University of Northern Iowa

UNI ScholarWorks

Summer Undergraduate Research Program (SURP) Symposium

2020 Summer Undergraduate Research Program (SURP) Symposium

Jul 31st, 1:00 PM - 3:30 PM

Chemical substitution induced half-metallicity in CrMnSb(1-x)Px

Devon VanBrogen University of Northern Iowa

Adam Ramker University of Northern Iowa

See next page for additional authors

Let us know how access to this document benefits you

Copyright ©2020 Devon VanBrogen, Adam Ramker, Evan O'Leary, and Pavel Lukashev Follow this and additional works at: https://scholarworks.uni.edu/surp

Part of the Physics Commons

Recommended Citation

VanBrogen, Devon; Ramker, Adam; O'Leary, Evan; and Lukashev, Pavel, "Chemical substitution induced half-metallicity in CrMnSb(1-x)Px" (2020). *Summer Undergraduate Research Program (SURP) Symposium*. 2.

https://scholarworks.uni.edu/surp/2020/all/2

This Open Access Presentation is brought to you for free and open access by the CHAS Conferences/Events at UNI ScholarWorks. It has been accepted for inclusion in Summer Undergraduate Research Program (SURP) Symposium by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.

Author

Devon VanBrogen, Adam Ramker, Evan O'Leary, and Pavel Lukashev

This open access presentation is available at UNI ScholarWorks: https://scholarworks.uni.edu/surp/2020/all/2

Chemical substitution induced half-metallicity in CrMnSb_(1-x)P_x

Background

- ✓ Research on magnetic materials for potential applications in spin-based electronics: one of the most active fields in academia and industry.
- \checkmark High degree of spin polarization wanted in spintronics.
- \checkmark Spintronics an emerging technology utilizing a spin degree of freedom.
- \checkmark Various mechanisms alter degree of spin polarization mechanical strain, structural disorder, temperature, termination surface/interface in thin film multilayer geometry, etc.
- ✓ Magnetic materials that conduct electrons of only one spin are called half-metals, and have a great potential in spintronic devices.

Motivation and Methods

- CrMnSb and similar half-Heusler alloys may crystallize in two different phases: α -phase, and γ -phase.
- \succ The γ -phase is energetically favorable and is nearly half-metallic.
- Can we make it truly half-metallic by external pressure / strain, or by chemical substitution?
- > Epitaxial strain is more realistic scenario in thin-film applications. ✓ DFT (density functional theory) – Vienna Ab Initio Simulation Package
- (VASP).
- ✓ Computations performed at the Department of Physics computing facilities (20-node Beowulf cluster), UNI.

CrMnSb: ground state properties

Devon VanBrogen,¹ Adam Ramker,¹ Evan O'Leary,¹ Pavel Lukashev¹

Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614

$CrMnSb_{0.5}P_{0.5}$: effect of chemical substitution

✓ CrMnSb is not half-metallic in ground state, despite earlier reports. ✓ Half-metallic transition in CrMnSb could be induced by a chemical substitution of Sb with P. \checkmark Sb-to-P substitution results in a volume reduction of the unit cell \rightarrow half-metallic transition. ✓ This research was funded by the U.S. Department of Energy, grant number DE-SC0020564.

CrMnSb under pressure / strain

Conclusions and Acknowledgments

Office of Science