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ABSTRACT 
 

 
 

Accurate and detailed mapping of sinkholes is necessary to ensure sinkhole 

monitoring and management. Historically, sinkholes were found and digitized manually 

by a visual examination of aerial photos or through field surveying. This paper develops a 

new, multicriteria LiDAR-based sinkhole extraction method and automated processes to 

detect sinkholes and their boundaries. This technique of extraction is unique as it 

identifies sinkhole boundaries automatically using remotely sensed data, compared to 

traditional methods of manually tracing the perimeter. A sinkhole detection module was 

developed within a GIS environment to determine location and boundaries of the 

sinkholes. Several small study areas were selected to test different extraction methods. 

Three tested methods included the fill, slope and object-oriented methods. A combination 

of the fill and slope methods demonstrated the most reliable extraction results. A 

geoprocessing model and Python scripting was then implemented to automate the 

procedure. This automated sinkhole extraction method was applied to the entire study 

area in northeast Iowa. The primary data for the study were one meter Light Detection 

and Ranging (LiDAR) dataset. aerial photos, GPS, and existing sinkhole data were used 

for method calibration and accuracy assessment. The second part of the study focused on 

the sinkhole quantitative characteristics derived from the LiDAR based sinkhole map. 

The characteristics include perimeter, area, shape, maximum depth, lineation, and 

orientation. Statistical analysis was then preformed in order to determine geometric 

patterns, morphological and generic groupings, and possible correlations with 

geomorphic and environmental parameters. 
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CHAPTER 1 

INTRODUCTION 

Karst Plains are large flat surfaces which develop by erosion and corrosion; they 

have been studied by geomorphologists for years and are considered one of the primary 

fields in karst research. Karst plains are predominantly studied in Europe and parts of the 

United States including Indiana, Kentucky, Tennessee, and Florida (Harmon, Wicks, 

Ford, & White, 2006). Sinkholes are a common feature found within Karst plains and 

mainly occur in carbonate rock. Carbonate rock is soluble in water which over time 

allows these sinkholes to develop. In an effort to better understand sinkhole development, 

studies have examined morphometric features such as orientation, area, and volume to 

identify any spatial correlation among them (Galve et al., 2009,October 15; Palmquist, 

1977; Williams, 1971). Other studies have analyzed sinkhole distribution and 

morphologies in an effort to model their development or to better manage them as a 

natural hazard (Gao, Alexander, & Barnes, 2005; Zhou, Beck, & Adams, 2003). A 

majority of the studies have focused on a few areas with well-developed karst landscapes. 

Smaller karst landscapes, such as Iowa, have been studied less due to the relatively 

limited spatial occurrence of sinkholes (Gao, Alexander, & Barnes, 2005). Northeast 

Iowa and Southwest Minnesota fall within these smaller subsets of karst areas. However, 

even though this area is relatively small compared to others, it still has a diverse variety 

of sinkholes (Palmquist, 1977; Prior, 1991). The study of their characterization and 

development may provide a valuable insight into sinkhole morphology patterns and 

formation processes. 
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The goal of this study is to develop a comprehensive tool to locate and accurately 

characterize sinkholes over a large region. This will drastically improve the efficiency of 

sinkhole identification process compared to traditional (manual) methods. Such a 

comprehensive and automated methodology has not been offered before and should 

provide a better understanding of the distribution, morphology, and typology of sinkholes 

specifically within the Northeast Iowa Karst region. Enhancing knowledge about karst 

morphology and genesis is necessary to assist in agricultural activities, as well as to aid in 

the mitigation and infrastructure development processes (Huber, 1989). Farming and 

groundwater contamination can be accelerated within this area, due to the connection 

between surficial water and ground water through the karst landscape and specifically 

sinkholes (Gao, Alexander, & Tipping, 2005; Huber, 1989; Prior, 1991). 

Newer techniques, such as Light Detection and Ranging (LiDAR), are starting to 

be used for sinkhole identification as they provide high resolution continuous data over 

larger areas, giving it a great advantage over traditional techniques. The only recent use 

in Iowa was by the Iowa Department of Natural Resources (DNR), although DNR 

performed manual identification of sinkholes in a limited area. In addition, very little 

spatial and statistical analysis has been performed on the sinkholes found in Iowa the 

only notable study was completed in 1977 (Palmquist, 1977) as well as sites studied by 

the DNR on small isolated areas (Groves, Walters, Day, Hubsher, & SEPM Fall Field 

Conference, 2008; Wolter, McKay, Liu, Bounk, & Libra, 2011). This study aims to 

contribute to closing this significant knowledge gap. 
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Research Goals and Objectives 
 

The goal of this study is to develop an automated process and use LiDAR-based 

methodologies for detection of karst features over a larger area and to improve our 

understanding of sinkhole distribution and typology in Northeast Iowa. 

 

This research intends to address the following questions: 
 

1. What is the best methodology to take advantage of LiDAR data and create an 

automated method for sinkhole location and morphology? 

2. Can LiDAR-derived morphologic characteristics be used to classify sinkholes 

based on size, geometry, and geologic/geomorphic settings? 

3. Are there discernible spatial patterns in sinkhole distribution, such as clustering, 

striations, or nucleation, and are there correlations between the size and geometric 

characteristics of sinkholes and the local setting, such as slope, lithology, or 

elevation? 

 

 
 
 

The practical contribution of this study is the development of a tool for automated 

identification of sinkholes that can become a key element in an emerging comprehensive 

system of sinkhole monitoring and management on the other hand, this will help 

contribute to the field of karst geomorphology, as it gives a unique insight in to a wide 

range of geomoprological characteristics over a much larger area of sinkhole 

development compared to previous studies examining smaller regions. 
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CHAPTER 2 

LITERATURE REVIEW 

 
Introduction 

 
 

Karst regions are defined by the presence of soluble rock, primarily limestone, 

and characterized by specific soluble features (Jennings, 1985). Numerous studies have 

examined karst geomorphology over the years in various locations. One of the original 

locations of karst research was Slovenia. The term was first used there meaning “stony, 

barren ground” (Ford & Williams, 2007). One of the first researchers to provide the base 

for karst studies was Jovan Cvijic (Ford & Williams, 1989). He produced a 

comprehensive study of karst, and today he is considered one of the founding fathers of 

karst research (Harmon et al., 2006). 

 

Karst landscapes are common throughout the world; they comprise approximately 

20% of the Earth’s surficial rock; and 15% of the United States is made up of soluble 

aquifers (Herak & Stringfield, 1972; Figure 1). In addition, 25% of the world’s 

population obtains their water from carbonate karst rock (Ford & Williams, 1989). The 

most suitable type of rock to develop carbonate karst characteristics is a rock that is 

dense, massive, and coarsely-fractured. Rocks that are highly porous, around 30-50%, are 

usually less likely to develop karst characteristics within them (Ford & Williams, 2007). 

Most karst areas are comprised of rock from two groups: evaporite and carbonate rocks. 

The evaporite rocks include halite, calcite, anhydrite, aragonite, and gypsum. The most 
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predominate karst development is carbonate rock primarily consisting of limestone and 

dolomite (Ford & Williams, 2007). 

 

 

 
 
 

Figure 1: General locations of karst around the world. 

(Ford & Williams, 1989, p.4) 

 

 
Karst Plains 

 
 

Karst Plains are large flat surfaces which develop by erosion and corrosion. The 

plains can be rather large; some tens of square kilometers in size (White, 1988). When 

soluble bedrock becomes exposed, ground water pirates the surface flow ending the 

development of surface valleys; the drainage then becomes internal, causing surface 
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stripping laterally due to the lack of entrainment. Overtime this procedure produces a 

karst plain. The key factors that determine the development are geologic structure, relief, 

hydrology, climate, lithology, vegetation, and time (Jennings, 1985). These surfaces are 

typically composed of sinkholes, along with many other karst features, such as blind 

valleys, uvulas, and sinking streams.  Karst plains are not spatially restricted by faults or 

other geologic factors, whereas other karst features may be (White, 1988). The main karst 

plains in the U.S. are the Valley and Ridge providence of the Appalachian Mountains, 

Edwards Plateau, south-central Indiana, west-central Kentucky, Central Florida, and east- 

central Missouri (Ritter, 1978). 

 

Karst (sinkhole) plains are the most widely represented of karst landscape types 

(White, 1988). These sinkholes are usually distributed in variable patterns and they come 

in a variety of shapes and sizes; however, in some instances they are delineated by line 

patterns (Sweeting, 1981). The well-known areas in the United States are the Mitchell 

Plain of Southern Indiana, Pennyroyal Plateau in Kentucky, and the Highland Rim of 

central Tennessee (Jennings, 1985; Pease, Gomez,& Schmidt, 1994; Sweeting, 1973; 

White, 1988). Sinkhole distributions have been studied in less well-known areas. For 

example Northeast Iowa and Southeast Minnesota where the sinkholes are less developed 

as compared to other well-studied regions (Gao, & Alexander, 2008; Groves et al., 2008; 

Prior, Grant, & Geological Society of Iowa, 1975). 
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Sinkholes (Dolines) and Development 
 
 

Dolines or sinkholes are defined as closed depressions found in karst regions 

(Jennings, 1985). Sinkhole depressions can range in size from half a meter in depth to 

several hundred meters. A sinkhole diameter can vary from a few meters to several 

hundred meters in size (Jennings, 1985; White, 1988). Sinkhole characteristics are 

typically dependent on the age of the karst landscapes. Over time small sinkholes tend to 

merge together to form a larger sinkhole known as a uvula (Summerfield, 1997). 

 

Sinkholes can develop in numerous ways. A majority of sinkholes are formed by 

dissolution of bedrock by percolated surface water. Rainwater becomes acidic by 

dissolving CO2 as it moves through the soil. The resulting carbonic acid disassociates 

carbonate molecules in the process: 

 

CaCO3 + H2O + CO2 (dissolved) Ca+2 + 2HCO3- (1) 
 

 
Collapsing, piping, and subsidence can contribute in creating sinkhole features 

(Jennings, 1985). The dissolution of the rock through a chemical reaction allows for the 

rock to dissolve and be removed in solution. Over time, conduit forms through 

dissolution of limestone allowing surface water to connect to the underlying ground water 

or caves. Few studies have examined the correlation between sinkholes and cave 

development (Shofner, Mills & Duke, 2001). 

 

The amount of water being added to the depression or point of recharge plays a 

key role in the time it takes for the sinkholes to develop, in addition to the vegetation and 
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soil thickness (Summerfield, 1997; Wilson & Beck, 1992). The thickness and amount of 

vegetation can slow the chemical weathering and erosion processes on the rocks below 

(Summerfield, 1997). However, more vegetation can increase the soil solution 

weathering process due to the rise in carbon dioxide it consumes (Ritter, 1978). Climate 

can also be an important factor in sinkhole development. An area that is normally warmer 

and wetter is capable of developing sinkholes at a much higher rate. This is due to the 

chemical weathering process allowing the rock to break down at a greater rate. This can 

be seen when comparing locations in the United States to those in Jamaica or New 

Guinea (Harmon et al., 2006). 

 

Sinkhole Examination Methodology 
 
 

Studies in the past have used manual methods to analyze sinkholes. A pioneer 

study on this subject focused on the morphometric analysis of polygonal karst in New 

Guinea (Williams, 1971). This study examined sinkhole landscapes and their correlation 

to networking karst. It showed that well-defined sinkhole plains tend to form connected 

pentagonal structures. The study took into account three types of polygonal karst, which 

consisted of pinnacle, conic, and linear. It determined area, length, width, ratio, 

symmetry, and orientation, as well as calculated nearest neighbor distribution to try to 

understand how this sinkhole plain had developed. 

 

Another similar analysis was performed by Sweeting (1973). This paper analyzed 

the correlations between percent area drained, structure orientation, and alignment/ 

elongation using a logarithmic scale. It demonstrated that there was also a correlation 



9  
 
 

between the surface karst and the drainage patterns (Sweeting, 1973). These spatial 

analysis patterns were some of the first well-documented examples. A more recent 

analysis in Northeast Spain examined evaporite collapse sinkholes. This was done using 

GPS, aerial photos, and field observations, which were all used to identify the increase in 

sinkhole activity. These studies took into consideration the following: mean area, total 

area, maximum area, maximum length, mean length or diameter, maximum depth, mean 

depth, and total volume (Guerrero, Gutierrez, Bonachea, & Lucha, 2008; Gutierrez, 

Cooper & Johnson, 2008). Several studies have combined the analysis of morphologies 

and spatial distribution. In particular, a study in Florida utilized GIS and topographic 

maps to digitize 25,000 sinkholes. The study then identified depth, major axes, 

circularity, length/width, mean diameter, width, length, perimeter, and depression area 

and analyzed correlations and spatial patterns (Denizman, 2003). Their finding identified 

that GIS is capable of removing human error and provides an efficient way of analyzing 

sinkholes and their characteristics. The limitations to the study consisted of resolution 

with five feet contour lines, and the possible human error in manually digitizing. 

 

More advanced procedures were utilized in a study analyzing spatial distribution 

and pattern of sinkholes in Maryland along I-70 based on the Gibbsian Point process and 

the Strauss Model (Zhou et al., 2003). It was found there was a correlation between 

distance and orientation of the examined sinkholes. The Strauss Modeling was then 

performed with seven key factors including topography, proximity to topographic 

depressions, interpreted rock formation, soil type, geophysical anomalies, proximity to 
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geologic structures, and thickness of overburden. This process was also used to more 

accurately predict where future sinkholes may develop (Zhou et al., 2003). 

 

Other models have been developed specifically looking at nearest neighbor 

relationships among sinkholes. For example, Galve et al. (2009, January 1) evaluated and 

compared methods of estimating sinkhole susceptibly by mapping evaporite karst in the 

Ebro Valley. Several different methods were included: sinkhole density, probabilistic 

analysis, heuristic scoring, and, most importantly, the nearest-neighbor distance. The 

nearest neighbor analysis was found to be the most accurate and reliable, while other 

models varied significantly. The research also pointed out that in order to make the 

models more accurate, the appropriate and most relevant information must be obtained 

(Galve et al., 2009, October 15). A similar model was developed to identify the key 

variables that affect sinkhole development in the Northeast portion of Spain (Lamelas, 

Marinoni, Hoppe, & Riva, 2008). The results were then processed using logistical 

regressions to determine these key variables. The model concluded that sediment 

thickness is a primary variable and several environmental factors play a significant role in 

developing sinkholes (Lamelas et al., 2008). 

 

These models allow one to determine the factors that are most applicable to 

sinkhole development. Using newer technology, several recent studies were able to 

produce sinkhole density models, such Gao, Alexander, and Barnes (2005) study of 

sinkhole distribution. This paper tested some of the traditional techniques used in 

sinkhole analysis, referring to the nearest neighbor analysis, as well as distinctive sizes of 
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sinkholes plains and their clusters. Sinkhole density, orientation, and distribution were 

also taken into account. They created what they call a Karst Feature Database (KFD) that 

allows incorporating multiple layers to eventually analyze what factors are the most 

influential to sinkhole risk and development (Gao, Alexander, & Barnes, 2005). 

 

In summary, most existing studies focused on analyzing the overall distributions 

and correlation among sinkhole characteristics, as well as implementing other criteria into 

the analysis to better understand sinkhole distribution. In particular, several studies 

examined distribution using nearest neighbor methods, which also included the analysis 

of different morphological characteristics, such as shape, size, and orientation (Williams, 

1971; Jennings, 1985). Other studies developed models to try to understand the 

distribution and predict formation of future sinkholes using various factors (Gao, 

Alexander, & Barnes, 2005; Galve et al., 2009, January 1; Zhou et al., 2003). Many of 

these models have incorporated the key factors to identify sinkholes and their 

distribution; however they haven’t taken into consideration the use of LiDAR in a large 

study area. LiDAR is much higher resolution than many of the previous studies have used 

and provide much better results. 

 

State of Knowledge on Sinkhole Distribution 
 
 

Sinkhole Distribution is key to understanding the development and what factors 

may drive them, and how they could be affected or affecting urban areas. Sinkholes 

develop based on geologic structural attributes, the differences between the shape and 

size are a direct result of the terrain based where they are found. Geological and climatic 
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characteristics allow them to grow from small individual sinkholes to compound 

sinkholes or uvulas (Ford & Williams, 2007). The key to development of sinkholes is the 

draw down in ground water levels produced by an initial sinkhole that introduces a 

hydraulic gradient that removes soil cover and removes sediments from joints (White, 

1988). 

 

Geomorphologists have determined sinkhole characteristics by examining the 

distribution of sinkholes in various regions of the world (Denizman, 2003; Hyland, 

Kennedy, Younos, & Parson, 2005; Galve et al., 2009 January 1; Gao, Alexander, 

&Tipping, 2005; Whitman, Gubbels & Powell, 1999; Williams, 1971; Zhou et al., 2003). 

The main types of analysis include the examination of growth patterns, change over time, 

and change in patterns in space. Sinkhole volume is very similar to a cone shape; 

therefore the depth typically increases with a growing surface area. Another example, 

cockpit karst can form due to a thick layer of carbonate rock forming small valleys and 

even creating small river networks within. In this instance, the depth and area have no 

correlation between them (Ford & Williams, 2007). 

 

Sinkholes have been identified as having a variety of distribution patterns and 

morphological characteristics throughout the world. An early analysis of karst 

morphologies was done by Williams (1971) in New Guinea. This research demonstrated 

a developed network of sinkholes or pitted landscape. This landscape was identified as a 

uniform, cellular network of polygonal karst. Small identical features grew over time 

forming these features as they were subject to the development only within the karst 
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region. If the sinkholes grew large enough, they would merge adjacent boundaries and 

form uvulas, however, still holding the structural shape (Williams, 1971). 

 

A study in Virginia determined the relationship between four factors as keys to 

sinkhole development. These factors consisted of the depth of soil to bedrock, proximity 

to geologic faults, and proximity to surface streams. The key findings were that sinkholes 

are sparse near streams, they are primarily found in pure carbonate rock of Ordovician 

age, and they are more prone to occur near fault lines (Hyland et al., 2005). Another 

study in Maryland showed similar characteristics with geology playing a key role in the 

distribution, with irregular bedrock surfaces, easily erodible soil, and well-developed 

joint systems within the rock. The distribution, however, was irregular, but with 

clustering patterns mostly occurring within a 30- meter radius of each other. Intensive 

land use caused more of these to develop within those areas (Zhou et al., 2003). 

Southeastern United States has rather unique karst, especially in Florida, where 

several reports illustrated a correlation between water table and clustering. This illustrates 

the importance of hydrostatic loads in sinkhole hazards within the region (Whitman et al., 

1999). Others point out recharge areas are significant on specific surfaces, in this case 

elevated sandy ridges. Most sinkholes develop during certain times of the year around 

April and May as this point is the normal low for ground water (Wilson & Beck, 1992). 

Some areas, however, show little signs of spatial patterns with variation in small regions 

(Denizman, 2003). Analysis of sinkholes in Minnesota has demonstrated slightly 

different results (Gao, Alexander, & Tipping, 2005). The study showed sinkholes in that 

region tend to form in highly concentrated zones. The clustering changes, however, 
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depending on the scale of 2-100 km2. The study also demonstrated sinkholes tended to 

form in similar geologic and geomorphic settings. In addition, the hydraulic gradient 

impacted newly forming sinkholes. It was also evident sinkholes may follow linear 

terrain trends. Evidence illustrated sinkholes developed differently between the Cedar 

Valley and Galena/Spillville Karst and Prairie du Chien Karst with more clustering in the 

Cedar Valley and Galena/Spillville Karst. Certain counties within the study area 

exhibited clustering parameters; however, others did not. (Gao, Alexander, & Tipping, 

2005). 

Other regions of the world, for example Spain, illustrate similar findings as 

pertains to the distribution of sinkholes. Elevation among different terrace levels played a 

key role in the sinkhole development and distribution (Lamelas et al., 2008). The second 

primary factor identified was irrigation practices and their impact on the water table 

gradient (Lamelas et al., 2008). Other regions of Spain have illustrated joint sets have 

been the major contributor to the development of the sinkholes (Galve et al., 2009, 

January 1). 

 
LiDAR and Digital Elevation Models 

 
 

LiDAR stands for Light Detection and Ranging and uses the same principles as 

other active remote sensing techniques. The LiDAR instrument directs short laser pulses 

to the Earth’s surface (Vacher, Seale, Florea, & Brinkmann, 2008), and records the time 

it takes for the light to reflect back to the plane. The receiver records the time interval in 

fractions of a second calculating the distance based on the speed of light to determine 
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elevation. A GPS system acquires the position, and the location information is stored 

along with the LiDAR data in the file format, XYZ or LAS (Ritchie, 1995; Figure 2). 

 

LiDAR has advanced the geomorphologic applications of remote sensing 

significantly. The elevation data produced in the past primarily ranged from ten to thirty 

meters resolution, which allowed only the analysis of large elevation structures. 

However, with the resolution of LiDAR on average being around one meter, it is possible 

to discern considerably smaller details, making it more effective, realistic, and accurate. 

The increases in accuracy and resolution have opened new opportunities to terrain 

analysis including the detection of sinkholes (Montane, 2001). 

 

 
 

 
Figure 2: Illustrates the process of LiDAR data collection based on aerial collection. 

(http://forsys.cfr.washington.edu/JFSP06/lidar_technology.htm, n.d.) 

http://forsys.cfr.washington.edu/JFSP06/lidar_technology.htm
http://forsys.cfr.washington.edu/JFSP06/lidar_technology.htm
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Digital Elevation Models (DEM) can be derived from several types of remote 

sensing data using a variety of techniques (Chang, 2008). The development of higher 

resolution DEMs has allowed scientists to study terrain features with much more detail 

than previously possible (Chang, 2008). Prior to LiDAR, the best DEMs were typically 

thirty-meter resolution. The coarse resolution had been a limiting factor in the use of 

DEMs for sinkhole studies because it made it difficult to distinguish smaller sinkholes. 

 

Sinkholes and LiDAR 
 
 

Recently, a number of researchers have analyzed sinkholes using LiDAR. Many 

of these studies have been methodological and focused on identifying the most suitable 

way to identify sinkholes using LiDAR. In conjunction with that process, they have been 

accessing the accuracy of LiDAR-based methods. For example, Seale, Florea, Vacher, 

and Brinkmann (2008) conducted a study in Pinellas County, Florida where sinkholes 

have already been recognized utilizing aerial photography and concluded with ground 

truthing methods. The objective of their study was to assess the accuracy of LiDAR 

compared to that of the original methods of aerial photography. They identified more 

sinkholes by LiDAR than by aerial photography; however closer examination of the 

results indicated their use of contours for sinkhole extraction resulted in a lower degree of 

accuracy and some depressions had outlets, identifying that these in fact were not 

sinkholes. The other problem they encountered was residential areas caused a problem as 

swimming pools and other round objects were detected as sinkholes. Therefore, it is 
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essential to assess the LiDAR data by ground truthing and aerial photography (Kruse, 

Grasmueck, Weiss, & Viggiano, 2006; Seale et al., 2008). 

 

Other studies attempted to demonstrate whether LiDAR is able to distinguish the 

underlying geology as well. Several projects used ground-penetrating radar (GPR) to 

evaluate the accuracy of LiDAR. Montane (2001) examined a small area within Florida. 

Using LiDAR data to extract morphology, the accuracy was assessed using ground 

surveying. The GPR was then utilized to assess the underlying geology to determine if 

there was a correlation between surficial geology and bedrock geology. The results 

showed that the LiDAR was able to extrapolate some underlying features; however, it 

was not as accurate as it was hoped (Montane, 2001; Kruse et al., 2006). 

 

Filin, Avni, Marco, and Baruch (2006) examined sinkhole distribution using 

LiDAR data in the Dead Sea region. They found, based off their model which utilized 

remote sensing techniques, that the sinkhole description is best featured by discontinuity 

of the first derivative of the DEM surface. The realization of this method gave a very 

clear appearance of sinkholes on the digital maps. This indicates the appropriateness of 

using LiDAR for detecting these geomorphic features. The study was also able to extract 

quantitative information about sinkholes, most importantly volumetric information, 

which gives an insight into soil erosion processes. 

 

The analysis of the recent literature illustrates the LiDAR-based methodologies 

produce high quality results in respect to detecting and characterizing sinkholes. They 

also demonstrate the importance of further testing of LiDAR techniques as tools for 
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determining sinkhole distributions. In addition, the increasing volume of these types of 

studies will allow a better understanding of the dynamics of the whole karst system. 

 

Environmental 
 
 

Environmental studies have also been conducted on these sinkhole features due to 

their direct correlation with ground water and ground water quality (Hallberg & Hoyer, 

1982; Huber, 1989; Parise, Waele, & Gutierrez, 2009). Several studies also investigated 

people’s understanding and the possible implications that can occur if sinkholes are not 

dealt with properly (Huber, 1989). Mitigation plans have also been introduced to these 

karst sinkhole areas. They focus not only on the road and building structures, but also 

possible ways to eliminate probable contamination areas (Gutierrez et al., 2008; Zhou et 

al., 2003). Other studies have examined the impact people have made on karst 

(Podobnikar, Scho"ner, Jansa, & Pfeifer, 2008). Sinkholes can also have a significant 

impact on agricultural activities. Studies have examined the effects fertilizers and 

livestock have on sinkholes by determining infiltration rates or changing morphological 

characteristics (Boyer & Alloush, 2001). Given the important implications of karst in 

various domains of human activity, it is important to focus on analyzing karst in respect 

to environmental and hazardous consequences of sinkhole formation. 

 

Sinkholes in Iowa 
 
 

Although there has been a significant amount of research devoted to karst 

landforms, and sinkholes specifically, a greater diversity of field sites is needed to 

understand their development. Several studies have examined the distribution and factors 
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affecting sinkhole development in Iowa. Previous work has provided an insight into 

understanding karst geology in Iowa (Groves et al., 2008; Hallberg & Hoyer, 1982; Prior 

et al., 1975). Several studies were done in Iowa on the distribution of sinkholes. The 

analysis of Floyd County illustrated that solutional feature began forming during the 

Cretaceous time period (Palmquist, 1977; Prior et al., 1975). Since then they were 

covered by drift in some locations and have slowly been evolving into their present day 

shape. Morphometric factors identified with sinkholes in Iowa illustrated they were found 

to have intermitted streams ending in them. Uvulas are common with a majority of them 

developing vegetation such as shrubs and trees within them. The primary shape of 

sinkholes was funnel shaped with circular or oval outline, some illustrated a bedrock base 

to them, and there was a large range in depth from 1-26 feet with the average of 8 feet. 

These sinkholes also ranged in size from 6 to 215 square feet in surface area with 

averages around 60 square feet. However, there are also many small shallow sinkholes 

less than two feet in depth and 3 square feet in area. Finally, a Nearest Neighbor Analysis 

was run on the sinkholes in the area and determined an R value of 0.02 illustrating 

considerable clustering (Groves et al., 2008). 

 

A technical report, “Geologic Mapping for Water Quality Project in the Upper 

Iowa River Watershed,” illustrated some interesting findings about sinkholes in that area. 

By using LiDAR technology, they identified double the amount of sinkholes compared to 

previous surveying methods. If this holds true, Iowa’s current number of sinkholes will 

show up as approximately 36,000 using LiDAR techniques (Wolter et al., 2011). The 

report also concluded that geology played a significant role in the location of sinkholes 
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within the Dunleith formation and the Galena Group. They illustrated sinkhole density of 

 
19.3 and 13 per square mile, respectively (Wolter et al., 2011). 

 

 
The historic analysis of sinkholes in Allamakee County was by Palmquist (1977). 

A simple model was created to determine the environmental and temporal controls of 

sinkhole development. It was found that sinkholes occurred 5,000 years ago after 

development of the original surface. Multiple regression analysis indicated that sinkholes 

formation and propagation were inversely related to local relief and the extent of surface 

drainage. There was a positive correlation with the Fayette soil and inversely with local 

relief.  The main conclusion was the major control of these sinkholes is the ground water 

recharge. This also correlates with sinkhole aquifers as the permeability and lithology are 

important.  Other research in Northwest Illinois, Southwest Wisconsin, and Southeast 

Minnesota can also be linked to Northeast Iowa since it deals with the same geologic 

groups and formations (Anderson, 1998). This area is also considered to be the driftless 

region that has not been impacted by recent (Wisconsinan or Illinoian) glacial advances 

(Prior, 1991). 
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CHAPTER 3 
 

STUDY AREA AND METHODOLOGY 
 

 
Study Area 

 
 

This study involves two research stages. The first stage is to develop and assess 

LiDAR-based methodologies of detecting karst features and two smaller sites used to test 

extraction methods are labeled study area 1 and 2 as study sites. The second part of this 

study focuses on the analysis of sinkhole distribution, characteristics, and typology and 

focuses on the entire area of the nine counties in Northeast Iowa. 

 

The study area includes nine counties in Northeast Iowa: Howard, Winneshiek, 

Allamakee, Clayton, Fayette, Delaware, Dubuque, Jackson and, Jones (Figure 3). The 

total area of these counties is 5,769 square miles in size. It spans a distance of 107 miles 

from north to south and 122 miles east to west at its greatest points. The area is known to 

be a scenic area within Iowa as its elevation change is much greater than in other areas of 

the state, with increasing elevation variability towards the Mississippi river (Prior, 1991). 

The change in elevation is 738 feet throughout the study area with 1440 feet in Howard 

County to a low of 702 feet in Jackson County.  This region is also heavily vegetated 

compared to the rest of the state due to the dramatic elevation change limiting row crop 

farming. 

 

Two representative study areas in Iowa, roughly two square miles in size, were 

used to complete the first stage. Study area 1 is located just east of the intersection of 

Locust Road (County road or Highway W38) and Canoe Ridge Road, approximately four 
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miles north of Decorah Iowa in Winneshiek County (Figure 4). This study area is 

predominantly farmland and contains approximately ten buildings. Many terraces are 

found here due to the high relief areas. These high relief areas are known as the driftless 

region in Iowa as it was not glaciated by the most recent glacial advances allowing the 

karst region to continue to develop (Groves et al., 2008). This area was selected for 

several reasons. The first determining factor was this area represented Northeast Iowa’s 

agriculture areas and provides several varieties in shapes of sinkholes. Second, the (DNR) 

already identified sinkhole locations and boundaries within this area. This allows the 

possibility of comparing the sinkholes detected using the new method and those 

identified by DNR. Study area 2 is situated approximately eleven miles north of 

Dyersville, Iowa. It is located northwest of the White Pine Hollow State Park on DNR 

land and also within the park itself. The area falls within three counties including 

Clayton, Delaware, and Dubuque counties (Figure 5). This area is heavily vegetated with 

a significant degree of elevation change from the bluff to the river valley. The area was 

selected for several reasons. First, it is a highly vegetated area that has visually 

discernible sinkholes. At the same time, the DNR has not identified any sinkholes within 

this study area, and several articles (Seale et al., 2008; Montane, 2001) mentioned that 

LiDAR was not very accurate or capable of identifying sinkholes in dense vegetation. 

Finally, this area was easily accessible because the DNR owns the land. 
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Figure 3: Distribution of sinkholes throughout Iowa based on the DNR; the numbers 

displayed illustrate the amount of sinkholes within that data set. 
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Figure 4: A hillshade image of study area 1 allowing visual identification of sinkholes. 
 

 
 

 
 

Figure 5: A hillshade image of study area 2 of the dense sinkhole landscape. 
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Geological Characteristics of the Study Area 
 
 

The geology of Southeast Minnesota and Northeast Iowa is relatively similar 

(Gao, Alexander, & Tipping, 2005). The geologic groups and formation mentioned 

earlier consist of predominately limestone and dolomite that formed mainly within the 

Ordovician with minor development in the Silurian and Devonian geologic time periods 

(Anderson, 1983; Figure 6). There are also intermittent layers of shale, and at the bottom 

of the sequence is a significant amount of Sandstone, which developed during the 

Cambrian (Anderson, 1998; Groves et al., 2008). 

 

The sinkholes found in Iowa belong to the following geological formations and 

groups: Galena group and Platteville formation; Hokinton, Blanding, Tete des Morts, and 

Mosalem formation; St. Peters Sandstone and Prairie du Chien group; Maquoketa 

formation; Wapsipinicon group; Cedar Valley group and several others with less 

significance (Figure 7). All of these units formed approximately 400-475 million years 

ago (Anderson, 1983). The geological structures consist of vertical joints controlling the 

flow direction of some streams (Anderson, 1998). More specifically, there are certain 

geologic formations that allow the development of sinkholes to occur in greater capacity. 

In particular, these formations are Galena group and Platteville formation, Hopkinton, 

Blanding, Tete des Morts, and Mosalem Formations (Silurian Formation), which account 

for approximately 85 percent of the study area in Iowa sinkholes based on IDNR historic 

data (Anderson, 1998). 
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Figure 6: Illustration of the stratigraphic column within Northeast Iowa. 

(Anderson, 1998, p. 80). 
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Figure 7: A bedrock geology map of Northeast Iowa; data source IDNR. 
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LiDAR 

Data 

 

The LiDAR data for the small study areas in Iowa was acquired from the 

GeoInformatics Training, Research, Education, and Extension Center (GeoTree, n.d.) at 

the University of Northern Iowa. The LiDAR data for the nine counties in Iowa were 

collected from the IDNR (Table 1) and processed to one-meter resolution (Iowa Lidar 

Consortium, n.d.) and displays a vertical accuracy is +/- 18 cm. The horizontal accuracy 

is 1 meter with 1.4 meter average point spacing. 

 

 

Geologic 

 

Geologic bedrock with the Groups and Formations data were obtained from the 

IDNR  (Witzke, Anderson, & Pope, 2010). Three existing sinkhole datasets were also 

incorporated into the project. One dataset contains polygons with sinkhole shape area and 

shape length attributes (Iowa Department of Natural Resources, 2012; Table 1). The other 

two contain only point locations and identification numbers. All three of these sinkhole 

datasets have been developed by IDNR (Iowa Department of Natural Resources, 2013). 

 

Physical and Infrastructure Variables 

 

Strahler river order data for perennial streams was collected and developed by the 

Iowa DNR (Iowa Department of Natural Resources & Geological Survey Bureau, 2000). 

The original statewide dataset was clipped to the boundary of the study region. The rivers 

were ordered one through six within the study area and presented as vector lines. The 

road layer was derived from the Iowa DNR GIS website in the form of vector lines (Iowa 
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Department of Transportation, 2007). The data was also clipped from statewide data to 

the boundaries of the study area. Urban areas were also implemented into the model as 

they were delineated by vector boundaries and clipped by the study area (U.S. 

Department of Commerce & U.S. Census Bureau-Geography Division, 2010). A 15x15 

meter raster land cover dataset was created by the Iowa DNR was also incorporated 

(Iowa Department of Natural Resources & Geological Survey Bureau, 2008). The land 

cover data set was classified into 12 different categories. The categories consist of: 

background, water and wetlands, forest, grassland, cropland, urban and barren, no data, 

persistent water and wetland, persistent forest, persistent grassland, persistent cropland, 

persistent urban and barren, and very persistent grassland. Bing Imagery through ArcGIS 

was also utilized to identify sinkhole location and other possible questionable features, to 

help aid in visual identification. All of the data that was utilized within the study was 

projected in Universal Transvers Mercator, Zone 15 North by the Iowa DNR. All of the 

data was clipped to the study area size. 
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Table 1: List of data used and their sources 
 

Iowa Data                    Source 

LiDAR                         GeoTREE 

LiDAR           Iowa Department of Natural Resources 

Geologic units        Iowa Department of Natural Resources 

GIS Sinkhole layers Iowa Department of Natural Resources 

Aerial photos                Bing Imagery 

Strahler river order Iowa Department of Natural Resources 

Road layer           Iowa Department of Natural Resources 

Urban areas          Iowa Department of Natural Resources 

Land cover          Iowa Department of Natural Resources 

Slope 30 meter             Iowa Department of Natural Resources 
 
 

 

Field Data Collection 
 
 

A field survey was conducted within the two small study sites to assess the 

accuracy of the automated model. The field survey involved the measurement of 73 

sinkholes. The sinkhole data were measured using a Trimble GeoXH 6000 Series GPS 

unit. TerraSync software was utilized to assemble the data and transfer it into ArcGIS. 

The sinkhole data collection occurred in late October and early November when the tree 

foliage was a minimum and crops were removed from the field to allow the most access 

to collect accurate GPS coordinates. A relatively small number of sinkholes were 

collected from Study Area 1 due to the lack of access to certain private properties. 

However, it was essential to collect these data in order to be able to complete a cross 

check between the newly developed model, DNR data, and ground data (Figure 10, 

Figure 11). The majority of the ground truth data for accuracy assessment was collected 

in Study Area 2 (Figure 8, Figure 9). The data acquisition in this area was easier since the 
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sinkholes were primarily located on the DNR owned land. Furthermore, The DNR had 

not identified any sinkholes at this location, therefore determining the accuracy of field 

data for my model was used. 

 

 
 

 
 

Figure 8: Study area 2 showing the general topography of the region. 
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Figure 9: A sinkhole in study area 2, photographed during GPS boundary 

measurement. 
 

 
 

 
 

 
 

Figure 10: An Uvala formation in study area 2. 
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Figure 11: A major sinkhole in study area 1 and surrounding farm field. 
 

 
 

Data Processing 
 

The LiDAR data were used to develop a digital elevation model (DEM) of the test 

study areas. This DEM was created within the ArcGIS 10.1 environment. The first step of 

the analysis was to examine the existing DNR sinkhole data and three LiDAR-based 

sinkhole extraction methods to assess their accuracy. This was done on the two testing 

sites representative of the larger study area. The accuracy assessment was conducted 

through ground truthing and aerial photo interpretation, as well as DNR data, where 

available. Field surveys and airborne imagery are crucial to this process as it ensures that 

sinkholes have been properly identified and mapped (Seale et al., 2008). 

 

The LiDAR dataset was created within ArcGIS utilizing two tools. The first tool 

can be found within the 3D Analyst Tools, under Conversion from File. It is called ASCII 
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to Feature Class. Parameters that were set within this were one meter resolution with 1.4 

meter point spacing (based on the IDNR measurements). Once the first tool had finished 

processing, an interpolation was conducted using the Inverse Distance Weighted (IDW) 

method in order to create the elevation surface map (DEM). The interpolated elevation 

was assigned to each pixel. 

 

In order to handle complex geoprocessing operations, further processing was 

implemented in the ArcGIS Model Builder. DEM data from the two test study sites were 

processed using three different methods to identify the best sinkhole identification model 

that would be applied on the entire study area. The three methods tested in this study 

were: (1) using Fill and Slope (first derivative) to determine enclosed areas and define 

sinkhole boundaries; (2) utilizing the slopes second derivative; and (3) using an object- 

oriented technique (using the eCognition software) derived from remotely sensed data, 

allowing the capability to extract features (Chen, Su, Li, & Sun, 2009). GIS software was 

employed to perform the spatial extractions. The methods were tested against the already 

derived polygon and point sinkhole locations available from the DNR (site 1) and field 

ground truth data (site 2). Aerial photos provided by the DNR and Bing Maps Aerial 

imagery were used to assess the accuracy of the derived sinkholes. The most accurate 

LiDAR-based sinkhole extraction technique or combination of techniques was applied to 

the entire study area. 
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Sinkhole Identification Methodology 
 
 

The large mosaic LiDAR data were acquired from the Iowa DNR. These LiDAR 

data were partitioned into sections, which ranged in a variety of sizes, for processing. The 

sizes varied from half a county to a county in size. Altogether, 22 sections made up the 

entire study area. Although these multi-tile sections overlapped slightly, it was possible to 

remove overlaps by using the Dissolve tool in ArcGIS. 

The next step was to assign the correct coordinate system and projection. The 

system that is used by the Iowa DNR is Universal Transvers Mercator, Zone 15 North. 

Once all data for Iowa sections of the study area were projected in the correct coordinate 

system, the next step was to implement them into the model. 

 

 
 

Automated Identification Model for Sinkholes (AIMSINK) 
 

The Automated Identification Model for Sinkholes (AIMSINK) developed in this 

study includes six submodels. The submodels are portions of the entire models that deal 

with a particular geoprocessing task.. 

Submodel 1: Slope Extraction 
 

The first stage of the model consisted of two main processes. First was to extract 

slope from the DEM and the second was to utilize the Fill tool to identify sinkholes 

(Figure 12, Figure 13). The Slope tool was run over the study area. Based on literature 

(Hyland et al., 2005) and from testing 322 sinkholes, it was determined that an angle of 

15 degrees or higher would yield the slope of a sinkhole. The Reclassify tool was used to 

classify areas of greater than 15 degrees, and then Majority Filter tool was employed 
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several times to help remove the remaining random isolated pixels, leaving large areas 

with slope greater than 15 degrees remaining. 

Submodel 2: Filling Closed Depressions 
 

The Fill tool was then applied to identify the sinkholes (Figure 12, Figure 13). It 

was a tool derived by Tarboton, Bras and Rodriguez–Iturbe (1991) which has since been 

implemented into ArcGIS tools. This tool takes into account several of the hydrologic 

tools in ArcGIS (Focal Flow, Flow Direction, Sink, Watershed, and Zonal Fill) to 

identify characteristics of closed depressions. The raster calculator was then used to 

subtract the new filled layer from the original layer in order to determine where the 

sinkholes were located. Next the Reclassify tool was used to identify only the values 

greater than zero or any areas that were filled. 

Submodel 3: Combining Fill and Slope to Identify Sinkhole Boundaries 
 

The key to this model is the combination between the fill and slope functions. By 

taking the two classified raster layers, fill with greater than 15 degrees set to one and 

remaining dataset to zero, and slope area greater than one set to two and remain dataset to 

zero, and combining them together will result in the high probability of determining the 

location of a sinkhole. To extract the sinkhole boundary a sum of the two layers was 

computed (layer 1 = Fill classified as 1) + (layer 2 = Slope classified as 2) which would 

add up to three, identifying the sinkholes. However, the actual sinkhole boundary is on 

average slightly larger, therefore a larger area must be selected (because the fill tool only 

fills to the lowest elevation, and in many cases this isn’t appropriate sinkhole perimeter). 

To do this the raster layer was converted to vector. The vector layer then had values of 
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zero meaning no data, one meaning fill, two meaning slope, and three meaning the 

combination between fill and slope. The Select by Attribute tool was used to select 

combination layer. The Select by Location tool was implemented to identify any 

boundary that intersects with the combined fill and slope layer. This layer was then added 

to it creating a much more representative depiction of the sinkhole boundary making it 

slightly larger. From here, the selected regions were converted back to raster and then 

back to vector to create one single attribute boundary (Figure 12, Figure 14). 

Submodel 4: Calculating Sinkholes Area and Axes 
 

In order to remove area of false identification of sinkholes, further methods were 

applied. First, the three following tools were applied: a Smoothing tool to better represent 

the curvature of the perimeter of the sinkhole and to remove the angulation of each of the 

polygons. That was followed by a calculation of area for all the sinkholes. Finally, the 

third tool used was the Minimum Boundary Triangulation tool created by Charlie Frye 

(Minimum Bounding Rectangle [MBR] Analysis tools, 2008). This tool essentially 

identifies if a shape is lineated or spherical. It calculates the two axes of the polygon and 

then assigns a ratio value to that sinkhole (Figure 12, Figure 14). In this case, features 

with the ratio value of 4.0 or less, which means four lengths to one width, would still be 

identified as sinkholes. This threshold was used because all 685 LiDAR identified 

sinkholes in both test study areas fell under the ratio of 4. 
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Submodel 5: Eliminating Non-Sinkhole Features 
 

Several types of depressions found in the landscape can be misclassified as a 

sinkhole; these include: road ditches, bridges, urban areas, farmsteads, quarries, etc. 

Therefore some elimination procedures were used to remove the polygons that are not 

sinkholes (Figure 12, Figure 14). First, the Selection by Attribute was used to identify 

polygon areas, in this case between 12 square meters and 12,000 square meters. These 

parameters were determined by examining 563 sinkholes in the test study areas. Next, a 

Select by Attribute was used to select those polygons that had length and width axis ratio 

greater or equal to 4.0. That method removed all large and linear segments, such as linear 

slivers along roads. The next step was to remove other areas, such as roads and urban 

zones. Urban areas are problematic and a previous study illustrated that the accurate 

identification of sinkholes in urbanized landscapes is difficult due to noise from building, 

over passes, retention ponds and other features (Seale et al., 2008). Roads were buffered 

at 120 meters. The buffer was determined using a random sampling of 60 roads in 

Northeast Iowa. The 120 meters covers from the ditch on one side across the road to the 

ditch on the other side. This was done to eliminate any ditches being identified as 

sinkholes. The urban areas were then merged to the road layer in a sub selection to create 

an urban layer. This layer was then removed from the selection to help identify the 

possible sinkhole locations. 

As the majority of sinkholes in Iowa occur in upland areas, to remove river 

valleys a Strahler river order classification was used. The first order perennial streams 

were buffered at 20 meters, second order by 40 meters, third order by 60 meters, fourth 
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order by 80, fifth order by 100 and sixth order by 120 meters. This layer was then 

removed from selection. 

Outside of Model: Additional Elimination of Non-Sinkhole Features 
 

The main model tries to identify sinkholes and their boundaries, as well as 

determine the boundary of the sinkholes using an automated technique of primarily two 

tools. There were some selected areas that did not contain sinkholes, therefore the 

geology layer was used to identify the more likely geologic units that could produce 

sinkholes. The sinkholes that fell within these geologic units were selected utilizing 

Intersect tool. A vegetation layer raster was converted to vector and then used to intersect 

the geology boundaries, to identify main sinkhole-related vegetation types that fall within 

the geologic units. The sinkholes layer was now derived from the data. The problem, 

however, was that several areas picked up anthropogenic sinks. These sinks consist of 

roads, dams, and terrace features that needed to be removed. To do this, a land cover 

image from the IDNR was utilized to select areas with forest and grass lands, and to 

remove agriculture areas. The 15-meter resolution image was reclassified into these two 

categories and then converted to vector. It was then intersected with the sinkhole layer. 

This process was tested on a random sample of 300 sinkholes before it was implemented 

into the model. Next, the Iowa DNR data illustrated that 85 percent of sinkholes fall 

within two geologic units (Figures 6, Figure 7). Therefore, a selection of the top three 

geologic units was identified as having the most sinkholes was used. These three regions 

were then intersected with the sinkhole layer. These boundaries identified were then 

employed back into the model. The remaining selected features are then input into the 
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Eliminate polygon tool that removes any holes within the polygon layer, creating one 

uniform layer. The layer is the vector layer that contains final sinkhole boundaries. 

Submodel 6: Extracting DEM Data for Identified Sinkholes 

After sinkhole boundaries were identified, the next task was to obtain information 

on sinkhole volume and other geomorphological characteristics (Figure 12, Figure 14). 

For this purpose, the final layer was utilized to extract the original elevation data to 

confirm the boundaries of sinkholes, so that all parts of the sinkhole are obtained. 
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Figure 12: The Completed 

AIMSINK model. 
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Figure 13: Left side of model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Right side of model. 
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Accuracy Assessment Methods 
 

Accuracy assessment was implemented on four different tiles; one-tile comprising 

of site 1 and three tiles (accounting for all GPS locations) comprising of study site 2. The 

accuracy assessment was based on the ground truth information that consisted of already 

identified sinkholes by the Iowa DNR (which was done manually through heads-up 

digitizing), GPS coordinate locations collected in the field, and aerial imagery. 

Preparing Features for Geomorphological Analysis 
 

Further analysis examined morphology and possible genesis of sinkholes using 

quantitative characteristics derived from the LiDAR-based sinkhole maps. The 

geomorphological characteristics computed for further analysis consisted of: area, 

perimeter, width and length of axis, depth, geology, relative slope, and distance to river. 

The axes were already derived from the AIMSINK model and the area and perimeter 

were created in the attribute table and calculated utilizing the calculate geometry 

function. Geology layer was identified by means of the Intersect tool. 

 

Distance to rivers was determined by selecting first and second order perennial 

streams from the Strahler river order method in Northeast Iowa. The Extract by Mask 

tool was used to define the boundary of the study area. The analysis of 300 sampled 

sinkholes showed that the streams of high order do not influence sinkholes, and therefore 

only first and second order streams were selected utilizing the Near tool within Arc 

Toolbox. 

Relative slope needed to be calculated to identify possible correlations with 

sinkhole shape. The relative slope is the overall, average slope of the terrain surrounding 
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the sinkholes. A 30-meter resolution DEM was collected from the DNR website. The 

lower resolution DEM was too coarse to represent most sinkholes and other local 

topographic features. Therefore this DEM represented the average overall slope of the 

area. The Extract by Mask tool was used to define the boundary of the study area. The 

Slope tool was then used to determine the relative slope. In order to determine the 

prevailing slope, the sinkhole polygons derived from the model were converted to point 

locations. Then, it is possible to use the Sample tool. This provides the common slope in 

which the sinkhole is found and then adds it to the attribute table. 

The procedure used to calculate sinkhole depth consisted of several steps. First, 

the sinkhole elevation data was Extracted by Mask from a multi-tile 1 m DEM (Figure 

11, Figure13, submodel 5). The elevation data were then mosaiced together and the Fill 

tool was run to estimate the highest elevation of the sinkhole. To ensure that the fill 

operation produced the output that reached the boundaries created by the AIMSINK 

model, ten centimeters was added to reach the appropriate height. This was the minimum 

amount that could be added, based on the test study areas. Once the appropriate depth 

was identified, zonal statistics were implemented to calculate the maximum depth based 

on the sinkhole boundary layer derived from the model. 

Location and Geomorphic Analysis Methodology 
 

The first stage of the analysis considered the relationships among sinkhole 

variables (area, perimeter, width, length, ratio, depth) and the location variables (distance 

to river, relative slope and geology). Correlation analysis was used to reveal these 

associations. In addition to the correlation analysis, the principal components analysis 
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method (PCA) was utilized to better understand the covariance among the variables. 

Finally, the k-means clustering method was employed to determine the typological 

groups of sinkholes based on multiple characteristics (Field, 2005). 

Spatial analysis component of the study addressed two major questions. First, it 

considered whether the locations of sinkholes exhibit spatial pattern, and more 

specifically, whether they are clustered in space. Secondly, the analysis was performed to 

identify whether geomorphological characteristics of sinkholes (sinkhole geometric 

variables and location variables) demonstrate spatial clustering. Spatial clustering was 

examined using standard nearest neighbor analysis (Ebdon, 1985) and Ripley’s K (Boots 

& Getis, 1988) based on comparing mean observed distance between nearest points to the 

expected random distribution. 

The next part of the analysis considered whether sinkholes with similar 

geomorphological characteristics tend to locate next to each other. Global and local 

Moran’s I (Ancelin, 1995) and a Getis-Ord G (Getis & Ord, 1992) global coefficient (also 

known as the ‘hot spot’ analysis) was calculated for each individual sinkhole to show 

whether a given geomorphological characteristic is similar or different from its 

neighbors. The z score and p value represent the statistical significance of the input 

values. 

Anselin Local Moran’s I (also known as LISA – local indicators of spatial 

association) is an autocorrelation analysis method that takes into account the location of 

input sinkhole features and the input field (perimeter, area, width, length, ratio, depth, 

etc.). Based on these parameters, it identifies any spatial clusters of similar (positive 
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autocorrelation) or dissimilar (negative autocorrelation) values. It then classifies all 

observations that demonstrate significant autocorrelation with their neighbors into four 

groups. HH, which is, identifies statistically significant (.05 level) clusters of high values. 

It also recognizes statistically significant values of (.05 level) clusters of low values LL. 

For example, if sinkholes with large area are clustered near each other, such occurrence 

will be labeled as HH; conversely, a cluster of sinkholes with small areas will be 

designated as LL. Another group will be identified as HL grouping high values with 

features of low values. The final group is clustering low values with features of high 

values LH. Inverse distance was utilized for the type of conceptualization of spatial 

relationship; this was run on both the geometric variables and the locational variables. 

Inverse distance weighted considers neighbors of all features; however, closer features in 

this case are more likely to be associated with their neighbors than further distance 

neighbors (Anselin, 1995). 

Hotspot is similar to LISA in that it assigns weights to features; however, it is a 

slightly different mathematical calculation that identifies high and low spatial clusters. 

High values may be determined, but not identified as a hotspot (Ord & Getis, 1995). In 

order to be identified, all high values must be clustered together. The local sum of the 

features is then compared to the total of all the features. When the sum is different from 

the expected, then it assigns a value and determines its significance (Getis & Ord, 1992). 
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CHAPTER 4 

RESULTS AND DISCUSSION 

AIMSINK Results and Accuracy Assessment 
 

AIMSINK model as described in the previous chapter (Figure 12) was applied to 

a section of Northeast Iowa comprised of nine counties (Allamakee, Clayton, Delaware, 

Dubuque, Fayette, Howard, Jackson, Jones, and Winneshiek). The model identified 

47,445 sinkholes in this study area (Figure 15). The sinkholes are present in all nine 

counties with bands of higher concentration in several parts of this region. 

Accuracy assessment of the AIMSINK method was conducted using two test 

study sites. The ground-truth data used were the sinkholes digitized by Iowa DNR, GPS 

coordinate locations collected in the field, and analysis of digital aerial imagery (Figure 

16). The results for study area 1, demonstrate AIMSINK accuracy at 100% with GPS 

data, 97% with DNR data, and 88% with the results of visual examination and air photo 

analysis (Table 2). Unfortunately, the Iowa DNR has not published a formal accuracy 

assessment of their sinkhole layer; only visual identification based on aerial photos as 

well as some ground truthing has been performed (IDNR, 2012). In addition, the DNR 

dataset also includes historic sinkholes that may not be relevant to current LiDAR 

extraction techniques, because some of the sinkholes have been filled in or altered since 

they were identified. Study area 2 illustrated 99% accuracy of the model when comparing 

identification of sinkholes with those collected using GPS and 96% compared with visual 

analysis (Table 2). 
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Figure 15: A Map of 47,445 sinkholes identified by the AIMSINK model. 
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Figure 16: The image illustrates the accuracy of three sinkholes utilizing three different 

techniques. Yellow represents the boundary that was collected using GPS. Blue 

represents the boundary of the AIMSINK model and Red represents the boundary of the 

heads up digitizing the Iowa DNR produced based on the LiDAR data. 
 
 
 
 

Table 2: 

Accuracy assessment of AIMSINK in two study areas based three methods 

 
 
Location 

Ground truth 

method 

AIMSINK 

Accuracy 

Omission 

Error 

Commission 

Error 

Area1 GPS 100.0 % 0% 0% 

 Aerial imagery 88.0% 12.5% 19.5% 

 DNR 97.0% 1.0% 19.5% 

Area2 GPS 98.6 % 0.6% 0% 

 Aerial imagery 96.2% 4.0% 4.9% 

  DNR N/A N/A N/A   
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Statistical Analysis 
 

Statistical Analysis was performed on the entire dataset in SPSS, which included 

the variables area, perimeter, width, length, ratio, depth, distance to river and slope. 

Geology was excluded due to the categorical organization of the data. It is hard to 

incorporate these parameters into a ratio dataset with much larger variations in values. 

Further analysis was performed on the seven variables derived from the 

AIMSINK model. The two types consist of sinkhole geometric (morphological) variables 

and location variables. These variables were incorporated into the correlation analysis. 

The correlation matrix demonstrates several significant patterns (Table 3). 

Perimeter displayed a positive correlation with shape area, axis width, axis length, 

and ratio. This is illustrated by the fact that as perimeter gets larger, all planform features 

(shape area, width, and length) increase. There is a weak, but significant, negative 

correlation between perimeter and depth showing as the overall planform size increased 

depth decreases. The correlation between river distance and slope illustrates a positive 

relationship implying that sinkholes with larger surface areas perimeters develop further 

away from streams. There is also a weak, but significant, negative correlation between 

perimeter and regional slope. That relationship shows a slight trend towards larger 

sinkholes, in the planform, tend to develop on flatter slopes. 

The shape area shows positive correlation with the other morphological variables, 

illustrating as area increases geometric properties will too. There is also a weak, but 

significant, positive correlation to sinkholes and river distance indicating sinkholes with 

the larger areas tend to be found further away from rivers. It also displays a minor 
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negative correlation between slope and area. This implies that area increases at lower 

slopes. 

Width and length, which represent the long and short axes, exhibited similar 

results with the sinkhole planform variables with slight variation between ratios. The axes 

ratio represents the sinkhole circularity with one being perfectly circular and large 

numbers representing elongation.  A weak, but significant, negative correlation was 

found between length and depth, so as sinkholes get longer they tend to stay shallow 

relative to the overall dimensions. 

Ratio is similar to width and length when relating them to sinkhole planform 

variables. In addition, a weak, but significant, negative correlation between ratio and 

depth was identified (Table 3). This means that as the ratio increases, depth will decrease. 

There was also a slight negative correlation with river distance and the ratio. As the ratio 

increases, the river distance decreases meaning the sinkholes get longer closer to the 

rivers.  A small negative correlation was determined between ratio and slope. As the ratio 

increases the slope tends to decrease illustrating longer sinkholes are found on flatter 

surfaces. 

The remaining variable illustrates several other key correlations. Depth illustrated 

a weak, but significant, correlation with rivers showing that depth increases further away 

from rivers. 

Principal-Component Analysis (PCA) was run in SPSS. A factor of rotation was 

implemented to maximize the dispersion of the loadings between factors. This is done to 

help understand the covariance of sinkhole characteristics. Three main principal 
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components were identified between the geometric sinkhole variables and locational 

variables (Table 4). Component group one consisted of perimeter, area, width, and length 

(all positive). Component group two was comprised of ratio (negative), depth, and river 

distance. Component group three contained just slope. 

 

 
 

Table 3: Correlation table of sinkhole variables 

 
  Perimeter Shape_Area Axis_Width Axis_Length RatioL2W Depth River_Distance Slope 

Pearson Correlation        Perimeter Sig. (2-tailed)        
 N        
 Pearson Correlation .888(**)       Shape_Area Sig. (2-tailed) 0       
 N 47445       
 Pearson Correlation .914(**) .914(**)      Axis_Width Sig. (2-tailed) 0 0      
 N 47445 47445      
 Pearson Correlation .957(**) .886(**) .896(**)     Axis_Length Sig. (2-tailed) 0 0 0     
 N 47445 47445 47445     
 Pearson Correlation .184(**) .066(**) -.026(**) .294(**)    RatioL2W Sig. (2-tailed) 0 0 0 0    
 N 47445 47445 47445 47445    
 Pearson Correlation -.015(**) -0.008 -0.002 -.013(**) -.040(**)   Depth Sig. (2-tailed) 0.001 0.102 0.627 0.004 0   
 N 47445 47445 47445 47445 47445   
 Pearson Correlation .082(**) .103(**) .116(**) .092(**) -.056(**) .062(**)  River_Distance Sig. (2-tailed) 0 0 0 0 0 0  
 N 47445 47445 47445 47445 47445 47445  
 Pearson Correlation -.013(**) -.014(**) -.018(**) -.015(**) -.011(*) 0.002 -0.002 

Slope Sig. (2-tailed) 0.005 0.002 0 0.001 0.013 0.674 0.624 
  N 47445 47445 47445 47445 47445 47445 47445   

** Correlations that are statistically significant at 0.01 level. 
 

 
 

Loadings in group one provided evidence that these geometric (morphological) 

features that pertain to perimeter and shape all have relation to each other, and thus are 

likely to exhibit similar behavior. In contrast, depth and shape had heavy loadings on 

component two (with opposite signs). Depth showed a considerable covariance with 

distance to rivers. Principal component three contains slope that exhibited little 

covariance with other variables. PCA results, therefore, identify three latent vectors in 

sinkhole differentiation: planform geometry, depth and shape, and relative slope. 
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Table 4: PCA of sinkhole variables. 

 
Rotated Component Matrix (PCA) 

 

 
 

 

1 

Component 

2 

 

 

3 

Perimeter 0.973   

Shape_Area 0.951   

Axis_Width 0.958 0.117  

Axis_Length 0.972 -0.119  

RatioL2W 0.166 -0.686 -0.135 

Depth  0.511  

River_Distance 0.142 0.605  

Slope   0.988 
 

Extraction Method: Principal Component 

Analysis. 

Rotation Method: Varimax with Kaiser 

Normalization. 

a. Rotation converged in 3 iterations. 
 
 
 

 
K-means cluster is a grouping mechanism that uses multiple characteristics to 

assign sinkholes to groups with similar geometric properties (i.e. identifies a typology of 

sinkholes (Field, 2005). This process was run using a standard algorithm in SPSS. Since 

preliminary agglomerative cluster analysis was unfeasible due to a very large number of 

observations, several numbers of original cluster centers were tested in order to identify 

the most appropriate number of clusters. A five cluster solution was selected. The 

resultant clusters were then compared to one another to determine their cluster 

characteristics (Table 5). The first cluster included small, round, and shallow sinkholes 

with approximately 60% of the sinkholes falling within this group. The second cluster 

incorporated large and shallow sinkholes with around 1.5% of the sinkholes in this 

category. The third group recognized medium, deep sinkholes with 11% of the total 
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Large & shallow Medium & deep 
1036.2 344.8 
8159.5 2022.4 

109.9 47.6 

237.8 101.2 

2.2 2.1 

0.6 0.7 

478.6 460.2 

14.7 14.8 

 

 
 

number of sinkholes. Cluster four is primarily comprised of small, round, and deep 

sinkholes with 23% falling within this type. Finally, group five included large/medium 

sinkholes with shallow depth, accounting for 3.6% of the total sinkholes. 

 

 
 

Table 5: K Means clustering of sinkhole variables broken into five categories. 

 
 

Small, round & 

shallow 

Final Cluster Centers  
Small, round & 

deep 

 
Larger/ medium 

& shallow 

Perimeter  73.7 

Shape_Area  229.9 

Axis_Width  12.7 

Axis_Length  26.1 

RatioL2W 2.0 

Depth  0.6 

River_Distance  226.1 

Slope  15.1 

96.3 637.2 

357.2 4706.7 

16.4 78.1 

32.9 167.1 

2.0 2.2 

0.7 0.6 

794.3 479.5 

15.0 14.7 

  Total 28537 708 5422 11069 1709   

   Percent of total 60.1% 1.5% 11.4% 23.3% 3.6   
 

 
 
 
 

 

Sinkhole Clustering 

Spatial Analysis 

 

Nearest Neighbor analysis identified a significant clustering of sinkholes in the 

study area (R=.40, z-score= -249). This method compared mean observed distance 

between nearest points to the expected random distribution (Boots & Getis, 1988; Ebdon, 

1985). Similarly, Ripley’s K function illustrated a tendency to cluster (Figure 17). 

Therefore, both methods provide a strong indication of spatial clusterization among 

sinkholes themselves. Further analysis will deal with spatial clustering of sinkhole 

morphological and locational characteristics. 
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Figure 17: Ripley’s K function of entire study area. 
 
 
 
 

Spatial Patterns of Sinkhole Characteristics 
 

Global Moran’s I was computed to examine the spatial autocorrelation of sinkhole 

characteristics in the entire study area. The method standardized spatial autocorrelation 

by variance in the data set. Table 6 illustrates positive significant spatial autocorrelation 

among all the variables (Ancelin, 1995). This indicates that sinkholes with similar 

morphological and locational characteristics tend to cluster. This evidence warrants 

further analysis of local autocorrelation to identify the clustered regions within the study 

area. 
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Table 6: Global Moran’s I of all variables showing clustering of all values. 
 

 
Spatial Autocorrelation (Global Moran’s I) 

 

 

 
Area 

Moran’s Index 
 

0.0488 

Z score 
 

49.7 

Perimeter 0.0535 54.5 

Width 0.0532 54.2 

Length 0.0631 64.2 

Ratio 0.1555 158.3 

Depth 0.1129 115 

Dist river 0.0817 83.3 

Slope 0.175 178.6 

 
 

 

Local Indicators of Spatial Association (LISA) and Hotspot analyses are standard 

techniques that test spatial autocorrelation of a given variable. In this study these methods 

were applied to detect the evidence of autocorrelation among geometric and location 

sinkhole variables, except for geology, due to only three geologic units (Appendix). All 

of them identify certain clustering patterns of sinkholes; some variables demonstrated 

more pronounced patterns better than others. Overall, it is evident that sinkholes with 

similar characteristics exhibit a tendency to cluster in space, a pattern that may be 

indicative of the influence of certain underlying geological and geomorphic factors. It is, 

however, difficult to establish more generalized patterns of clusterization that would 

account for multiple sinkhole properties. 
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When examining the maps of individual indices, several generalized clusters can 

be observed. Clusters are identified as C1, C2, C3, C4, C5, C6, and C7 (Table 7, Figure 

18). Local Indicators of Spatial Association for area, perimeter, width, and length 

demonstrate similar characteristics in clusters C2, C4, C5, and C7  which have all four 

variables with a prevalent HH pattern (High-High, i.e. clustering of high values), Clusters 

C1, C3 and C6 demonstrate a prevailing HL pattern (High-Low, i.e. negative 

autocorrelation).  The pattern is different, however, when examining ratio between width 

and length axes. This variable shows HL cluster within C1, C2, C3, and the remaining 

clusters show similar results with C5 HH, C6 HL, and C7 HH. Depth displays an inverse 

pattern with C1, C2, C3, C4 merged into HH, C5 HL, C6 HH, and C7 HL. The distance 

from rivers demonstrates a slight HH clustering in the C1 and C3 regions. Other regions 

have very little autocorrelation, however some display LL (i.e. clustering of lower 

values). Finally, relative slope displayed unique results with C1 having HH, C2 None, 

C3 HL, C4 LL, C5 None, C6 HH, and C7 HH.  Sinkhole characteristics that exhibit 

similar spatial patterns were also found heavily loaded on the same principle components 

(Table 4, Appendix). 

 

Hotspot Analysis was run on all of the geometric and location sinkhole variables 

except for geology because of the three geologic units. Again slope, perimeter, length, 

and width illustrate similar statistically significant patterns (Figure 18). There is slight 

variation among them, however as a whole, they portray the same results. Circularity 

(Ratio) demonstrates similar characteristics with positive but less intense clustering in all 

the clustering groups. There are several locations in groups C3 and C6 where this 
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variable has a negative standard deviation of z-values. Depth displays high clustering in 

C1, C2, C3, and C6 with a positive standard deviation of z-values while the remaining 

regions show little grouping. The distance to river demonstrates little clustering with only 

region C2 showing some evidences of high standard deviation. Slope demonstrates 

unique results where the only major clusters are in C4 with negative standard deviation 

and C6 with positive standard deviation. These results also display similarity among 

sinkhole characteristics that have high factor loadings on the same principle components 

in the PCA analysis (Table 4, Appendix). 

 

It is clear, after examining these different clusters, there is autocorrelation among 

most of the planform variables (area, perimeter, width, and length) as they portray the 

same results with high-high values and high-low values in certain regions. The circularity 

has similar, but slightly different, groupings, specifically C2. Depth illustrates the exact 

opposite of the planform geometric variables i.e. demonstrates low-low autocorrelation in 

regions where geometric variable exhibit high-high clustering. This can be compared to 

river distance, which illustrates similar patterns. Based on this, it is clear these areas do 

portray the same loading factors that were produced by the PCA analysis. 

Interestingly, regions C1 through C7 have spatial correspondence with the 

Geological units. For example, C1- C4 fall within the Galena Group and Platteville 

Formation; C5-C6 fall with tine Maquoketa Formation and C7 falls within the 

Hopkinton, Blanding, Tete des Morts, and Mosalem. Based on this information one could 

speculate that the Galena Group and Platteville formation has a lower water table, due to 

the geologic sequence within the formation, causing the sinkholes to develop at greater 
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depths. It also displays a relatively high joint system as it was identified by geologists 

mining for lead and zinc (Anderson, 1998). There may also be localized regions within 

these formations that cause certain sinkhole variables to develop more prevalently. 

 

 
 

Table 7: The graph displays the sinkhole variable groupings among each region. 
 

 
  LISA Analysis Groups   

  C1 C2 C3 C4 C5 C6 C7   

Area HL HH HL HH HH HL HH 

Perimeter HL HH HL HH HH HL HH 

Width HL HH HL HH HH HL HH 

Length HL HH HL HH HH HL HH 

Ratio HL HL HL HH HH HL HH 

Depth 

River 

Dist 

HH HH HH 

 
HH 

HL HL HH HL 

Slope HH HL LL HH HH   
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Figure 18: Composite clustering groups form Moran’s I and LISA models. 

See Table 7 for clustering patterns of end groups. 
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Alternative Methods of Sinkhole Identification Tested in This Study 
 

Object-Oriented Method 
 

An object-oriented classification technique was implemented using remote 

sensing software titled eCognition. Object-oriented classification is a relatively new 

technique that has been introduced into the field of remote sensing (Ivits & Koch, 2002). 

The concept of object-oriented classification is to identify pixels of similar characteristics 

in the same area instead of basing classification solely on pixel values. In this study, 

however, it is important to identify sinkholes using several types of inputs. The inputs 

that were utilized to determine the boundary of the sinkholes included slope, curvature, 

hillshade, and elevation (Figure 19). However after implementing several eCognition 

options and combinations of inputs, the results were not accurate (Figure 20). The 

sinkhole boundaries frequently formed unclosed polygons or produced dissected sinkhole 

features. The poor accuracy of eCognition results was likely due to a high variability in 

size and shape of the sinkholes (Glennon, 2010). Future advances in object-oriented 

classification may provide the ability to identify the boundaries with greater detail and 

accuracy. 
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Figure 19: Curvature image that was utilized for object-oriented classification. 
 
 
 
 

 
 

Figure 20: Results from object-oriented classification. 
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Curvature Method 
 

Slope is a key factor to consider when examining sinkholes. This is because slope 

has several unique characteristics to consider. One of them is the rate of change of slope. 

This characteristic is also referred to as the second derivative in most mathematical 

applications and curvature within ArcGIS (Figure 21). Curvature can be examined in 

several ways. A profile curvature measures the change in slope vertically, whereas 

planform curvature examines the change in slope horizontally. Topography also can be 

examined using curvature, which is an average or combination of two profiles. 

Applications of these parameters indicate that the curvature does determine sinkholes 

rather well (Figure 22). More specifically, however, the profile view identifies the 

boundaries with greater detail. Planform view provided a good understanding of the 

bottom or deepest part of a sinkhole (Figure 22). Combining these three different 

parameters can be a powerful tool to identify sinkholes and their boundaries. The major 

limitation of this method, however, is that many sinkholes do not have a perfect bowl-like 

shape. Therefore, this method is only reliable if the sinkholes have a continuous concave, 

approximately circular shape. Because a majority of the sinkholes do not conform to it, 

this method is challenging to apply (Figure 23). Trying to classify the image proved to be 

difficult as different types of curvature provides different shapes. For example, a profile 

view displays a donut shape due to the change in curvature from the top of the sinkhole to 

the bottom. Slight variations of this occurred within planform and curvature methods, as 

well as their combinations. 
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Figure 21: Curvature description of different combinations: The top three shapes 

represent the difference in values that can be acquired from profile curvature. The bottom 

three represent the difference in values that can be acquired from profile view. A 

combination of these can create a curvature output. 

(Kimerling, Buckley, Muehrcke, & Muehrcke, 2012, p.360. ) 
 
 
 
 

 
 

Figure 22: Study Area 2 curvature profile map. 
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Figure 23: Study Area 2 Curvature profile classification attempt map. 
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CHAPTER 5 

CONCLUSIONS AND LIMITATIONS 

Conclusions 
 

The goal of this study was to develop an automated process and assess LiDAR- 

based methodologies for detecting karst features over a larger area in order to improve 

understanding of karst distribution and typology in Northeast Iowa. 

 

The AIMSINK Model 
 
 

This study tested several extraction techniques; however, based on the methods 

tested (slope, fill, second derivative, and object orientated classification), a combination 

of slope and fill was determined as the most suitable for the model (AIMSINK). The 

model was comprised of six submodels. The first two submodels utilized the slope and 

fill functions to determine possible sinkhole locations. Submodel three merged the fill 

and slope into a sinkhole polygon layer. Submodel four smooth’s the polygon and 

calculates the area to prepare for submodel five, which eliminates the non-sinkhole 

features that were extracted. Finally, submodel six extracts the LiDAR derived DEM 

from the original file by the boundary of the identified sinkhole layer. Therefore, all 

geometric characteristics can be utilized for analysis. From there, two test locations were 

used to determine the basis for the model. The model was then applied to nine counties in 

Iowa. In total, the AIMSINK model identified 47,445 sinkholes in that area. 

 

The AIMSINK model makes use of several ArcGIS tools to calculate these 

sinkholes. This process is automated, giving it a greater advantage in terms of reducing 
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time and human error compared to the manual methods that have been utilized in the 

past. This AIMSINK has several advantages. First, it will save a significant amount of 

time: the entire study area was completed in 44 hours plus or minus a few hours using a 

six-core processing computer. Even if it wasn’t done on this type of computer, the 

processing time to complete this would be significantly less compared to heads-up 

digitizing. Secondly, it minimized human error; therefore, areas that may not have been 

accounted for will not be missed. Third, sinkhole boundaries have been determined and if 

needed they can be adjusted through heads-up digitizing. From this it is evident that this 

model has aided in high-resolution detection and identification of sinkhole boundaries 

and made it possible to automatically detect them over a large area. 

 

Sinkhole Characteristics and Distribution 
 
 

Analysis of sinkhole characteristics was then performed. The examined 

characteristics included geometric sinkhole variables: area, perimeter, width, length, 

ratio, and depth. The other locational variables consisted of distance to rivers, relative 

slope, and geology. However, geology was used less frequently in the analysis due to the 

sinkholes only falling into three geologic units. This was due to a significant statistical 

problem that arises when trying to incorporate categorical data. 

 

Nearest neighbor clustering analysis and Ripley’s K function both identified high 

amounts of clustering of sinkholes throughout the study region. Therefore, further 

clustering analysis could be applied. 
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Correlation analysis illustrated that all planemetric features (shape area, width, 

length, and ratio) were positively correlated with one another. These correlations were the 

only strong ones seen; however, there are some less significant but interesting results. As 

sinkhole surface area increases, depth tends to decrease. Larger planemetric features 

develop further away from streams, and on flatter slopes. This implies that larger 

sinkholes tend to develop on higher, flatter interflow areas rather than in valleys near 

streams. This pattern might relate to age of sinkholes when those developed on drainage 

divides are likely older and more developed. Sinkholes with longer major axis (ratio 

increase), tend to be shallower relative to the overall dataset. Sinkholes also tend to be 

more elongated closer to rivers as slope to a first order stream may cause it to occur. 

Elongated sinkholes are found on flatter surfaces as well as they merge together forming 

uvalas. Depth of a sinkhole increases the further away it is from rivers. This pattern is 

possibly related to lower water tables further from streams, which concentrates sinkhole 

development in a downward direction rather than lateral growth. 

Principal Component Analysis (PCA) identified three main component groups. 

The 1st component group consisted of a positive output of perimeter, area, width, and 

length. The 2nd Component group was comprised of a positive output with: ratio 

(negative correlation), depth, and river distance. The 3rd Component group contained just 

slope. The results matched well with the patterns elucidated by the correlations. 

The K-means cluster method identified five distinct clusters of sinkholes. These 

clusters are (1) small round and shallow sinkholes, (2) large and shallow, (3) medium 

deep, (4) small round and deep, and (5) large/medium sinkholes with shallow depth. 
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Point pattern analysis revealed clustering of sinkholes throughout the study area. 

LISA and Hotspot analyses identified seven regions. Spatial patterns observed in these 

regions vary depending on which geometric sinkhole variables or locational variables are 

considered. However, there are broad similarities between the behaviors of planform 

variables that differ from sinkhole depth. These LISA and Hotspot clusters correlate well 

with the PCA illustrating that there is some distinction between the groups. The groups 

identified (Figure 17) also correlate with geology, which may play a role in the locational 

development of theses geomorphic features. One can speculate that the Galena Group and 

Platteville formation has a lower water table, as most of the shale creating the aquitard is 

located at the bottom of the formations, causing the sinkholes to develop at greater 

depths. It also displays a relatively high joint system as it was identified by geologists 

mining for lead and zinc, this could be a key factor to depth. There may also be localized 

regions within these formations that cause certain sinkhole variables to develop more 

prevalently. However more analysis needs to be performed in order to understand there 

geologic and geomorphic dynamics these sinkholes display. 

Limitations 
 

Methodological Limitations 
 

The methodology and analysis presented in this thesis have a number of 

limitations primarily related to the data and technical imperfections. First, the AIMSINK 

process can be applied to each area on a tile by tile basis, utilizing nine tiles (sliding 

window effect) to check for sinkholes along the edge. However, this approach 

significantly lengthens data processing time and requires more computing power (and 
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therefore it was not implemented in this study). The use of smaller tiles will also permit 

utilizing elevation to provide a more elaborate elevation filter for sinkhole features. The 

model currently uses Strahler's stream order method to try to eliminate lower elevations. 

This is because the majority of sinkholes are found on higher elevations, however, due to 

the low resolution of the Strahler method, this application is not the best suited for 

removing low lying areas. Nonetheless, this helps to better identify where the sinkholes 

are located. 

The existing Ratio tool developed to determine the ratio of the long and short axis 

of geometric objects does not accurately represent the overall shape. Some of the features 

present a curved or thin curved shape erroneously identified as circular feature in some 

cases. A solution for this problem is creating a circularity tool that actually focuses 

specifically on circularity. 

Determining sinkhole size is another issue to consider. Some sinkholes expand 

combining into a large valley making it a huge uvula. Therefore, AIMSINK should be 

able to distinguish between sinkholes and large karst valleys. Currently AIMSINK sets 

the range for sinkholes between 12 m² and 12,000 m². However, this may vary depending 

on the location of where this model is being utilized. 

Data Errors 
 

A few data problems were identified while working with LiDAR-based elevation 

data. Since LiDAR has difficulties identifying sinkholes filled with water, it is impossible 

to account for them in the model. Another problem is a misalignment of road features 

with the LiDAR data. Another difficulty is larger areas which can be erroneously 
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identified as sinkholes due to ditches appearing near roads and giving the impression of 

large elongated sinkholes. Land cover classification may also be an issue with 15 m 

resolution. As higher-resolution land cover data is implemented in the future, this could 

be used to determine the sinkhole locations with more accuracy. 

Future Work 
 

Future work in this research project could consist of the following. First of all, 

revising the AIMSINK model and implementing several additional variables and tools, 

specifically a new circularity tool and local elevation, would create a more accurate 

representation of the sinkhole layer. Secondly, hypsometric intervals could be calculated 

to identify overall shape characteristics of sinkholes and if there is any correlation 

between sinkhole shapes. Thirdly, isolated statistical and spatial analyses on each of the 

geologic units individually would allow a richer understanding of the role bedrock plays 

in sinkhole distribution. Fourth, understanding the geologic and geomorphic dynamics of 

the entire region may help to identify the distribution of these sinkholes more clearly. For 

example, it is clear that some of these sinkholes follow a linear pattern of a river based on 

local scale observation. However, this is technically difficult to identify, but something 

that will be obtainable in the near future. 



72  
 
 

REFERENCES 
 

 
 

Anderson, W.I. (1983). Geology of Iowa Over Two Billion Years of Change. Ames: Iowa 

State University Press. 

 
Anderson, W.I. (1998). Iowa’s Geological Past Three Billion Years of Earth History. 

Iowa City: University of Iowa Press. 

 
Anselin, Luc.(1995)."Local Indicators of Spatial Association—LISA," Geographical 

Analysis, 27(2), 93–115. 

 
Boots, B. N., & Getis, A. (1988). Point Pattern Analysis. Newbury Park, CA: Sage 

Publications. 

 
Boyer, D. G., & Alloush, G. A. (2001, January 01). Spatial Distribution of Nitrogen On 

Grazed Karst Landscapes. The Scientific World Journal, 1, 809-13. 

 
Chang, K.-T. (2008). Introduction to Geographic Information Systems. Boston, MA: 

McGraw-Hill. 

 
Chen, Y., Su, W., Li, J., & Sun, Z. (2009, April 01). Hierarchical Object Oriented 

Classification Using Very High Resolution Imagery and LIDAR Data Over Urban 

Areas. Advances in Space Research, 43 (7), 1101-1110. 

 
Denizman, C., (2003). Morphometric and Spatial Distribution Parameters of Karstic 

Depressions, Lower Suwannee River Basin, Florida. Journal of Cave and Karst 

Studies, 65 (1), 29-35. 

Ebdon, D. (1985). Statistics in Geography. Oxford, UK: Oxfordshire: B. Blackwell. 

Field, A. P. (2005). Discovering Statistics Using SPSS: (and sex, drugs and rock 'n' roll). 

London, UK: Sage Publications. 
 

Filin, S., Avni, Y., Marco, S.,  & Baruch, A. (2006). Land Degradation Monitoring Using 

Airborne Laser Scanning. Remote Sensing Applications for a Sustainable Future, 36, 

(8). 

 
Ford, D. C., & Williams, P. W. (1989).Karst Geomorphology and Hydrology. London, 

UK: U. Hyman. 

 
Ford, D. C., & Williams, P. W. (2007). Karst Hydrogeology and Geomorphology. 

Chichester, UK: John Wiley. 



73  
 
 

Frye, C.( 2008, August 12) Minimum Bounding Rectangle (MBR) Analysis tools. 

Retrieved November 10, 2012, from ESRI website 

http://arcscripts.esri.com/details.asp?dbid=15502 
 

Galve, J. P., Gutierrez, F., Lucha, P., Bonachea, J., Remondo, J., Cendrero, A., ... 

Sanchez, J. A. (2009, January 01). Sinkholes in The Salt-Bearing Evaporite Karst of 

The Ebro River Valley Upstream of Zaragoza City (NE Spain): Geomorphological 

Mapping and Analysis as a Basis For Risk Management. Geomorphology 

Amsterdam, 108, 145-158. 

 
Galve, J. P., Gutierrez, F., Lucha, P., Remondo, J., Bonachea, J., & Cendrero, A. (2009, 

October 15). Evaluating and Comparing Methods of Sinkhole Susceptibility Mapping 

in The Ebro Valley Evaporite Karst (NE Spain). Geomorphology, 111, 160-172. 

 
Gao, Y., & Alexander, E. (2008, January 01). Sinkhole Hazard Assessment in Minnesota 

Using a Decision Tree Model. Environmental Geology, 54 (5), 945-956. 

 
Gao, Y., Alexander, E. C., & Barnes, R. J. (2005, January 01). Karst Database 

Implementation in Minnesota: Analysis of Sinkhole Distribution. Environmental 

Geology Berlin, 47 (8), 1083-1098. 

 
Gao, Y., Alexander, E. C., & Tipping, R. G. (2005, January 01). Karst Database 

Development In Minnesota: Design And Data Assembly. Environmental Geology 

Berlin, 47 (8), 1072-1082. 

 
GeoTree Center (n.d.). Retrieved August 20, 2012, GeoInformatics Training, Research, 

Education, and Extension Center (http://www.geotree.uni.edu/extensions/iowa-lidar- 

mapping-project/). 

 
Getis, A., & Ord, J. K. (1992). The Analysis of Spatial Association By Use of Distance 

Statistics. Geographical Analysis, 24 (3). 

 
Glennon, A. (2010, February 01). Research Article: Creating and Validating Object- 

Oriented Geographic Data Models: Modeling Flow within GIS. Transactions in GIS, 

14 (1), 23-42. 

 
Groves, J. R., Walters, J. C., Day, J., Hubsher, R., & SEPM Fall Field Conference. 

(2008). Carbonate platform facies and faunas of the Middle and Upper Devonian 

Cedar Valley Group and Lime Creek Formation, Northern Iowa. Iowa City: Iowa 

Dept. of Natural Resources. 

http://arcscripts.esri.com/details.asp?dbid=15502
http://arcscripts.esri.com/details.asp?dbid=15502
http://www.geotree.uni.edu/extensions/iowa-lidar-
http://www.geotree.uni.edu/extensions/iowa-lidar-
http://www.geotree.uni.edu/extensions/iowa-lidar-


74  
 
 

Guerrero, J., Gutierrez, F., Bonachea, J., & Lucha, P. (2008, November 12). A Sinkhole 

Susceptibility Zonation Based on Paleokarst Analysis Along a Stretch of The 

Madrid–Barcelona High-Speed Railway Built Over Gypsum - and Salt-Bearing 

Evaporites (NE Spain). Engineering Geology, 102, 62-73. 

 
Gutierrez, F., Cooper, A., & Johnson, K. (2008, January 01). Identification, Prediction, 

and Mitigation of Sinkhole Hazards in Evaporite Karst Areas. Environmental 

Geology, 53 (5), 1007-1022. 

 
Hallberg G.R., & Hoyer B.E. (1982). Sinkholes, Hydrogeology, and Groundwater 

Quality in Northeast Iowa. Iowa Department of Natural Resources, Geological 

Survey Bureau. 82-3, 120. 

 
Harmon, R. S., Wicks, C. M., Ford, D., & White, W. B. (2006). Perspectives on Karst 

Geomorphology, Hydrology, and Geochemistry: A Tribute Volume to Derek C. Ford 

and William B. White. Boulder, CO: Geological Society of America. 

 
Herak, M., & Stringfield, V. (1972). Karst, Important Karst Regions of The Northern 

Hemisphere. Amsterdam, Netherlands: Elsevier Pub. Co. 

 
Huber, G. (1989). Sinkholes: Landowner Perceptions of a Unique Source of 

Groundwater Contamination. Des Moines, IA: Iowa Natural Heritage Foundation. 

 
Hyland, S., Kennedy, L., Younos, T., & Parson, S. (2005).Analysis of Sinkhole 

Susceptibility and Karst Distribution in The Northern Shenandoah Valley, Virginia: 

Implications For Low Impact Development (LID) Site Suitability Models. Blacksburg: 

University Libraries, Virginia Polytechnic Institute and State University. 

 
Iowa Department of Natural Resources (2012). Retrieved August 20, 2012, Iowa 

Department of Natural Resources 

(ftp://ftp.igsb.uiowa.edu/gis_library/IA_state/geologic/Karst/sinkhole_polys.html). 

 
Iowa Department of Natural Resources (2013). Retrieved August 20, 2012, Iowa 

Department of Natural Resources 

(ftp://ftp.igsb.uiowa.edu/gis_library/IA_state/geologic/Karst/sinkhole_points.html). 

 
Iowa Department of Natural Resources-Geological Survey Bureau (2000). Retrieved 

August 20, 2012, Iowa Department of Natural Resources 

(ftp://ftp.igsb.uiowa.edu/gis_library/IA_state/Hydrologic 

/Surface_Waters/Stream_order.html). 



75  
 
 

Iowa Department of Natural Resources-Geological Survey Bureau (2008). Retrieved 

August 20, 2012, Iowa Department of Natural Resources 

(ftp://ftp.igsb.uiowa.edu/gis_library/IA_state/Land_Description/LC_Persistance_198 

5_2002/persist_85_02.html). 

 
Iowa Department of Transportation (2007). Retrieved August 20, 2012, Iowa Department 

of Natural Resources(ftp://ftp.igsb.uiowa.edu/gis_library/IA_state/Infrastructure/ 

Transportation/Iowa_Roads_2006.html). 

 
Iowa Lidar Consortium. (n.d.). Retrieved August 20, 2012, Iowa Department of Natural 

Resources (ftp://ftp.igsb.uiowa.edu/gis_library/Projects/Iowa_LiDAR/Block_data 

/Lidar_LAS_ASCII.html). 

 
Ivits, E. & Koch, B. (2002, October). Landscape Connectivity Studies on Segmentation 

Based Classification and Manual Interpretation of Remote Sensing Data. eCognition 

User Meeting, München, Germany. 

 
Jennings, J. N., (1985). Karst Geomorphology. Oxford, UK: B. Blackwell. 

 
Kimerling, A. J., Buckley, A. R., Muehrcke, P. C., & Muehrcke, J. O., (2012). Map Use: 

Reading, Analysis, Interpretation. Redlands, CA: Esri Press Academic. 

 
Kruse, S., Grasmueck, M., Weiss, M., & Viggiano, D. (2006, August 28). Sinkhole 

Structure Imaging in Covered Karst Terrain. Geophysical Research Letters, 33 (16). 

 
Lamelas, M., Marinoni, O., Hoppe, A., & Riva, J. (2008, January 01). Doline Probability 

Map Using Logistic Regression and GIS Technology in The Central Ebro Basin 

(Spain). Environmental Geology, 54 (5), 963-977. 

 
LiDAR Image. (n.d.). Retrieved Febuary 20, 2013, from Forest Service University of 

Washington (http://forsys.cfr.washington.edu/JFSP06/lidar_technology.htm). 
 

Montane, Juana Maria. (2001). Geophysical Analysis of a Central Florida Karst Terrain 

using Light Detection and Ranging (LIDAR) and Ground Penetrating Radar (GPR) 

Derived Surfaces. Digital Commons. Miami,FL: Florida International University. 

 
Ord, J. K., & Getis, A. (1995). Local Spatial Autocorrelation Statistics: Distributional 

Issues and an Application. Geographical Analysis. 27(4). 

 
Palmquist, R., (1977) Distribution and Density of Dolines in Areas of Mantled Karst In 

Dilamarter, R. R., Csallany, S. C., International Symposium on Hydrologic Problems 

in Karst Regions, Bowling Green: Western Kentucky University. 

http://forsys.cfr.washington.edu/JFSP06/lidar_technology.htm)


76  
 
 

Parise, M., Waele, J., & Gutierrez, F. (2009, January 01). Current Perspectives on The 

Environmental Impacts and Hazards in Karst. Environmental Geology, 58 (2), 235- 

237. 

 
Pease, P., Gomez, B., & Schmidt, V., (1994) Magnetostratigraphy of Cave Sediments, 

Wyandotte Ridge, Crawford County, Indiana: Towards a Regional Correlation. 

Geomorphology, 11, 75-81. 

 
Podobnikar, T., Scho"ner, M., Jansa, J., & Pfeifer, N. (2008, January 01). Spatial 

Analysis of Anthropogenic Impact on Karst Geomorphology (Slovenia). 

Environmental Geology, 2, 257-268. 

 
Prior, J. C. (1991). Landforms of Iowa. Iowa City: University of Iowa Press for the Iowa 

Dept. of Natural Resources. 

 
Prior, J. C., Grant, S. C., & Geological Society of Iowa. (1975). Karst Topography Along 

The Silurian Escarpment in Southern Clayton County, Iowa. Iowa City, IA: 

Geological Society of Iowa. 

 
Ritchie, J. C. (1995, January 01). Airborne Laser Altimeter Measurements of Landscape 

Topography. Remote Sensing of Environment,53 (2), 91. 

 
Ritter, D. F. (1978). Process geomorphology. Dubuque, IA: W.C. Brown Co. 

 
Seale, L., Florea, L., Vacher, H., & Brinkmann, R. (2008, January 01). Using ALSM to 

Map Sinkholes in The Urbanized Covered Karst of Pinellas County, Florida--1, 

Methodological Considerations. Environmental Geology, 54 (5), 995-1005. 

 
Shofner, J., Mills, H., & Duke, J. (2001, April) A Simple Map Index of Karstification and 

Its Relationship to Sinkhole and Cave Distribution in Tennessee. Journal of Cave and 

Karst Studies, 63 (2), 67-75. 

 
Summerfield, M. A. (1997). Global geomorphology: An Introduction to The Study of 

Landforms. Harlow, UK: Longman. 

Sweeting, M. M. (1973). Karst Landforms. New York, NY: Columbia University Press. 

Sweeting, M. M. (1981). Karst Geomorphology. Stroudsburg, PA: Hutchinson Ross. 

Tarboton, D. G., Bras, R. L. & Rodriguez–Iturbe, I. (1991). On the Extraction of Channel 

Networks from Digital Elevation Data. Hydrological Processes, 5, 81–100. 



77  
 
 

U.S. Department of Commerce, U.S. Census Bureau, Geography Division (2010). 

Retrieved August 20, 2012, Iowa Department of Natural Resources 

(ftp://ftp.igsb.uiowa.edu/gis_library/IA_state/Admin_Political_Boundary/incorporate 

d_cities_2010.html). 

 
Vacher, H. L., Seale, L. D., Florea, L. J., & Brinkmann, R. (2008, January 01). Using 

ALSM to Map Sinkholes in The Urbanized Covered Karst of Pinellas County, Florida 

2. Accuracy Statistics. Environmental Geology Berlin, 54 (5), 1007-1015. 

 
White, W. B. (1988).Geomorphology and hydrology of karst terrains. New York, NY: 

Oxford University Press. 

 
Whitman, D., Gubbels, T., & Powell, L. (1999, January 01). Spatial Interrelationships 

between Lake Elevations, Water Tables, and Sinkhole Occurrence in Central Florida: 

A GIS Approach. Photogrammetric Engineering and Remote Sensing, 65 (10), 1169- 

1178. 

 
Williams, P. W. (1971, January 01). Illustrating Morphometric Analysis of Karst With 

Examples From New Guinea. Zeitschrift 

Fur" 
Geomorphologie,15 

 

Wilson, W. L., & Beck, B. F. (1992, November 01). Hydrogeologic Factors Affecting 

New Sinkhole Development in the Orlando Area, Florida. Ground Water, 30 (6), 918- 

930. 

 
Witzke, B., Anderson, R., & Pope, J. (2010) Iowa Geological and Water Survey, DNR 

(ftp://ftp.igsb.uiowa.edu/gis_library/IA_state/Geologic/Bedrock/Bedrock_Geologic_ 

Map.html). 

 
Wolter, C. F., McKay, R. M., Liu, H., Bounk, M.J.,& Libra, R.D. (2011, September) 

Geologic Mapping for Water Quality Projects in the Upper Iowa River Watershed. 

Iowa Geological and Water Survey Technical Information Series, 54. 
 

 

Zhou, W., Beck, B. F., & Adams, A. L. (2003, October 01). Application of Matrix 

Analysis in Delineating Sinkhole Risk Areas Along Highway (I-70 Near Frederick, 

Maryland). Environmental Geology, 44 (7), 834-842. 



78  
 
 

APPENDIX 
 

ALMI AND HOTSPOT MAPS 
 

 



79  
 

 
 
 
 

 



80  

 

 

 



81  

 

 

 



82  

 

 

 



83  

 

 

 



84  

 

 

 



85  

 

 

 



86  

 

 

 



87  

 

 

 



88  

 

 

 



89  

 

 

 



90  

 

 

 



91  

 

 

 



92  

 

 

 



93  

 

 

 


	Automated sinkhole extraction and morphological analysis in northeast Iowa using high-resolution LiDAR data
	Recommended Citation

	Microsoft Word - Jonathon Launspach thesis

