
University of Northern Iowa University of Northern Iowa

UNI ScholarWorks UNI ScholarWorks

Dissertations and Theses @ UNI Student Work

2014

An analysis of use of automated tools for improving the process An analysis of use of automated tools for improving the process

of software verification and validation in a Midwestern company of software verification and validation in a Midwestern company

Darshak Dodiya
University of Northern Iowa

Let us know how access to this document benefits you

Copyright ©2014 Darshak Dodiya

Follow this and additional works at: https://scholarworks.uni.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Dodiya, Darshak, "An analysis of use of automated tools for improving the process of software verification
and validation in a Midwestern company" (2014). Dissertations and Theses @ UNI. 30.
https://scholarworks.uni.edu/etd/30

This Open Access Thesis is brought to you for free and open access by the Student Work at UNI ScholarWorks. It
has been accepted for inclusion in Dissertations and Theses @ UNI by an authorized administrator of UNI
ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and
time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.

https://scholarworks.uni.edu/
https://scholarworks.uni.edu/etd
https://scholarworks.uni.edu/sw_gc
https://scholarworks.uni.edu/feedback_form.html
https://scholarworks.uni.edu/etd?utm_source=scholarworks.uni.edu%2Fetd%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.uni.edu%2Fetd%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/etd/30?utm_source=scholarworks.uni.edu%2Fetd%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uni.edu
https://scholarworks.uni.edu/offensivematerials.html

AN ANALYSIS OF USE OF AUTOMATED TOOLS FOR IMPROVING THE

PROCESS OF SOFTWARE VERIFICATION AND VALIDATION IN A

MIDWESTERN COMPANY

An Abstract of a Thesis

Submitted

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

Darshak Dodiya

University of Northern Iowa

May 2014

ABSTRACT

As the use of electronics and software in the modern off road vehicles

tend to increase, there is a huge challenge of getting the electronics and software

tested before making it available for customer use. There are a lot of interactions

between the hardware and software for the vehicle to function. And with the

amount of interactions in the hardware and software come a lot of problems in

verifying the functionality of the vehicle. If proper verification is neglected, the

customer might end up getting an unsafe vehicle which can lead to serious

consequences. To make these vehicles safe and more efficient, major

manufacturers are using vehicle simulators where the test engineers can perform

numerous automated and manual tests.

Once these tests are executed, the reports are gathered for further

analysis of the faults occurred at various stages of testing. The analysis is further

used to find the root cause of the failure to prevent it from reoccurring before the

new product is passed for production. This study investigates the amount of time

consumed on results reporting processes involved in the overall analysis of test

results in a heavy off road vehicle manufacturing company in Midwest. The

experiment and recommended improvements in this study will help make the

company’s process of results reporting more efficient and effective. In the end of

this study conclusion and some recommendations for further studies are

discussed to efficiently utilize resources in software verification and validation

process of this Midwestern Company.

AN ANALYSIS OF USE OF AUTOMATED TOOLS FOR IMPROVING THE

PROCESS OF SOFTWARE VERIFICATION AND VALIDATION IN A

MIDWESTERN COMPANY

A Thesis

Submitted

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

Darshak Dodiya

University of Northern Iowa

May 2014

ii

This Study by: Darshak Dodiya

Entitled: AN ANALYSIS OF USE OF AUTOMATED TOOLS FOR IMPROVING
THE PROCESS OF SOFTWARE VERIFICATION AND VALIDATION IN A
MIDWESTERN COMPANY

has been approved as meeting the thesis requirement for the

Degree of Master of Science - Industrial Technology

____________ __

Date Dr. Ali Kashef, Chair, Thesis Committee

____________ __

Date Dr. Julie Zhang, Thesis Committee Member

____________ __

Date Dr. Atul Mitra, Thesis Committee Member

____________ __

Date Dr. Michael J. Licari, Dean, Graduate College

iii

DEDICATION

I would like to dedicate this work to my mother Late Smt. Kundanben L.

Dodiya, who will be part of my life forever. Whatever I have achieved today is

because of her immovable faith in me. She always provided the best of

everything I asked for. Her great desire to provide her kids with the best possible

education is still one of the biggest driving factors of my career. Her positive

thinking, giving the best in whatever she did and always setting high standards

won her great respect among everyone who knew her.

She never sighed away from criticizing me and along the way also

encouraged me to take the right steps. She was also not afraid to take harshest

of decisions which she thought was right for family. She was by far the strongest

woman I have ever known. She came out of all hard times much stronger than

before and taught me the same. Being a school Principal, she always thought

about her students as if she would think about her kids and her school was like a

second family to her. She taught me to be patient and injected the belief of

choosing the right path no matter how hard it may look.

I will miss her throughout my life and firmly believe that she is feeling very

proud while watching me from the heavens……..

iv

ACKNOWLEDGEMENTS

I would like to thank all the people who helped me complete this thesis

directly or indirectly. First and foremost, I would like to thank Almighty for

providing me with the courage and determination to complete my higher

education.

Next, I would like to thank my family. Specially my wife Vandana, the

strongest pillar of my life without whom nothing would have been possible. Her

unconditional love, support and belief keeps me going through toughest phases.

Not to mention my two lovely daughters Vipsa and Diva who are responsible for

injecting fresh energy every time I am feeling tired. Also to my father

Lakshmanbhai Dodiya, who continues to be great support I can rely on. Big

thanks to my brother-in-law Dharmesh K. Makwana and sister-in-law Saritha D.

Makwana for being there through thick and thin.

I could not have been able to complete this thesis without the expert

advice and support from my thesis committee members Dr. Ali Kashef (also my

advisor), Dr. Atul Mitra and Dr. Julie Zhang. They have been there to help me on

short notices and always given their best advice to complete the study.

A special thank you to Mr. Mark J. Klocke, Manager- Electronics PV&V

and Mr. Albert R. Oberneder, Software Test Supervisor - PV&V for

understanding and supporting at work so that I can complete my studies. Also to

v

my colleague, Ryan Hanson for helping and guiding me in developing the

prototype tool used in this thesis.

vi

TABLE OF CONTENTS

PAGE

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER I: INTRODUCTION ... 1

 Statement of the Problem .. 3

 Purpose of the Study ... 3

 Need of the Study .. 4

 Research Questions .. 5

 Assumptions .. 5

 Limitations ... 6

 Definition of Terms .. 6

 Outline of Procedure ... 8

CHAPTER II: LITERATURE REVIEW .. 9

CHAPTER III: METHODOLOGY .. 23

 Electronics PV&V Process ... … 23

 Current Results Reporting Process ... 26

 Hardware in Loop Simulaton ... 28

 Test Automation Language: TL ... 30

 TL Scripts .. 32

 TL Macros .. 33

 Test Case Data Generation Tool ... 34

 Folder Structure ... 36

 The Experiment Setup .. 39

vii

 The Experimental Procedure ... 41

CHAPTER IV: FINDINGS AND DISCUSSION ... 43

 Results and Discussion ... 43

 Before Implementation of Prototype Tool .. 44

 After Implementation of Prototype Tool ... 47

 Hypothesis Testing .. 53

CHAPTER V: SUMMARY, CONCLUSION AND RECOMMENDATIONS 56

 Summary ... 56

 Answers to Research Questions ... 58

 Conclusion .. 60

 Recommendations for Further Studies .. 61

REFERENCES ... 62

viii

LIST OF TABLES

TABLE PAGE

1 Time taken to search each report before
 Implementing the tool .. 44

2 Calculated Averages of current search method 46

3 Generalized numbers for the population 47

4 Time taken to search results after implementing the tool 47

5 Calculated averages after implementing the tool 50

6 Generalized numbers after implementing the tool 51

ix

LIST OF FIGURES

FIGURE PAGE

1 A simple model of embedded system .. 10

2 Embedded software size and deployment 11

3 Complexity growth of embedded systems 12

4 A typical software development process 13

5 A simple testing process ... 16

6 The cost of test maintenance is related to the cost of test
implementation .. 20

7 Electronics PV&V process ... 25

8 Test results reporting process ... 27

9 HIL system under investigation .. 29

10 A block diagram of test automation language 30

11 Sample TL Script ... 33

12 Modified Excel file .. 35

13 Test case generation tool .. 36

14 Sample auto generated test case Excel document 36

15 Folder Structure on Simulator hard drive 37

16 A sample report generated at the end of script execution 38

17 A screen shot of Reports folder ... 39

18 Sample output generated after executing the prototype tool 41

19 Chart displaying the trend in searching results before the
implementation of automated results reporting tool

 prototype ... 45

x

20 Chart displaying the trend in searching results after the
implementation of automated results

 reporting tool.. 49

21 A broken down view of time taken to search results before
 and after implementing reporting tool for each script 52
.

22 Two sample t-test output from Minitab 55

1

CHAPTER I

INTRODUCTION

Electronics and software has become an integral part of our everyday life.

Be it a laptop, a tiny music player or large vehicles. Whether one is aware of not,

software is controlling our life in one way or the other. Every vehicle today is

being controlled by some kind of software under the hood. More and more

manufacturers are relying on embedded software for either the basic functionality

or making thousands of decisions in a split second. Developing and relying on

these highly complex software systems to perform such tasks requires the

manufacturers to test these systems thoroughly.

 In the process of developing such complex systems, lots of important

engineering and management challenges are raised. This complexity gives rise

to many problems to the manufacturers. One of them, developing and integrating

embedded software in large vehicles is an expensive venture. A lot of investment

is required to acquire technological and human resources. The other, which the

author considers the most important, is that many projects are completed with

defects to be fixed. Most of them are after the delivery and in the field, which

results in poor quality products further customer dissatisfaction. Organizations

are struggling for the challenge of integrating, verifying and managing a massive

array of test results from number of various sources. In case of short-term

difficulty, software managers attach more resources and engineers but at very

2

high cost and with limited effectiveness. Frequently they still cease delivering

releases of software with compromised quality and rather late.

The growing complicacy of embedded software development demanded a

new more scalable and reliable testing approach that is efficient and effective.

Companies developing embedded software for their products saw a need to

scrap slower testing practices and put into effect automated software verification

in order to detect and prevent more possible defects sooner and quicker.

The Electronics Product Verification and Validation (PV&V) department at

one off road vehicle manufacturing company develops and executes embedded

software test procedures for the entire fleet of large complex vehicle systems as

per the requirement specifications. Test Engineers create all the possible test

cases and execute those tests on the various types of simulators either manually

or utilizing automated scripts. The test results are stored in local hard drives of

the number of Model-in-loop (MIL), hardware-in-loop (HIL) and software-in-loop

(SIL) simulators. Further, the test results are collected from each simulator and

analyzed for defects. There are few HIL simulators, but the software and model

based simulators can be installed by every test engineer in the company. The

amount of test results generated in each simulator is enormous. To collect result

data from these SIL and MIL simulators becomes very difficult, especially when a

single test procedure is executed multiple times on the same computer for

multiple days. This in turn consumes large amount of precious engineering time

3

and resources. An improved process will improve the efficiency of engineers and

PV&V process as a whole.

Statement of The Problem

As the amount of test procedure results generated from various software-

in-loop, hardware-in-loop, model-in-loop and manual simulators increase, the

amount of time taken to perform product verification and validation process

increases. As a result there are cost overheads and delays in reporting issues

which further delay product development process.

Purpose of The Study

More and more manufacturers are using hardware, software and model

based simulators for testing their embedded software products before the final

production. With the increasing amount of testing performed on the simulators of

various types, a huge amount of test results is generated at the end of each

execution of test procedure. Collecting and organizing these test results data

creates some unwanted overhead for the companies in the form of engineering

costs. Although it seems to be a very small part of the complete PV&V process in

the company, its cost cannot be underestimated.

This study investigates the result reporting where the PV&V process can

be improved for efficiency so as to reduce engineering costs. This study also

investigates amount of time consumed and in the process by an engineer on

gathering test results, organize them and present them in a reportable format.

Various simulators were investigated to determine the amount of reports they

4

generate in a period of time. Many benefits will be earned from improving the

process of reviewing results. It will increase the efficiency of engineers by

reducing the amount of time they spend finding reports. Reducing the amount of

time taken just to collect and organize the results reports from the simulators will

make the PV&V process much leaner, efficient and save engineering costs.

Need of The Study

With the influx of automated and manual tests from various simulators, the

amount of test results increase manifold. Navigating to the destination folder

containing large numbers of subfolders is tedious and laborious. Finding the right

report from the folder becomes a challenge if the same tests are performed more

than once in a short amount of time. Once the report is displayed on the screen,

it becomes challenging to find the test parameter values from a stack of test case

results. Since each test case is executed by the same automated script for that

particular function, it again adds similar amount of test results to the storage

location. Printing that report is another problem all together. Since the amount of

pages in each report is very large, it ends up creating huge paper wastes once

they are used. The overall process thereby wastes a considerable amount of

engineering time and costs.

Executing tests on the same simulator machines, utilizes its storage disks

to its maximum capacity. Storing the reports ends up creating storage issues on

the local hard drive of the machines. Searching for reports in the simulator

machines can be performed either physically at the locations or by sharing the

5

root directory of the system. Sharing the storage disk drives makes critical and

confidential data open to other unwanted entities thereby compromising the

security of the company assets on the network.

Research Questions

In this thesis, we will discuss the following research questions related to

the process of Product Verification and Validation.

1. Will implementing the recommended reporting process changes improve

the complete process of PV&V?

2. How much average time does an engineer consumes on results reporting

process before and after the implementation of the proposed

improvement?

3. How do the recommended improvements improve the security of the

testing assets?

4. Finally, how much time and engineering costs the company would save if

the recommended improvements are implemented?

Assumptions

A central test reporting tool called ACRS (Automated Central Reporting

System) will be developed to be integrated into possibly HIL, SIL or MIL test

environments. The following assumptions are made:

1. Fatigue factor of Test Engineers is not affecting their ability of

searching results.

2. All the Engineers utilize similar search methods.

6

3. The location of test result storage is consistent across all the

simulators.

4. All the Engineers of similar grade level are paid equally.

5. All the Engineers utilize the test assets similarly.

Limitations

The following limitations are applied to the PV&V results reporting process

improvement and study:

1. Limited experience with C# or PERL scripting language might lead to

some bugs in the experimental tool.

2. Limited experience with National Instruments Labview and TestStand

tools.

3. The tool might not be able to execute outside of the organization’s

network.

4. Matlab to be linked with c# and PERL libraries is a limitation to perform

the experiment on model based simulators.

Definition of Terms

PV&V: Product Verification and Validation; process to verify and validate a

 product before sent to production.

Verification: Is the product doing as per the specifications?

Validation: Is the product doing what users want it to do?

ECU: Microprocessor based Electronic Control Unit

7

Simulator: Portable hardware, software or model based system which mimics

the real product.

IT4: Interim Tier 4, an EPA emissions standard.

FT4: Final Tier 4, EPA emissions standard which should be implemented

 by 2017

HIL: Hardware-in-Loop, a technique used for developing and testing

 embedded software by electrically simulating components like

 sensors and actuators.

SIL: Software-in-Loop, another technique for testing embedded software

 by using software to simulate components of an electronic system.

MIL: Model-in-Loop, use of simulated product models to test.

NI: National Instruments, automated test equipment manufacturer.

Labview: NI programming environment used to develop measurement, test

 and control systems.

Bug/Defect: A deficiency in the functioning of software

Stakeholders: A person or group that has interest in a project.

TL: Test language used to automate HIL and SIL tests.

I/O: Input and output to any system.

TLA: Three Letter Acronym to identity each application controller.

TestStand: Automation tool from National Instruments.

8

Outline of Procedure

The following procedure will be followed during the study:

1. Initial investigation into the current PV&V process and in particular test

results reporting process.

2. Identify and investigate simulators used by the engineers to perform

test.

3. Collect data for amount of time spent on reporting process.

4. Collect data for storage space used over a particular period of time.

5. Design, Develop and implement an automated tool prototype on

possibly one of the simulators.

6. Collect the new data for amount of time spent on reporting process

after the implementation of tool.

7. Perform Hypothesis testing on the pre and post experiment data to get

the conclusions.

8. Suggest future work.

9

CHAPTER II

LITERATURE REVIEW

In the last two to three decades, embedded software has infiltrated more

and more products, which are traditionally results of mechanical and electrical

disciplines. Be it a cell phone, home appliance or a satellite. They all are

functioning and in most cases relying heavily on the underlying software to keep

them going. There is hardly anything today which doesn’t have some piece of

software in it. Automotive industry has not been left behind as well. It has

innovated along with other products in leaps and bounds in terms of software and

electronics. So much is the increase in use of software and electronics in

automotive that today the manufacturers of automotive products or vehicles are

facing the challenge of finding a balance between production costs and

maintaining reliability, quality and safety or their products.

Noergaard explains embedded systems model as the one which has at

least one layer (hardware) or all layers(Application, system and hardware layers)

in to which all the components fall. The hardware layer contains all the major

physical components located on the embedded board whereas the system and

application layers contain all software located on and being processed by the

embedded system. (Noergaard, 2005, p.12). Figure 1 below represents a typical

embedded systems model.

10

Figure 1: A simple model of embedded system.(Noergaard, 2005)

Capers Jones, an American specialist in software engineering

methodologies and Christof Ebert, a German computer scientist and

entrepreneur point out some of the very interesting facts in their research paper

“Embedded Software: Facts and Figures.” In economic terms, the worldwide

market for embedded systems is about 160 billion euros, with an annual growth

of 9 percent. In terms of engineering, the volume of embedded software is

increasing at 10 to 20 percent depending on the domain and embedded

microprocessors account for more than 98 percent of all produced

microprocessors. Figure 2 below shows the amount of systems using embedded

software per year and the size of the deployed software programs for each of

such domains. It clearly shows the upward trend in terms of automotive software

which is the focus of this study. (Ebert & Jones, 2009)

11

Figure 2: Embedded software size and deployment (Ebert & Jones, 2009)

With the increase in amount of software in these systems its complexity

increases considerably. Graph presented in Figure 3, explains such facts about

the trend of the complexity of software in various domains. It’s the complexity of

the automotive software which creates the most fascinating scenario. The

increase of complexity further increases the amount of defects in each system.

Thereby a considerable increase in chance of having a vehicle with various

critical software defects on the field or on the road. Therefore, it becomes very

important to verify that systems are established properly to prevent any

catastrophic fatalities. Ebert and Jones observed that new cars for instance have

around 20 to 70 ECUs with close to 1 Giga Byte of software in a premium car.

12

Figure 3: Complexity growth of embedded systems (Ebert & Jones, 2009)

Although model based, Figure 4 shows a typical development process.

Dae-Hyun Kum, Joonwoo Son, Seon-bong Lee and Ivan Wilson describe this

complete process of developing software for automotive applications effectively.

According to their report published in 2006 titled “Automated Testing for

Automotive Embedded Systems”:

Development is started with requirement capturing and analysis. The
success of any product development is depending on the creation of clear,
complete and unambiguous requirements. Functional model should be
created according to the requirement capturing document. The vehicle
electronic system is too large to be addressed at a time. So it is often
broken down according to the functional groups. Once the main sub-
system has been identified, it is ensured that signals for input and output
of the system are clearly defined.

Virtual prototype of functional model enables us to test and validate
the software functionality without hardware in the early stage. When
behavior model is released, ECU software development and network
system development are started at the same time. Once the system

13

design and ECU design have been validated on virtual environment, the
designs should be moved into the implementation phase.

Finally all source codes including generated application code, I/0
drivers, communication kernel and operating system code are integrated.
After test execution, the test results should be analyzed to unveil the error
that caused a test to fail and discovered errors are needed to be fixed.
Test results and related information should be documented throughout all
test processes. (Kum, Son, Lee & Wilson, 2006, p. 4415)

Figure 4: A typical software development process (Kum et al., 2006)

Failures and poor quality in embedded software can sometimes cause

death or serious injury. As a result, devices like passenger vehicles and medical

instruments have serious liability problems. Therefore highest quality control and

testing practices are required in basically all of the domains of software

development. NASA’s annual report on Independent Verification and Validation

14

in 2006 pointed out that today, the percentage of software rework can approach

50% for large software projects (NASA, 2006). This has led the manufacturers to

look at various practices which help improve quality and reduce costs. One such

process is Verification and Validation (V&V), which involves rigorous testing of

the product at various stages of its development.

“The correctness of embedded software functionality and performance

plays a decisive role in the software quality, software testing is an important

mean of software quality assurance.”(Qian & Zheng, 2009)

McDonald, Murray, Lindsay and Strooper developed a pilot project for

testing embedded software. Stessing on application that are very critical for

safety of humans, they suggest to follow a Systematic testing approach. They

decribe systematic testing as testing which is “planned, to permit design for

testability; documented, so that the test cases can be understood and the

adequacy of the test cases can be evaluated (for example, by external auditors

or by measuring coverage of the software tested); and repeatable, so that the

test cases can be re-executed after changes in the software.” (McDonald et al.,

2006),

Verification and validation are means by which the product is checked or

tested, and by which its performance is demonstrated and assured to be a

correct interpretation of the requirements. A continuous process of V&V must be

actively applied throughout the software development cycle. (International Atomic

Energy Agency, 1999)

15

“In general terms, verification is a quality control process that is used to

evaluate whether or not a product, service, or system complies with regulations,

specifications, or conditions imposed at the start of a development phase.

Validation, on the other hand, is a quality assurance process of establishing

evidence that provides a high degree of assurance that a product, service, or

system accomplishes its intended use requirements.” (Maropaulos & Ceglarek,

2010)

Thomas Berling, of Ericsson Microwave Systems AB in Sweden, points

out a different thought about verification and validation. According to him, there is

a lack, in industry and in the software research community, of efficient and

effective system performance validation methods. This is an important area since

the cost of system performance validation often is high. The currently used

methods in industry are of the engineering type, which means the engineers use

the methods they find most appropriate. (Berling, 2003)

Keränen and Räty discuss about Model Based testing in HIL prototoype in

their research paper “Model based testing of embedded systems in hardware in

the loop environment.” They found that “the enhancement of test automation in

HIL environments by using model-based test design and generation relieves

manual testing and debugging tasks, which also induces cost savings.” (Keränen

& Räty, 2012)

16

Rex Black, states that to be effective and efficient one has to understand

how the testing process works and how it fits in the overall project (Black,2007,

P.33). A generic software testing process is as shown in the Figure 5.

Figure 5: A simple testing process (Black, 2007)

In other words, it contains the following basic steps:

1. Understanding the testing effort

In other words the first phase is identifying the testing needs. The purpose

of test planning is to find the attributes which qualify as quality attributes of the

software under test. Apart from finding the attributes this activity also covers the

thoroughness with which the software will be tested, attributes which need or

need not be tested. It also addresses the tools required for getting the testing

17

done, manpower involved in testing and various techniques which will be applied

to get as much test coverage as possible.

2. Assemble the people and tests

After the identification of the tests to be performed, the techniques which

are selected under the first step are then applied to generate the test cases for

each attribute. This step basically translates the product design requirements into

a set of test cases after the identification of the test scenarios. This step also

involves identifying the resources required to run or execute tests and the order

in which they should be executed.

3. Testing and gathering results

Once the infrastructure and test cases are defined, the correct steps are

defined to execute each test case correctly. Each test case is finally executed

according to the defined procedure and tracked for its completion. After the

execution of test cases, the results (success or failure) are gathered from all the

resources where the tests were executed.

4. Guide adaptation and improvement

This is where the fate of the software product is decided if it is worthy of

release or needs further fixes. This step basically captures the test results which

are then communicated to the stakeholder with specific focus on the failures and

if they are termed as legitimate issues, they are tagged as defects or bugs. A

thorough analysis is performed on the performance of the software product under

18

test and decided if it can be release for customer use. Improvements are

recommended to the design and development team.

 Rex Black, further provides a brief but very critical snap shot of importance

of testing. He emphasizes on testing as an investment in quality of the software

and uses Jim Campenella’s basic technique to analyze cost of quality:

Cquality = Cconformance + Cnon-conformance

Where ,

Cquality = Total cost of quality,

Cconformance = Total cost of quality assurance to build the software

Cnon-conformance= Total cost due to failure of quality assurance

He describes conformance costs as prevention which includes costs involved in

quality assurance tasks like code reviews or training for example. Planning test

activities, developing test cases and data, and executing the tests identified as

appraisal costs. Nonconformance costs are divided into two parts, one is internal

when the test failure is detected by the internal teams of either test engineers or

programmers themselves. There is always some cost associated with it. It then

enters into a find fix, and release software for further testing process.

 The second nonconformance cost is external according to Rex Black. He

describes these costs as those incurred when, rather than being found internally,

the customer or the end product user finds the bug. These are the costs which

19

affect any organization the most. Apart from heavy costs involved in the fix and

release process, companies procure intangible costs like angry customer,

damage to company image, lost business and even lawsuits. (Black, 2007)

There is another aspect of testing, implementation of test automation tools

for performing efficient testing. Fewster’s article, “Common mistakes in test

automation,” highlights some of the common mistakes which organizations make

in a bid to automate testing. According to Fewster, the main disadvantage of

testing automation was costs, which include implementation costs, maintenance

costs, and training costs. Implementation costs included direct investment costs,

time, and human resources. Fewster found that if the maintenance of testing

automation is ignored, updating an entire automated test suite can cost as much,

or even more than the cost of performing all the tests manually. There is a

connection between implementation costs and maintenance costs. Figure below

implies that if the testing automation system is designed with the minimization of

maintenance costs in mind, the implementation costs increase, and vice versa.

(Fewster, 2001)

 “If we are to minimize the growing test maintenance costs, it is necessary

to invest more effort up front implementing automated tests in a way that is

designed to avoid maintenance costs rather than avoid implementation

costs.”(Fewster, 2001, P.4)

20

Figure 6: The cost of test maintenance is related to the cost of test
implementation (Fewster, 2001)

“Automated software testing may reduce costs and improve quality

because of more testing in less time, but it causes new costs in, for example,

implementation, maintenance, and training.” (Karhu, Repo & Smolander, 2009)

One of the other fields where reporting is considered even more critical is

the field of medical testing. Although used for different scopes, results reporting

in medical or electronics field cannot be ignored. Any error in either of the fields

can lead to potential danger to life.

“Improving newborn screening laboratory test ordering and result reporting

using health information exchange” by Downs et al., focuses on use of

electronics results reporting through health information exchange for newborn

screening. It highlights that “the problems that are seen with failure to manage

and follow-up on routine laboratory results are magnified in newborn screening

situation when negative outcomes could be triggered by incomplete reporting,

21

failure to recognize a critical result, and delays in completing the confirmatory or

referral process.” (Downs et al., 2010)

Further , the article states that “during the initial screening process

electronic data exchange helps to “close the orders loop” and make sure that all

infants are tested and that a responsible clinician has looked at the results of the

tests. For confirmatory testing, educational materials on the diagnosis and

management of rare disorders can be provided along with the results of the test.

The results of all hearing and metabolic testing can be brought together to

simplify decision-making.” (Downs et al., 2010)

Nguyen, Thorpe, Makki and Mostashari in their article “Benefits and

Barriers to Electronic Laboratory Results Reporting for Notifiable Diseases: The

New York City Department of Health and Mental Hygiene Experience” found that

electronic reporting of results and automatic uploading data improved timeliness

as well as eliminated substantial data entry needs. They found that 65% of the

43,568 hepatitis C cases and 52% of the 35,884 chlamydia cases were entered

into the health department through electronics reporting which was equal to

47,204 reports that would have been entered manually. Thereby they were able

to apply the staff resources in dedicated field work which was more important

than entering data. (Nguyen et al., 2007)

The current process seems to be implemented without thorough

investigation into the importance of results reporting of automated tests. This

study will focus on possible solution to results reporting which seems to be

22

causing the cost overruns in EL PV&V department of the organization under

study. This study will introduce few techniques for saving internal costs by

improving the process of one of the most neglected but very important area of

testing process, test results reporting.

23

CHAPTER III

METHODOLOGY

 This chapter explains the methodology used for this study. The current

process of electronics PV&V is studied and a detailed observation of the process

from the time software is ready to be tested to being released for user trials is

explained. Next, the sub process of results reporting in the current PV&V process

is studied deeply and explained in detail with focus on areas which needs

improvement.

 Further, the chapter discusses the basic structure of a HIL simulator under

study, Test Language (TL) which is a scripting language used for automated

testing on the HIL simulator. Test Case Data Generation tool which is used to

create possible test scenarios for a particular vehicle function is being briefly

discussed along with folder structure, sample reports generated at the end of test

execution, TL scripts and Macros. The chapter ends with a detailed explanation

of the experimental setup and procedure employed during this study.

Electronics PV&V process

Figure 7 below shows the observed process of Electronics PV&V at the

organization under study. Once the software is ready for verification and

validation, the testing activity is requested by the project expert. The activity

request is received by the PV&V assigner who further assigns the activity to

activity engineer responsible for the completion of the testing activity. Once the

24

request is received by the activity engineer, it is discussed with the requestor to

establish test requirements, formalize acceptance criteria based on the product

specification, product use database and organization information systems, and

activity deadline is confirmed.

Only when the test requirements, acceptance criteria and deadlines are

resolved and agreed upon, the next step is executed. If these items are not

resolved, further discussions are held to come to an agreeable resolution. Once

all the items are resolved, activity engineer starts developing test plan and

procedures or uses the standard template for developing plan. A test schedule

and estimation of cost is drawn for the testing activity before execution of tests

for the requested product. The complete test procedures are executed as per the

plan on various test infrastructures.

25

Figure 7: Electronics PV&V process.

26

 The testing results are then compared with the acceptance criteria for

verification. If the test results meet the acceptance criteria, then the activity status

is updated with a “yes” else it is updated with a “no” and supporting results data

are attached. Once the supporting data is linked, the activity is forwarded to the

reviewer. After the reviewer has reviewed the status and supporting data, the

results are forwarded to the requester for their further action.

Current Results Reporting Process

 Further focus on the test results reporting process at the organization

under study provided further insight into the problem being investigated. Figure 8

below shows the current process of results reporting before being approved or

disapproved for release. Once the test procedures are created by the developer

and test engineer, whether they will be tested manually or using automated

testing tools is decided.

27

Figure 8: Test results reporting process

Manual test procedures are either tested on the actual vehicle or on the

simulators and their results are manually updated in the results reporting Excel

file. Automated tests are divided further into two groups. The first group of tests is

the ones which can be tested using Matlab or MIL simulated models. The other

group utilizes the Test Language scripts for automating the execution which are

further executed on the HIL or SIL simulators on individual’s desk. Automated

tests executed on the HIL simulators generated reports in “.html” format and are

stored in the local hard drive of the simulator PC. The tests executed on the SIL

simulators generate reports in “.xls” format which are again stored in the local

hard drive. And since the SIL simulator is a portable software package which can

28

be installed on any individual PC, the amount of testing results generated is

exponential. Reports generated through these testing methods are further

manually searched and inserted into a common test results summary document

which is further used for making decision to either accept the features which

passed the tests or redevelop the failing features and retest the same.

This study discusses a possible solution called ACRS to organize, track

and streamline the current result reporting process. It focuses on providing a

solution to make the current process more efficient by saving engineering cost

and time. It also discusses some of the other issues related to the security of vital

information and the assets where the results are stored. It provides an

experimental tool to automate the current reporting process and analyzes the

outcome by performing hypothesis testing on the pre and post experiment data.

Hardware in Loop Simulation

The Hardware in Loop simulation system usually consists of the following

components:

 A host PC (Operator Interface)

 A mathematical plant model

 Real time Processors and input / Outputs

 Multiple Electronic Control Units (ECU)

A real time processor acts as the main component of the HIL system. It

executes most of the system components like logging of data, I/O communication

29

and model execution. This real time system is very important for a successful

testing system because it can provide accurate simulation of various pieces of

the actual system which are physically present. The Figure 9 below shows the

block diagram of a typical HIL system:

Figure 9. HIL system under investigation (Trimborn, 2005)

There are following main components which make up the HIL system:

HMI: This is the windows PC that runs either the Test System GUI or TL

Compiler/TestStand. This PC also processes and stores the result reports after

script execution.

Simulation Processing: Labview Real Time PC that runs simulations.

Control Unit: Labview Real Time PC that runs the Data Manager and controls

the I/O hardware. This is the main server that is the system backbone.

30

Test Automation Language: TL

 The Figure 10 below is a block diagram of the Test Language under study

for automation of the manual tests. The intent of this language is to reduce

the amount of time taken to complete some of the laborious manual tests. It

has a set of instructions to create simulators and automation as well as

manual testing. The TL script will be compiled in a TL Compiler and compiler

will create a sequence in TestStand. Compiler used to compile this script

detects the errors of invalid commands and notifies the user after aborting the

script execution.

Figure 10. A block diagram of test automation language.

31

Some of the important components of TL system are:

1. Test Plan: The test plan is created by the user after carefully studying the

requirements of the feature of a particular system under test. The test plan

contains the date table with the possible test cases which will test each

aspect of the requirements. The TL is developed to setup a framework for

data driven testing, for re-using common macros without entering any data

by hand in the TL script. The difference between the data driven method

and the TL template is all of the data for the TL steps is in the Excel file.

This data is passed from the Excel file variables to the main TL script FOR

loop variables, then to the TL variables.

2. Scripts: The test language uses the script which contains a set of

instructions which are fed to the compiler which checks for any errors

before converting them to a machine readable format. If there is an error,

then the compiler will generate a report for the user describing the location

where an error occurred.

3. System Configuration: The system configuration is usually created by the

user to mimic different models of the vehicle with different features. The

configuration is also read by the compiler to make sure the user has

referred the correct configuration in the automation script.

4. Test system: Test system is the back bone of the complete simulator

which controls the hardware and I/O. it contains the hardware simulated

32

sensors and actuators. The compiled instructions are fed to this system for

execution.

5. A test report is generated in .html format at the end of each script

execution. The report contains the results as passed or failed for each

executed instruction. The test reports are stored in the local computer

running the user interface at a pre-defined location.

TL Scripts

In progress TL scripts can be located anywhere on the C:\ drive of the

windows PC. TL scripts that are working and that need to be archived need to

be placed in folder (C:\Testing\Test Scripts)

The Test_Data folder is dependencies for the archived scripts. This folder will

contain any tables that the scripts use and need to be placed in folder

(C:\Testing\Test Scripts\Test_Data).

 Figure 11 below demonstrates a sample TL script used in the experiment.

It basically consists of three main components: command, operator control /

identifier and Value. Once compiled, Command instructs the real time machine to

perform a certain task on the Identifier specified in the syntax of the instruction.

Syntax format:

 <Command> <IDENTIFIER> TO <VALUE> <Optional commands>

Identifier can be a “signal,” “CAN” message or any other operator control defined

by TL enterprise document.

33

Figure 11: Sample TL Script

TL Macros

Common functions which are used multiple times in a script or by different

scripts which utilize these functions are saved as Macros. These macros are

called during the main script execution to verify that certain functionality of the

software is still intact. TL macros can be placed in 3 locations:

1) C:\Projects\Lib\Macros – This location is for common macros for all

34

systems.

2) C:\Projects\Testing\Library\TL\Macros – This location is for system

specific and test macros.

3) The folder or any sub-folder of where the main TL script file is – This

location is for script specific macros.

The Teststand sequence file created from all of these macro locations will

be created the same way as the main script sequence. It is created in a sub-

folder of the sequences to be created by the compiler called Macros. The script

or macro filename should have the *.tl extension to be classified as TL script. The

name of the file could be anything unless the file is a macro file then the name

should match the macro name defined in the file.

MACRO SetTemp (tempValue)

END MACRO

For example, a file containing the above sequence of instructions must be

named “SetTemp.jdctl”

Test Case Data Generation Tool

The test case data generation tool uses the data driven testing approach.

This tool allows the user to automatically generate test cases of the requirement

from a modified Excel file. It creates the Excel file test cases automatically for

the user. With this tool the user still has to create the CTL script. The modified

Excel file in Figure 12 uses keywords (i.e. increment, formula, use all, etc.), input

35

data, and headers to generate the test cases. The input data is populated in

each column based on what the keyword is. The user interface used to run this

tool is shown in Figure 13. It allows the user to select a file path to load the

modified Excel file from and a path to save the new table to. When the tool is

executed, the output in Figure 14 will be generated.

Figure 12. Modified Excel file

36

Figure 13. Test case generation tool

Figure 14. A sample auto generated test case Excel document

Folder Structure

Figure 15 shows the folder structure which contains all of the test system

configuration files, support files, TL report files, TL library files, and TL macro

files.

37

Figure 15: Folder Structure on Simulator hard drive

The report folder is located under the “c:\Projects\Testing\.” Once the

execution of any TL script is completed, a results report is generated in “.html”

format. This report contains results (passed/fail) for each and every command in

every macro executed in the process of testing a feature. A sample report is

shown in Figure 16 below. The report is stored under the subsequence subfolder

of the main folder which contains the name of the “main” script. It can be a table

which contains a queue or list of all the feature scripts to be executed or it can be

a main script which performs subroutine calls to various macros.

38

Figure 16. A sample report generated at the end of script execution

Figure 17 below shows a snapshot of the “reports” folder containing

hundreds of reports generated after the automated script execution. The amount

of reports generated is visible in the snapshot, and since the naming conventions

are similar for most of the folders, searching a particular report becomes very

difficult. The Figure 17 shows a long list of folders with similar name but different

time stamps indicating the number of times a particular script is executed.

39

Figure 17: A screen shot of Reports folder

The Experiment Setup

 An experiment was designed to test and prove the effectiveness of an

automated process for results reporting in a PV&V process. A study was

conducted to search all the software development teams. It was found that there

are 6 teams which utilize HIL simulators to test their software against limited

hardware for functional testing. One of the software development teams in the

organization which utilizes the HIL simulators for automated testing was

randomly selected. 10 automated tests were chosen randomly from the total of

approximately 151 automated TL scripts which were executed by the team for

40

testing various features of their subsystem. These automated tests were

executed by the team between the months of June 2012 to September 2013.

A simple prototype tool was designed and developed using the “PERL”

scripting language. “PERL” scripting language was used because of its following

features:

1. Perl is available for most of the platforms like Windows, UNIX, MS-DOS

and Macintosh.

2. There is no cost associated with it.

3. Perl can be acquired from many sources.

4. Easy to use instruction set compared to other programming languages.

The tool would search through a reports folder path where all the reports

generated at the end of automated script executions are stored. The tool would

look for all the files with “.html” extension under the “subsequence” subfolder of

“reports” folder. Once it finds a file with “.html” format, it further searches through

each line of the source code for that particular file and looks for all the TL

instructions. The tool then compares the results of each of the instructions found

with “Passed,” “Failed” and “Terminated” strings until it reaches the end of line. It

continues the search until it reaches end of the page. Once it reaches at the end

of page, the control exits out of that file and starts searching for next “.html” file. It

repeats the process until it is not able to find any further “.html” files.

41

 Once done parsing the instructions and its associated results, the tool

would generate a spread sheet as shown in the Figure 18 below with either “.xls”

or “.csv” extension which can be further uploaded to the local company servers.

Figure 18: Sample output generated after executing the prototype tool.

Experimental Procedure

 Ten automated test procedures scripted in TL were randomly selected

from a list of 151 automated test procedures used by a single team utilizing one

42

of the HIL simulators. One Engineer was selected randomly out of the six

available engineers from the selected team. The Engineer was requested to

search for exactly five reports generated for the selected automated tests from

the “Reports” folder which contained hundreds of folders and subfolders with

reports of various tests. Time taken by the engineer to search and manually

update results for each automated test was recorded from a digital stop watch.

An average of total time taken to search one report was calculated based on

calculated average time taken to search each report.

 To limit human error of recording times taken for searching results, the

subject was requested to perform search at random work hours in the day like

early morning, before lunch break, after lunch break and just before end of the

working day. The different times of the day were chosen because the subject

might be in different state of mind at different times of the day to resemble

sometimes light and sometimes a little heavy work load. The number of searches

was limited to maximum of 5 searches at one time to reduce fatigue.

 The prototype tool developed to automate the reporting process was then

executed on the same folder. Once the execution was complete, the excel file

generated as a result of the tool execution was provided to the Test Engineer

and requested to search for the result reports for the test procedures sample.

The time taken for the Engineer to search the results was then recorded and

average time was calculated. The calculated mean was then used to perform

Hypothesis testing to prove the effectiveness of new process.

43

CHAPTER IV

FINDINGS AND DISCUSSION

Results and Discussion

 To validate the proposed automated results reporting in the process of

PV&V at the organization of study, two series of experiments were conducted on

10 randomly selected automated test scripts. The sample of 10 scripts was

collected using Random sampling method. All the scripts were numbered from 1

to 151. The “RANDBETWEEN” function of Excel spread sheet software was

used to determine 10 random numbers between 1 and 151. The 10 scripts

associated with the numbers were selected as sample.

In the first series of experiment, the Test Engineer was requested to

search for exactly five reports generated for the selected automated tests from

the “Reports” folder containing reports of various tests. The Engineer was asked

to search the results at random times of working hours like early in the morning

straight after the Engineer arrived at work, right before lunch, straight after lunch,

right before end of the working hours and randomly in the middle of other work.

Time taken by the engineer to search and manually update results for each

automated test was recorded. In the second series, the prototyped tool was

executed and the Test Engineer was requested to search for the same result

reports from the newly generated spread sheet.

44

Before Implementing the Prototype Tool

Table 1 below shows the amount of time in “seconds,” the Test Engineer

took to search five result reports for each of the script. For example, to search

five result reports for the “Reverser_Verification” script took 117, 81, 53, 110 and

91 seconds respectively. The average time calculated to search one result report

for this script came out to be 90.4 seconds.

Table 1: Time taken to search each report before implementing the tool.

Figure 19 below shows the data from Table 1 in graphical format. It

suggests that variation from the amount of time taken to search results is large,

the time taken is not consistent. There is no trend which can predict the amount

of time it will take to search the next result.

45

Figure 19: Chart displaying the trend in searching results before the

implementation of automated results reporting tool prototype

 As shown in the Table 2 below, each test script was executed many times

at different dates between the month of February 2012 and December 2012 (10

months). Out of the total number of times the script was executed, the Test

Engineer was asked to search only five reports of each automated scripts. For

example, the “Reverser_Verification” script was executed 48 different times

during the period. Average number of times each script was executed is rounded

up to 33. Also, average time taken to search each report was calculated based

on the data from the Table for each script was 84.9 seconds.

46

Table 2: Calculated Averages of current search method

 Table 3 below shows the calculated numbers for all 151 scripts which the

software team owns for testing their software features. According to this table,

there will be 5043 total number of reports generated if all of the 151 scripts are

executed 33 times which is the average number of times each of the selected

scripts were executed. If all of the reports need to be searched for and update

the results report, it will take a total of 120 hours to search through all the 5043

subsequence report folders generated after the execution.

According to “Indeed.com,” a job search website with more than 1 billion

job searches per month, the average salary of Software Test Engineer salary

stands at around $75,000 per year which can be broken down to around $37 -

$40 per hour. As mentioned in the Table 3 below, considering hourly rate for the

Software Test Engineer to be $37, the amount spent on searching reports would

be $4,400.79 for one team. There are 9 known teams which utilizes automated

47

test procedures to test their software. Thereby, the organization under study

ends up spending close to $39,607.08 in just searching and organizing the result

reports. (Software Test Engineer Salary, 2013)

Table 3: Generalized numbers for the population

After Implementing the Prototype Tool

Table 4 below shows the amount of time taken after implementing the

prototype tool for searching results. As displayed in the table, the amount of time

taken to search each report has dropped significantly.

Table 4: Time taken to search results after implementing the tool.

48

A line chart is developed in Figure 21 using the data from the Table 4 to

investigate a trend in the time taken for each search. As seen in Figure 18 below,

the amount of time taken to search the first result of each script is higher than the

time taken to search the next 4 results for the same script. This is because of the

initial time taken by the Engineer to filter the results by the name of the script.

Once the results are filtered, the time taken to search the next result for the same

script is very less because all the results for that script are populated in the

spreadsheet therefore there is no need to manually search the reports folder

again.

49

Figure 20: Chart displaying the trend in searching results after the

implementation of automated results reporting tool.

 Table 5 below shows the calculated averages for time taken to search

results report for each script after the implementation the prototype tool. Out of

the total number of times the script was executed, the Engineer was again asked

to search only five results for sampled automated scripts. Taking the example of

“Reverser_Verification” script again, this was executed 48 different times in all.

Average number of times each script executed is same as before which is 33.

Also, average time taken to search each report was calculated based on the data

from the table 4 for each script is 11.64 seconds which is significantly less than

the average time before implementing the tool.

50

Table 5: Calculated averages after implementing the tool.

 When generalizing the averages found in Table 5, there is a clear

difference in numbers when compared with the generalized numbers calculated

before the implementation of the tool. Table 6 below shows that the total time

taken in hours is reduced to 16 hours. Again, assuming $37 per hour as

minimum salary for a Test Engineer, amount spent for 16 hours would be

$583.66. For 9 teams utilizing automated scripts, the organization would end up

spending $5252.95, which is significantly less than amount spent before

implementing the tool.

51

Table 6: Generalized numbers after implementing the tool.

Figure 21 below paints a clear picture of the difference between the

amounts of time taken to search results for each sample TL script. The amount of

time taken to search results for each script is significantly lower after

implementing the reporting tool. Not only the amount of time taken is less

compared to current reporting process, it also has an expected consistency.

52

Figure 21: A broken down view of time taken to search results before and after
implementing reporting tool for each script.

53

Hypothesis Testing

To prove that the results reporting process after the implementation of the

prototype tool takes less time than the calculated average time of the current

process, a hypothesis testing was performed. The mean time taken to search

results report for each script by current process is 84.90 seconds. The Null

Hypothesis was developed assuming that there is no difference in the mean time

before and after the implementation of new tool with a confidence level of 95%

and margin of error (α) of 0.05.

For this test, the Null Hypothesis: H0 is that there is no difference between

the mean time taken to search results report for a particular script before and

after the implementation of prototype tool.

µBefore = µAfter

The Alternate Hypothesis: HA is that the mean time taken to search results

report for a particular script after the implementation of the prototype tool is less

than the amount of time taken to search before the implementation of prototype

tool.

µBefore < µAfter

Figure 22 below shows the output generated from the student version of

Minitab 16.0 statistical software used to perform two sample T-test. Two sets of

data termed as “Before” which is the average time it took for the Test Engineer to

search result report for each script and “After” which is the average time it took

54

for the Test Engineer to search results for each script after the implementation of

the experimental tool, were entered in the data sheet. A two-sample T-test was

performed using the Minitab "2-Sample t…” function with Confidence Interval set

at 95% and assuming the two sets of data have equal variances.

Looking at the output of Minitab in the Figure 22 below, there is a mean

difference of 73.64 seconds is an estimate of difference between the population

means which is significantly large. The confidence interval for the difference is

based on this estimate and the variability within the samples. We can be 95%

sure that the difference between the mean time to search results is between

56.04 and 91.24 seconds higher before the implementation of the experimental

tool than after the proposed change. The t-value for the test is 9.46 and is

associated with a very low p-value rounded off by Minitab to 0.00. Since, the p-

value is very low, we can reject the Null Hypothesis at α = 0.05 and conclude that

there is a statistically significant difference between the two means. In fact, the

time taken to search the result report for each script is much larger than the time

taken after the implementation of the prototype tool.

55

Figure 22: Two sample t-test output from Minitab

56

CHAPTER V

SUMMARY, CONCLUSION AND RECOMMENDATIONS

Summary

 The research presented in this thesis laid the foundation for implementing

Automated and Centralized Reporting System (ACRS) for the organization under

study. ACRS system used a small prototype of automation tool to effectively

report and manage large amount of reports generated at the end of embedded

software testing cycle in a large off-road vehicle manufacturing organization. The

current systems in place are laborious, less effective and utilize lot of resources

thereby costing the organization a lot of money and usually get unnoticed. As

further developments happen in the field of software testing using HIL, SIL and

MIL based tools, having a common automated reporting tool would help

organizing and reporting of test results more effective and efficient.

 Chapter II described the extensive background on embedded software, its

development cycle and importance of testing. It also informed the importance of

thoroughly testing embedded software intended to be used in off road vehicles.

This chapter also detailed the observed process of testing and its results

reporting at the organization under study. Although most of the organization

under study had focus on thoroughly testing the software to be used on the

vehicles and defects resolution, there is not enough attention provided to the

area of implementing common reporting systems to streamline results generated

from various types of testing tools. There are tools available on every testing

57

platform to generate reports in one form or the other, but there is no option to

convert the reports of various formats into one common and easily available

report.

Chapter III introduced the Hardware-in-loop simulation platforms also

called as HIL system and their architecture under study. This chapter mainly

focused on the methodology of the experiment which included the test

automation language called TL. It explained the complete architecture, folder

structure used, basic syntax and highlighted on the test case generation tool

which is used for automatically generate possible test cases for a feature. It

explained the functioning of the TL scripts and macros which generate “.html”

type of files for the results reports.

This chapter concluded with explaining the experimental procedure which

was performed to conduct the research. In this experiment, the Test Engineers

were asked to search results of 5 randomly selected scripts out of a total of 151

scripts available in the folder containing large amounts of reports. Time taken to

search each report was recorded for analysis. Then, a prototype tool depicting as

a new step in the results reporting process was developed using PERL scripting

language and executed on the same folder containing large amounts of reports

and the data was recorded for further analysis.

 Chapter IV was mainly focused on analysis of the data collected during

the experiment. Averages were calculated from the set of data collected before

58

and after the implementation of the tool for 5 scripts. After performing the data

analysis, it was revealed that the amount spent on just searching the results from

the reports generated before implementing the prototype tool is around

$175,000.00. The amount spent to perform the same action after implementing

automated tools can be reduced to around $16,760.00 which is almost 10 times

less than the current amount being spent.

Answers to Research Questions

This section will try to answer some of the research questions which were

provided earlier:

1. Will implementing the recommended reporting process changes improve

the complete process of PV&V?

As seen from the data analysis, there is a huge potential for the

organization under study to save a lot of precious Engineering time and

cost which eventually can be saved by utilizing automated tools to improve

on results reporting process which is a very important but neglected part

of the PV&V process. The experiment performed during the study certainly

revealed the area of results reporting which is not efficient currently and

improving the way results are stored and reported can make the process

more efficient.

59

2. How much average time does an engineer consumes on results reporting

process before and after the implementation of the proposed

improvement?

According to the data analysis performed in the study, on average a

Test Engineer will spend approximately 120 hours for just searching

results. If automated tools like the ACRS are implemented, the same

Engineer will spend around 16 hours on the process which is significantly

less than number of hours spent currently.

3. How do the recommended improvements improve the security of the

testing assets?

At this point of time, all the results are stored on the local hard drive

of the simulator machines. These hard drives also contain very critical

data like vehicle configurations, simulation models and various databases

used for the functioning of the simulator. To collect the results from remote

machines, the local hard drive is shared on the network thereby making it

available to non-users of the simulator who can potentially damage the

critical files and information knowingly or unknowingly. With the

implementation of the ACRS, the results can be directly exported to the

local servers which are more secure and have dedicated maintenance

resources. Hence, only the users with proper credentials can access the

data from any location without compromising the simulators security.

60

4. How much time and engineering costs the company would save if the

recommended improvements are implemented?

According to the study performed, the current process of results

reporting cost $39,607.08 to the organization. As per the data collected

after the experiment, the total cost of results reporting only came out to

$5252.95 which is significantly less than the current costs. If the company

decides to utilize automated tools like the prototype used in the study, it

can accomplish the task of results reporting for far less than current costs.

Conclusions

 This study has introduced a simple but very powerful prototype tool called

ACRS (Automated Central Reporting System) which if implemented properly can

reduce the amount of time and money spent on usually unnoticed task of

searching results from a large pool of automated test results. The research

highlighted the unnoticed area of results reporting process in the organization

which if looked closely is still not efficient, thereby making the complete process

of PV&V in the organization less efficient. The study proved that there is a lot of

room for improvement in the current results reporting process if the organization

looks to implement automated tools for reporting results from automated tests.

61

Recommendations for Further Study

With the increase in competition and economic downturn, organizations

are looking for ways to save their operating costs in any possible way without

compromising the processes which are critical to quality of the final product.

PV&V is one of the most important processes which if not performed properly,

can lead to products with defects. Defective products lead to even higher costs

for the organization in terms of warranty or repairs. Therefore it is very important

for the companies to produce quality products but keeping their development

cost down to be competitive.

This study conducted for process improvement applied to the 9 teams

which operate from one of the engineering centers of the organization in Midwest

which are responsible for developing one product. The organization

manufactures various off-road, utility vehicles and other agricultural equipment at

various locations which are not included in this study. Further studies can be

performed to search for similar processes in other units of the organization which

develop other products.

Further studies can be conducted to find other processes in the

organization which have reporting process that are inefficient and which can be

automated to make them cost effective. Therefore the potential for the company

to improve processes across all units is wider than the current study.

62

REFERENCES

Berling, T. (2003). Increasing Product Quality by Verification and Validation
 Improvements in an Industrial Setting. Ericsson Microwave Systems AB,
 Molndal, Sweden. Retrieved from
 http://www.lucas.lth.se/events/doc2003/031205a.pdf

Black, R. (2007). Pragmatic Software Testing: Becoming an Effective and
 Efficient Test Professional. Indianapolis, IN: Wiley Publishing, Inc.

Downs, S., van Dyck, P., Rinaldo, P., McDonald, C., Howell, R., Zuckerman, A. &
 Downing, G. (2010, January). Improving newborn screening laboratory
 test ordering and result reporting using health information exchange.
 Journal Of The American Medical Informatics, 17(1), 13-18.
 http://dx.doi.org/10.1197/jamia.M3295

Ebert, C. & Jones, C. (2009, April). Embedded Software: Facts and Figures
 Retrieved from
 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5054871

Fewster, M (2001). Common Mistakes in Test Automation. Retrieved from
 http://www.sqetraining.com/sites/default/files/articles/XDD2901filelistfilena
 me1_0.pdf

International Atomic Energy Agency. (1999). Verification and Validation of
 Software Related To Nuclear Power Plant Instrumentation and Control.
 Vienna, Austria. Technical Reports Series, 384.Retrieved from
 http://wwwpub.iaea.org/mtcd/publications/pdf/trs384_scr.pdf

Karhu, K., Repo, T., Taipale, O. & Smolander, K. (2009). Empirical
 Obeservations on Software Testing Automation. International Conference
 on Software Testing Verification and Validation. Lapperanta, Finland. PP.
 201-209. Retrieved from
 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4815352

Keränen, J. & Räty, T. (2012, August). Model-based testing of embedded
 systems in hardware in the loop environment, Software IET, 6(4), 364-
 376, Retrieved from
 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6322859&isnu
 mber=6322849

63

Kum, D., Son, J., Lee, S. & Wilson, I. (2006). Automated Testing for Automotive
 Embedded Systems, SICE-ICASE, 2006. International Joint Conference,
 4414-4418, 18-21 Oct. 2006 Retrieved from
 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4108293&isnu
 mber=4108014

Maropoulos, P. & Ceglarek, D. (2010). Design Verification and Validation in
 Product Lifecycle. CIRP Annals – Manufacturing Technology, 59(2), pp
 740-759
 http://dx.doi.org/10.1016/j.cirp.2010.05.005

McDonald, J., Murray, L., Lindsay, P. & Strooper, P. (2006) Module testing
 embedded software-an industrial pilot project, Engineering of Complex
 Computer Systems, 233-238, Retrieved from
 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=930182&isnum
 ber=20120

NASA Independent Verification and Validation (2006). National Aeronautics and
 Space Administration., p.6 Retrieved from
 http://www.nasa.gov/centers/ivv/pdf/174321main_Annual_Report_06_Fina
 l.pdf

Nguyen, T., Thorpe, L., Makki, H. & Mostashari, F. (2007, April). Benefits and
 Barriers to Electronic Laboratory Results Reporting for Notifiable
 Diseases: The New York City Department of Health and Mental Hygiene
 Experience. American Journal of Public Health, 97(1), S142-S145.
 doi: http://dx.doi.org/10.2105/AJPH.2006.098996

Noergaard, T (2005). Embedded Systems Architecture: A Comprehensive Guide
 for Engineers and Programmers. Burlington, MA: Elsevier Inc.

Qian, H. & Zheng, C. (2009, December), An Embedded Software Testing
 Process Model, Computational Intelligence and Software Engineering,
 pp.1-5, 11-13 Retrieved from
 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5366362&isnu
 mber=5362501

Software Test Engineer Salary (2013). Retrieved from
 http://www.indeed.com/salary/Software-Test-Engineer.html

Trimborn, M. (2005, June). Developing Embedded Systems and Sensor
 Simulations Using FPGAs and Graphical System Design Software. RTC
 Magazine. Retrieved from
 http://www.rtcmagazine.com/articles/view/100352

	An analysis of use of automated tools for improving the process of software verification and validation in a Midwestern company
	Recommended Citation

	Microsoft Word - Darshak Dodiya Thesis

