Aligning PRISMS PLUS with NGSS and Physics Education Research

Juliana Huegerich and Lawrence Escalada
Department of Physics, University of Northern Iowa, Cedar Falls, IA, 50614, USA

Physics Education Research

A summary of the major conclusions of Physics Education research is given by Knight’s Five Easy Lessons, which are as follows:

1. Keep students actively engaged and provide rapid feedback
2. Focus on phenomenon rather than abstractions
3. Deal explicitly with alternative conceptions
4. Teach and use explicit problem solving skills and strategies
5. Write homework and exam problems that go beyond symbol manipulation to engage students in the qualitative and conceptual analysis of physical phenomena. (Knight, 2004)

The 5E Learning Cycle (Bybee, 2015) adds a stage before and after the three in PRISMS PLUS, an engagement and an evaluation of student knowledge. These two stages are found in the teacher’s guide of PRISMS PLUS, completing the 5E LC.

Models are representations of reality, and come in many forms, including verbal, graphical, and mathematical. The development and use of models in instruction is called a modeling cycle, which places information responsibility on the student. The modeling cycle is compatible with all other LCs. PRISMS PLUS has some aspects of modeling, but no complete modeling cycle.

Formative Assessments are a kind of assessment used before and during instruction to gain knowledge of student understanding for the purpose of targeting instruction to address student preconceptions. PRISMS PLUS has opportunities for formative assessment, though they are not explicit.

Phenomena-based learning is a way of focusing lessons around real-world phenomena. When NGSS Phenomena are used, students learn NGSS Core Ideas and Crosscutting Concepts to explain these phenomena.

Revised Inertia Cycle

PRISMS PLUS Inertia LC was revised with NGSS and Physics Education research in mind.

Each major revision is the direct result of the changes to the template of a LC. Because the LC is teaching Newton’s First Law through the concept of inertia, the LC was renamed to “Newton’s First Law”. The revised LC teaches students Newton’s First Law through three inertia phenomenon, a reading, and a series of conceptual questions.

Revised Template

An NGSS-aligned template for the PRISMS PLUS LC was produced. This template could be used to revise any LC in PRISMS PLUS. Some of the noteworthy changes reflected in this template include:

• Previous standard replaced with NGSS standard being taught, and Crosscutting Concepts and Science and Engineering Practices given for each LC
• Introduce modeling cycle within the LC
• Adapted activities at every stage of cycle to make formative assessment more explicit
• Replaced unavailable CPU-simulations with the available online PhET Interactive Simulations
• Added 5E LC names to previously unlabeled sections of LC
• Made discussions of phenomena begin and end the LC
• Change the “Problem” question at the start of each activity to a Scientific Question, Engineering Problem, or Focus Question

The final LC of PRISMS PLUS takes the format of the cycle given above, a combination of the 5E (Bybee, 2015) and Formative Assessment (Keeley, 2015) cycles.

Reflection

In the future, the template created could be applied to all LCs of PRISMS PLUS. Some LCs do not teach any NGSS Core Ideas. These LCs do still have Crosscutting Concepts and Science and Engineering Practices, and should be considered on an individual basis for possible integration with other LCs, revision, or removal. Some NGSS Core Ideas are not taught in PRISMS PLUS. A few LCs could be modified to incorporate a few of the NGSS Core Ideas. For all others, new LCs would need to be drafted.

Being a future high school physics teacher in Iowa, I will need to be able to modify curricula for classroom use, and to be aligned with the state standards. As a result of engaging in summer research and completing this project, I will be able to revise curricula, and improve the understanding of my future students.

Acknowledgements

A big thank you to the University of Northern Iowa Physics Department for the funding for this project, and to Dr. Lawrence Escalada, who kept me moving on the right path. Special thanks to my peers. It’s not about the research, but the friends we make along the way.

References

Iowa Core. (n.d.). Retrieved from https://iowacore.ia-core.gov/subject/science