April 2018

Effect of Fe substitution on structural, magnetic and electron-transport properties of half-metallic Co2TiSi

Juliana Herran
University of Northern Iowa, herranj@uni.edu

Copyright ©2018 Juliana Herran
Follow this and additional works at: https://scholarworks.uni.edu/rcapitol

Let us know how access to this document benefits you

Recommended Citation
https://scholarworks.uni.edu/rcapitol/2018/all/3

This Open Access Poster Presentation is brought to you for free and open access by the University Honors Program at UNI ScholarWorks. It has been accepted for inclusion in Research in the Capitol by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
Effect of Fe substitution on structural, magnetic and electron-transport properties of half-metallic Co$_2$TiSi

Juliana Herran, Parashu Kharel, and Pavel Lukashev

1 Department of Chemistry and Biochemistry, University of Northern Iowa, Cedar Falls, IA 50614
2 Department of Physics, South Dakota State University, Brookings, SD 57007
3 Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614

Background

- Research on magnetic materials for potential applications in spin-based electronics: one of the most active fields in academia and industry.
- High degree of spin polarization – wanted in spintronics.
- Spintronics – an emerging technology utilizing a spin degree of freedom in electronic devices.
- Various mechanisms which could alter the degree of transport spin polarization, such as mechanical strain, structural disorder, temperature, termination surface/interface in thin film multilayer geometry, etc.
- Magnetic materials that conduct electrons of only one spin are called half-metals, and have a great potential in spintronic devices.

Motivation and Methods

- Co$_2$TiSi experimentally predicted to be half-metallic, with large band gap of ~0.6 eV.
- High degree of structural order.
- Relatively high Curie temperature (around room T).
- Heusler compounds are “easy” to work with.
- Relatively ordered structures.
- Systematic increase of magnetization with Fe concentration.
- Systematic increase of T_c with Fe concentration (360K for 0% Fe, 450 K for 25% Fe, 780 K for 50% Fe, 1100K for Co$_2$FeSi).
- Systematic decrease of lattice constant with Fe concentration.
- DFT – Vienna Ab Initio Simulation Package (VASP).
- Computations performed at the Department of Physics computing facilities (20-node Beowulf cluster), UNI.

Half-metallic Heusler alloys

Motivation and Methods

- Co$_2$TiSi experimentally predicted to be half-metallic, with large band gap of ~0.6 eV.
- High degree of structural order.
- Relatively high Curie temperature (around room T).
- Heusler compounds are “easy” to work with.
- Relatively ordered structures.
- Systematic increase of magnetization with Fe concentration.
- Systematic increase of T_c with Fe concentration (360K for 0% Fe, 450 K for 25% Fe, 780 K for 50% Fe, 1100K for Co$_2$FeSi).
- Systematic decrease of lattice constant with Fe concentration.
- DFT – Vienna Ab Initio Simulation Package (VASP).
- Computations performed at the Department of Physics computing facilities (20-node Beowulf cluster), UNI.

Summary

- Combined experimental and theoretical investigation of structural, magnetic and electronic properties of Co$_2$Ti$_{1-x}$Fe$_x$Si ($x = 0, 0.25, 0.5$) Heusler alloys.
- Fe doping increases saturation magnetization.
- Curie temperature is enhanced due to Fe substitution from 340 K for Co$_2$TiSi to 780 K for Co$_2$Ti$_{0.5}$Fe$_{0.5}$Si.
- Samples are moderately conducting and show metallic electron transport.
- DFT calculations show that Fe doped material are nearly half-metallic for $x \leq 0.5$.