWEA], 2012a; 2012b; Aydin, Kentel, & Duzgun, 2010; U.S. Department 

of Energy [DOE], 2008).  Wind energy development offers positive impacts in terms of 

greenhouse gas (GHG) reductions, water conservation, and energy security (DOE, 2008).  

Wind is a clean, abundant and entirely renewable source of energy and the most 

promising source of alternative energy in the state of Iowa (AWEA, 2012a).  According 

to the National Renewable Energy Laboratory (NREL) resource assessment, Iowa’s wind 

resource is 7th best in the nation, and it has yet to be fully harnessed (AWEA, 2012b).  

As untapped wind energy resources coupled with improved wind energy technology, the 

cost of wind power per kilowatt hour (kWh) is making wind energy competitive with 

other electricity producing sources (Blair, Hand, Short, & Sullivan, 2008; DOE, 2008; 

AWEA, 2012a; 2012b). 
In 2011, 24.5% of Iowa’s electricity was generated from wind which ranks first in 

the nation in this category (AWEA, 2012a).  This production is an equivalent of 1.3 

million average Iowan homes being powered by wind energy (AWEA, 2012a).  Iowa is 

also first in wind production capacity per sq. mile, third in wind power installed per 

capita, and third in the number (3,198) of utility scale wind turbines installed (AWEA, 

2012a).  Tremendous wind resources being harnessed every year, Iowa will be among the 

leaders in the nations in wind energy production (AWEA, 2012a).  According to NREL, 
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75% of Iowa is suitable for wind energy development with estimated wind resources of 

570, 000 megawatt hours (DOE, 2008).  Wind industry is well established including 

manufacturing, transporting, and installing wind turbines (Halvatzis & Keyser, 2013).  

Iowa’s wind industry is projected to grow which makes the state an ideal study site for 

empirically driven approach to assess site suitability.   

However, contributing factors and spatial decision principles for optimal wind 

farm placement are not yet well-understood.  Optimal placement based on a spatially 

integrated nuanced predictive model in Iowa context is not developed.  Therefore, this 

research advances an empirical approach to analyze contributing factors, their relative 

importance, scale dependency and regional manifestations.  Recent studies from various 

regions try to fill this knowledge gap demonstrating the increased importance of 

determining the optimal placement of wind turbines to maximize resource use (Grady, 

Hussaini, & Abdullah, 2005; Mann, Lant, & Schoof, 2012; Marmidis, Lazarou, & 

Pyrgioti, 2008; Mosetti, Poloni, & Diviacco, 1994).  Despite advancement in the studies 

of optimal placement, there has been a gap in the research of scale dependence, factors 

scale manifestation, and the use of empirically driven methods.  However, results from 

multiscale analysis can very across geographic scales due to the Modifiable Areal Unit 

Problem (MAUP) which refers to the potential result inaccuracies due to scale (Dark & 

Bram, 2007; Openshaw, 1983, 1984; Openshaw & Taylor, 1979). 

This study has important intellectual merit because it reveals new evidence that 

can be used to identify suitable locations for wind energy development.  It can also be 

used to evaluate wind projects and make science based recommendations to developers, 
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policy makers, industry leaders and other stakeholders.  The model framework developed 

in this study aims to improve resource characterization and maximize resource utilization 

in Iowa.  In addition, the research identifies the contributing factors and their relative 

importance, and scale dependence using existing wind turbines in the state.  

 

1.1 Research Goal and Objectives 

The goal of this research is to develop an integrated spatially explicit scale 

dependent modeling framework to assess wind farm site suitability in Iowa.  Therefore 

filling the knowledge gap about contributing factors, their relative importance, scale 

dependency and regional manifestations in Iowa.  Thus, the following questions and 

objectives will be addressed in this research.  

Objectives 

1. Using locations of existing wind turbines to identify contributing factors and their 

relative importance in Iowa. 

2. Identifying differences among contributing factors and their relative importance at 

the different scales. 

3. Developing spatially explicit scale dependent modeling framework for wind farm 

site suitability assessment. 

 

1.2 Thesis Structure 

Chapter 2 of this thesis provides a literature review that will reveal wind energy 

development in the United States and the state of Iowa.  Also, suitable site identification 
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methods, suitability factors for wind energy development, and Modifiable Areal Unit 

Problem (MAUP) in spatial analysis are outlined.  Chapter 3 provides detailed 

description of the environmental and physical characteristics of the study area along with 

spatial dataset used in the analysis.  Also, this chapter describes analysis methodologies 

based on multiscale empirical models derived from spatial lag logistic regression and 

machine-learning algorithm coupled with normative component.  Chapter 4 presents the 

results.  Chapter 5 provides discussion and overarching interpretation of the results along 

with case study application and testing of the modeling framework.  Chapter 6 discusses 

conclusions, limitations and future directions.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Wind Energy Development in the United States 

Wind power is the fastest growing renewable energy source in the world with an 

annual growth rate of approximately 35% (Sathyajith & Philip, 2011).  The United States 

has over 40,000 megawatts (MW) of installed wind power capacity at the end of 2010 

and as of 2011, the Unite Stats is only second to China in cumulative wind energy 

capacity installed at 43.5 GW (DOE, 2011; 2012).  In 2010, wind supplied 94.7 billion 

kilowatt-hours (kWh) of electricity which is only 2.3 percent of national consumption but 

a five-fold increase since 2005 (DOE, 2008).   

Many reports and studies predict and verify that the United States has the 

potential to generate 20% of its electricity from wind by 2030 (DOE, 2008; Hand et al., 

2008).  As untapped wind energy resources are identified coupled with turbine 

technology advancement, the cost of wind energy production per kilowatt hour (kWh) 

has been declining making it competitive with other electric producing sources (DOE, 

2008).  Current installations are spread among more than 25 states and the vast majority 

of capacity is concentrated in Texas, Iowa, and California.  Many states use specific 

polices to encourage renewable energy development but these policies can vary widely 

among states both in scope and implementation.  However, wind development is heavily 

dependent on federal policies that incentivize renewable energy investment.  At the 

federal level, the Renewable Energy Production Tax Credit (PTC) has helped to make 

much more cost effective (AWEA, 2012a; 2012b).  Under this policy, producers receive 
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2.2 centers per kWh for renewable energy including wind power.  In addition, states have 

implemented renewable energy standards (RPS) to open the energy market at the state 

level in order to incentivize renewable energy producers.   

 

2.2 Wind Energy Development in Iowa 

Iowa was one of the earliest states to have renewable portfolio standards enacted 

by the state legislature in the early 1983 (Hurlbut & NREL, 2008).  Iowa’s installed wind 

capacity has been growing steadily over the past decade due to federal and state policies.  

In 2012, Iowa was first in per capita and second in total production of wind energy.  The 

increased integration of wind energy into state’s energy portfolio has made Iowa ideal 

location for increased investment in wind energy development (AWEA, 2012a).  

Actually, Iowa possesses abundant wind resources and among the leading states in wind 

energy production and manufacturing (AWEA, 2012b).  According to NREL, 75% of 

Iowa is suitable for wind energy development with estimated wind resource of 570, 000 

Megawatts.  As of 2012, Iowa produced 24.5% of electricity from wind energy and it was 

the first state in the nation to reach this threshold (AWEA, 2012a; 2012b; DOE, 2008). 

As stated earlier, the primary benefits of expanding wind energy are reduction in 

CO2 emissions since turbines do not release atmospheric emission, generating domestic 

generating power, renewable source, and cost competitiveness among other electric 

producing energy sources (DOE, 2008).  However, various studies reveal that wind 

energy has an impact on both society and ecology but the advantages outweigh the 

disadvantages (Acker, Williams, Duque, Brummels, & Buechler, 2007; Griffiths & 
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Dushenko, 2011; Rodman & Meentemeyer, 2006; Van Hoesen & Letendre, 2010).  The 

physical, socio-economic, technical, and environmental factors need to be thoroughly 

assessed to maximize the wind energy resource potential (DOE, 2008). 

This can be done by establishing a framework to evaluate physical, environmental 

and human impact factors to assess suitability (Menz & Vachon, 2006; Wiser, Namovicz, 

Gielecki, & Smieth, 2007).  The framework can be applied to other regions, and the 

information can be used by developers and policy makers to predict the extent wind 

energy can be developed based on land availability (Rodman & Meentemeyer, 2006).  As 

wind energy production rapidly expands, the social and landscape factors are shifting 

toward mutually beneficial partnership between communities and wind energy 

developers (Slattery, Johnson, Swofford & Pasqualetti, 2012; Sowers, 2006; Swofford & 

Slattery, 2010).  In Iowa, there is tremendous support for wind energy development from 

landowners, state and federal legislatures (Sowers, 2006).  

 

2.3 Wind Resource Assessment and Site Identification 

Utility scale wind resource assessment is a multiphase process that incorporates 

the environmental, physical, and socioeconomics constraints to maximize production and 

efficiency while keeping the cost low (New York State Energy Research and 

Development Authority [NYSERDA], 2010).  Figure 1 summarizes the utility scale wind 

energy project lifecycle which contains five main areas: wind resource assessment, 

permitting, financing, constructing, and operation and decommissioning (NYSERDA, 

2010). 
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The first stage of the wind resource assessment process identifies potential 

development sites.  Site selection requires comprehensive assessment on factors to 

determine the suitability of the area.  The complex array of critical factors is drawn from 

physical, demographical, economic, and environmental along with policies and 

regulations which are all major components of site assessment (Bennui, Rattanamanee, 

Puetpaiboon, Phukpattaranont, & Chetpattananondh, 2007).  So, identifying suitable site 

for wind energy development is a gradual multi-stage process.   Furthermore, correctly 

estimating the potential energy availability is essential to the successful development and 

economic viability of the wind farm project (AWS Scientific, Inc., 1997).  Ultimately, the 

overall site feasibility process should include comprehensive site study consisting of the 

social, environmental, economic and human impacts. 

 

 

Figure 1: Utility scale wind energy project lifecycle. (NYSERDA, 2010) 
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Site Identification 

As a first step, a geographic database that contain terrain data, project boundary, 

water bodies, land cover data, environmental sensitive areas, transmission lines, 

buildings, pipelines, exclusion areas, road networks, permit requirements, and airport 

restriction should be compiled in a Geographic Information Systems (NYSERDA, 2010).  

Geographic Information Systems (GIS) has become an integral part of the site selection 

process and a very useful tool to analyze and determine the most effective locations to 

install monitoring towers for wind resource assessment and placing turbines.    

The second stage involves characterization of the wind resource at the site.  

Monitoring towers are installed, and the primary objective for monitoring wind is: (i) 

determining or verifying whether sufficient wind resource exists at the site to justify 

project continuation, (ii) Enables wind resource comparisons with various potential sites, 

(iii) estimating the potential economic viability of the project. 

The third stage of wind resource assessment includes a detailed evaluation of 

wind resource at the chosen site.  At this point, wind resource is characterized as 

accurately as possible at all relevant temporal and spatial scales with the primary 

objective being an accurate estimation of energy production and the optimal placement of 

turbine within the project area.  Characterizing the observed wind resource and data 

validation process is analyzed to generate an estimated hub-height wind resource.  

Estimating a wind turbine’s energy production often requires extrapolating the measured 

data to the turbine hub height and analysis of information about the site including the 

local meteorology, topography, and land cover. 
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2.4 Iowa Site Suitability Factors 

The factors and criterion used for wind farm siting from previous studies are 

summarized in Table 1.  Environmental, technical, and social constraints are included in 

the comprehensive site study.  The environmental and economic assessments are essential 

for successful wind energy development (Griffiths & Dushenko 2011; Josimovic & Pucar 

2010; Leung & Yang 2011).  Environmental sensitive areas consist of wetland, wildlife 

preserves, and federal land (Acker et al., 2007).  Developers should consider local, state 

and federal regulations in order to comply with the law.  

 

Table 1: Factors and criteria used for wind farm siting in past studies (a) 

 

(a)Values indicate the constraints for wind turbine placement. The term weighted 
indicates if the study used a custom scale to weight criterion layers in the 
suitability study. 
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However, procedures and regulations differ state by state which makes it very 

difficult for wind energy developers to speed up project developments (Geiszler, Koppel 

& Gunther, 2013).  There is also a push to make a standardized system and singular 

regulator body to make the process swift and efficient.  The benefit of this is to set up a 

“one-stop” permit process to increase wind energy development (Portman, Duff, Koppel, 

Reisert, & Higgins, 2009). 

The most important factor that determines site suitability is wind speed.  Based on 

the extensive literature review, 79% of studies have identified wind speed as a critical 

factor.  Other important criterion identified are elevation, slope, land cover, protected 

areas, urban area and distance to airport, power grid, and highway.  

 

Wind Power Class (Wind Speed) 

The primary factor for wind farm development is the availability of good wind 

resources which is essential for the economic viability of the project (AWS Scientific, 

Inc., 1997).  Wind is intermittent and varies over time and over vertical and horizontal 

height.  The vertical profiles of wind speed and wind direction vary by location, and the 

vertical profile of wind speed is strongly dependent on landscape’s roughness (Toke, 

Breukers, & Wolsink, 2008).  The average annual data at referenced height above the 

ground level has horizontal spatial resolution of 2.5 km.  The extrapolation of the wind 

speed at different heights is affected by the local conditions and significantly influences 

the wind shear in the first 200-300 m (Grassi, Chokani & Abhari, 2012).  Wind shear is 

known as the variation in speed with height.  In most places, wind speed increased with 
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increasing height and this is refer to as wind shear.  The shear is typically measured using 

simultaneous speed measurements at more than one height on a mast (Grassi et al., 2012).  

Extreme wind shear can cause extra wear and tear on turbine components as well as 

losses in energy production so there is a minimum and maxim ideal wind speed rate to 

operate turbines.   

Accurate wind resource assessment requires collecting precise wind data over a 

period of 1- 2 years at the proposed site (AWS Scientific, Inc., 1997).  Estimates of the 

wind resource are expressed in wind power classes ranging from class 1 to class 7, with 

each class representing a range of mean wind power density or equivalent mean wind 

speed at specified height above the ground (Table 2).  Wind power class is defined by the 

upper limits of mean wind power density and mean wind speed at 10 m (33 ft.) and 50 m 

(164 ft.) above ground level (AWS Scientific, Inc., 1997).  Grid cells designated as class 

4 or greater are generally considered very good wind conditions, but due to improved 

technology and taller turbine towers, even wind power in class 3 are suitable for utility 

scale development.  

NREL has established a composite of the best available data to classify wind 

power class which represents an annual average wind speed at 10 meters above the 

surface and vertically extrapolated wind speed to 50 meters  based on the 1/7 power 

law(Table 2).  The annual average wind speed is the primary basis mentioned as a way to 

rate or rank wind project sites (NYSERDA, 2010).  Most wind project development are 

occurring at sites with a mean wind speed of over 6.5 m/s at 50 m hub height 
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(NYSERDA, 2010).  The mean wind speed is based on Rayleigh speed distribution of 

equivalent mean power density (Table 2).  Each wind power class spans two power 

densities which means wind power density ranges between 150 W/m² and 200 W/m² in 

this case for Wind Power Class = 3.  However, to determine or verify whether sufficient 

wind resources exists within the area requires accurate, reliable and multi-year climatic 

data (AWS Scientific, Inc., 1997).  Wind with reasonable speed is not the primary 

determinate of wind energy development for practical and economic reasons so the 

potential site has to be thoroughly investigated and the wind speed profile and density 

accurately calculated (Mohandes, Rehman, & Rahman, 2011).   

 

Table 2: NREL Wind Power Class Classification  

Wind power classes at 10 m and 50 m elevation (a) 
Wind Power 

class  
10 m 50 m 

Wind speed 
(m/s) 

Power Density 
(W/m2) 

Wind speed 
(m/s) 

Power Density 
(W/m2) 

1 0-4.4 0-100 1-5.6 0-200 
2 4.4-5.1 100-150 5.6-6.4 200-300 
3 5.1-5.6 150-200 6.4-7.0 300-400 
4 5.6-6.0 200-250 7.0-7.5 400-500 
5 6.0-6.4 250-300 7.5-8.0 500-600 
6 6.4-7.0 300-400 8.0-8.8 600-800 
7 7.0-9.4 400-1,000 8.8-11.9 800-2,000 

 
(a) Vertical extrapolation of wind speed based on the 1/7 power law. 
(b) Mean wind speed on Rayleigh speed distribution of equivalent mean wind 

power density.  
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There are three important factors that determine wind speed resource estimate and 

the degree of certainty; (1) the abundance and quality of wind data; (2) complexity of the 

terrain; (3) geographical variability of wind resource (AWS Scientific, Inc., 1997).  It’s 

assumed that as height increases, wind speed increases; and concrete measurements of 

wind speed can be obtained by utilizing clustering algorithm based on neuron-fuzzy 

method to create a profile up to 100 meters based on the knowledge at highs of 10, 20, 30 

meters (Mohandes et al., 2011).  Wind speed varies depending on the specific site and in 

the case of Greece wind speed of 4m/s was identified as the minimum required for 

turbine installation (Tegou, Polatidis & Haralambopoulos, 2010).  Acker et al. (2007) 

classified wind scale ranging from poor (<5.5 m/s), marginal (5.5-6.3 m/s), fair (6.3-7.0 

m/s), good (7.0-7.5 m/s), to excellent (>7.5 m/s) in their wind resource assessment for the 

state of Arizona.  Suitable wind speed depends on the geographical context of the site and 

acceptable standards vary from state to state.  Iowa being located in the Midwest and 

possessing the 7th most wind resource in the nation (the minimum standard of suitable 

wind speed of 6.4 m/s at 50 meters) is considered exploitable.   

 

Elevation 

Studies have identified elevation as a constraint especially in mountainous regions 

due to complex terrain where topographic influences are strong (Bennui et al., 2007).  

One method is to measure the wind at numerous locations within the wind project area. 

Even with this approach; this will require to extrapolate the observed wind resource to 

other locations using a wind flow model (NYSERDA, 2010).  A study of Thailand 
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identified only areas below 200 meters as suitable location for turbine placement so 

elevation standards vary by the project and geographic requirements (Bennui et al., 

2007).  A California study by Rodman and Meentemeyer (2006) aggregated wind data 

and elevation into a single layer to identify areas with high elevation and low valleys as 

the most suitable location for wind energy development.  

 

Slope 

Slope grade is an important factor that affects the suitability of a site.  As 

highlighted in Table 3, minimal percent slope is required for a site to be considered 

suitable for wind development.  In order to operate the heavy machinery and equipment 

for installation and maintenance, sites should be less than 20% slope grade (Acker et al., 

2007; Tegou et al., 2010).  However, there were some studies that had 30%t slope as 

acceptable due to technology advancement and techniques (Baban & Parry, 2001; Tegou 

et al., 2010).   

 

Table 3: Suitable slope for wind energy development 

Percent Slope Suitability Rating 
0 – 7 Excellent 
7 - 16 Good 
16- 30 Fair 
30 - 40 Poor 

>40 Unsuitable 
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Land Cover 

The land cover impacts site suitability because there are only limited areas where 

turbines can be placed due to environmental and economic constraints.  Also, land cover 

can be an economic indicator of how much it will cost the developer to rent or lease the 

land for wind energy development.  Spatial pattern of wind energy development in Iowa 

displayed row crop as the most dominant land cover type in the state (Mann et al., 2012). 

Also, land value is determined based on corn suitability rating (CSR) which is comprised 

of soil type and this determines land value.  Therefore, land cover will vary based on 

geographic location.   

Certain land covers are not suitable for wind energy development.  Restricted 

areas are urban areas, forests, wetlands, rivers, lakes, reservations, and parks which are 

unsuitable for wind energy development (Acker et al., 2007; Rodman & Meentemeyer 

2006).  Federal protected area like national parks, preserves, and forest especially in the 

western states are off-limits as well.  If identified areas for wind energy development are 

near these areas, the developer should set a buffer distance ranging from 300-2000 m 

(Tegou et al., 2010).  

 

Distance to Transmission Line (Power Grid)   

A critical component in determining the economic viability and success of a 

project is the distance to power grid.  Keeping the costs down in building a wind farm is 

minimizing the cost to power grid infrastructure which is to be installed.  High-voltage 

lines can cost thousands of dollars per mile so it’s essential to considerer distance to a 
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power grid as one of the factors for a suitable site.  In fact, most studies cite power grid 

distance greater than 2000 meters as not economically viable (DOE, 2008; Mann et al., 

2012).  On the other hand, optimal locations are sometime in remote locations which 

make it difficult to develop (Mann et al., 2012).  In order to for wind energy to provide 

20% of United States electricity needs by the year 2030, significant upgrade and 

expansion of power grid is needed.  The expansion of the power grid will also reduce the 

congestion on existing lines and better connect wind energy generation areas with high 

demand areas (DOE, 2008).  

 

Transportation Accessibility (Distance to Highways) 

Transportation accessibility is a factor cited by previous studies as a critical 

component for economical wind farm development.  The distance to the nearest 

road/highway in relation to the wind farm impacts the cost of transportation and 

operating heavy machinery needed to install turbines.  This can mean the difference 

between making the project feasible and cost effective or laden with increased 

transportation cost.  Nguyen (2007) suggested that roads should at least be 100 m plus 

away from the neighboring turbine.  Mann et al. (2012) indicates turbines are more likely 

to be sited further away from highways to minimize distraction for drivers and travelers.  

Generally, most studies recommend that the location of the wind farm to road/highway be 

no greater than 2,500 meters, otherwise, its economic viability diminishes  
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Distance to City 

Some studies have examined the visual impact of wind farms near city/urban 

settlement in order to reduce issues of safety, visibility, noise, annoyance, and economic 

impacts on the local residents (Moller, 2006; Tegou et al. 2010).  Generally, wind farms 

are developed in rural areas away from heavily populated places.  This is importance 

constraint factor.  As such, to minimize the visual impact and noise, turbines should be 

placed at least 500 meters away from the nearest city/urban settlement (Ramirez-Rosado 

et al., 2008).   

 

Distance to Airport 

Due to safety and visibility reasons, wind turbines are required to have marking 

and lighting by the Federal Aviation Administration (FAA; 2013) regulations to prevent 

aircraft collisions or radar interference.  This regulation applies to military, commercial, 

and private airports.  Nguyen (2007) cites areas unsuitable for wind development are 

those sited within the minimum of 2,500 meters of the nearest airport as set by federal 

law.  

 

Distance to River 

Baban and Parry (2001) and Nguyen (2007) classify factors like rivers, water 

bodies, and woodlands as second-grade factors but important factors which require 

turbines have a minimum distance of 400 meters as a buffer.  Also, being further away 
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from rivers or water bodies provides a solid foundation and reduces environmental 

impact.  

 

Distance to Railroad 

Railroads need to be offset 100 meters away from the nearest wind turbine 

(Nguyen 2007).  Again, this is seen as a secondary factor because it is not really so 

frequent that developers run into rail track problems.  

 

2.5 Modifiable Areal Unit Problem in Spatial Analysis 

Gehlke and Biehl (1934) were the first to point out that simple statistics such as 

correlation coefficients could vary across scale and zoning systems as a result of 

grouping and aggregation.  The study examined the tendency for correlation coefficients 

to increases as areal region are aggregated into fewer numbers of larger regions.  

However, the Modifiable Area Unit Problem (hereafter MAUP) was not fully formulated 

until Openshaw and Taylor (1979) evaluated systematically the variability of correlation 

values when different scales were used in the analysis.  This is an ongoing issue in many 

areas of spatial quantitative analyses in geography.   

MAUP has been well recognized in a wide range of disciplines such as 

transportation analysis, physical geography, and political geography due to the increase 

in quantitative studies within many disciplines (Dark & Bram, 2007; Flowerdew, 2011).  

A prime example of the MAUP problem exists in demographic analysis where the census 

data which is collected on fine resolution due to privacy concerns is released only after 
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being spatially aggregated to a coarser resolution (block group, census block, and census 

tract) which affects the accuracy of the result. 

While Openshaw and Taylor (1979) examined the correlation between the 

percentage of Republican voters in the 1968 congressional election and the percentage of 

population over sixty in the 99 counties of Iowa to examine the effect of the MAUP on 

bivariate correlation coefficients.  As a result, the study illustrated coefficient becomes 

broader as the number of zones (areal units) decreased and the spatial autocorrelation and 

contiguous zoning procedure affects the resulting statistics.  A study by Houston (2014) 

assesses the influence of MAUP in the analysis of built environment exposure on 

moderate and vigorous physical activity of people during walking periods.  The study 

concludes that buffer or grid based zonal/scale configuration is heavily influenced with 

MAUP therefore impacting the result (Houston, 2014). 

 

2.6 Summary 

The drive to be energy independent and mitigate environmental impact, 

renewable energy sources have gained tremendous support in the public and private 

sector.  Such support has led to increased wind energy development in the last decade 

globally.  This transformation knows no boundaries as developed and developing nations 

equally participate in the initiatives to shift from fossil fuel to renewable energy.  At this 

forefront is wind energy which is a clean and abundant resource and the United States is 

endowed with tremendous wind resources.  As one of the leading nations in wind energy 

development, federal and state polices are spurring development.  Wind and other 
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renewable energy sources are also incorporated into the federal and states energy 

portfolio.  At the forefront of this development, Iowa utility scale wind industry is robust 

and among the top wind energy producing states in the nation.  Despite the robust growth 

and maturity of the wind energy, the important factors, spatial dynamics, and regional 

manifestation of site suitability are not yet developed.   

Factors from the physical, environmental, demographical, and economic 

components were presented in this section.  Policies and regulations were also 

highlighted as major components of the site suitability for wind energy development.  

Since, wind energy development is projected to grow in Iowa, the need to identify 

suitable locations and improve resource characterization based on Iowa context is 

essential if Iowa is going to contribute to the DOE’s 20% wind energy goal by the year 

2030.  Existing models are insufficient as they are based on a limited number of spatial 

variables and on traditional approaches for suitability analysis based on weighted overlay 

and buffer.   

Despite being widely used, there are two shortcomings with such an approach.  

First, the difficulties in handling spatial data inaccuracy, multiple measurement scales 

and factor interdependency hinder in identifying suitable sites.  Second, requirements of 

prior knowledge in identifying criteria, assigning scores, determining criteria preferences, 

and selecting aggregation function are solely based on individual expertise rather than on 

an empirically driven approach. 
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This research will examine the effect of scale on contributing factors which will 

give better insight on the spatial dynamics and interactions of the factors.  Therefore, this 

research advances an empirical approach to analyze the contributing factors, their relative 

importance, scale-dependency and regional manifestations.  In addition to identifying the 

contributing factors at multiple scales, the need for optimal placement based on a 

spatially-integrated nuanced predictive model adapted to the Iowa context is critical.  

Many publications concerning various regions in recent years try to fill this knowledge 

gap demonstrating the increased importance of determining the optimal placement of 

wind turbines to maximize the benefits of wind energy.  Ultimately, the predictive 

framework will optimize wind turbine placement at different scales from both resource 

utilization and resource characterization perspectives.   
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CHAPTER 3 

METHODOLOGY 

3.1 Study Area 

The study area for this research encompassed the state of Iowa.  According to 

U.S. Census 2010, Iowa had a population of 3,046,355 (30th most populous state in the 

USA) with 99 counties and a total area of 56, 276 sq. mile (145, 743 km²).  Iowa lies 

within the Central Lowlands region of the United States (Figure 2).  Iowa is bordered by 

Minnesota on the north; Nebraska and South Dakota on the west; Missouri on the south; 

and Wisconsin and Illinois on the east.  

Much of the Midwest surface physiography has been shaped by a series of 

continental glaciers flattening hills and filling in valleys.  Debris carried by glaciers was 

deposited in moraine features giving some relief to relatively flat areas.  The regions river 

valleys and lakes were formed as a result of this period.  Due to the low relief throughout 

the Midwest region, climatic differences gradually change in latitude (between north and 

south) and longitude (between east and west).  This region is generally perceived as being 

relatively flat but there is a measure of geographic variation.  In particular in the Grate 

Lake Basin, and northern parts of Wisconsin, Minnesota, and Iowa demonstrate a high 

degree of topographic variation.  Prairies cover most of the states west of the Mississippi 

River.  Precipitation decreases from east to west resulting in different type of prairies 

(Garland, 1955). 
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Figure 2: Study area: major cities and interstate network 

 

3.2 Physical and Environmental Characteristics of Iowa 

The topography of Iowa is generally flat plains to rolling hills.  The glaciers from 

the last Ice Age shaped the terrain by laying down deposits of drift debris and carving 

distinct topographic features which are the till plains of mixed clays, sands, gravels and 

boulders (Freedman, 2010; Nelson, 1967).  The deposits of compacted silt and loess 

cover large areas of the state.  There are eight distinct landform features: Des Moines 

Lobe, Iowa Surface, Loess Hills, Mississippi Alluvial Plain, Missouri Alluvial Plain, 

Northwest Iowa Plains Paleozoic Plateau and Southern Iowa Drift Plain.  These are due 
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to Glaciers from the last Ice Age (Figure 3).  The northeast is a hilly area relatively 

unscathed by the glaciers.  High bluff are distinct features along the Missouri and 

Mississippi Rivers (Freedman, 2010; Nelson, 1967).  The Mississippi River forms the 

eastern boundary of the state while the boundary along the west is formed by the 

Missouri River south of Sioux City and by the Big Sioux River north of Sioux 

City(Freedman, 2010; Nelson, 1967)..   

 

 

Figure 3: Landform Regions of Iowa 
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The mean elevation is 340 meters and the highest point in the state is found in the 

Northwest corner of Iowa with an elevation of 509 meters above sea level; the lowest 

point is 146 meters above sea level in the confluence of the Des Moines and the 

Mississippi River near Keokuk in the southeastern part of the state.  North central is the 

flattest part of the state as the result of the last Ice Age while southern and western Iowa 

consist mostly of rolling to hilly land (Freedman, 2010).  

The various landform regions provide rich soils that make Iowa a fertile and 

agricultural base.  The fertile soils tend to be located in the northwest central part of the 

state.  However, Iowa was once comprised of widespread tall-grass prairie.  The state was 

largely converted to an agricultural landscape by the late 1800’s following the European 

settlements (Freedman, 2010).  Widespread use of irrigation farming and large-scale farm 

machinery in the 20th century, coupled with a shift toward a more mass agricultural 

production, Iowa’s landscape was transformed from diverse prairie plants into the large-

scale, monoculture farming that are common today (Freedman, 2010).   

Row crops are cash cows for the farmers, and each year, approximately 80% or 

more of Iowa’s cropland is planted with corn or soybeans.  Soil productivity and 

agricultural land value assessment is determined using the corn suitability rating index 

(CSR).  This index rates soil types based on their productivity for row-crop prodution.  

CSR values can range from a high of 100 to a low of 5 index points and this rating is a 

tool to establishing a cash rate for a parcel of land (Hofstrand, 2010; Miller & Iowa State 

University, 2012).  This is based on the premise that a high CSR means high land 
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prodction of row crop which means high yields that generate large revenue.  Land with a 

high CSR value would have a higher rental rate than land with a low CSR rate.  Overall, 

CSR is an important indicatior of the productivity of farmland for row crop production.  

The CSR can be used to compute the rental rates for a tract of land.  This is computed by 

dividing the average rental rate by the acreage cropland CSR for the county (Hofstrand, 

2010; Miller & Iowa State University, 2012).  

 

3.3 Iowa Wind Resources Characteristics 

The North American Interior Plains extends west from the Appalachian Plateau to 

the Rocky Mountains.  Containing large rivers (Mississippi, Missouri, and Ohio), diverse 

vegetation landscape (variety of grass lands) and climatic conditions vary throughout this 

region from extreme cold to very humid summers (Johnson, 1985).  The meteorology 

influencing the wind resource is largely controlled by the position and the strength of the 

upper-level jet stream and turbulences within the jet stream (Johnson, 1985).  During the 

winter, the jet stream positions further south which in turns creates stronger winds than 

summer.  Spring and fall, the position of the jet stream generally lies between the summer 

and winter positions (EnerNex Corporation & WindLogics Inc., 2004).   

The main factor controlling the jet stream position and speeds is the magnitude 

and location of the temperature gradient.  A larger temperature gradient exists in the 

winter corresponding to a stronger jet stream and summer’s small temperature gradient 

corresponds to a weaker jet stream (Johnson, 1985).  The key factor driving the wind 

resource in the lowest 100 meters of the atmosphere is the horizontal pressure gradient.  
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Furthermore, wind systems converge in the mid latitudes where the prevailing westerly 

winds are the primary force that affects the Midwest region (Johnson, 1985).  The Upper 

Midwest exhibits significant seasonal variability; therefore, extreme seasonal weather 

variation produces wind speeds that are often very high (EnerNex Corporation & 

WindLogics Inc., 2004).  The surface of the region being relatively flat grassland with 

hills, valleys, river bluffs, and lakes stirs a complex and variable wind.   

Iowa’s geographical position creates an abundance of wind due to the position 

positioning and physical characteristics of the region.  Wind speed is the rate at which air 

flows past a point above the earth’s surface, and it can very over time and space.  Iowa 

has seasonal wind strongest in the winter and early spring and weakest in the summer.  

Daily winds generally are strongest during the afternoon and lightest during the early 

morning.  Figure 4 illustrates the distribution of wind speed in Iowa obtained from the 

Iowa wind center.  The north central and the northwest parts of the state have some of the 

most fertile soils, highest elevation and wind speed (7.0 - 8.0 m/s on average).  The Des 

Moines Lobe and the Northwest Iowa Plains landforms, and the northwest portion of the 

Southern Iowa Drift Plain possess the highest elevation, wind speed, and also the most 

fertile farms (based on CSR).  In contrast, the South, Southeaster portion of the state has 

the lowest elevation but also a drop in wind speed (6.0 - 6.5 m/s).  One turbine can be 

found (Henry County) in the southern portion of the state.   
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Figure 4: Iowa average wind speed at 50 m height 

 

3.4 Data 

The factors (variables) slope, elevation, wind power class (wind speed), land 

cover, population density km², proximity to neighboring turbine, distance to transmission 

line, city, highway, airport, river, and railroad were compiled in ArcGIS 10.0 and 

converted to raster.  Table 4 contains a summary of the predictors and sources used to 

obtain the data.  The Iowa Department of Natural Resources Geographic Information 

Systems Library (2012), Iowa Energy Center (2012) and FAA (2013) were the sources 

for this data collection.  Iowa DNR uses the Universal Mercator; Zone 15 North (UTM 

Zone 15 N) spatial reference system for all the data and the FAA dataset were set to was 
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in commonly separated values (CSV).  The FAA data was spatial referenced to UTM 

Zone 15 North and converted to feature in ArcGIS 10.0. 

 

Table 4: Data Description and Source 

 

 

Turbine Feature 

Figure 5 displays existing turbines in Iowa.  A vector layer of 3,177 existing wind 

turbines with X, Y coordinates (NAD 1983 UTM Z 15) was acquired from the DNR 

(2013) and FAA (2013).  To ensure data reliability, only existing turbines as of December 

31, 2013 were used, and validation consisted of checking the latest aerial photographs.  

The FAA dataset (1,222 turbine records) and the DNR dataset (1,955) were combined for 

a total of 3, 177 existing turbine records used in this analysis.  Number of turbines 

distribution and characteristics are as follows: Figure 5 displays the average turbine 

height (including blade) from the year 2008 to 2013.  The hub height (just the tower) is 

Data Description Source 

Existing Turbines X Y coordinates Iowa DNR and FAA 
Slope Derived from DEM (%) Iowa DNR 
Wind Power Class 6 Classifications  Iowa Energy Center 
Elevation 10 m DEM Iowa DNR 
Land Cover Categorical classification Iowa DNR 

Transmission Line >69 kilovolt Iowa DNR 

City Incorporated cities Iowa DNR 

Highway  Major roads Iowa DNR 

Railroad Current RR track polyline Iowa DNR 
Airport Point feature  Iowa DNR 
River Polyline   
2010 Population density Census tract U.S. Census 2010 
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80 meters in height but newer turbines are being built with 100 meters hub height.  The 

numbers of turbines constructed in Iowa varies year to year, and it can easily be affected 

by regulation, policies, and economy.  In 2008,  135 turbines were constructed and were 

followed by 470 turbines (2009), 20 turbines(2010), 690 turbines(2011), 442 

turbines(2012), and 121turbines (2013). 

 

 

Figure 5: Average turbine height by year 

 

Figure 6 displays the distribution of turbines which tend to be clustered.  The 

majority are located in the north central and the northwest parts of the state.  This part of 

possesses some of the rich soils that make the state an agricultural basket of the country.  

Current turbines locations average a CSR value of 68.3 out of 100.  So, if a farmer or 

large land owner were to decide to rent out land to wind energy developers, the 

compensation tends to be connected to the CSR value of the parcel of land.  The higher 
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the CSR value, the more valuable the land thus the more compensation the land owner 

would receive.  

 

Figure 6: Existing turbines location in Iowa 

 

Wind Power Class (WPC) 

Wind Power Class (hereafter WPC) data was obtained from the Iowa Energy 

Center (2012) which provides annual average wind speeds in Iowa at the 50 meters above 

ground level (Figure 7).  This data was produced by the U.S. Department of Energy’s 

Wind Powering American program and validated by NREL and other wind 

meteorological consultants.  The wind profile power law is often used in wind power 
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assessment where wind speeds at the height of a turbine are estimated from near surface 

wind observations (~10 meters).  Since wind profile of the atmospheric boundary layer 

up to 200 meters is generally logarithmic in nature, this is used to calculate the wind 

power density then reclassified to wind power class 1-7, the latter being the highest 

(Table 3).   

Wind speed range 11.5 to 12.5 mph have wind power density 150 – 200 (w/m²) 

and are classified as wind power class 3 (=< 6.4 m/s).  Iowa’s wind resource 

characterization by NREL illustrates Iowa as having the highest wind speed classification 

in the northwest going southeasterly (Figure 7).   The northwest part of the state indicates 

the strongest wind with wind speed 6 – 7 m/s (wind power class 5-6), and it has a total 

area of 49,246.903 km² which is almost 30% of the total land.  This part of the state is 

also the least populated.  It contains the most fertile soil based on the corn suitability 

index, and also it’s where turbines are built and continue to be built.  Wind speed drops in 

the south and easterly part of the state.  However, there is substantial wind available 

(wind power class 3 – 4), and this area encompasses over 93,000 km².  On the other hand, 

the northeast corner along the Mississippi River and southward, displays very low wind 

speed (wind power class 1 and 2) which is very weak and there are no turbines built in 

this area.  
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Figure 7: Wind power class distribution in Iowa 

 

Proximity to Neighboring Turbine (NT) 

The proximity to nearest turbine variable was used as the spatial lag independent 

variable.  The assumption is that proximity to other turbines is indicative of factors being 

suitable for turbines to exist.  This is appropriate since NT variable directly influences the 

likelihood of another turbine.  The general standard for modern day turbines are spaced 

300-500 meters depending on the size of turbines and the configuration of the wind farm.  

In this study, turbines tend to be sited at 350 meters or greater (greater than 3 blade 

diameters) apart next to each other and over 1,000 meters (10 blade diameters) in the 
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primary wind direction.  Proximity to neighboring turbines was classified as “yes” it has 

a neighbor or “no” it does not.  A turbine within 500 meters was assigned (1) yes and 

greater than 500 meters was assigned (0) no.  NT was used as ordinal variable in the 

logistic regression models.  

 

Elevation 

Digital Elevation Model (DEM) is a ground representation of land surface where 

every pixel is associated with an elevation value above sea level (Figure 8).  Iowa’s 

elevation ranges from 507.365 meters at the northwest part of the state to 146.222 meters 

at the southeast along the Mississippi River.  The northwest going south along the 

Missouri Alluvial land contains areas of the highest elevation in the state.  Elevation 

declines going southeasterly towards the Mississippi river.  Also, Iowa’s major rivers 

(Iowa, Cedar, and Des Moines)   are clearly visible.  In this research, 10 meters DEM was 

acquired from the Iowa DNR.  Spatial resolution is the pixel representation of the surface.  

In this case, the 10 meters DEM means that each pixel represents a 10 meters by 10 

meters area on the ground.  Elevation cell values were extracted in ArcGIS 10.1 for each 

turbine point to obtain elevation and stored as elevation field. 
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Figure 8: Elevation Profile of Iowa 

 

Slope 

High slope affects the ability to operate heavy machinery needed to install wind 

turbines; therefore, it’s important to identify ideal percent slope (Figure 9).  The 10 

meters DEM was used to create a continuous slope layer using the slope spatial analysis 

tool in ArcGIS 10.0.  The fertile part of the state is also with minimal slope change and 

this is also the area where majority of turbines are located.  The state mostly is below the 

30% slope identified in literature as ideal area for wind development.  However, the 

northeast corner of the state contains the highest slope percentage of greater than 30% 
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slope but this is also the area with the lowest wind power class (1-2) as well.  Turbine 

feature percent slope was extracted from the raster for each turbine point to obtain 

percent slope values. 

 

Figure 9: Percent Slope  

 

Land Cover 

The Land cover feature for 2002 was obtained from the DNR.  The data contained 

16 land cover classification but for the purpose of this research, it was reduced to five 

land cover classification in ArcGIS 10.0 (Figure 10).  The most common land cover 
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classifications are cropland and grassland.  The north half of the state is mostly cropland 

and grassland while the southern half contains most of the forest and woodland areas.  

The blue areas highlight the populated areas and urban settlements.  

 

 

Figure 10: Iowa land cover classification 

 

Population Density (Pop Den) 

Population density was used as a factor to measure the effects populated areas 

influence on wind development and to identify where the development is near highly/low 

populated areas.  Iowa census tract population data from the 2010 census was acquired 
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from the U.S. Census Bureau.  The shapefile was processed to contain population density 

and it was converted to raster with cell values assigned population density from the 

census tract (Figure 11).  The cell values were extracted for each turbine point.  

 

Figure 11: Census track population density  

 

Distance to Transmission Lines (TL) 

Connection to the grid is an intrinsic part of wind energy development generally 

included as part of project feasibility study.  Transmission line feature was obtained from 

the DNR and it contains power lines greater than 69 kv up to 345 kv (Figure 12).  The 
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turbines distance to the transmission line is a critical component for the economic 

viability of the project and to deliver the energy to the market place as well.  Distance to 

TL was measured in km to assess the impact on turbines, e occurrence.  

 

Figure 12: Electric transmission networks in Iowa 

 

Distance to Airport (AP) 

Wind turbines represent a risk of collision with low flying aircraft and interfere 

with radar operations.  Developments within a specified radius of major civilian and 

military airports are subject to mandatory approval by the FAA.  Airports point feature 
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was obtained from the DNR GIS Library which contains landing facilities in the state as 

supplied by the FAA (Figure 13).  Distance to airport relative to turbine location was 

measured in km.  

 

Figure 13: Civilian and military airports in Iowa  

 

Distance to Highways (Hwy) 

Literature has indicated the proximity highways need to be within the threshold 

suggested since accessible roads are needed to operate heavy machinery and equipment 
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need to install and repair turbines.  Further details can be found in Section 2.4 which 

describes the importance and criteria needed for the highways factor.  The highway 

feature was obtained from the DNR, and this feature was used to measure distance to 

highway from each turbine (Figure 14).   

 

Figure 14: Major road networks in Iowa 

 

Distance to City 

A 2010 incorporated cities boundaries were derived from the census shows data 

obtained from the DNR (Figure 15).  This was done to gain insight into whether or not 
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turbines are placed in an adequate distance from populated areas to mitigate aesthetics 

and noise concerns by people near wind turbines.  Further details can be found in section 

2.4.  Again, the distance to the nearest incorporated city was collected for each turbine 

point.  

 

 

Figure 15: Urban areas in Iowa  

 

Distance to Railroad (RR) 

Infrastructure like railroad variable was included to examine whether or not it 

hinders the development of wind energy (Figure 16).  Section 2.4 describes the 
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importance of railroads in the development of wind energy.  Railroad feature was 

obtained from the DNR, and distances to turbine points were measured to be used in the 

regression analysis to determine the most influential factors in wind energy development. 

 

Figure 16: Iowa’s railroad networks 

 

Distance to River 

General description of the influence of rivers in the development of wind energy 

development is given in Section 2.4.  Ultimately, minimizing environmental hazards is 
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critical so the river feature was included for analysis, and distance to turbine feature was 

measured in km.  The river feature was obtained from the DNR (Figure 17). 

 

 

Figure 17: Iowa’s rivers 

 

3.5 Empirical Module 

Standard Logistic Regression 

Previous approaches to wind farm suitability modeling incorporated weighted 

averages, priority settings, outranking, fuzzy principles, overlay, buffering, and weighted 

overlay analysis to identify suitable site, or they solely focused on wind turbine 
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placement within the wind farms.  Expert knowledge and GIS were used to determine 

criteria deemed important such as distance from environmental sensitive zone, urban 

areas, and transmission lines then incorporated as constraints in the model to determine 

suitability (Aydin et al., 2010; Baban & Parry, 2001; Nadai, 2007; Rodman & 

Meentemyer, 2006).  On the other hand, Mann et al., (2012) utilized mixed modeling that 

incorporates empirical approach to analyze and identify the spatial patterns of wind 

energy development in Iowa. 

In contrast, this study incorporates spatially explicit empirical modeling 

framework where existing turbine locations and normative criteria’s (i.e., regulation and 

polices) were used to identify suitable sites.  This model was built first identifying the 

most useful and influential explanatory variables at different scales in wind energy 

development.  Figure 18 displays the spatial scales used in the regression analysis.  Table 

5 provides attributes of each scale, the number of turbines used to build the models, and 

total area each scale encompasses.   

The spatial characteristics and distribution of wind turbines were examined to 

gain insight into spatial dimensions.  Spatial autocorrelation, which measures the degree 

to which near and distant things are related was implemented in this study.  Specifically, 

spatial lag regression was used in the empirical model by including statistically 

significant spatially varying explanatory factors such as wind power class, elevation, 

proximity to neighboring turbine (spatial lag variable) and other explanatory variables. 
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Figure 18: Multiscale study area 

 

 

Table 5: Logistic Regression Scales and Attributes 

Scale Model # of  Turbines Total Area (km²) 
Macroscale: Statewide L1 3,177 145,745 
Mesoscale 1: 240 x 240 km L2 2,145 57,600 
Mesoscale 2: 160 x 160 km L3 1,750 25,600 
Microscale: 80 x 80 km L4 340 6,400 
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Spatial Logistic Regression 

Logistic regression is a frequently used mathematical modeling approach that can 

be used to describe the relationship of several variables to a dichotomous dependent 

variable.  Spatial autocorrelation or spatial dependence measure similarity or dissimilarity 

measure between two values of an attribute that are spatially neighboring (Kissling, & 

Carl, 2008).  Positive spatial autocorrelation tends to cluster in space, and observations of 

species distribution data often are inherently similar from nearby locations than would be 

expected on a random basis (Kissling, & Carl, 2008).  Moran coefficient (Moran’s I) 

quantifies the spatial autocorrelation measures, and the statistical value are between -1 

and 1 when it takes a value of 0, the variable is randomly distributed rather than 

exhibiting a spatial pattern.   

Spatial lag logistic regression incorporates spatial autocorrelation or spatial 

dependence to capture the influence of the variable on the regression (y).  Therefore, 

spatial lag logistic regression methods are becoming more and more common procedures 

utilized to explore phenomena in various fields.  Spatial lag modeling was utilized to 

analyze county level homicide rates and whether neighboring counties with high rates 

affected the neighboring county’s crime rate (Baller, Anselin, Messner, Deane, & 

Hawkins, 2001).   

The spatial lag model (SLM) is a general spatial autoregressive model in which 

explanatory variables include a spatial lag for the dependent variable as well as a set of 

factoring variables can be expressed as: (Baller et al., 2001). 
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Spatial lag binary logistic regression requires dichotomous outcome so the 

existing turbine points (3,177) were assigned 1 and to fit model to data, “pseudo-

absence” turbine points (3,177) were assigned 0.  The next step extracted cell values from 

elevation, slope, land cover, and wind speed raster layers.  Second, the distance to 

city/urban area, transmission line, river, highway, airport, and railroad were measured in 

kilometers.  Iowa’s 2010 census data was used for the population density km ².  

Population density was calculated for each census tract and converted to a raster for the 

Macroscale model M1 (statewide) and Mesoscale models L2, L3, and Microscale (six 

county region).  Multiple scales are used to assess and determine the effect of scales on 

the importance of factor. 

All the fields were normalized, and SPSS (version 15.0) was used for descriptive 

statics and binary logistic regression.  Descriptive statistics were run as exploratory 

method to identify which explanatory variables matter most and gain statistical inset into 

  )()( xWyy  

Wy = spatially lagged variable for weights matrix W 

x  = matrix of observations on the explanatory variable 

  = Vector of error terms 

  and  are parameters )(  is the simultaneous 

autoregressive coefficient and quantifies the effect of 

neighbor observation and the direction of that effect 
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the dataset.  Correlations and multicollinearity diagnostics were run to examine linear or 

near linear relationships among the explanatory variables.  Multicollinearity in the data 

causes statistical issues because it inflates the value of the least squares estimators and 

cause large errors in the output.  The method used to check multicollinearity problems is 

the calculation of variance inflation factor (VIF).  Collinearity analysis was conducted for 

the continuous environmental variables using linear regression in SPSS 15.0 statistical 

software and a VIF greater than 10 indicates the presence of strong multicollinearity.  

The categorical variable land cover was omitted from the test.   

This research incorporated spatial lagged proximity to neighboring turbine (NT) 

explanatory variable as a stabilizing variable to reduce the variance in the model and 

captured spatial dependence of nearby turbine observations influence.  Turbine points 

were assigned 1 if neighboring turbine was less than 500 meters and 0 if the neighboring 

turbine was greater than 500 meters.  Models with spatial lag and models without were 

compared, and since models with spatial lag performed significantly better, the remaining 

models included the spatial lag variable (proximity to neighboring turbine).  Binary 

logistic regression was run using the backward stepwise selection method to find out how 

all the independent variables (predictors) combined affect the dependent variable.  All the 

independent variables (predictors) deemed important from literature were chosen.  The 

complete list of variables included in the logistic regression with the dependent variable Y 

is shown in Table 6.  Unstandardized residuals and probabilities were used to create the 

probability predictive map and residual map.   
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Table 6: Logistic Regression Analysis Factors 

 Variable Nature of variable 

         Dependent 
Y 0 – no turbine; 1 – existing turbine Binary 

          Independent 
X1 Slope (%) Continuous 
X2 Wind Power Class (WPC) Continuous 
X3 Elevation Continuous 
X4 Land cover (LC) Categorical 
X5 *Neighboring Turbine (NT)   Binary  
X6 * Transmission line (TL) Continuous 
X7 * City Continuous 
X8 *Highway  Continuous 
X9 *Railroad (RR) Continuous 
X10 *Airport  
X11 *River (River) Continuous 
X12 *Highway (Hwy) Continuous 
X13 ^Population Density (Pop Den) Continuous 

 

 

Assessing Model Performance and Variable Contribution 

Standard measure and model performance such as the coefficient of determination 

(R²) and Standard Error of Estimate are not applicable for to logistic regression.  

Therefore, the highest Cox & Snell R square (pseudo R square measure range from 0 to 

1) and Nagelkerke R square values were used to assess the amount of variation in the 

dependent variable explained by the model.  “Percent Correct Prediction” statistics was 

used to assess how well the model predicted the correct category for each case.   
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Logistic models predictive accuracy and goodness-of-fit were tested, and 

classification criteria (excellent, good, fair, poor, and fail) were used to interpretation.  

Model’s goodness-of-fit was based on the simultaneous of sensitivity (True positive) and 

specificity (True negative) for all possible cutoff points.  Sensitivity is the percent correct 

prediction in the reference category of the dependent variable (i.e., 1 for binary logistic 

regression) and specificity; on the other hand is the percent of correct predictions in the 

given category of the dependent (i.e., 0 for binary logistic regression).  

 Model fit was determined according to Baldwin (2009) classification category: .9 

– 1= excellent; .80-.90 = good; .70 - .80 = fair; .60 - .70 = poor and .50 - .60 = fail.  

Explanatory variables contribution or importance were determined using the Wald test 

with sig. < .05.  The coefficient β was used to assess positive or negative relationship 

(which explanatory variable increase the likelihood of turbine occurrence and which 

factors decreases it), and the  odds ratio EXP (B) indicates change in odds [P(event)/P(no 

event)] of outcome which resulted from a unit change in the predictor.  

If Exp (B) > 1, as predictor increases, odds of outcome increases; positive influence 

If Exp (B) < 1, as predictor increases, odds of outcome decrease; negative influence 

Model diagnostics was conducted using the residual verses fit plots.  The 

residuals were interpolated in ArcGIS 10.0 and maps were created.  The maps were used 

to detect the correlation between the predicted and residual values by observing the 

spatial distributions of the negative high residuals and the positive high residuals.  
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Residual is the difference between the observed value of the dependent variable (y) and 

the predicted value (ŷ) forms the residual (e) for each data point (e = y – ŷ).   

 

Suitability Map  

ArcGIS 10.0 Spatial Analyst Interpolation Kriging technique was used to create 

raster surface from the probabilities and residuals.  The Kriging method of interpolation 

is based on regression against observed z values of surrounding data points, weighted 

according to spatial covariance values.  In order to standardize and compare binary 

logistic regression and Maxent output surface, cell sizes were set 200 m for Macroscale 

and 30 meters for Mesoscale 1, 2 and Microscale.  All scales suitability map were 

produced and thorough interpretation of each map was conducted.  In doing so, various 

patters were observed at all scales.  Finally, the suitability surface grid from logistic 

regression was compared to the Maxent suitability surface grid to identify similarities and 

differences.   

 

Machine-Learning Algorithm 

Maxent is an open source and the most commonly utilized Ecological Niche 

Modelling program (Baldwin, 2009; Elith, et al., 2011; Phillips, Anderson, Schapire, 

2006; Phillips, Dudik, & Schapire, 2004).  Maxent has traditionally been used to model 

(predict) the species spatial distribution in a geographic space.  It’s based on machine 

learning algorithm designed to make the prediction of species spatial distribution given 

known environmental characteristics (Baldwin, 2009; Elith et al., 2011; Phillips et al., 



54 
 

2004, 2006).  Maxent estimates the most uniform distribution (maximum entropy) of 

sampling points compared to background locations given the environmental constraints 

(Baldwin, 2009). The maximum entropy algorithm is deterministic and will converge to 

maximum probability distribution (Baldwin, 2009; Phillips & Dudik, 2008).   

Maxent relies on an unbiased sample; therefore, its critical collecting 

comprehensive set of presence record (cleaned from errors and duplicates) and dealing 

with biases are critical.  Maxent has an advantage since it allows both continuous and 

categorical variables; therefore, the output result tends to represent better model fit 

(Baldwin, 2009).  The average value of each environmental variable at the occurrence 

locations serves as the target value for the probability distribution (Petrov & Wessling, 

2014).   

Ecologists primarily utilize this program to model species distribution from 

presence-only records and with associated environmental variables deemed essential for 

the presence of the species over the study area (Elith et al., 2011).  However, Maxent is 

gaining traction in other areas such as habitat suitability modelling and wind energy site 

suitability.  Petrov and Wessling (2014) utilized Maxent to study site suitability for wind 

energy development in Iowa at the two scales.  At the Macroscale, wind power class and 

elevation contributed 51.2% and 32.6% respectively.  While at the Mesoscale, elevation 

contributed 79% to the suitability distribution.  Parisen and Mortize (2009) used Maxent 

to identify locations most at risk for wildfires in California while Baldwin (2009) utilized 

Maxent to identify areas suitable for red spruce forest habitat to better protect the species 

habitat and to incorporate this model into the restoration plan.  Ultimately, Maxent was 
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chosen for this study because it has several advantages to building a suitability model: 1. 

it only requires presence or occurrence data, 2. it utilizes categorical and continuous 

environmental predictors, 3. it creates outputs which allow interpretation of contribution 

of predictors to the model (Phillips et al., 2006). 

 

Environment Variables and Procedure 

The environmental variables used are elevation, slope, wind power class, land 

cover, population density, and distance to airport, river, city (urban areas), transmission 

line, highway, road, and river.  These variables were chosen because as previous studies 

have shown they are important determinants to site suitability for wind energy 

development (Acker et al., 2007; Griffiths & Dushenko, 2011; Rodman & Meentemeyer, 

2006).  Environmental layer were converted to ASCII raster format, common cell size, 

and extent.  Eleven environmental variables were selected for their potential importance 

based on knowledge and from previous studies.   

One of the objectives of this study was to determine whether geographical scale 

affects the importance of variable and to compare the Maxent output to the binary logistic 

regression output.  Table 7 displays the models used to capture the effects of scale on 

environmental variables.  Scale maps produced to aid in visual aid are provided in Figure 

17.  The grids for the Mesoscale models M2, M3, and Microscale M4 were created based 

on the geographical mean center of the turbine distribution in Iowa.  
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Table 7: Maxent Scale Attributes 

Scale Model # of  Turbines Total Area (km²) 
Macroscale: Statewide M1 3,177 145,745 
Mesoscale 1: 240 x 240 km M2 2,145 57,600 
Mesoscale 2: 160 x 160 km M3 1,750 25,600 
Microscale: 80 x 80 km M4 340 6,400 

 

 

Macroscale (statewide) layers were resampled to a 200 m cell size in order to 

increase model processing speed, and processing extent was set using the state of Iowa 

boundary feature.  Mesoscale models M2, M3, and Microscale M4 layers were resampled 

to 30 m cell sizes and each model’s extents were set accordingly.  Environmental layers 

were specified as a continuous except for the land cover layer which was classified as 

categorical layer.  Maxent requires that ‘species’ presence (occurrence) dataset be in a 

commonly separated file (*csv).  The ‘species’ presence of turbines with latitude and 

longitude was created for all models.  

Eighty percent of the turbine presence records were used as training data set for 

all scales.  Maxent’s built-in method was used to validate the accuracy of the predictive 

distribution by setting aside 20% randomly selected presence records.  To focus on 

critical features of the model and to avoid over fitting, default regularization options were 

used in linear quadratic product (.050), categorical (.250), threshold (1.00), and hinge 

(.500).  Ten replicated runs were performed for each scale.  ‘Species’ distribution surface 

for all scales were imported in ArcGIS 10.0 and suitability maps were produced.  In 

addition, variable contribution table and ROC curve graphs provide by Maxent. 
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Variable Response and Model Evaluation 

The modeled distributions were evaluated using the area under the receiver 

operating characteristic (ROC) curve plots of (AUC).  Sensitivity represents how well the 

data accurately predicts presence; whereas, specificity provides a measure of correctly 

predicted absences (Baldwin, 2009).  The significance of the curve is quantified by the 

area under the curve (AUC) and has values that range from 0.5 to 1.0.  Values close to 

0.5 indicate random prediction while a value of 1 indicates a perfect fit.  Classification 

category: .9 – 1= excellent; .80-.90 = good; .70 - .80 = fair; .60 - .70 = poor and .50 - .60 

= fail (Baldwin, 2009).   

Maxent outputs an estimate of relative contributions of the environmental 

variables to the model which identifies the most important and influential variables and 

jackknife which assess the usefulness of variables when run alone.  These outputs were 

used to identify environment variable influence to the presence of the modeled turbine, 

and their relative importance was determined using the percent contribution table output 

for all scales.  In addition, the logistic output as an ASCII file format was in ArcGIS 10.0 

to create probability of suitable/unsuitable distribution surface map.  The logistic output 

format was selected because it allows for easier and potentially more accurate 

interpretation over other formats, and the logistic format is recommended given that it 

provides estimates of the probability of occurrence as predicted by included 

environmental variables (Baldwin, 2009). 
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3.6 Normative Module 

Previous studies by Baban and Parry (2001); Rodman and Meentemeyer (2006); 

and Aydin et al. (2010) models overlay criteria and constraints using a fuzzy weighting 

scheme and incorporated normative models as a stand-alone model to identify suitable 

site.  Mann et al., (2012) included weighted normative component as part of their mixed 

suitability model.  Generally, hybrid models incorporate traditional normative weighting 

approaches is to assign weights to the criteria layers in addition to those identified by the 

empirical model, and map algebra was used to aggregate all factors to create a final wind 

energy suitability surface of Iowa.  The shortcoming of the normative component is the 

arbitrary weighting of the factors based on presumed favorable characteristics for wind 

farm development.  However, this study developed normative components to incorporate 

with the empirically driven spatial lag model as a final hybrid predictive model which 

was the basis for the framework.   

First, federal regulation prohibits infrastructure built taller than 60.96 meters from 

the nearest civilian and military airports be at least 2,500 meters.  Second, in literature 

and industry, standards have identified a minimum of 1,000 meters away from the nearest 

city or urban settlement.  These two variables were chosen because they are definitively 

clear and can be incorporated into the model without subjectivity.   

 

3.7 Study Flowchart 

Figure 19 outlines the work flowchart of this study and outlines the 

methodologies used to develop the framework.  First, siting factors are identified from 
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the extensive literature review and data collection and processing based on identified 

factors are compiled.  Spatial lag regression and machine-learning algorithm (Maxent) 

are identified and multiscale analyses are performed.  Empirical coupled with normative 

components are used to develop the integrated spatially explicit scale dependent 

framework.  Case study area are identified and logistic regression probability formula 

were used to validate site suitability.    

 

 

Figure 19: Study flowchart 
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CHAPTER 4 

RESULTS  

4.1 Exploratory Data Analysis 

The thirteen factors used in the logistic regression were slope, elevation, wind 

power class, land cover, population density and distance to transmission line, highway, 

airport, river, and city.   Eighty-eight percent of turbines are on land cover type 3 

classification (cropland and grassland), and another 10.8% turbine points are in areas 

classified as forest.  The spatial lag factor (independent variable) proximity to 

neighboring turbine (NT) displayed 55.7% of turbines as not having a neighboring 

turbine within proximity (< 500 m) while the remaining 44.3% of turbines were classified 

as having a turbine within the 500 m proximity distance.  NREL identified WPC 3 (5.6-

6.0 m/s) or greater as minimal requirement for utility scale site wind farm development; 

and in this case, 98.6% of turbines in Iowa were located in areas with WPC 3 or greater.  

Multicollinearity diagnostic was performed, and the variance inflation factor 

(VIF) and tolerance parameters were used to determine collinearity of factors.  VIF and 

tolerance are both widely used measures of the degree of multicollinearity of factors 

(independent variable) with the other factors (O’Brien, 2007).  There is a wide range of 

cut off VIFs one can come across in literature, but a cut-off value often used is 4 which 

has a theoretical basis such that standard errors are doubled at this point thus making it an 

ideal cut-off point.  VIF greater than 4 and tolerance less than 0.10 are indication of 

multicollinearity in this study.  Therefore, since all factors have VIF less than 4 and the 

tolerance greater than 0.10, collinearity is not a problem in this analysis (Table 8).  
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Collinearity diagnostics analyses for model L2, L3, and L4 exhibited similar outcomes as 

well. 

 

Table 8: Factors multicollinearity diagnostics 

Environmental variable Tolerance VIF 
Slope .733 1.365 
Wind power class .400 2.504 
Elevation .457 2.186 
Land cover .983 1.017 
Proximity to neighboring turbine .669 1.495 
Transmission line .908 1.102 
City .788 1.270 
Highway .799 1.252 
Railroad .791 1.264 
Airport .822 1.215 
River .934 1.070 
Population Density .926 1.080 
Tolerance > 0.1 & VIF < 4 = no collinearity  
Slope (%), Wind Power Class, Elevation (m), Land cover, Proximity to 
neighboring turbine (NT); Distance (km): transmission line (TL), City, Airport, 
River, Railroad (RR), highway (Hwy); Population Density (Pop Den) km² 

 

 

The correlation analysis was performed on all factors excluding land cover and 

neighboring turbine since both are categorical variable (Table 9).  Correlation result 

identifies relationships between predictors (factors) that were expected; however, there 

are a number of variable relationships worth highlighting.  Elevation displayed a strong 

positive correlation (r = 0.655) with wind power class (WPC) which illustrates wind 

power class will increase as elevation increases.  On the other hand, WPC had moderate 

negative correlation with slope indicating the WPC decreases as slope increases which is 
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not surprising outcome since literature identifies suitable areas with low percent slope.  

Correlation analyses for models L2, L3, and L4 displayed similar outcome as well.   

 

Table 9: Correlation table of predicating factors of wind turbine 

 

 

4.2 Spatial Logistic Regressions 

The general description of the empirical models (L1, L2, L3, and L4) are given in 

section 3.5 (“Empirical Model”).  The results illustrated in this section takes a 

comparative approach between the standard logistic regression and the spatially lagged 

logistic regression.  All spatial lag models contained thirteen factors (slope, wind power 

class, elevation, land cover, proximity to neighboring turbine, transmission line, city, 
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highway, railroad, airport, river, and population density) while the standard regression 

models excluded the spatial lag factor (NT).  

 

Standard Logistic Regression Model L1 (Macroscale) 

The standard logistic regression Model L1, a full model containing all predictors 

(except NT) was statistically significant: 

 3,640.615, p < .0005 = (N=6,354 ,13) ²ݔ

indicating that the model was able to distinguish between predictors that influenced 

turbine occurrence and nonoccurrence (Table 10).  The model as a whole explained 

between 43.6% (Cox & Snell R square) and 58.2% (Nagelkerke R square) of the variance 

and 82.4% of cases were correctly classified validating the model.  WPC displayed the 

strongest positive impact on the model with an odds ratio of 1.722 indicating turbine 

occurrence is 1.722 more times likely with the WPC factor included in the model given 

all other variables stay constant.  Elevation, distance to city and airport also exhibited a 

positive odds ratio increasing the likelihood of turbine occurrence.  Slope, population 

density and distance to transmission line indicated a negative relationship signifying the 

high slope gradient, high population density and greater distance to the transmission lines 

with the likelihood of turbine occurrence decreases by 0.947, 0.992 and 0.854 

restrictively.   
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Spatial Lag Logistic Regression Model L1.1  

In contrast, the spatial lag model L1.1 a full model containing all predictors was 

statistically significant: 

 6,593.73, p < .0005 = (N=6,354 ,15) ²ݔ

indicating that the model was able to distinguish between predictors that influenced 

turbine occurrence and predictors that did not.  The model as whole explained between 

64.6% (Cox and Snell R square) and 86.1% (Nagelkerke R square) of the variance in 

turbine status and 92.6% of the cases were correctly classified validating the model.  Nine 

of the factors (predictors) were statistically significant thus impacting the overall model 

to determining turbine occurrence (Table 10). 

The strongest predictor of turbine occurrence was wind power class (WPC) which 

displayed a positive relationship with the dependent variable (occurrence of turbine) with 

an odds ratio of 1.711.  This indicates that turbine occurrence is 1.711 times more likely 

with WPC predictor included in the model given all other predictors stay constant.  Also, 

elevation with an odds ratio of 1.017, city with an odds ratio of 1.157, and airport with an 

odds ratio of 1.1019 are strong predictors of turbine occurrence as well.  This suggests 

that high wind power class, high elevation and distance away from city and airport are 

parameters more likely associated with the turbine occurrence.  Land cover 3 (cropland 

and grassland) and land cover 5 (barren land) classification were statistically significant 

confirming that turbines are more likely to be located in cropland and barren land relative 

to other land use in Iowa.  On the other hand, slope had a negative relationship to the 

dependent variable with an odds ratio of 0.967 indicating that for every one unit increase 
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in percentage slope, the occurrence of turbine is 0.967 times less likely controlling for 

other factors in the model.  Furthermore, distance to transmission line and highway also 

displayed negative coefficient implying that nearness to these infrastructures is associated 

with a higher likelihood of turbine occurrence.   

Model L1.1 identified wind power class, elevation, and distance to city as the 

most influential variable in addition to the spatially lagged variable proximity to 

neighboring turbine (NT).  These variables exhibited strong positive impact on the model 

in comparison with the standard regression. Variables like slope, distance to transmission 

line, highway, and river showed negative relationship with the dependent variable.  While 

significant variables in the standard regression (Model L1) identified similar variables 

with weaker odds ratio strength and the overall performance of the model exhibited 

significantly lower model fit as well.  Spatial lag Model L1.1 Nagelkerke R Square 

(0.861) substantially improved from Model L1 higher classification indicating good fit in 

comparison to the standard logistic regression which had lower Nagelkerke R square and 

classification.   

Spatial lag model L1.1 overall performance and model fit justified the selection of 

the spatially lagged model as the most robust and accurate model to use.  The model’s 

goodness-of-fit was determined by examining the receiver operator characteristics (ROC) 

area under the curve of 0.979 with 95% confidence internal (0.977, 0.982) indicated an 

excellent fit.  The area under the curve is significantly different from 0.5 and since p-

value is < 0.0005, the spatial-lag logistic regression classified (0.979) the group 

significantly better than by chance. 
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Table 10: Macroscale Logistic Regression  

Model L1* Model L1.1** (spatial lag) 
 B Sig. Exp(B) B Sig. Exp(B) 
Slope -.054 .000 .947 -.034 .000 .967 

WPC .543 .000 1.722 .537 .000 1.711 

Elevation .023 .000 1.024 .017 .000 1.017 

LC n/a .000 n/a n/a .005 n/a 

LC(1) -21.548 .998 .000 -20.417 .999 .000 

LC(2) -2.877 .002 .056 -1.514 .187 .220 

LC(3) -.558 .110 .573 -1.007 .029 .365 

LC(4) -.359 .295 .698 -.779 .082 .459 

LC(5) -1.628 .001 .196 -2.553 .000 .078 

NT n/a n/a n/a -5.518 .000 .004 

TL -.158 .000 .854 -.196 .000 .822 

City .073 .000 1.076 .146 .000 1.157 

Hwy n/a n/a n/a -.065 .006 .937 

Airport .081 .000 1.085 .103 .000 1.109 

River n/a n/a n/a -.038 .085 .963 

Pop Density -.008 .001 .992 -.006 .056 .994 

Constant -10.922 .000 .000 -4.857 .000 .008 
                  * Nagelkerke R square 0.582           ** Nagelkerke R square 0.861 

 

 

The Interpolated map of the probability and residual outputs from the spatial 

logistic regression have identified areas of suitability with proximity to neighboring 

turbines. Spatially lagged model L1.1 probability predictive map displays areas with 

brightest color indicating high probability that conditions are suitable for turbine 

occurrence (Figure 20).  Areas with probability 0.41 – 0.6 highlight areas that possess 

conditions suitable for turbine occurrence primarily due to the influence of neighboring 

turbine factors.  Figure 21 displays the residuals output which indicate how well the 



67 
 

model over or under estimates and in this case, the model under estimates.  In this case, 

negative high residuals (green) indicate areas where conditions are suitable for turbine to 

exist, but turbines don’t exist while positive high residuals (red) indicate where turbine 

currently exist but might not be suitable sites for the turbines.  

 

 

Figure 20: Spatial lag model L1.1 suitable sites for wind turbine occurence 
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Figure 21: Spatial lag model L1.1 residual diagnostics 

 

Standard Logsitic Regression Model L2 (Mesoscale 1) 

Model L2 containing all predictors (except NT variable) was statistically 

significant: 

 1625.561, p < 0.000 = (N=4,289 ,10) ²ݔ

indicating that the model was able to distinguish between predictors that affected turbine 

occurrence and those that did not (Table 11).  As a result, the model as a whole explained 

between 31.5% (Cox & Snell R square) and 42.1% (Nagelkerke R square) of the variance 

in turbine occurrence status.  Model L2 also classified 75.4% of cases correctly and the 
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ROC area under the curve of 0.785 with 95% confidence interval (0.771, 0.799) indicates 

a good fit.  Wind power class (WPC) displayed the strongest positive impact on the 

model with an odds ratio of 1.516 therefore indicating turbine existence is 1.516 times 

more likely with this variable included in the model given all other variables stay 

constant.  Distance to city, river, and airport displayed positive relationships which 

indicates the likelihood of turbine occurrence to be higher when distance from these 

factors increases.  In contrast, distance to transmission line, population density, and 

highway showed negative relationships.  In this case, each illustrated the odds ratio of 

turbine occurrence to be higher when the distance to transmission line and highway is 

shorter and population density is lower 

 

Spatial Lag Logistic Regression Model L2.1 

In comparison, spatial lag model L2.1 containing all predictors was statistically 

significant: 

 3,931.626, p < 0.000 = (N=4,289 ,12) ²ݔ

indicating that the model was able to distinguish between independent variables that 

affected turbine occurrence and those that did not.  The model as a whole explained 

between 60% (Cox and Snell R Square) and 80% (Nagelkerke R square) of the variance 

in turbine status and correctly classified 90.4% of cases (Table 11). 

The strongest predictor of turbine occurrence was WPC recording an odds ratio of 

2.11 indicating that turbine existence would be 2.11 times more likely if it has high WPC 

given all other factors stay constant in the model.  While proximity to neighboring 
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turbine (NT) indicating that for every km closer to neighboring turbine, the more likely if 

it has a neighboring turbine given all other factors stay constant in the model.  Wind 

power class, elevation, distance to city and airport showed positive relationships with the 

turbine occurrence.  Distance to transmission line, highway and population density 

exhibited negative relationships.  The shorter the distance to transmission line and 

highway, the more likelihood of turbine occurrence while the lower the population in the 

area, the more likelihood of turbine occurrence as well.  

The spatial lag goodness-of-fit was determined by examining the receiver 

operator characteristics (ROC) curve and the area under the ROC curve of 0.957 with 

95% confidence internal (0.951, 0.963) indicated an excellent fit (Figure 22).  The area 

under the curve is significantly different from 0.5 and the p-value < 0.000 means that the 

spatial lag model L2 regression classifies the group significantly better than by chance.  

The result from model L2.1 spatially lagged and standard logistic regression reveals the 

similar outcomes, but the overall improved model performance was exhibited in the 

spatially lagged model.   
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Table 11: Mesoscale 1 Logistic Regression  

Model L2* Model L2.1** (spatial lag) 
 B Sig. Exp(B) B Sig. Exp(B) 
Slope -.054 .000 .948 n/a n/a n/a 
WPC .416 .000 1.516 .747 .000 2.111 
Elevation .024 .000 1.024 .019 .000 1.019 
LC n/a n/a n/a n/a .017 n/a

LC(1) -20.632 .997 .000 -19.148 .998 .000 

LC(2) -.444 .325 .642 -1.128 .049 .324 
LC(3) -.342 .442 .711 -1.090 .051 .336 
LC(4) -1.849 .002 .157 -2.720 .001 .066 
LC(5) -.054 .000 .000 -4.868 .000 .008 
NT n/a n/a n/a -.147 .000 .863 

TL -.122 .000 .885 .178 .000 1.195 
City .131 .000 1.140 -19.148 .000 .922 
Hwy -.061 .006 .940 -.082 .001 .000 
Airport .033 .000 1.034 .073 .000 1.075 
RR 97.692 .000 2.674 n/a n/a n/a 
Pop Density -.015 .056 .985 -.012 .046 .988 
Constant -10.762 .000 .008 -7.438 .000 .001 

                                  * Nagelkerke R square 0.421            ** Nagelkerke R square 0.8 

 

Figure 22 displays the spatial lag model L2.1 suitability distribution map.  Areas 

with high probability display where turbines exist; therefore, areas are heavily influenced 

by proximity to neighboring turbines.  The residual diagnostic indicates the model under 

estimates (Figure 23).  Areas with high negative residuals (green) highlight areas where 

the condition are right but no development has occurred and thus should be considered as 

future sites for development. 
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Figure 22: Spatial lag model L2.1 suitable sites for wind turbine occurrence    
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Figure 23: Spatial lag model 2.1 residual diagnostics 
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Standard Logistic Regression Model L3 (Mesoscale 2) 

Model L3, the standard logistic regression full model containing all predictors, 

was statistically significant: 

 829.267, p < 0.001 = (N=1,750 ,11) ²ݔ

 indicating that the model was able to distinguish between predictors that affected turbine 

occurrence and those that didn’t.  As a result, the model as a whole explained between 

37.7% (Cox & Snell R square) and 50.3% (Nagelkerke R square) of the variance in 

turbine occurrence status (Table 12).  Compared to previous standard logistic regression, 

model L3 showed significant drop, but compared to (L2), it appears to improve.  Model 

L3 also classified 78.6% of cases correctly but a decline in correct classification 

continues from previous standard logistic regression models (L1 and L2).  The ROC area 

under the curve of 0.865 with 95% confidence interval (0.848, 0.881) suggests a good fit.  

WPC showed the strongest positive impact with an odds ratio of 2.344 indicating turbine 

existence is 2.344 more times likely with this variable included in the model given all 

other variable stay constant.  Elevation, distance to river, city, and airport showed 

positive influence so the higher the elevation, the further away from river, city, and 

airport would make the odds of turbine existence more likely, given that all other 

variables (factors) stay constant.  Again, distance to transmission line and population 

density displayed negative relationships.    
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Spatial Lag Logistic Regression Model L3.1 

On the other hand, spatial lag model L3.1 was statistically significant: 

 1,582.344, p < 0.001 = (N=1,750 ,11) ²ݔ

 indicating that the model was able to distinguish between predictors that affected turbine 

occurrence and predictors that did not. The model as a whole explained between 59.5% 

(Cox and Snell R square) and 79.4% (Nagelkerke R square) of the variance in turbine 

status and correctly classified 90.6% of cases (Table 12).  Neighboring turbine, wind 

power class, elevation, distances to river, city, airport, and transmission line made a 

unique statistical significant contribution to the model.  The strongest predictor of turbine 

occurrence was WPC recording an odds ratio of 3.284 signifying turbine occurrence 

3.284 more times likely with WPC given that all other factors stay constant.  Also 

elevation, distance to city, airport, and river have a positive impact and improve the 

likelihood of turbine occurrence when elevation is higher and the distances to city, airport 

and river are further away from the potential site.  Proximity to neighboring turbine also 

increases the likelihood of turbine occurrence as well.  Distance to transmission line 

displayed negative relationship to the dependent variable and similar outcomes are 

observed in previous models.   

The model’s goodness-of-fit was determined using the receiver operator 

characteristics (ROC) area under the curve.  The ROC area under the curve of 0.963 with 

95% confidence internal (0.954, 0.971) indicates an excellent fit.  The area under the 

curve is significantly different from 0.5; and since p-value is < .000, this means that the 

spatial lag regression classifies the group significantly better than by chance.  
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Table 12: Mesoscale 2 Logistic Regression Analysis 

Model 3* Model L3.1**(spatial lag) 
 B Sig. Exp(B) B Sig. Exp(B) 
WPC .852 .000 2.344 1.189 .000 2.111 

Elevation .022 .000 1.022 .020 .000 1.019 

LC n/a .043 n/a n/a .033 n/a 

LC(1) -20.617 .999 .000 -19.754 .999 .000

LC(2) -1.205 .019 .300 -2.210 .003 .110

LC(3) -1.234 .013 .291 -2.078 .004 .125

LC(4) -2.978 .004 .051 -4.643 .021 .010

NT n/a n/a n/a -4.693 .000 .009

TL -.255 .000 .775 -.322 .000 .725

City .267 .000 1.305 .317 .000 1.373

Airport .102 .000 1.107 .114 .000 1.121

RR -.046 .012 .955 n/a n/a n/a 

River .234 .000 1.264 .215 .000 1.240 

Constant -12.946 .000 .000 -10.219 .000 .000 

                               * Nagelkerke R square 0.503            ** Nagelkerke R square 0.794 

 

The Figure 24 probability suitability map displays areas with high WPC and 

proximity to existing turbines indicating high probability of turbine occurring.  In 

contrast, it appears that the further away from existing turbines, the probability of turbine 

occurrence decreases.  The residual diagnostic showed slight underestimation by the 

model (Figure 25).  Outcomes were similar as previous models, where negative high 

residuals, have indicated the right conditions for turbines no yet developed.   

 



77 
 

Figure 24: Spatial lag model L3.1 suitable site for wind turbine occurrence 
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Figure 25: Spatial lag model L3.1 residual diagnostic  
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Standard Logisitc Regression Model L4(Microscale) 

Model L4 was statistically significant: 

 395.15, p < .001 = (N=740 ,5) ²ݔ

 indicating that the model was able to distinguish between predictors that affected turbine 

occurrence and those that didn’t.  As a result, the model as a whole explained between 

41.4% (Cox & Snell R square) and 55.2% (Nagelkerke R square) of the variance in 

turbine occurrence (Table 13).  Compared to previous non-spatial lag model (L1), a 

significant drop is displayed, but compared to model L2 and L3, it appears to improve.  

Model L4 also classified 80% of cases correctly but a decline in correct classification 

continues from previous model L1 and L2 but it’s an improvement from model L3.  ROC 

area under the curve of 0.879 with 95% confidence interval (0.855, 0.904) is a good fit.  

Elevation, distance to river and city displayed positive relationships.  In this case, 

distance to river, the strongest influence, with an odds ratio of 1.353 indicated that the 

further away from river, the likelihood of turbine occurrence is 1.353 more likely.   

 

Spatial Lag Logistic Regression Model L4.1 

Spatial-lag model L4.1 (Microscale) was statistically significant: 

 656.08, p < .001 = (N=740 ,6) ²ݔ

 indicating that the model was able to distinguish between predictors that affected turbine 

occurrence and predictors that did not.  The model as a whole explained between 58.8% 

(Cox and Snell R square) and 78.4% (Nagelkerke R square) of the variance in turbine 

status and correctly classified 92.7% of cases (Table 13).  An improvement from previous 
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models (L1.1, L2.1, L3.1).  The strongest predictor variable to incase the likelihood of 

turbine occurrence appears to be distance to river and city recording an odds ratio of 

1.328 and 1.155 respectively.  Elevation indicates high likelihood of turbine occurrence 

at a higher elevation.  WPC and distance to TL appears to be insignificant at this scale.  

ROC area under the curve of 0.960 with 95% confidence internal (0.944, 0.975) indicates 

an excellent fit.  The results display similar trends as in previous models where the 

spatially lagged models performed significantly better than the standard regression.  

 

Table 13: Microscale Logistic Regression Analysis  

Model 4* Model L4.1** (spatial lag) 
 B Sig. Exp(B) B Sig. Exp(B) 
WPC 20.766 .995 251040752 19.341 .995 251040752 
Elevation .052 .000 1.063 .061 .000 1.063 
NT n/a n/a n/a -4.036 .000 .018 
TL n/a n/a n/a -.148 .061 .862 
City .164 .002 1.178 .144 .024 1.155 

RR -.088 .000 1.328 n/a n/a n/a 
River .302 .000 1.353 .284 .000 1.328 
Constant -123.097 .994 .000 -116.425 .994 .000 

                                * Nagelkerke R square 0.552              ** Nagelkerke R square 0.784 

 

Figure 26 displays the spatial lag model L4.1 site suitability map.  As expected, 

higher probability areas (< 0.5) display ideal sites.  However, the southwest corner of the 

map displays probability 0.5 - 0.74 which is rather low for areas with existing turbines.  

The residual diagnostic slightly underestimates the model (Figure 27).  
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Figure 26: Spatial lag model L4.1 suitable site for turbine occurrence 



82 
 

Figure 27: Spatial lag model L4.1 residual diagnostics 
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4.3 Summary 

Spatially lagged models at all scales (Macroscale 1.1, Mesoscale 2.1, 3.1, and 

Microscale 4.1) performed significantly better than the standard binary logistic 

regression.  Also, all the predictors displayed improved strength (positive or negative) in 

terms of likelihood of turbine occurrence when the proximity of neighboring turbine 

variables was included as predictors in the models (Table 10).  Wind power class, 

elevation, distance to city and airport displayed significant contribution to the model 

L1.1, L2.1, L3.1, and model L4.1 had one predictor (elevation) in common with previous 

models.  Distance to transmission line and highway displayed negative relationship (L1.1, 

L2.1, and l3.1) but not in model L4.1. The model L3.1 and 4.1 showed river as a positive 

predictors.  Population density only showed significance in model L2.1.  Microscale 

model L4.1 displayed only four predictors (elevation, distance to river, city, and 

proximity to neighboring turbine) that contributed to the model at this scale.  Wind power 

class, even though the odds ratio was extremely influential, showed sig. > 0.995.  At this 

scale, the distribution of wind power class does not display much variation (uniform wind 

power class at this scale).  

Table 14 displays Nagelkerke R square for each model scale and compares 

models without spatial lag and with spatial lag factors.  At all scales, models with the 

spatial lag component performed significantly better than standard models based on 

Nagelkerke R square comparison.  Elevation, proximity to neighboring turbine and 

distance to city were statistically significant at scales.  Wind power class and distance to 

transmission line were significance at the Macroscale, Mesoscale 1, and Mesoscale 2.  
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Distance to airport and highway appear to be scale dependent since they are significant at 

Macroscale and Mesoscale 1.  Table 15 summarizes spatial lag logistic regression factors 

that were statistically significant at each scale.  The positive or negative indicates the 

relation to the dependent variable (existence of turbine) based on slope- intercept. 

 

Table 14: Logistic Regression models comparison 

Scale Without Spatial Lag Spatial Lag 

  Nagelkerke R Square Nagelkerke R Square 

Macroscale   .581 .861 
Mesoscale 1 .308 .783 

Mesoscale 2  .503 .794 
Microscale .552 .784 

 

 

Table 15: Spatial lag logistic regression factors contribution at different scale  

Scale Significant Predictor 

Macroscale  +WPC, +Elevation, +AP, +city, - TL, - Hwy  

Mesoscale +WPC, +Elevation, +AP, +City, -TL, -Hwy, -Pop Den 

Mesoscale  +WPC, +Elevation, +City, +river, -TL 
Microscale +Elevation, +river, +city 

 

 

4.4 Machine-Learning Algorithm Models  

In this study Maxent provided a predictive (suitability) map and percent 

contribution table to measure the predictor variables influence and gain useful 
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information for all scales (model M1, M2, M3, M4).  The environmental variables 

(factors) used in each model are listed in Table 16, 17, 18, and 19.  Also, Figure 28, 30, 

31, and 32 illustrate the suitability map for each model.   

 

Maxent Model M1 (Macroscale) 

Macroscale model M1 used environmental variables slope, elevation, wind power 

class, distance to transmission line, highway, airport, river, city, railroad and land cover 

and population density.  Table 16 displays the percent contribution of factors to the 

model.  The most influential variables were elevation with 57.2% contribution and wind 

power class at a 19.9% contribution to the suitability distribution.  On the other hand, the 

study by Petrov and Wessling (2014) showed wind power class as the most contributing 

with 51.2% and followed by elevation with 32.6% contribution.  The remaining variables 

contribution had less than 6% each to the model.  Furthermore, the jackknifing test 

showed elevation as the most useful independent environmental variable.  Elevation had 

the highest gain when used in isolation therefore appears to have the most useful 

information by itself.  Elevation decreased the gain the most when it is omitted; hence, it 

appears to have the most information that isn’t present in other variables.  
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Table 16: Maxent Macroscale variable percent contribution 

Variable Percent Contribution 
Elevation 57.2 
Wind Power Class 19.9 
Population Density 5.4 
Airport 4.6 
River 3.6 
Transmission line 2.5 
Slope 2.3 
Railroad 1.9 
City 1.3 
Land cover 0.7 
Highway 0.5 

 

 

Figure 28 shows a Macroscale model M1 suitability distribution.  Highly suitable 

areas have probability of 0.81 -1 in red while low suitability areas (blue) have less than 

20% probability of turbine occurrence.  Suitable conditions are found in the northwest, 

north central, and south central parts of the state which also align with existing turbines 

distribution in the state.  The ROC curve (AUC) of 0.85 indicates a “good” fit to the 

model.  The areas selected with more than 50% suitability general follow areas of high 

elevation and high wind power class.  These areas are low in population density and very 

few incorporated cities which means rural areas.  The combination of all these factors 

impacts suitability and existing turbines are in areas of high suitability due to limited 

constraints from the negative factors. 
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Figure 28: Maxent Macroscale modle M1 suitable site for turbine occurence 

 

Maxent also produced factors response curves which allows us to identify optimal 

range (Figure 29).  Elevation optimal range that is suitable for wind turbine occurrence is 

between 1050 – 1300 ft (320.04 – 396.24), wind power class (WPC) prefred range is 4 – 

6 while slope is optiaml at 3.5% or lower .  Cropland and grassland is the prefered land 

cover type.  Similar results were observed for Model M2, M3, and M4 as well. 
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Figure 29: Maxent Macroscale factors response curves 

 

Maxent Model M2 (Mesoscale 1) 

Elevation had 50.7% contribution followed by population density at 20.5% 

contribution indicating a high level of importance for these two factors to the suitability 

distribution (Table 17).  Jackknifing identified elevation as the single most useful 

environmental variable which provided the most gain when used in isolation indicating to 

provide the most effective information to predicting the distribution of the turbines 

occurrence.  Elevation also decreases the gain of the model the most when it is omitted 

therefore appearing to have the most information that isn’t present in other variables in 

the model.   
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Table 17: Maxent Mesoscale 1 variable percent contribution 

Variable Percent Contribution 
Elevation 50.7 
Population Density 20.5 
River 8 
Wind Power Class 5.7 
City 4.4 
Transmission line 3.4 
Airport 2.8 
Railroad 2.3 
Highway  1.6 
Land cover 0.4 
Slope 0.1 

 

 

The predictive map with areas of high probability of suitable conditions are in red 

with blue designating areas having a very low probability (Figure 30).  A continuous 

distribution is shown and the range is 0 to 1.  High probability of suitability is found in 

western and north central regions of the study area.  Suitable conditions tend to be closer 

to existing turbines which agrees with spatial lag regression.  The model’s goodness-of-

test with the ROC curve (AUC) of 0.86 indicates a good fit and a slight improvement 

from model M1 (0.85).   
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Figure 30: Maxent Mesoscale 1 model M2 suitable site for turbine occurrence  
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Maxent Model M3 (Mesoscale 2) 

In model M3, the elevation had 34.7% contribution followed by population 

density at 20.2% contribution indicating a high level of importance for these two factors 

to the suitability distribution (Table 18).  In contrast, Petrov and Wessling (2014) 

Mesoscale (6 - 8 counties region) which is comparable to model M3, displayed elevation 

with 79.1% contribution and population density of 0.3% contribution.  Jackknifing 

identified population density as the single most useful environmental variable which 

provided the most gain when used in isolation.  Also, population density decreases the 

gain of the model the most when it is omitted therefore appearing to have the most 

information that isn’t present in other variables in the model.   

Table 18: Maxent Mesoscale 2 variable percent contribution 

Variable Percent Contribution 
Elevation 34.7 
Population Density 20.2 
Airport 10.4 
Wind power class 9.4 
City  8.8 
Transmission line 7.1 
River 5.9 
Railroad 1.9 
Highway 0.9 
Slope 0.7 
Land cover 0.2 

 

The suitability map identified areas to the right and center of the image which are 

within proximity to occurrence data as relatively suitable (Figure 31).  ROC curve (AUC) 

of 0.925 is an excellent model fit and substantial improvement from model M1 and M2.  
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Figure 31: Maxent Mesoscale 2 model M3 suitable site for turbine occurrence  
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Maxent Model M4 (Microscale)  

The Microscale model M4 elevation had 49.2 % contribution followed by a 

population density at 19.3% contribution (Table 19).  Wind power class contributed 

15.7% to the model which is the first time any model showed a third contributing 

environmental variable.  Jackknifing identified elevation as the single most useful 

environmental variable which provided the most gain when used in isolation.  But 

population density environmental variable decreased the gain of the model the most when 

it was omitted therefore appearing to have the most information that wasn’t present in 

other variables in the model.  Figure 32 displays high occurrence within proximity to 

existing areas.  At this scale, suitability estimates are limited to areas near where existing 

turbines are located.   

 

Table 19: Maxent Microscale variable percent contribution 

Variable Percent Contribution 

Elevation 49.2 
Population Density 19.3 
Wind Power Class 15.7 
Airport 6 
River 3.8 

City 1.6 
Railroad 1.6 
Highway 1.2 
Transmission line 0.8 
Land cover 0.5 
Slope 0.3 
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Figure 32: Maxent Microscale model M4 suitable site for turbine occurrence 
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4.5 Summary 

Table 20 displays the machine-learning (Maxent) factors and percent contribution 

at the different scales.  Top three influential predictors are listed since more than two-

thirds percent contribution to the fitted models contain the factors listed.  In this case, the 

Maxent component identifies elevation as the most important and influential factors at all 

scales which collaborates the spatial lag component.  Therefore, this indicates that the 

elevation factor should be included at all scales in any wind energy development.  Wind 

power class on the other hand is the only significant factor at the Macroscale and 

Microscale (6 county level) which did not correspond to the spatial lag component.  The 

difference might be the result of the machine-learning component only using the 

locations of existing turbines which have wind power class >= 3 thus causing the model 

not to identify WPC due to lack of differences in WPC.  In the context of Iowa, the 

majority of the state has WPC >= 3 which is the bottom range WPC ideal for utility scale 

development.  The contribution of WPC is highly dependent scale and therefore should 

be considered at all scales.  Maxent identified population density as a significant 

contributor at all scales while the spatial lag models significance of population density 

was minimal.   

Examining factors response curve, optimal range for each factor are identified 

(Table 21).  Suitable site generally will have less than 3.5% slope grade with elevation 

ranging from 320 – 396 m.  High elevation is due to exiting turbines being located in the 

western part of the state where it’s relatively high.  In this case, high elevation means 

high wind power class as well.  Optimal range identified by the Maxent model for wind 
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power class ranges from 4 – 6 (7 - 8 m/s wind speed).  Now that environment optimal 

range are identified, distance to infrastructure are also highlighted.  In this case, distance 

from wind farm to transmission line is optimal 2.5 – 5 km range.  While cropland, 

grassland, and barren land are preferred land cover types for placing turbines.  However, 

when erecting turbines, it needs to be cited at least 3 km away from the nearest city and 5 

km from the nearest airport.  Wind farms should be less than 1.5 km from highway but 

greater than 2.5 km from railroad tracks.  

 

Table 20: Maxent models significant predictors and percent contribution 

Scale Significant Predictor % Contribution
Macroscale  Elevation, WPC, Pop Density 82.5 
Mesoscale Elevation, Pop Density, and Dist. to river 79.2 
Mesoscale  Elevation, Pop Density, and Dist. to airport 65.3 
Microscale Elevation, Pop Density, and WPC 84.2 

 

 

Table 21: Maxent optimal site suitability range for turbine placement  

Factor Optimal Factor Range 
Slope  < 3.5% 
WPC 4 – 6 (7-8 m/s) 
Elevation  320.04 – 396.24 m (1050 – 1300 ft) 
Transmission line < 2.5 – 5 km 
Land cover Cropland, grassland, and barren land 
City  >3 km 

Highway < 1.5 km 
Airport >5 km 
Railroad >2.5 km 
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CHAPTER 5  

DISCUSSION  

5.1 Methodological Improvements 

This research highlights four methodological improvements: (1) Further 

development of empirical modeling, which is a relatively new approach in site suitability 

assessment for wind energy development (2) Implementation and testing of spatial lag 

regression, which accounts for the spatial autocorrelation due to spatial clustering of 

turbines (3) Explanatory of critical factors using multiple methods and their scale 

manifestation in the context of Iowa are examined (4) Incorporation of scale to test the 

impact on factors and site suitability. 

First, empirical models based on existing turbines are derived from the spatial lag 

logistic regression and machine-learning algorithm (Maxent) components.  Empirical 

models showed high accuracy, differentiated factors importance and gained better 

understanding of the complex factors that generally exist in site suitability assessment.  

Previous studies employed normative ‘expert-based’ approaches by combining overlay, 

buffering, and weighting of criteria to determine suitable site (Grady et al., 2005; Mosetti 

et al., 1994).  Empirical models used in this study identify evidence driven relationship 

between factors which is a shift from the traditional expert based suitability assessment.  

Empirical approach is a relatively new in the context of wind energy development and 

site suitability modeling (Mann et al., 2012; Petrov & Wessling, 2014).  As such, spatial 

lag and machine-learning algorithm methods are high in agreement on site suitability 
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factors, spatial manifestation, and identifying suitable site based on empirically driven 

approach. 

Secondly, spatial lag regression based on existing turbines (3,177 turbine points) 

were used.  This approach accounted for environmental, technical, and social constraints 

inherently in siting locations.  Turbines spatial distribution are highly clustered and 

spatial autocorrelation must be addressed by introducing the proximity to neighboring 

turbine (NT) variable in all models.  Controlling for spatial autocorrelation, models 

improved substantially at all scales (Table 14).  The main gain is that non-spatial factors 

were not stretched to account for variance in the models that otherwise could not have 

been explained.  

Thirdly, the lack of understanding of relative importance and scale manifestation 

of factors are a shortcoming in literature explicitly addressed this study (Table 15).  

Multiscale empirical approach enabled us to assess scale’s impact on factors.  Scales’ 

impact on factors is directly from the empirically driven approach.  Previous studies 

examined the importance of factors based on expert assessment methodology (Aydin et 

al., 2010; Baban & Parry, 2001; Mann et al., 2012).  Therefore, empirical approach in this 

study explicitly addresses this shortcoming by identifying important factors and scale 

dependency.  Elevation, wind power class, proximity to neighboring turbine, and distance 

to city appear to be the most important factors.  However, other factors impact is 

dependent on scale.  At Microscale (six county level), wind power class is statistically 

insignificant.  It might be due the study area containing a single wind power class (no 

variation in wind speed).  
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Finally, multiscale analysis highlighted the importance of scale and the impacts it 

has on factors and site suitability.  It also demonstrated the critical need to clearly define 

scale in order to identify suitable site (Petrov & Wessling, 2014).  Furthermore, 

multiscale analyses fills the knowledge gap on the scale and addresses the MAUP’s 

impact on factors and site suitability.  Scale and its impact were illustrated in this study 

be examining scale at the Macroscale (statewide), Mesoscale 1(regional), Mesoscale 

2(sub-regional) and Microscale (6 county level; Table 14).  

 

5.2 Understanding Contributing and Influential Factors  

This study shows that important and influential factors are elevation, wind power 

class, proximity to neighboring turbine and distance to city while the remaining factors 

were scale dependent.  The impact of elevation and wind power class go hand in hand. 

Majority of existing turbines are located in areas with high elevations located in the 

Northwest, North central, and south central parts of the state.  These areas also contain 

the highest WPC in the state confirmed by the correlation analysis, higher elevation 

generally leads to high wind power class.  However, this does not mean an increase in 

elevation always produces an increase in wind power class.  The combination of other 

environmental and climatic factors along with local geographic characteristics are likely 

to influence wind power (Van Hoesen & Letendre, 2010).  For instance, a study by 

Rodman and Meentemyer (2006) demonstrated how low valleys can serve as a channel 

for increasing wind power class.   
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Wind power class is an essential factor in scales except Microscale (6 county 

level).  While Toke et al. (2008) acknowledge that wind resources in a region are not 

always the driving factor but the consideration of other factors in addition to wind 

potential is equally important.  They noted that one of the most important factors is the 

level of investment and siting decision are made and who is involved in those decisions.  

In this study, existing turbines are located in areas with wind power class 3 or greater 

which means they are in a suitable area just on the basis of wind power class.  Petrov and 

Wessling (2014) noted how wind speed (wind power class) improves site suitability for 

utility scale wind energy development when wind power class is 3 or greater which also 

aligns with NREL recommendation.  

Spatial lag factor (proximity to neighboring turbine) improved the models 

performance at all scales and other co-factors coefficient improved as well.  Existing 

turbines are highly clustered which explains why proximity to neighboring turbine is such 

a strong predicting factor.  Spatial autocorrelation of the turbines confirmed proximity to 

neighboring turbines increases the likelihood of turbine occurrence as well.  On the other 

hand, it’s logical to expect if turbines exist (wind farm), it areas near or within proximity 

to existing turbines, they might have the environmental, technical, social characteristics 

conducive for development.  

Furthermore, factors such as land cover, slope, and distance to highways, and 

rivers are scale dependent.  Land cover as a categorical variable, it displayed significance 

and importance as well.  The empirical approach segmented the classification to 

determine ideal land cover type for wind energy development.  As a result, row crop and 
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grassland displayed the most positive significance while water and urban were not 

significant.  Iowa is mostly agricultural state; as such, it was not surprising since row 

crop and grassland are the dominant land cover types which are ideal for turbines to be 

placed.  In fact, over 75% of existing turbines occupy row crop and grassland while the 

remaining 25% located in barren and forest areas.  Turbines are placed in the rural areas 

and most of the rural areas are privately owned farms.  This also reveals the willingness 

of farmers or land owners in Iowa to lend their land for wind energy development 

(Slattery et al., 2012).  Also, Sowers stated (2006) that most Iowan’s see turbines as an 

economic benefits.  

Distance to airport, city, and river appear to have a positive relationship.  The 

greater the distance away from these features the more likely the site might be suitable 

for placing turbine.  There are 313 airports of all sizes, and FAA regulations require 

builders/developers or any persons who want to construct object over 60.96 meters get 

approval.  This regulation is intended to minimize interference with aircrafts and radars.  

Even if all other criterions are met, site is unsuitable if distance to airport criteria is not 

met.  Further away from city which probably has low population density diminishes the 

likelihood of turbine occurrence because it won’t be suitable.  Distance to rivers also 

appears to be influential but highly depends on the scale.  In contrast, further away from 

transmission lines increases the cost and limits accessibility to the grid to transport wind 

energy to the market place.  The greater the distance from highway makes it difficult to 

access turbines.  Heavy machineries are needed to install and maintain wind turbines so 
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gravel roads are connected to surface roads near the site.  Turbines require substantial 

maintenance due to the wear and tear thus it’s essential to have easy access.  

 

5.3 Empirical Modeling and Reduced Regression Comparison 

The relative influence and significance of factors are varied between models at the 

different scales.  As illustrated in the results section, the importance of scale in 

identifying suitable site is critical.  Factors importance is scale dependent thus its critical 

scale should be incorporated in site suitability assessment phase.  Macroscale model 

accuracy displayed a very good fit with Nagelkerke R square 0.861.  Maxent model M1 

(Macroscale) ROC Curve of 0.85 also indicated a very good fit to the model.  Elevation 

and wind power class are dominant factors in determining suitability from the empirical 

components.  In the Maxent Macroscale model, elevation and wind power class provide 

over 70% to the model contribution.  In addition, slope, distance to airport, city, 

transmission line, and highway are also significant predictors at the Macroscale level in 

the spatial lag regression analysis.  The difference from the two approaches might be due 

to Maxent only using ‘occurrence’ data which tends to over fit.  Therefore, factors like 

population density and land cover impacts is minimal which indicates how sparsely 

populated the area where turbines are located and the dominance of row crop and 

grassland land cover in Iowa the statewide scale.  This is useful for resource 

characterization and to paint the larger picture to utilize with maximization.  In doing so, 

wind energy developers have a general understanding of the resources to build the basis 

for detailed and site specific wind resource study. 
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Mesoscale 1 (regional level) results showed to the fact that similar factors were 

significant as in Macroscale.  Spatial lag regression model accuracy with Nagelkerke R 

square of 0.80 is a good fit while Maxent ROC Curve of 0.86 indicating a very good fit 

and an improvement from Maxent Macroscale.  Second, Maxent’s use of ‘occurrence’ 

only data tends to over fit the model.  Elevation and population density provide 70% 

contribution to Mesoscale 1.  Iowa’s population density is among the lowest (34th) in the 

nation and existing turbines located in rural areas indicating suitable sites are in low 

population areas.   

Additional analysis was performed for Macroscale and Mesoscale 1 spatial lag 

regression models by selecting common factors from both scales to re-run logistic 

regression.  Factors that were statistically significant were selected from Macroscale and 

Mesoscale 1; the default enter method was applied in SPSS 15.0.  This was done to 

determine whether models with fewer factors performed better based on Nagelkerke R 

Square compared to the result presented in the section 4.2.  Reduced regression analysis 

for Macroscale and Mesoscale are in Table 22.  Macroscale Nagelkerke R square of 

0.859 (original Nagelkerke R square 0.861) demonstrates a very good fit and this model 

with reduced factors performs on par with the model that contains all factors.  Mesoscale 

1 displayed similar results (original regression) in terms of factors significance and 

Nagelkerke R square of 0.799 (original Nagelkerke R square 0.8) indicates a good fit.  

Both scales appear to highlight similar factors being strong predictors with the exception 

of Mesoscale 1, highway is statistically insignificant.   
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Both scales (Macroscale and Mesoscale 1) R square indicate little difference 

between the full and reduced factors regression.  However, it’s important to use the full 

regression results for several reasons.  First, I would argue using all factors enables us to 

understand how the factors affect suitability and be able to quantify each factors 

contribution even if it’s minimal.  Second, reducing factors for the purpose of improving 

R square might be irrelevant to developers who are seeking all information to maximize 

production and reducing cost.  

 

Table 22: Macroscale and Mesoscale 1 Common Factors Logistic Regression 

Macroscale* Mesoscale 1** 
 B Sig. Exp(B) B Sig. Exp(B) 
WPC .765 .000 2.149 1.189 .000 2.111 

Elevation .014 .000 1.014 .020 .000 1.019 

LC n/a .001 n/a n/a .033 n/a 

LC(1) -19.920 .999 .000 -19.754 .999 .000

LC(2) -1.193 .293 .303 -2.210 .003 .110

LC(3) -.833 .066 .435 -2.078 .004 .125

LC(4) -.502 .253 .605 -4.643 .021 .010

LC(5) -2.434 .000 .088 -4.693 .000 .009

NT -5.560 .000 .004 -.322 .000 .725

TL -.202 .000 .817 .317 .000 1.373

City .154 .000 1.166 .114 .000 1.121

Hwy -.066 .005 .936 n/a n/a n/a 

Airport .107 .000 1.113 .215 .000 1.240 

Constant -5.803 .000 .003 -10.219 .000 .000 
                          * Nagelkerke R square 0.859               ** Nagelkerke R square 0.799 
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Mesoscale 2 Nagelkerke R square 0.749 indicating good model fit while Maxent 

ROC curve of 0.925 is excellent model fit.  Maxent model M3 displayed significant 

improvement from model M1 (Macroscale) and M2 (Mesoscale 1) when comparing the 

ROC curve.  Elevation and population density factors provide 50% contribution to 

Mesoscale 2.  Large scale depicts greater detail and the reduction of factors while small 

scale tends to give broader overview but the core factors don’t appear to be significantly 

impacted.    

On the other hand, Microscale (six-county level) Nagelkerke R square 0.784 

while Maxent had ROC curve of 0.945 is a good fit.  Elevation is the dominate indicator 

of suitability while wind power class is insignificant due to statewide resolution.  At large 

scale, local terrain characteristics can have a significant effects on the local wind speed 

variability (Petrov & Wessling, 2014).  This indicates small changes in topography are a 

better predictors of suitability than wind power class.  This also indicates the need for 

localized assessment because localized factors impact suitability.   

Common factors that were statistically significant were selected at the Mesoscale 

2 and Microscale for additional analysis in all models.  Mesoscale 2 Nagelkerke R square 

0.749 and Microscale Nagelkerke R square 0.757 are slightly lower than the spatial lag 

regression from the full model (Table 23).  It appears that the regression with common 

factor performs reasonably well.  However, as stated in previous explanation regarding 

the use of reduced number of factors at different scales, more factors are better equipped 

to define the relationship between scale and factor.  Obtaining the highest R square with 

fewer variables might not provide all the necessary information.  In order to understand 
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scale’s impact on factors and how suitability is affected; all factors should be included 

and base it off the empirical model to identify important factors.  Site suitability models 

that contain all factors are more beneficial to developers, decision makers and 

stakeholders of wind energy because it provides the most information. 

 

Table 23: Mesoscale 2 and Microscale Common Factors Logistic Regression  

Mesoscale 2* Microscale** 

 B Sig. Exp(B) B Sig. Exp(B) 
Elevation .038 .000 1.039 .069 .000 1.071 
NT -4.488 .000 .011 -4.384 .000 .012 

City .195 .000 1.216 .146 .013 1.158 
River .196 .000 1.216 .279 .000 1.322 
Constant -11.778 .000 .000 -22.963 .000 .000 

                                      * Nagelkerke R square 0.749             ** Nagelkerke R square 0.757 

 

5.4 Modifiable Areal Unit Problem in Spatial Data Analysis 

To date, multiscale analysis has not been examined in wind energy site suitability 

assessment.  The complexity of natural systems require a multiscale approach to 

understand the impact of scale on predicting factors examined in this study.  This 

research uses overlapping multiscale analysis; therefore, tackling the MAUP problem 

when conducting scale dependent spatially explicit data analysis (Openshaw, 1983; 

1984).  Several studies have confirmed that statistical results vary based on scale which is 

a cause for concern in geographic research (Dark & Bram, 2007; Flowerdew, 2011).  

Models are based on spatial datasets that are valid for Macroscale analysis and the use of 
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the same dataset to infer higher-resolution or lower-resolution (WPC data at Macroscale 

used to assess regional suitability) may produce inaccurate results.   

The statistics and model parameters differ between scales.  This study has focused 

on the issue of scale, impact on site suitability and spatial distribution.  MAUP impact 

occurs for both the spatial and temporal scale.  Dark and Bram (2007) acknowledge the 

existence of natural scales at which physical characteristics occur within the landscape.  

One solution is to use dataset appropriate for each scale because research suggested that 

scale determines the range of patterns and process that can be detected thus requiring an 

appropriate level of resolution for the study area (Flowerdew, 2011).  Appropriate spatial 

scale for spatial analysis is an ongoing and unresolved issue within many disciplines of 

geography.  Openshaw (1984) suggest to focus on identifying the appropriate scale and 

dataset to minimize MAUP impact.  This study address this by using multiple scales and 

comparing results to better understand the MAUP impact on wind farm modeling. 

 

5.5 Developing Spatially Explicit Scale Dependent Modeling Framework 

Rapid wind energy development demands a framework that will address the 

complex, technical, environmental, and social constraints of site suitability assessment 

for wind energy development.  Thus, the methodological approach used in this study 

incorporates an integrated module that combines the empirical and normative 

components to create the spatially explicit scale dependent framework (Figure 34).   

The empirical module is from the spatial lag logistic regression and machine-

learning algorithm (Maxent), while normative module accounts for factors not considered 
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in the empirical module such as regulations and policies.  In this particular empirical 

component uses coefficients derived from the spatial lag where factors were statistically 

significant.  The logistic regression equation predicts the probability of Y taking a 

specific value.  In the application case study presented here, the empirical module is 

based on computation of wind turbine probabilities and according to the following 

formula derived from logistic regression.  The logistic regression formula is as follows: 

 

 

 

The normative module contained characterization based on known regulations (1), 

suitable or (0) not suitable.  The ArcGIS Map Algebra function was used to combine the 

empirical and normative modules in ArcGIS ModelBuilder (Figure 33).  Application case 

 

ܲሺܻሻ ൌ
݁బାభ௫భା⋯ା௫

1  ݁బାభ௫భା⋯ା௫
 

 

P: probability of Y occuring 

݁: natural logarithm base 

ܾ: interception at y-axis 

ܾଵ: line gradient 

ܾ: regression coefficent of ܺ 

ଵܺ: preictor variable 
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study at the Mesoscale was conducted.  Final suitability map was produced and validation 

was conducted using the pixel value (probability of occurrence) for each turbine and 

using a cut-off value of 0.5.  The cutoff value was determined based on the probability of 

turbine occurrence or non-occurrence at 50%.  This value also aligns with existing 

turbines existing turbines occupying areas with probability 0.5 because conditions in 

these areas meet the minimum requirements of wind power class greater than 3 and other 

environmental factors also appear to be significant.  Furthermore, total number of 

turbines with probability greater than 0.5 were divided by the total number of turbines to 

get the accuracy percentage.   
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Figure 33: ModelBuilder site suitability using Map Algebra function 
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Figure 34: Spatially Explicit Scale Dependent Suitability Assessment Framework 
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Mesoscale Framework Application  

Mesoscale suitability map without spatial lag component has 85% model accuracy 

(Figure 35).  While Mesoscale suitability map with spatial lag component derived from 

the framework showed 90.5% mode accuracy (Figure 36).  Both maps display the same 

core area with high suitability (red), limited medium suitability (burnt orange), and even 

less area with low suitability (yellow) are highlighted.  

High suitable areas (red) have 0.81-1 probability of turbine occurrence.  While 

areas 0.61-0.80 probability of occurrence are suitable even though very limited in terms 

of available land area especially in the suitability map with spatial lag component.  In 

contrast, areas with probability 0.21 – 0.4 range might be suitable; however, more 

disadvantages, i.e. higher costs and technical difficulties might exist.   

Comparing the two maps illustrates Mesoscale without spatial lag appears to be to 

highlight even areas that don’t meet the suitability criteria.  On the other hand, the map 

with spatial lag component appear to be inclusive and selecting substantial areas of 

suitability.  Spatial lag model contains red dots which represent existing turbines.  It 

appears there are existing turbines that are not in suitable areas; therefore, they might not 

be as productive.  At this scale, suitability maps illustrates the variation in spatial 

variation over short distance.  Site suitability are impacted by local factors thus local site 

assessment and factors should be thoroughly investigate.  Local environmental and 

physical characteristics appear to impact wind power class especially at the Microscale 

(Petrov & Wessling, 2014; Toke et al., 2008).  
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Figure 35: Case study site suitability without spatial lag component 
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Figure 36: Case study site suitability with spatial lag component  
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CHAPTER 6 

CONCLUSIONS 

6.1 Conclusions 

The limitations of traditional studies on site suitability has prompted the search 

for advanced empirically driven modeling framework for wind farm site suitability 

assessment.  This research examined the effects of scale on suitability factors, and 

develops a spatially explicit scale dependent modeling framework for placing wind farms 

in Iowa.  This study developed and examined an empirical driven approach and coupled 

it with normative components to assess wind farm suitability.  Existing models are 

insufficient as they are based on incomplete data and a limited number of considered 

spatial factors and turbines are spatially clustered which requires autoregressive control.  

This study addressed these shortcomings by implementing spatially explicit scale 

dependent modeling framework derived from spatial lag logistic regression and machine-

learning algorithms coupled with normative factors to account for the technical, 

environmental, and social factors for site suitability assessment in Iowa.   

The three methodologies examined in this research prove components to 

modeling wind farm site suitability.  (1) The empirical model derived from spatial lag 

logistic regression and machine-learning algorithm (Maxent) were used to examine 

suitability distribution for wind energy development in Iowa by analyzing the locations of 

existing turbines and identifying factors importance.  Factors identified from extensive 

literature review and applicable in the context of Iowa were used.  As a result, 
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empirically driven models were developed which identified statistically significant 

factors and incorporated multiple scales. 

 (2) Spatial lag logistic regression significantly improved modeling accounting for 

spatial autocorrelation.  It also allowed to analyze empirically driven measurements of 

factors impact at different scales.  This approach was appropriate since turbines are 

spatially clustered.  Accounting for spatial autocorrelation, variables are forced by the 

model to account for variances in the models otherwise would not be explainable.   

(3) The impact of scale on factors importance on the models are illustrated in this 

research.  While previous studies have focused on a single scale (i.e. wind farm, regional 

or state) this research fills the knowledge gap by implementing multiscale analyses.  As a 

result, our evidence suggests that scale does affect factors contribution to models and site 

suitability.  The Macroscale model with Nagelkerke R square of 0.861 identified 

proximity to neighboring turbine, wind power class, elevation, slope and distance to city, 

airport, transmission line, and highway as significant factors that contribute at 

Macroscale level.  These factors are indicative of ideal suitability at the Macroscale thus 

should be thoroughly assessed and incorporated.  Mesoscale 1 model (regional level) 

with Nagelkerke R square of 0.801 identified wind power class, elevation, and distance to 

airport, city, transmission line, highway, and population density as significant factors for 

site suitability.  Mesoscale 2 (micro-regional) with Nagelkerke R square of 0.794 

identified wind power class, elevation, distance to city, river, and transmission line as 

predictors for site suitability.  While, Microscale with Nagelkerke R square of 0.784 
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identified elevation, distance to river and city as significant factors for predicting suitable 

site at this scale.  As scale changes, factors importance and significance also changes.  

Overall, elevation, proximity to neighboring turbine, and distance to city are factors that 

do not appear to be impacted by scale.  In contrast, other suitability factors importance or 

significance appears to be scale dependent.  This indicates localized nature of factors so 

it’s ideal to conduct local measurements and assessment to determine site suitability.   

The goal of this research was to develop a spatially explicit scale dependent 

modeling framework for wind farm site suitability assessment.  The framework 

developed, incorporates the technical, environmental and social constraints for siting 

wind energy development.  The framework is based on multiscale empirical module 

derived from spatial lag regression and machine-learning algorithm coupled with 

normative component (regulations and policies).  Based on the framework, application 

case study was conducted at a Mesoscale.  The model accuracy Nagelkerke R square of 

0.88 indicating a good fit.  The framework accounts for the complex technical, 

environmental, and social constraints to identify suitable sites in Iowa with high 

accuracy.  Even though the framework is developed in the context of Iowa, it can be 

modified to other geographic locations.  

 

6.2 Limitations 

There are several limitations of this study: (1) The models developed and 

presented in this thesis are based on Iowa context and may not be readily suitable for 



118 
 

different geographic locations wind farm development based.  (2) The scales were 

determined based on geographical mean of existing turbine distribution thus one scale 

encompasses another which can lead to the coverage of the same area at different scales.  

Results may change if others scale selection principle is adopted.  (3) Some of the dataset 

had limited resolution and maybe not suitable for Mesoscale and Microscale analysis 

which lead to an emergence of Modifiable Areal Unit Problem (MAUP).  (4) The 

assumption of empirical models are based on existing turbines are located on suitable 

site; therefore, future development might not accurately project new areas if this 

assumption is violated.  (5) Literature indicates economic factors are critical components 

but due to lack of data, they are not considered in the models or the framework 

developed.   

 

6.3 Future Directions 

Future work in this research could consist of the following:  (1) Incorporate 

production data to make the empirical modules more robust.  In doing so, site suitability 

assessment can be improved because production output of each turbine and with the 

environmental, technical, and social constraints can give us a better understanding on 

what makes a particular site suitable.  (2) Develop a real-time predicative web based 

scale dependent spatial decisions support system (SDSS) based on proposed framework 

to provide developers, policy makers, and the public with sound assessment and relevant 

information instantly.  The tool should be user friendly so that the seasoned or the 

average persons can equally operate.  (3) Expand the framework to encompass multistate 



119 
 

scale to gain insight, plan and develop wind energy projects to meet the 20% wind energy 

by 2030 initiative set by the DOE.  Multistate level framework will enable us to meet the 

high demands of metropolitan areas, regions and states.  
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