April 2015

The Effects of Metolachlor Exposure in THP-1 Alveolar and Monocyte and Macrophage Cellular Functions

Jared Parmater

University of Northern Iowa

Copyright © 2015 Jared Parmater

Follow this and additional works at: https://scholarworks.uni.edu/agss

Part of the Biology Commons

Let us know how access to this document benefits you

https://scholarworks.uni.edu/agss/2015/all/39

This Open Access Oral Presentation is brought to you for free and open access by the Graduate College at UNI ScholarWorks. It has been accepted for inclusion in Annual Graduate Student Symposium by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
Effects of Metolachlor Exposure on THP-1 Alveolar Monocyte and Macrophage Cellular Functions

Presented by
Jared S. Parmater

Advised By
Dr. David McClenehan
Introduction

- Analysis of Metolachlor
 - History
 - Chemistry
 - Application
 - Environmental Fates and Concerns
- Experimental Design (Objective I, II & III)
 - Procedure
 - Expectations
- Acknowledgments
Metolachlor: History

• Pre-Emergent Broad Spectrum Herbicide (1976)
 ▫ Used to control broadleaf plants and weeds
 ▫ Primarily agricultural or feed crops
 • Corn, Soybeans and Sorghum
 ▫ Alternatively
 • Ornaments, trees, shrubs, cotton, peanuts, etc.
Metolachlor: Chemistry

- **Chemical Activity**
 - Inhibits long-chain fatty acid synthesis
 - Unintended consequences uncertain

- **Character**
 - Primarily an odorless, clear to amber colored liquid
 - Can be found in granular forms
 - 21 known degradates (3)
Metolachlor: Chemistry

• Aliases
 ▫ Trade Names
 • Bicep®, CGA-24705®, Dual®, Pennant® and Pimagram®
 ▫ Alone or Herbicidal Cocktail (3)
 • Combined with atrazine, cyanazine and fluometuron
Metolachlor: Application

• Historically
 ▫ 60 million lbs. in U.S. annually \(^{(2)}\)

• Recommended Application
 ▫ Ground application
 ▫ Aerial, irrigation and chemigation

• Prohibited Applications
 ▫ Greenhouses and enclosed areas
 ▫ Peaty, sandy or loamy soils
 ▫ Fruit bearing trees or vines
 ▫ Grazing areas
Metolachlor: Environmental Fates

- **EPA Classifications**
 - **Soil**
 - Persistent to Moderately Persistent
 - Mobile to Highly Mobile
 - **Ground Water**
 - Primary source of exposure
 - Considerable contamination to ground water – found in over 20 states
 - .08 – 850 ppb found in various water sources (.078-849.03 μg/L)
 - **Air Contamination**
 - Volatilized – Ontario watershed findings ~5ng/L
 - Dust Contamination - ~50% of 39 homes in Iowa study had measurable levels
 - Improper PPE pre and post application
Metolachlor: Health Concerns

• Toxicty (EPA)
 ▫ Generally low level of toxicity in acute tests
 ▫ Toxicity Category III (oral and inhalation routes)
 ▫ Toxicity Category IV (eyes or skin)
• Animal testing - High levels of exposure
 ▫ Dogs - Low birth and body weight
 ▫ Rabbits- Increased liver and kidney size
 ▫ Rats - Carcinogenic- liver nodules and carcinomas in females
• Humans (New Jersey) - Correlation
 ▪ Low birth weights (2010)
Metolachlor: Health Concerns

• Symptoms of Metolachlor Poisoning
 ▫ High levels of exposure
 • Eye or skin irritation, cramps, shortness of breath, weakness, sweating and diarrhea
 ▫ Prolonged exposure
 • Anemia, hypoxemia, convulsions and jaundice
Experimental Questions

• Effects on human alveolar leukocytes
 - Inhibition of normal cellular function
 - Provocation of an erratic function

• Specific Function
 - How will metolachlor effect cells?
 • Phagocytosis?
 • Apoptosis?
 • Necrosis?
Experimental Outline

- **Objective I: Monocyte/Macrophage Phagocytosis Assay**
 - Measuring the effects of Metolachlor on human alveolar monocytes and macrophages via flow cytometry
- **Objective II: Apoptosis Assay**
 - Measuring possible effects of Metolachlor on the apoptotic pathway of monocytes and macrophages
- **Objective III: Reactive Oxygen Species (ROS) Assay**
- (Will not be discussed)
Objective I: Phagocytosis Basics

• THP-1 Cells
 ▫ Human monocytic lineage
 ▫ Derived from a 1 year old human male with acute leukemia patient
 ▫ Immunohistochemistry
Objective I: Phagocytosis Basics

- Monocytes
 - Develop in bone marrow and migrate to various body tissues
 - Alveolar Monocyte
 - Immune Defense
 - 1st line of contact (sentinel cells)
 - Phagocytosis
 - Inflammation
Objective I: Phagocytosis Basics

- Macrophages
 - Mature monocytes
 - Phagocytosis
 - Cytokine secretion
 - Migration – lymph nodes (acquired immunity)
Objective I: Phagocytosis Tools

- LPS
 - Lipopolysaccharide
 - Activates cellular function
- PMA
 - Phorbal Myristate Acetate
 - cellular activation (differentiation)
- FITC labeled latex beads
 - Fluorescein isothiocyanate tags and Rabbit IgG
Objective I: Phagocytosis Design

- Cells maintained in media @ 37° C
- Control Group vs LPS Group (~1 x 10^6)
 - Metolachlor exposures at 50ppb, 100ppb, 500ppb and 1,000ppb along with a positive and negative control
 - Three time trials
 - 24, 48 and 72 hours
- Differentiated trials
 - FITC labeled beads
 - Added 24 hours from completion of trial
 - Cells subjected to assay treatment
 - Cells washed and suspended in assay buffer
Objective I: Flow Cytometry

- Cells subjected to flow cytometer
 - Cells are funneled through one at a time
 - Laser passed through cell
 - Fluorescent tag
 - Forward and side scattered light
 - Recorded data
 - Allows the determination of FITC presence
 - Presence indicates the cells with normal fxn
 - Standard level comparison
Objective II: Apoptosis Basics

- Apoptosis is the process of highly regulated cellular death
 - ~ 50-70 billion cells die everyday in an adult human
 - (of ~ 37.2 trillion)
 - Apoptosis promotes normal development
 - Homeostasis
 - Counterpoint to cell proliferation
 - Can remove any unwanted or damaged cells

- Necrosis is the process of premature cell death
 - Caused by outside factors
 - Severe damage, toxins, infections
 - Inflammatory response that can block phagocytic fxn
 - Can damage surrounding tissues
Objective II: Apoptosis Basics

- Phosphatidylserine
 - An important phospholipid found in cells
 - Oriented towards the cytosolic side of cellular membrane

- Initiation of apoptosis
 - PS is acted upon by flippase
 - Reverse orientation and signal macrophages
Objective II: Apoptosis Basics

- Apoptosis assay
 - Exploitation of the presence phosphatidylserine
 - PS binds to Annexin-V stain
 - Annexin-V is conjugated with a fluorochrome
 - Propidium Iodide
 - Reacts with nucleic acid
 - Leaky cell membranes
 - Necrosis or late apoptosis
- Florescence is detectable via flow cytometry
Objective II: Apoptosis Design

- Cells maintained in media in incubator 37°C
- Control Group vs LPS Group (~1 x 10^6)
 - Metolachlor exposures at 50ppb, 100ppb, 500ppb and 1,000ppb along with a positive and negative control
 - Three time trials
 - 24, 48 and 72 hours
 - Annexin-V exposure (PI)
 - Cells incubated for 15 minutes in darkness, 37°C
 - Cells washed, centrifuged and suspended
 - Subjected to flow cytometer for quantitation
Measures of Significance

- Data Sets
 - 6 experiments per trial
 - 3 replicates
 - Average Experimental Mean
 - Normalized due to cell/cell variation
 - Comparison using ANOVA
 - $\alpha=.05$
 - P-value and significance
 - Post-hoc analysis (Tukey)
Expected Results

- It is likely that Metolachlor will affect function in these cells
 - Specifically, I think that it will impair normal function
 - Higher levels of exposure
 - Phagocytosis
 - Apoptosis - uncertain

- Previous studies, readings and initial experimental results
Accolades Thus Far

- Dr. David McClanahan
- Dr. Kavita Dhanwada
- Dr. Darrell Wiens
- Yutao (Max) Su
Citations

6. www.atcc.org THP-1 monocytic cell line
12. www.courses.washington.edu/conj/bloodcells/oxygenradicals