University of Northern Iowa UNI ScholarWorks

Research in the Capitol

2018 Research in the Capitol

Apr 3rd, 11:30 AM - 1:30 PM

Effect of Fe substitution on structural, magnetic and electrontransport properties of half-metallic Co2TiSi

Juliana Herran University of Northern Iowa, herranj@uni.edu

Parashu Kharel South Dakota State University

See next page for additional authors

Let us know how access to this document benefits you

Copyright ©2018 Juliana Herran

Follow this and additional works at: https://scholarworks.uni.edu/rcapitol

Part of the Atomic, Molecular and Optical Physics Commons, and the Materials Science and Engineering Commons

Recommended Citation

Herran, Juliana; Kharel, Parashu; and Lukashev, Pavel, "Effect of Fe substitution on structural, magnetic and electron-transport properties of half-metallic Co2TiSi" (2018). *Research in the Capitol.* 3. https://scholarworks.uni.edu/rcapitol/2018/all/3

This Open Access Poster Presentation is brought to you for free and open access by the Conferences/Events at UNI ScholarWorks. It has been accepted for inclusion in Research in the Capitol by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.

Author

Juliana Herran, Parashu Kharel, and Pavel Lukashev

This open access poster presentation is available at UNI ScholarWorks: https://scholarworks.uni.edu/rcapitol/2018/ all/3

Effect of Fe substitution on structural, magnetic and electron-transport properties of half-metallic Co₂TiSi

Juliana Herran,¹ Parashu Kharel,² and Pavel Lukashev³

¹ Department of Chemistry and Biochemistry, University of Northern Iowa, Cedar Falls, IA 50614 ² Department of Physics, South Dakota State University, Brookings, SD 57007 ³ Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614

Background

- ✓ Research on magnetic materials for potential applications in spin-based electronics: one of the most active fields in academia and industry.
- ✓ High degree of spin polarization wanted in spintronics.
- \checkmark Spintronics an emerging technology utilizing a spin degree of freedom in electronic devices.
- ✓ Various mechanisms which could alter the degree of transport spin polarization, such as mechanical strain, structural disorder, temperature, termination surface/interface in thin film multilayer geometry, etc.
- ✓ Magnetic materials that conduct electrons of only one spin are called half-metals, and have a great potential in spintronic devices.

Motivation and Methods

- >Co₂TiSi experimentally predicted to be half-metallic, with large band gap of ~ 0.6 eV.
- \succ High degree of structural order.
- ➤ Relatively high Curie temperature (around room T).
- > Heusler compounds are "easy" to work with.
- \succ Relatively ordered structures.
- > Systematic increase of magnetization with Fe concentration.
- > Systematic increase of T_c with Fe concentration (360K for 0% Fe, 450 K for 25% Fe, 780 K for 50% Fe, 1100K for Co₂FeSi).
- Systematic decrease of lattice constant with Fe concentration.
- ✓ DFT Vienna Ab Initio Simulation Package (VASP).
- ✓ Computations performed at the Department of Physics computing facilities (20-node Beowulf cluster), UNI.

Half-metallic Heusler alloys

Electronic, magnetic, and structural properties

Summary

- ✓ Combined experimental and theoretical investigation of structural, magnetic and electronic properties of Co₂Ti_{1-v}Fe_vSi (x = 0, 0.25, 0.5) Heusler alloys.
- ✓ Fe doping increases saturation magnetization.
- \checkmark Curie temperature is enhanced due to Fe substitution from 340 K for Co₂TiSi to 780 K for Co₂Ti_{0.5}Fe_{0.5}Si.
- ✓ Samples are moderately conducting and show metallic electron transport.
- ✓ DFT calculations show that Fe doped material are nearly halfmetallic for x < 0.5.
- ✓ Y. Jin, J. Waybright, P. Kharel, I. Tutic, J. Herran, P. Lukashev, S. Valloppilly, and D. J. Sellmyer, Effect of Fe substitution on the structural, magnetic and electron-transport properties of half-metallic Co₂TiSi, AIP Advances 7, 055812 (2017).