Aligning PRISMS Plus with NGSS and Physics Education Research

Juliana Huegerich
University of Northern Iowa

Lawrence Escalada
University of Northern Iowa

Follow this and additional works at: https://scholarworks.uni.edu/surp

Part of the Science and Mathematics Education Commons, and the Secondary Education Commons

Let us know how access to this document benefits you

Recommended Citation
https://scholarworks.uni.edu/surp/2019/all/26

This Open Access Poster Presentation is brought to you for free and open access by the Student Work at UNI ScholarWorks. It has been accepted for inclusion in Summer Undergraduate Research Program (SURP) by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
Aligning PRISMS PLUS with NGSS and Physics Education Research

Juliana Huegerich and Lawrence Escalada
Department of Physics, University of Northern Iowa, Cedar Falls, IA, 50614, USA

Abstract
Since the Next Generation Science Standards (NGSS) have been adopted by Iowa, the changing expectations for high school physics students means that preexisting curricula like PRISMS PLUS need to be brought into alignment with the NGSS. Before revising PRISMS PLUS, other aligned curricula were consulted, as well as many sources of physics education research. A revised PRISMS PLUS template aligned with the NGSS and physics education research was made, which can be applied to each of the learning cycles in PRISMS PLUS. One learning cycle was revised in full, as an example.

PRISMS PLUS NGSS Alignment
PRISMS PLUS (Cooney et al., 2008), which predates the creation of the Next Generation Science Standards (NGSS), has a series of learning cycles (LC) for each of the four broad units that encompass a high school physics curriculum. Each student LC is comprised of three activities (an exploration, explanation, and elaboration) that engage students with content, as well as a reading section and a series of conceptual questions to support student learning. PRISMS PLUS includes a comprehensive teacher’s guide and a set of activities for Constructing Physics Understanding (CPU) simulations Goldberg, (1997).

The NGSS is made of three equal parts: Core Ideas, Science and Engineering Practices, and Crosscutting Concepts (NGSS Lead States 2013). Each of these is considered to have equal importance. Since Iowa has adopted the NGSS, preexisting curricula implemented in classrooms need to be revised to ensure alignment.

Before any revisions were made, PRISMS PLUS was mapped out with the parts of the NGSS, to determine its existing alignment. PRISMS PLUS does well at engaging students with Science and Engineering Practices, as each of its three activities has students doing science.

Two NGSS-aligned curricula were evaluated: Full Option Science System (FOSS) Next Generation middle school physical science curriculum (Lawrence Hall of Science, 2019) and Next Generation Physics and Everyday Thinking (Next Gen PET) curriculum (Goldberg 2018). Evaluating these curricula provided good insights for how to incorporate all three parts of the NGSS into PRISMS PLUS.

Revised Inertia Cycle
PRISMS PLUS Inertia LC was revised with NGSS and Physics Education research in mind.
Each major revision is the direct result of the changes to the template of a LC. Because the LC is teaching Newton’s First Law through the concept of inertia, the LC was renamed to “Newton’s First Law”. The revised LC teaches students Newton’s First Law through three inertia phenomena, a reading, and a series of conceptual questions.

Revised Template
An NGSS-aligned template for the PRISMS PLUS LC was produced. This template could be used to revise any LC in PRISMS PLUS. Some of the noteworthy changes reflected in this template include:
- Previous standard replaced with NGSS standard being taught, and Crosscutting Concepts and Science and Engineering Practices given for each LC
- Introduce modeling cycle within the LC
- Adapted activities at every stage of cycle to make formative assessment more explicit
- Replaced unavailable CPU-simulations with the available online PhET Interactive Simulations
- Added 5E LC names to previously unlabeled sections of LC
- Made discussions of phenomena begin and end the LC
- Change the “Problem” question at the start of each activity to a Scientific Question, Engineering Problem, or Focus Question

The final LC of PRISMS PLUS takes the format of the cycle given above, a combination of the 5E (Bybee, 2015) and Formative Assessment (Keeley, 2015) cycles.

Reflection
In the future, the template created could be applied to all LCs of PRISMS PLUS. Some LCs do not teach to any NGSS Core Ideas. These LCs do still have Crosscutting Concepts and Science and Engineering Practices, and should be considered on an individual basis for possible integration with other LCs, revision, or removal. Some NGSS Core Ideas are not taught in PRISMS PLUS. A few LCs could be modified to incorporate a few of the NGSS Core Ideas. For all others, new LCs would need to be drafted.

Being a future high school physics teacher in Iowa, I will need to be able to modify curricula for classroom use, and to be aligned with the state standards. As a result of engaging in summer research and completing this project, I will be able to revise curricula, and improve the understanding of my future students.

Acknowledgements
A big thank you to the University of Northern Iowa Physics Department for the funding for this project, and to Dr. Lawrence Escalada, who kept me moving on the right path. Special thanks to my peers. It’s not about the research, but the friends we make along the way.

References
Nashua, NH Delta Education.