University of Northern Iowa UNI ScholarWorks

Research in the Capitol

2017 Research in the Capitol

Mar 28th, 11:30 AM - 1:30 PM

Effect of Structural Disorder on Magnetic Properties of MnCrVAI

Juliana Herran University of Northern Iowa, herranj@uni.edu

Rishabh Dalal University of Northern Iowa

See next page for additional authors

Let us know how access to this document benefits you

Copyright ©2017 Juliana Herran

Follow this and additional works at: https://scholarworks.uni.edu/rcapitol

Part of the Atomic, Molecular and Optical Physics Commons

Recommended Citation

Herran, Juliana; Dalal, Rishabh; Gray, Paul; and Lukashev, Pavel, "Effect of Structural Disorder on Magnetic Properties of MnCrVAI" (2017). *Research in the Capitol.* 8. https://scholarworks.uni.edu/rcapitol/2017/all/8

This Open Access Poster Presentation is brought to you for free and open access by the Conferences/Events at UNI ScholarWorks. It has been accepted for inclusion in Research in the Capitol by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.

Author

Juliana Herran, Rishabh Dalal, Paul Gray, and Pavel Lukashev

Atomic disorder induced modification of magnetization in MnCrVAI

Juliana Herran,¹ Rishabh Dalal,² Paul Gray,² and Pavel Lukashev³

Department of Chemistry and Biochemistry, University of Northern Iowa, Cedar Falls, IA 50614 ² Department of Computer Science, University of Northern Iowa, Cedar Falls, IA 50614 ³ Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614

Motivation and Methods

- ✓ Research on magnetic materials for potential applications in spin-based electronics is one of the most active fields of current study in both academia and industry.
- ✓ High degree of spin polarization in electron transport wanted in spintronics.
- ✓ Spintronics an emerging technology utilizing a spin degree of freedom in electronic devices.
- \checkmark There are various mechanisms which could potentially alter the degree of transport spin polarization, such as mechanical strain, structural disorder, temperature, termination surface/interface in thin film multilayer geometry, etc.
- \checkmark The main purpose of this work is to investigate effect of atomic disorder on magnetic properties of MnCrVAl, a material which recently attracted attention as a potential spin-gapless semiconductor.
- ✓ Spin-gapless semiconductors are recently discovered materials which are characterized by a zero band gap in one spin channel and by a finite band gap in the other channel.
- \checkmark Here, we employ density functional calculations to explore effect of atomic disorder on magnetic properties of Heusler compound, MnCrVAl.
- ✓ Vienna Ab Initio Simulation Package (VASP).
- ✓ Computations performed at the Department of Physics computing facilities (20-node Beowulf cluster), UNI.

Crystal and electronic structure of MnCrVAI

Various crystal structures of disordered MnCrVAl.

Calculated magnetic moments

	Lattice (a/b/c)	Mn1	Mn2.3.4	Cr1	Cr2.3.4	V1	V2.3.4	Al1	AI2.3.4	Tota
					- ,-,					
Ideal	5.90/5.90/5.90	1.776	1.776	2.077	2.077	-0.943	-0.943	-0.007	-0.007	11.61
Mn1-Al1	5.88/5.88/5.88	-1.741	1.632	1.189	1.716	-1.007	-0.864	-0.018	-0.012	5.840
Mn1-V1	5.91/5.91/5.91	-2.204	1.950	2.021	1.975	0.961	-0.901	-0.003	0.010	9.88
Mn2-Al2	5.84/5.77/5.84	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Mn2-V2	6.04/5.73/5.73	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Cr1-Al1	5.87/5.875.87	1.122	1.694	-1.359	1.600	-1.077	-0.837	-0.030	-0.013	5.99
Cr1-V1	5.90/5.87/5.87	1.911	1.836	-1.303	2.105	1.558	-0.891	-0.005	0.008	11.34
Cr2-Al2	5.78/5.78/5.91	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Cr2-V2	5.91/5.90/5.91	-0.522	1.558	-0.528	-0.528	-0.357	-0.523	0.005	0.010	
			1.558		1.691		-0.329		0.010	1.88
			-1.530		1.691		-0.329		0.005	
~ ~ ~								0.		

Calculated magnetic moments (in units of µ_B) and lattice constant (in Å) of MnCrVA1 in ordered and disordered states.

- ✓ In completely ordered structure, MnCrVAl exhibits net magnetic moment of $\approx 3.0 \ \mu_{\rm B}/f.u.$
- ✓ Recent experimental work showed that MnCrVAl samples demonstrate close to zero net magnetization.
- ✓ XRD measurements indicated a significant degree of atomic disorder in the samples
- ✓ Magnetization quenching is induced by atomic disorder.

Electronic structure

- ✓ Spin- and atom- resolved densities of states (DOS).
- ✓ Spin-flip transition if 25% Mn/Cr atoms interchanged with V/Al.
- ✓ Paramagnetic transition if 50% Mn/Cr atoms interchanged with V/Al.
- ✓ Cr1-All disorder results in nearly half-metallic transition.
- ✓ Paramagnetic transition accompanied by tetragonal distortion.

Summary

- ✓ We analyzed physical mechanism of magnetization MnCrVAl: reduction in potential spin-gapless semiconductor.
- ✓ Various atomic disorder schemes are studied.
- \checkmark Depending on the degree of disorder, exchanging of atomic positions between Mn / Cr with V / Al results in either reduced total magnetization due to spin flip, or in ferrimagnetic - paramagnetic transition.
- ✓ In certain disordered structures the spin polarization of MnCrVAl significantly increases, almost reaching the halfmetallic state.
- ✓ Exchange of atomic positions of Mn with Cr, and V with Al has no significant effect on electronic and magnetic properties of MnCrVAl.
- \checkmark These findings may have important contribution to understanding the role of atomic disorder on magnetic properties of materials with potential applications in spinbased electronics.
- ✓ P. Kharel, J. Herran, P. Lukashev, Y. Jin, J. Waybright, S. Gilbert, B. Staten, P. Gray, S. Valloppilly, Y. Huh, and D. J. Sellmyer, AIP Advances 7, 056402 (2017).