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Introduction 
 

One of the most important components of life are large molecules called 

proteins, used for carrying out an immense variety of biological functions. In 

addition to their main structure, some proteins have additional, nonprotein 

components that are necessary for their function. One example of this is the 

compound heme (Figure 1), which is integrated into the protein structure and used 

as a binding site. A well-­­known example of a heme protein is hemoglobin, a protein 

in the blood that is responsible for transporting oxygen from the lungs into other 

parts of the body. The heme compound contains an iron atom in the center, and this 

is where the oxygen actually binds. However, there are many other protein types 

that contain a heme molecule, including a specific subset that was the focus of this 

research. Thiolate-­­ligated heme proteins contain a heme group that is bound to 

sulfur in the amino acid cysteine. Included in this group are Type II proteins, which 

undergo a ligand switch. A ligand is a molecule that binds to another molecule. In 

this protein, the ligand is an amino acid in the protein, and the iron in the heme is 

the molecule that it binds to. A ligand switch occurs when the original amino acid 

that is attached to the heme dissociates and is replaced by a second amino acid. For 

most Type II proteins, the cysteine will be displaced by a neutral ligand, and this 

controls protein activation and function (Figure 2). The exact mechanism of the 

ligand switch and how it controls function is not well known in this protein type, 

and these proteins contain complex structures that are difficult to work with and 

study. 
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Purpose 
 

Type II proteins are important because they are implicated in a variety of 

necessary biological functions, including the binding of gaseous molecules, 

metabolic processes, and the regulation of circadian rhythms (Table 1). Learning 

more about the details as to how these biological activities actually work will make 

it easier to understand how to repair them in various disease states. The purpose of 

this research was to create a simpler model of Type II proteins in order to study the 

ligand switch using cytochrome c (Figure 3). Cytochrome c was chosen because it is 

small, easy to work with, and relatively easy to mutate. It also already has a built-­­in 

mechanism for a ligand switch, making it the ideal candidate for this protein model. 

Mutating cytochrome c into a model Type II protein and learning more about how 

the ligand switch controls function may generate new insight into how the 

corresponding ligand switch works in more complex proteins. 

 
Literature Review 

 
The discovery of proteins with a ligand switch involving a sulfur-­­containing 

amino acid is relatively new. Omura published a review article in 2005 that 

describes several mechanisms behind some of these proteins that had just been 

discovered, including CooA and CBS. CooA is a transcription factor specific to a 

bacterium, R. rubrum, which is able to use this protein to sense the local 

environment and detect the presence of carbon monoxide. The organism can then 

manufacture enzymes that allow it to metabolize and survive using carbon 

monoxide in anaerobic (oxygen deficient) conditions. CBS, or cystathionine beta-­­ 

synthase, is an enzyme present in many organisms. However, the exact function of 
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the heme in this important protein is unknown. Studying the mechanisms behind 

the ligand switch, which greatly affects enzyme activity, may give some insight to 

how this enzyme is regulated in humans and other eukaryotic organisms. 

As more thiolate-­­ligated proteins are discovered (Table 1), research has 

shown insight into several patterns related to how these proteins function. Igarashi 

(et al.) explored several key points about these protein types in an article published 

in 2008. An important aspect of this article that is relevant to the creation of a 

cytochrome c model is the description of the changing oxidation states of the iron in 

the heme. In these proteins, iron can be in either the +2 or +3 oxidation state, and 

this can be dependent on the ligands bound to the heme. The proteins can have 

different properties depending on the state of the iron; therefore, this concept is 

crucial to understanding the overall mechanism of the ligand switch. 

When introducing mutations to a protein, it is important to consider the 
 
implications of the changes being made to the structure. A 2012 article by Shimuzu 

lists several important characteristics of heme sensor proteins that must be taken 

into consideration when mutating amino acids in this type of protein. Some features 

of key importance in this research include the binding strength of the heme to the 

protein, the oxidation state of the iron, and the stabilizing effects of amino acids 

surrounding the heme. 

In addition to finding information about ligand switches in known thiolate-­­ 
 
ligated heme proteins, it was necessary to obtain more background information 

about the protein that will be used for the model, cytochrome c. Cherney and 

Bowler’s article, published in 2010, gives an excellent description of the ligand 
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switch that is already part of this protein’s normal functioning. The fact that that 

cytochrome c already had a built-­­in ligand switch mechanism was one of the key 

reasons this protein was chosen to attempt to model the more complex Type II 

proteins. 

The primary literature articles provided good background information for 
 
several different components of the research to be undertaken, but there were two 

additional sources of information that pertained more directly to this project. These 

were the introductory chapters of dissertations from previous graduate students 

that had worked on similar projects in a lab at the University of Wisconsin-­­Madison. 

The first dissertation was written in 2006 by Samuel Pazicni. The first 
 
chapter of the dissertation gave a very useful explanation of what a thiolate-­­ligated 

heme protein is. It also explained the differences between Type I and Type II 

proteins. Essentially, the defining factor of a Type II protein is that the “cysteine 

ligand is exchange labile,” meaning it will readily dissociate and switch with a 

different ligand. In these proteins there is what is known as a six-­­coordinate iron, 

because the iron in the heme forms six bonds, four with the nitrogens in the 

porphyrin ring, and two with the protein amino acids. A Type I protein will typically 

have only one ligand to the protein, meaning it is five-­­coordinate. In addition to 

explaining the differences between the two types, several examples of each protein 

are given, along with what is known about their functions. Two key proteins that are 

discussed in detail (mentioned earlier in this introduction) include CooA, one of the 

proteins with a better-­­understood ligand switch, and human cystathionine β-­­ 

synthase, or hCBS. This latter protein is important because it is not yet entirely 
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understood as to how the ligand switch affects the functioning of the protein, and 

problematic mutations in hCBS can lead to disease states in humans. Learning more 

about it could lead to understanding more about a protein that can have important 

biological functions. The second part of this introductory chapter gives more details 

about the specific spectroscopic characteristics of these proteins, and the  

differences between them in oxidized and reduced states. Further elaboration about 

the UV-­­Visible spectroscopy done for this research can be found in the methodology 

section. 

The second dissertation was written in 2008 by Katherine A. Marvin. Most of 
 
the information in the first chapter was similar to the previous dissertation, 

including the descriptions of the known differences between Type I and Type II 

proteins, specific protein examples, and various spectroscopic characteristics. Even 

though the content was analogous to the above information, it was a good 

reinforcement of the basic characteristics of the proteins being studied in this 

research, and good background information is essential to working effectively. 

Overall the various literature sources gave a great deal of useful insight as to 

how ligand switches work, as well as specific characteristics of Type II proteins. It 

was important to learn more about the various states of iron in the heme and how 

this would be implicated by spectral changes of the protein. Finally, it was crucial to 

learn more about cytochrome c, the protein to be used as a model for this research. 

Gaining background information about this subject led to the development of a 

suitable research question to explore for this thesis. 
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Research Questions to Be Answered 
 

The primary question to be answered during this research project was: what 

are the necessary mutations that must be made to cytochrome c to allow it to 

function as a Type II protein model? These mutations needed to be identified and 

carried out in a way that was reproducible in order for this protein to be a valid 

model. Although progress has been made towards creating this model, there are still 

inconsistencies that need to be corrected before using it to study the mechanisms of 

the ligand switch. Once this question is answered and the protein behaves in a 

manner that is consistent with a Type II protein, the protein can then be used to 

study how the ligand switch controls the activation of the protein. There were 

several mutations that were definitely necessary to make a proper protein model. 

However, after testing of a proper ligand switch mechanism showed that the 

negative control also underwent a ligand switch when it was not supposed to, it 

became clear that additional mutations are necessary for the model. Because of this 

unexpected behavior for the negative control, a new research question had to be 

developed: what chemical group is the negative control protein using in order to 

ligand switch, and how can it be eliminated to create a valid model? This question 

became the primary question for this project, and the exact chemical group used in 

the ligand switch of the negative control protein remains elusive at this time. 
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Methodology 
 
PCR 

 
The first stage in the development of a new protein variant is to mutate the 

DNA that codes for the protein structure. This was done using polymerase chain 

reaction, or PCR. The DNA of the original protein was used as a template, and DNA 

primers were designed to mutate specific amino acid sites on the DNA. This newly 

mutated DNA was “copied” using a thermocycler. A thermocycler has three stages of 

differing temperatures needed to synthesize many copies of the newly mutated 

DNA. The stages are denaturing, in which the two strands of DNA are separated, 

annealing, when the primers can bind to the now separate strands of parent DNA, 

and elongation, in which the DNA polymerase enzyme builds up the new strands of 

DNA using the provided DNA building blocks. The enzyme used for elongating the 

DNA was PfuUltra Polymerase enzyme, which is a high fidelity enzyme, since it 

“proofreads” as it synthesizes new DNA. The method used involved heating the PCR 

reaction mixture to a denaturing temperature of 95°C, cooling it to an annealing 

temperature of 55°C, and then slightly heating it to an elongation temperature of 

68°C. This temperature cycle was repeated 20 times, and then the reaction was 

cooled to 4°C. After the reaction, 1µl of DpnI enzyme was added to the PCR tube, and 

it was left in a water bath set at 37°C for one hour. This enzyme cleaves any DNA 

with extra methyl groups, which will only be true of the template DNA. Thus, for the 

next steps only newly synthesized DNA will be relevant. Afterwards the DNA was 

stored in the freezer at -­­20°C. Before proceeding, the new DNA needed to be tested 

to ensure that the mutation was successful. 



8  

Media Bottle Preparation 
 

The components of the growth plates used for bacterial transformation are 

stored in two separate bottles and combined immediately before the plates are 

poured. The first is 2xLC media, which is 2g bacto-­­tryptone, 1g yeast extract, and 

1.2g NaCl. These powders were weighed out and placed in glass bottles, and then 

100mL of distilled water was added. The second component of the plate media is 

3% agar, a solidifying agent. For this, 3g of bacto-­­agar was added to a glass bottle, 

and 100mL of distilled water was added. Both of these bottles were then autoclaved 

in order to sterilize them. The sterilized components could then be left on the bench 

indefinitely. 

Growth Plate Preparation 
 

The plates were prepared using 100mL of 2xLC media and 100mL of 3% 

agar. This makes a total of eight plates. The agar was microwaved until it was 

completely liquefied, and then poured into the 2xLC media. The solution was mixed 

slightly until it was warm, but not hot. 200µl of the antibiotic ampicillin (a 

100mg/mL stock) was added, and the solution was swirled to mix. A 25mL 

graduated pipet was used to add 25mL of media to each plate. The final antibiotic 

concentration in the plates was 100µg/mL. The plates were allowed to dry for about 

10 minutes, then inverted and placed in a 35.5°C incubator overnight to dry a little 

further. Afterwards the plates were stored at 4°C until they were used. 

Transformation 

The DNA from the PCR was incorporated into E. coli cells using the heat 
 
shock method. DH5α cells (genetically altered to enhance DNA production) that 
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were already competent to taking up foreign DNA were purchased. First, cells and 

DNA were combined in a sterile reaction tube. The tubes with the cells and DNA 

were left to sit on ice for 30 minutes. This gave the DNA time to associate with the 

cells, which would make it easier to get into the cells. After 30 minutes, the cells 

were placed in a water bath set at 42°C for 45 seconds. This process creates 

openings in the cell wall for the foreign DNA to pass through. The cells were then 

removed from the heat, and 250µl of SOC broth was added to each tube. This is a 

media that provides many vital nutrients for the cells to promote growth. The tubes 

were placed in an automated shaker, set at 37°C and 200rpm for one hour. The 

agitation of the cells continually oxygenates the solution, distributes the nutrients, 

and allows the cells to stay suspended in the solution so they don’t settle to the 

bottom. After the one-­­hour growth in the shaker, 130µl of cells from each tube were 

placed on an LC-­­Amp growth plate. These plates also have the antibiotic ampicillin, 

which means that only the ampcillin resistant bacteria from the PCR will be able to 

grow on the plate. Each transformation tube is split to make 2 LC-­­Amp plates. The 

cells were pipetted onto the plate and then spread over the entire surface area using 

a glass spreader. The spreader was sterilized with ethanol and flame between each 

plating. The cells were incubated and left to grow overnight at about 35.5°C until 

individual bacteria colonies were observed. 

Liquid Cultures 
 

Once the LC-­­Amp plates had E. coli growth, several individual colonies were 

chosen for liquid cultures. The cultures were prepared by using a graduated pipet to 

add 10mL of 2xLC media to a sterile 125mL Erlenmeyer flask. 10µl of 100ng/µl 
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ampicillin was added to each flask and they were swirled to mix. The colonies for 

each culture were selected and marked on the plate. An ideal colony was one that 

was not touching any other colonies and had a relatively uniform size and boundary 

compared to the other colonies on that particular plate. Using forceps, a sterile 

toothpick was touched to the marked colony and placed in the flask. The flasks were 

placed in the shaker at 37°C and 200rpm (revolutions per minute) to grow 

overnight. 

Plasmid Purification 
 

After making liquid cultures, the cells needed to be lysed and the DNA 

extracted and purified. The flasks were removed from the shaker and placed on ice. 

Disposable pipets were used to add the cultures to 1.5mL sterile tubes until the 

tubes were almost full. The tubes were balanced and placed in the microcentrifuge 

for 1 minute at 11,000rpm. This caused a small cell pellet to form at the bottom of 

each tube, with the cell-­­free liquid media at the top. This media was poured off and 

more of the liquid culture was added to the tube. These steps were repeated until all 

of the cells had been collected in a pellet at the bottom of the tubes. 

At this stage, the Wizard Plus Minipreps DNA Purification System was used to 
 
lyse the cells and extract the plasmid. This is a kit with all of the necessary solutions 

needed for the procedure. First 250µl of Cell Resuspension Solution was added, and 

the tubes were left to sit for five minutes. The cells were then vortexed until the cell 

pellets were completely gone, meaning the cells were all resuspended. Next, 250µl 

of Cell Lysis Solution was added and the tubes were inverted four times to mix, 

followed by the addition of 10µl of Alkaline Protease solution and four more 
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inversions. These steps caused the cells to lyse and the proteins released into the 

solution to be degraded by the alkaline protease enzyme. The tubes were incubated 

for five minutes at room temperature. 350µl of Neutralization Solution was added 

and the tubes were again inverted four times. This step caused the remaining 

protein in the solution to precipitate. The tubes were placed in the microcentrifuge 

and spun for 10 minutes at maximum speed, 14,800rpm, causing the protein to form 

a pellet in the bottom of the tube. 

For the next stage of the purification process, a special tube was used for  

each sample. This tube had two components, a spin column, which the plasmid DNA 

was able to bind to, and a collection tube, in which the rest of the solution would be 

filtered into. The spin column was inserted into the collection tube. When the cells 

were done in the microcentrifuge, there was a protein pellet at the bottom and  

liquid at the top containing the dissolved DNA. The liquid was poured into the spin 

column, and the pellet was disposed of. The spin column was centrifuged at 

maximum speed for one minute. The liquid had passed through the spin column and 

collected in the lower tube. The spin column was removed and the liquid was 

poured out in the waste, and the spin column was reinserted into the collection 

tube. At this point the DNA was bound to the filter in the spin column. The column 

was washed by adding 750µl of Wash Solution, centrifuging for one minute and 

discarding the flowthrough. The wash step was repeated, this time with 250µl of 

Wash Solution. After the second wash flowthrough had been discarded, the spin 

column and collection tube were centrifuged for two minutes at maximum speed in 

order to ensure that there was no more wash solution associated with the upper 
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spin column. The spin column was transferred to a sterile 1.5mL tube for each 

sample. 50µl of nuclease-­­free water was added to each spin column, and the tubes 

sat for one minute to allow the DNA on the filter to dissolve. The spin column and 

tube were then centrifuged for one minute at maximum speed. This step caused the 

plasmid to flow through the spin column and collect in the 1.5mL tube. The spin 

column was removed from the tube, and the plasmids were stored in the freezer at -­­ 

20°C. 

UV-­Visible Spectroscopy: Plasmid Analysis 
 

In order to determine the concentrations of purified plasmids, UV-­­Vis 

spectroscopy was used. DNA has a distinct absorbance pattern, with a peak at about 

260nm and relatively no absorbance at 350nm. Measuring the absorbance at 350nm 

is a way to subtract the background noise from the spectrum and obtain a more 

accurate concentration. The spectrum was obtained with a minimum wavelength of 

200nm and a maximum of 400nm. Before running the plasmids, the instrument 

baseline was zeroed using a microcuvette with 80µl of distilled water. This blank is 

run a second time to ensure there are no peaks in the spectrum (i.e., the baseline is 

properly zeroed). The samples were then diluted 20-­­fold, meaning 4µl of the  

plasmid was added to 76µl of distilled water. The samples were flicked to mix, then 

spun down for about 10 seconds in a microcentrifuge. The samples were then  

placed in the same microcuvette used to run the blank and the absorbance values at 

260nm and 350nm were recorded. Before adding each sample, it was important to 

be sure that the entire previous sample had been removed from the cuvette to 

ensure a more accurate concentration reading. These concentrations were then 
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added to a spreadsheet with the concentration values for all of the DNA mutants. 

The spreadsheet was set up to automatically calculate the concentration of the 

plasmid DNA sample using the absorbance at 260nm and 350nm. 

Sequence Analysis 
 

The purified DNA was diluted to a specific concentration and sent to Iowa 

State University to be sequenced. The sequence results were sent through an online 

account, and they were interpreted using the viewing program called Chromas and 

an online gene database and alignment program called BLAST. By comparing the 

modified DNA to the original DNA in the database, the success of the mutation was 

determined. If the new amino acid sequence was incorporated to the template DNA, 

the next set of experiments could proceed. 

Protein Purification 
 

Successfully mutated DNA was then combined with a different strain of E. 

coli, BL21(DE3), which is used for expressing protein. The transformation  

procedure is the same as it is for the other strain of E. coli, with the cells sitting on 

ice for 30 minutes, followed by heat shock, the addition of SOC media, and an hour-­­ 

long incubation on the shaker. The cells were then added to two plates per sample 

and put in the incubator overnight. The liquid cultures prepared for these samples 

were done on a much larger scale. Instead of 10mL volumes of media, a new kind of 

flask was used. These large plastic flasks were called Fernbach flasks, and they were 

used for large liquid cultures. For each Fernbach flask, 2xYT media was prepared 

directly in the flask. The 2xYT media consisted of 16g tryptone, 10g yeast extract, 5g 

of NaCl, and 1000mL of deionized water. This was then autoclaved for 20 minutes to 
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sterilize the media. The flasks were labeled and 1.5mL of 100ng/µl ampicillin was 

added to each flask. Instead of touching a single colony to a toothpick to inoculate 

the flasks, the entire plate of colonies was added. This was done by suspending the 

colonies on the plate using 3mL of LC media and a glass spreader. The spreader was 

sterilized between each sample using a flame and ethanol. The liquid on the plate 

was then pipetted off and placed in the flasks, and the flasks were put in a large 

shaker set at 200rpm and 37°C, overnight. If the samples created a large amount of 

foam, some antifoam solution was added to make the protein samples easier to 

pour. The protein was poured into a Nalgene centrifuge bottle, about ¾ of the way 

full, and it was centrifuged for 10 minutes at 5,000rpm and 4°C. The samples were 

then removed from the centrifuge and the liquid was poured into a waste flask. The 

process was repeated until all of the culture flasks were empty. This left behind a 

cell pellet containing the protein of interest. 

Once the cells pellets were isolated, the cells needed to be lysed. This is 
 
essentially breaking apart the cells in order to have access to the protein of interest. 

The components for a cell lysis were 10x BugBuster, Tris lysis buffer, and Benzonase 

nuclease. The BugBuster is a detergent-­­like solution that breaks the cells apart. 

These three components were mixed in volumes that corresponded to the size of the 

cell pellet, and the pellets were placed on an orbital shaker to agitate them until 

there was no solid left in the bottle. This process typically took about one hour. An 

additional option to ensure complete lysis was sonification, the use of intense sound 

waves that further broke the cells apart. However, this proved to have little 

additional effect on the overall lysis process and was not used for every purification. 
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After cell lysis the pellets were spun down in the centrifuge for 30 minutes at 

10,000rpm and 4°C to remove the insoluble material from the sample, which 

includes cell membranes and any associated proteins. 

After removing the bottles from the centrifuge, the protein of interest was 

obviously apparent in the liquid above the pellets, as the liquid was red. The 

supernatant was poured out into graduated cylinders in order to measure the 

volume. Once the volume was known, the liquid was transferred into an Erlenmeyer 

flask, and placed on a stir plate. Ammonium sulfate salt was added slowly to a total 

amount of 0.26g for every mL of protein. The mix was left on the stir plate and then 

moved into the refrigerator overnight. After one night, the flasks were taken out of 

the refrigerator and poured back into Nalgene bottles which were balanced and 

centrifuged for 30 minutes at 10,000rpm and 4°C. This created a small pellet, with 

the protein of interest being in the supernatant. While the supernatant was brighter 

pink, the small pellet containing unwanted proteins was generally white to pale 

pink. 

The centrifuged liquid was then poured into dialysis tubing, which is used to 

filter out only certain molecules. A knot is tied at one end of the tubing and the 

protein is poured in the other. The top is twisted and clamped shut, and the dialysis 

bag is placed in a large jar of dialysis buffer. This is placed on a stir plate and stored 

in the cold room overnight. Because only select molecules can pass through the 

dialysis membrane and into the buffer, the protein stayed trapped in the tubing, 

while small molecules crossed the membrane and flowed into the buffer. This 

method was used to drastically reduce the concentration of ammonium sulfate in 
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the sample. After one night, the protein in the dialysis bag was removed from one jar 

of dialysis buffer and placed in a second, fresh buffer for further dialysis. It was   

again placed on a stir plate in the cold room (4°C) and left overnight. 

Once the protein had been in dialysis buffer for two nights, it was centrifuged 

for 30 minutes at 10,000rpm and 4°C. Again, the protein of interest stayed in the 

supernatant, which was bright red. At that point the samples were ready for ion-­­ 

exchange column chromatography. This is a method that can separate one protein 

from the remaining cellular components based on the charge on the protein. CM 

(carboxymethyl) Sepharose resin is made up of tiny beads, and different proteins 

will associate with the beads for different lengths of time depending on their charge. 

A buffer is rinsed through the column, and protein will begin to elute based on the 

salt concentration of the buffer, as a high concentration of ions in the solution will 

disrupt the interaction between the protein and the resin. The concentration of the 

buffer is slowly increased, and eventually it is high enough to elute the protein of 

interest, which has a distinct red color. 

The supernatant from the final centrifuge run was poured into a 1L flask 

containing CM-­­Sepharose resin that was previously equilibrated in CM-­­Low buffer. 

CM-­­Low buffer is a low salt buffer that will allow the cytochrome c protein to stick 

to the resin. The protein-­­resin mixture was stored in the refrigerator for about one 

hour in order to let the protein associate with the beads. The resin was then poured 

into a glass column and rinsed with CM low buffer for approximately one hour to 

wash off any proteins that did not stick to the resin. 
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Once the chromatography column had been washed, a gradient mixer was set 

up. This device consisted of two tubes, which had a small opening between them. 

One tube had CM-­­Low buffer, and the other had CM-­­High buffer. The CM-­­High buffer 

contains a high concentration of sodium chloride. The tube with the CM-­­Low buffer 

had an additional opening that was connected to the chromatograpy column. As the 

CM-­­Low buffer began to drip into the column, the reservoir holding the CM-­­Low 

buffer would be depleted, and in order to maintain the volume balance in both 

reservoirs, the CM-­­High buffer would automatically start to leak into the CM-­­Low 

reservoir. In this way, the concentration of the buffer was gradually increased. The 

buffer that flowed through the column was collected in a waste beaker, until the 

distinct color of the protein was observed to drip out the bottom. At this time, the 

waste beaker was replaced with a collection beaker, and the protein was collected 

until no more of the protein color could be observed on the column. At this time, the 

waste beaker was replaced and the concentration gradient was allowed to run its 

course. This ensured that any remaining impurities from the sample would be 

washed off with the CM-­­High buffer and the column resin could be reused. The 

column was then re-­­equilibrated with CM-­­Low buffer and the resin was unpacked 

from the column into a 1L flask and stored in the refrigerator at 4°C. 

Once the protein had undergone purification by chromatography, the final 
 
step in the process was protein concentration. This was done using a centrifuge and 

Centricon concentrators, which are special centrifuge tubes with two 

compartments: an inner chamber and an outer chamber. The compartments were 

separated with a filter that allowed buffer to pass through to the inner chamber, 
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while the larger protein molecules would be stuck in the outer chamber. The tubes 

were centrifuged for 30 minutes at 3,000rpm and 4°C. The liquid in the inner 

chamber was inspected to make sure it was colorless and no protein had escaped 

through the filter, then it was disposed of. This process was repeated until the entire 

protein sample had been concentrated. Once this had been completed, the protein 

was diluted with HPLC A buffer and centrifuged. This process is referred to as a 

buffer exchange, and it is done to ensure that all of the CM-­­High buffer had been 

washed away, because the high salt concentration in the buffer can damage the 

protein over longer time periods, or it can interfere with subsequent experiments. 

Once the protein had been re-­­concentrated after the buffer exchange, the proteins 

were divided into 1mL aliquots in 1.5mL tubes. The tubes were flash-­­frozen using 

liquid nitrogen, then stored in the freezer at -­­80°C. 

Dialysis Buffer Preparation 
 

In order to prepare the buffer solution for dialysis, the following components 

were weighed and put in a large glass jar (enough to hold about 2750mL of 

solution): 1.72g NaH2PO4•H2O (monobasic), 3.11g Na2HPO4 (dibasic), and 1.08g 

Na2EDTA. The jar was placed on a stir plate with a magnetic stir bar, and 2600mL of 

deionized water was added. Once all of the solid was dissolved the pH was adjusted 

to about 7.2 using either NaOH or HCl. The volume of the acid/base solutions used 

to adjust the pH was added to the total volume, and the rest of the water was added 

until the total solution volume was 2744mL. The final pH was taken and slight 

adjustments were made with acid and base to ensure the solution was at about pH 

7.2. The buffer was stored in the cold room at 4°C until used for the protein 
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purification. Directly before using the dialysis buffer, 385µl of beta-­­ 

mercaptoethanol, or BME, was added to the solution. It is best to add BME directly 

before using the buffer because it will be more effective, as it reacts with oxygen 

over time. 

HPLC Buffer A Preparation 
 

The HPLC Buffer is used in the protein purification process. To prepare a one 

liter volume, the following components were combined: 2.97g NaH2PO4•H2O 

(monobasic) and 4.04g Na2HPO4 (dibasic). The powders were weighed out and 

placed in a 2 liter beaker with a magnetic stir bar on a stir plate. 900mL of distilled 

water was added and the powders were dissolved. The pH was adjusted to 7.0 using 

a pH probe and solutions of NaOH and HCl. Once the pH was correct, the solution 

was brought up to a total volume of 1 liter. The pH was checked one final time and 

slight adjustments were made if necessary to maintain a pH of 7. The solution was 

stored in the cold room at 4°C. 

UV-­Visible Spectroscopy: Protein Analysis 
 

In order to analyze the final protein product, UV-­­Vis spectroscopy was used. 

The iron in the heme of cytochrome c is found in either the +2 or +3 oxidation state, 

and each of these states absorbs different wavelengths of light. Because the 

oxidation state of the iron is an indicator as to whether the ligand switch has 

occurred, this spectroscopic analysis was a good indicator of how specific mutations 

in protein structure affected overall protein function. 



20  

SDS-­PAGE 
 

Denaturing polyacrylamide gel electrophoresis (SDS-­­PAGE) was used in 

order to separate proteins of different sizes. When a cell pellet was produced with a 

brown or tan color not normally associated with cytochrome c expression, the 

proteins in the cell pellet were denatured and run on a gel along with purified 

cytochrome c as a control. If the band associated with cytochrome c matched a band 

of protein in the newly harvested cells, it showed that the new sample successfully 

expressed the protein of interest. 

There were several components that needed to be prepared for an SDS-­­ 
 
PAGE. First was the Sample Buffer. This involved mixing 3.55mL of water, 1.25mL of 

0.5M Tris•HCl (pH 6.8), 2.5mL of glycerol, 2.0mL of 10% SDS, and 0.1mg of 

bromophenol blue. The next component that needed to be prepared was the 15% 

Separating Gel. This was the main gel component that the protein would be 

separated in. The following components were added: 1.2mL of distilled, de-­­ionized 

water, 2.5mL of 30% acrylamide/0.8% bis-­­acrylamide solution, 1.25mL of buffer 

(1.5M Tris•HCl, pH 8.8), and 0.05mL of 10% SDS. The final component to be 

prepared was the 6% Stacking Gel. This gel was poured on top of the Separating Gel. 

This is the gel that the samples are actually added to, and it allows the protein to 

form a uniform band before actually hitting the separating gel. To prepare it the 

following components were combined: 0.5mL 30% acrylamide/0.8% bis-­­acrylamide 

solution, 0.65mL of buffer (0.5M Tris•HCl, pH 6.8), 0.025mL 10% SDS, and 1.325mL 

water. 
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The gel plates were assembled. These were two thin glass plates that the gels 

would be poured into and solidified in. The first gel to be added was the Separating 

Gel. Before adding it to the gel plates, 30µl of 1% (w/v) ammonium persulfate, or 

APS, and 10µl of TEMED were added to the gel solution. These caused the gel to 

begin to polymerize, which would allow it to eventually retain a solid shape. 

Immediately after adding the APS and TEMED, a glass pipet was used to suck up the 

gel mixture and put it in between the two glass plates. The gel sat for a few minutes, 

and a layer of water was added to the top of the plates to help even the top of the gel 

out. The water was poured out, and the same process was used to add the Stacking 

Gel, this time using 13µl of 1% (w/v) APS and 3µl of TEMED. A comb was inserted at 

the top of the gel plates to form the wells for the protein samples, and the gel was 

allowed to solidify. 

The cell pellets were dissolved in sample buffer and the denatured protein 
 
samples were heated and spun down in order to prepare them for the gel. An 

electrophoresis tank was set up, and the gel was placed inside. The comb was 

removed and the inner chamber was filled with 1x Running Buffer. Each well was 

rinsed with about 50µl of running buffer using a syringe. The syringe was then used 

to load the samples, rinsing with water between each one. Once the samples were 

loaded, the remaining running buffer was poured into the tank and the lid was 

placed on. The lid had leads that were plugged into the power source, matching like 

colors. The gel was run at 200V and 100mA for about 45 minutes. Once the 

bromophenol blue dye was close to running off the bottom of the gel, the power was 

turned off. The gel was removed from the tank and the glass plates were pulled 
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apart. A small razor was used, first to remove the stacking gel, and then to cut a 

corner in the gel in order to identify when the gel was in the proper orientation. 

The next step was to stain the gel so the protein bands could be identified.  

The gel was first rinsed with a small amount of tap deionized water to remove any 

adhering buffer. A flat glass bowl was used to pour in a layer of blue stain around 

0.5-­­1 inches deep. It was microwaved until hot. The gel was placed in the stain for 

about 40 minutes, then removed and rinsed with water. A 10% acetic acid destain 

solution was microwaved until warm, and the gel was placed in it to de-­­stain. Kim-­­ 

wipes were placed in the container and weighed down in order to absorb the dye. 

The gel was placed on a slow moving shaker overnight. This process removed excess 

dye from the gel, which left only the dye associated with the protein bands. Once the 

gel had been de-­­stained, it was rinsed with de-­­ionized water, then placed in fresh 

water on the slow moving shaker for about one hour. The water was removed and 

replaced with a 30% methanol solution for an additional hour on the shaker to 

slightly dehydrate the gel. The gel was placed between two sheets of drying film on a 

drying frame, which was clamped together and left overnight. The dried gel was   

then cut out of the frame and placed under a heavy object to help flatten of the gel. 

The gel was then ready to be analyzed and stored. 

Experimental Timeline 
 
DNA Mutations 

 
Before beginning the overall procedure for this research, it was important to 

understand the nomenclature for the protein samples. The proteins are given a 

variety of mutations at specific places in the amino acid sequence. A protein with no 
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mutations is given the designation WT, which stands for wild-­­type. The proteins 

used for this project were given several standard mutations (K72A and C102S), and 

were therefore given the designation of WT*. For each mutation that was made, the 

letter corresponding to new amino acid, as well as the position in the amino acid 

chain, was added to the name. For example a protein with the name WT*/A73 was 

mutated to have an alanine in the 73rd position of the protein chain, and a protein 

named WT*/A73/C80 had a mutation to alanine at the 73rd position and a cysteine 

at the 80th position. 

The first stage of the experiment consisted of mutating several strains of DNA 
 
to have a cysteine at position 80 of the amino acid chain. In cytochrome c, the 80th 

amino acid, which is normally methionine, is attached to the heme, so it is important 

that this matches real Type II proteins for the model to be valid. Two different 

strains of parent DNA were used for this initial experiment: WT*/H73 and 

WT*/A73. The primers used were K79/M80C and K79/M80Cr. The M80C indicates 

that the parent DNA has a methionine in the 80th position, and it will be mutated to a 

cysteine. The second primer has a lowercase “r,” indicating that it is the reverse 

primer for the mutation. Both a forward and reverse primer are necessary for the 

PCR reaction. The parent DNA was diluted to a concentration of 100ng/µl, and the 

primers were diluted to concentrations of 125ng/µl. The PCR mix listed on the 

following page was created: 
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Table 2: PCR Mix 
 

Component Amount (µl) 

Sterile Water 41 

10x Pfu Buffer 5 

10mM dNTPs 1 

Parent DNA 1 

Forward Primer 1 

Reverse Primer 1 

Pfu Ultra Polymerase Enzyme 1 
 

 
Before mixing the reaction components, the Pfu buffer, dNTPs, DNA, and 

primers needed to be thawed and spun down in a microcentrifuge to be mixed. After 

the Pfu Ultra Polymerase enzyme was added, the solution was flicked to mix, then 

spun in the microcentrifuge for about one minute to get rid of any air bubbles that 

had formed in the tube. The total reaction volume was 51µl, and the “Cherney” 

mutagenesis method was used on the thermocycler. Once the PCR was complete, 1µl 

of Dpn1 endonuclease was added and the sample was placed in a 37°C water bath 

for one hour. This digested the parent DNA. The samples from the reaction were 

labeled WT*/A73/C80 and WT*/H73/C80. 

After the DNA had been mutated in the PCR, it was necessary to do a 
 

transformation to incorporate the new DNA into cells. The cells used was a 50µl 

aliquot of the strain DH5α. In addition to the WT*/A73/C80 and WT*/H73/C80  

from the PCR, three additional mutants were transformed: WT*, WT*/A73/A79, and 

WT*/A73/H79. These three strains had been mutated previously and were stored in 

the freezer at -­­20°C. For this transformation, 10µl of cells were combined with 3µl of 

DNA in five separate 1.5mL sterile tubes. The above heat shock transformation 

procedure was followed, and the cells were incubated overnight. WT*/A73/A79 and 
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WT*/A73/H79 both grew over 100 colonies per plate, but the WT* and the two 

mutants from the PCR did not grow any colonies on either plate. 

Because the transformation was not successful, the PCR was repeated for 

WT*/A73/C80 and WT*/H73/C80. New dilutions of the parent DNA and primers 

were prepared, and new buffer was used as well. For the actual reaction, the 

annealing temperature was lowered from 55°C to 53°C, because in some cases a 

slightly colder annealing temperature makes it easier for the primers to bind to the 

DNA. In addition to repeating the PCR, the original PCR mix from the first 

experiment was used to repeat the transformation for these two mutants, as well as 

WT*. 16.6µl of cells and 5µl of DNA were used for each sample. After incubating 

these samples overnight, colonies grew on all four WT*/A73/C80 and 

WT*/H73/C80 plates. No colonies grew on the WT* plates, but the original 

transformation plates for the WT* mutant had been left out at room temperature in 

an attempt to grow colonies, and one colony had grown on one plate. Because the 

second transformations were successful, the DNA from the second PCR was not 

needed, and it was stored at -­­20°C. 

The following 10mL liquid cultures were prepared for the transformed cells: 
 

Table 3: Liquid Culture Information 
 

Mutant Number of Cultures 

WT*/A73/A79 1 

WT*/A73/H79 1 

WT*/A73/C80 3 

WT*/H73/C80 3 

WT* 1 



26  

Extra liquid cultures were made for the cells containing DNA that had just 

been mutated with PCR, because the PCR reaction does not have a 100% success 

rate. Some of the cells will take in new DNA with a sequence equivalent to the 

original parent DNA, so taking several liquid cultures increases the chances that the 

correct DNA will be found. Because the WT* plate had only one colony, the tip of a 

sterile toothpick was used to spread the edge of the colony across the plate, in an 

attempt to grow slightly more bacteria. This toothpick was then used in the liquid 

culture. The cultures were prepared using the procedure outlined above and left to 

shake overnight. The next day, the liquid, which had initially been clear, had a 

cloudy appearance that indicated the cultures grew successfully. 

After shaking overnight, the cells were ready for plasmid purification. This 
 
procedure involved lysing the cells and extracting and purifying the plasmid. The 

cultures were removed from the shaker and placed on ice. They were spun down in 

a centrifuge so the cells were collected in a small pellet and the supernatant was 

poured off. The plasmids were purified using the Wizard Plus SV Minipreps DNA 

Purification System. The full purification procedure is described in detail above. 

Once the plasmids were purified, they were diluted 20-­­fold in order to determine 

their concentrations by UV-­­Visible spectroscopy. These concentrations were added 

to a spreadsheet database that contained plasmid information for all mutants. 

While preparing the WT*/A73/C80 and WT*/H73/C80 mutants, two 
 
mutants that had been in storage at -­­20°C were prepared to be sent to Iowa State 

University to be sequenced. These samples were WT*/A79/C80 and WT*/H79/C80, 

with three samples for each mutant. The samples were prepared by making 5µl 
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solutions with a concentration of 250ng/µl. The dilutions were done with sterile 

water. The tubes were flicked to mix, spun down in the centrifuge, and wrapped in 

Parafilm in order to ensure that the tubes remained sealed during shipment. 

After the DNA had been sequenced, the information was sent to an online 

account and available for downloading and analyzing. The mutation of interest was 

a change in the three base pairs that code for the 80th amino acid in the protein. The 

expected change in base pairs was ATG to TGC. Sequence documents were 

generated for each sample, and the computer program BLAST was used to compare 

the sample to the original DNA so the success of the mutation could be identified. As 

long as one of the three samples had an intact plasmid with the correct mutation, 

the PCR was considered a success. WT*/A79/C80 had one sample with the correct 

mutation, but all three of the samples for WT*/H79/C80 were incorrect, meaning 

the sequence analysis showed that the sample contained only the original parent 

DNA, and did not have the cysteine mutation at the 80th amino acid position. 

In order to attempt to get a sample with the correct mutation, three more 
 
liquid cultures were started for WT*/H79/C80 from the plates that had been stored 

in the refrigerator at 4°C. These cultures were then harvested, the DNA was purified 

and the DNA concentration was found with UV-­­Vis spectroscopy. These samples 

were then prepared for sequencing along with the six WT*/A73/C80 and 

WT*/H73/C80 samples. 

Once the sequence results were analyzed, it was found that two out of the 

three WT*/A73/C80 plasmids were correct, but none of the WT*/H73/C80 or 

WT*/H79/C80 mutations had worked. Because the WT*/H79/C80 mutant had 
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failed six times, the PCR was repeated. In this reaction, the annealing temperature 

was lowered from 55°C to 53°C. After the reaction in the thermocycler, the Dpn1 

enzyme was added and the tube was placed in the water bath for 2 hours. A second 

PCR had already been run for the WT*/H73/C80 mutant. Both of these samples 

were transformed, adding 25µl of cells to 7µl of DNA in 1.5mL sterile tubes. The 

above transformation procedure was followed. After incubating overnight, 

WT*/H79/C80 had many colonies; WT*/H73/C80 had a total of three colonies. 

Three liquid cultures were made for each cell type. Since the WT*/H73/C80 

mutant only had three colonies to begin with, each colony was streaked across the 

plate in an attempt to get a little more cell growth. These plates were left out at  

room temperature overnight, while the other two plates were wrapped with 

Parafilm and stored at 4°C. Once the liquid cultures had been incubated, the 

plasmids were purified, the DNA concentrations were measured using spectroscopy, 

and the samples were diluted and prepared for sequencing. 

The samples were sent to Iowa State, and the sequences were downloaded 
 
and analyzed. WT*/H73/C80 had no correct sequence; it was all parent DNA, but for 

WT*/H79/C80, one sample had the correctly mutated sequence. The PCR was 

repeated for WT*/H73/C80 until the correct mutation was obtained. At this time 

another PCR reaction was set up to add the C80 mutation to two additional DNA 

mutants: WT* and WT*/A73/H79. These samples were prepared but did not need  

to be sequenced at the time, so they were stored at -­­20°C. 
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Protein Purification 
 

Before working with the proteins that had the C80 mutation, several other 

proteins were purified to be used as controls. These variants had been previously 

transformed and stored at -­­80°C as protein pellets. The following table gives the 

names of the variants used for purification, along with the mass of the protein pellet. 

BL21(DE3) is the strain of E. coli cells used for the transformation process. 

Table 4: Control Protein Pellets 
 

Pellet Name Mass(g) 

BL21 WT*/H73 1 9.365 

BL21 WT*/H73 2 9.415 

BL21 WT*/H79 1 7.67 

BL21 WT*/H79 2 8.31 

BL21 WT*/A79 1 7.479 

BL21 WT*/A79 2 7.97 

BL21 WT*/A73 1 7.31 

BL21 WT*/A73 2 7.87 
 

 
Because the pellets had been stored at -­­80°C, they needed to undergo several 

freeze/thaw cycles before beginning the purification process. For the first cycle, the 

pellets were placed in the refrigerator, but the complete thaw took almost seven 

hours. So from that point on the freeze/thaw cycles were done by placing the bottles 

with the cell pellets in them in a large beaker of cool water. This was placed on a stir 

plate until the pellets were runny, then the pellets were placed back at -­­80°C to 

refreeze. Typically three freeze/thaws were done for each pellet. The pellets were 

then ready for purification. 

Only four samples were chosen for purification at first: WT*/H73 1 and 2, as 
 

well as WT*/H79 1 and 2. The full details of the purification process can be found in 

the methodology section. After cell lysis, the tubes of cell lysate were centrifuged. 
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The volumes of cell-­­free lysate were combined, so there was only one WT*/H73 

protein sample and one WT*/H79 protein sample. The volumes of supernatant for 

the WT*/H73 and WT*/H79 variants were 97.5mL and 79.8mL, respectively. The 

samples underwent the ammonium sulfate addition and two nights of dialysis 

before they were ready for the column chromatography. At this point the 

supernatant was a vivid pink in color. 

Upon the addition of the column and the initial wash with CM-­­Low buffer, it 
 
was found that both proteins began to elute, meaning the concentration of the CM-­­ 

Low buffer was already too high. A 1:1 dilution was made of the buffer in water, so 

the concentration could be low enough to rinse the column without eluting the 

proteins. It is undesirable for the proteins to elute immediately, because there  

would be no separation of the impurities that are bound more weakly to the column. 

WT*/H73 was a pale red-­­orange color, and WT*/H79 was pale red. The proteins 

were then concentrated, and both variants turned a deep red color. 

For each protein, 4µl was taken and diluted in 76µl of HPLCA buffer in order 
 
to obtain a UV-­­vis spectrum. The spectra showed that the total protein yield for 

WT*/H73 was 53.3mg and the yield for WT*/H79 was 27.0mg. The samples were 

then divided up into aliquots, frozen in liquid nitrogen, and stored in the freezer at -­­ 

80°C. Following the purification of these two samples, the remaining proteins were 

purified. 

At this time, successful PCR had created several C80 mutants, and four were 

chosen for purification: WT*/C80, WT*/A73/H79/C80, WT*/H73/C80, and 

WT*/H79/C80. The DNA was transformed, and all variants except WT*/H79 had 
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colonies. The other three variants were added to the large liquid cultures, two for 

each plate (a total of six cultures) and incubated overnight. The next day, the two 

cultures for each variant were combined and centrifuged until only a solid protein 

pellet was left. The final mass of each pellet was measured. WT*/C80 and 

WT*/H73/C80 had darker brown pellets with a slight red tint, while 

WT*/A73/H79/C80 had lighter brown pellets. The pellets were stored at -­­80°C. 

Two variants, WT*/C80 and WT*/H73/C80 were chosen to be purified 
 
because they had a promising darker color. The freeze/thaw cycles were done by 

thawing with a large beaker full of water on a stir plate, followed by a freeze in  

liquid nitrogen for about one minute. The pellets were then lysed and centrifuged. 

The full methodology for the protein purification process can be found above. The 

total volumes for the cell-­­free lysate of WT*/C80 and WT*/H73/C80 were 90.9mL 

and 88.1mL, respectively. This was followed by ammonium sulfate addition, dialysis, 

and column chromatography. The protein that had been purified previously had a 

pinker color to it, but because of the addition of the C80 mutation, these variants 

were a darker brown in color with a slightly orange tint. The proteins were 

concentrated, divided into aliquots, and placed in the fridge. 

Protein Analysis 
 

Once several proteins with the C80 mutation had been purified, it was 

possible to test their behavior under various conditions using UV-­­Visible 

spectroscopy. There are two distinct spectra that can be obtained: one occurs when 

the iron in the heme is in an oxidized state, the other when the iron is in a reduced 

state. The change from an oxidized to reduced state is also indicative of a ligand 
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switch occurring, so the changes in the spectra from oxidized to reduced was the 

method used to determine whether or not the protein was undergoing the ligand 

switch when exposed to various environments. 

The first factor to be tested was the effect of pH on the protein’s ability to 

ligand switch. Three different buffers were prepared: a MOPS buffer at pH 7.0, and 

two Boric acid buffers, one at pH 9.0 and one at pH 10.0. The first protein to be 

tested was WT*/H73/C80, diluted 15-­­fold by adding 16µl of the protein to 228µl of 

the buffer for a total volume of 244µl. One dilution was made for each buffer. The 

UV-­­Vis spectrophotometer was blanked using a water sample, and each buffer was 

then run without any protein to be sure that there would be no significant peaks 

caused by the buffer itself. 

The samples were then run. Each sample was in an oxidized state for the 

initial sample run (Figure 4). The next step was to see if a reducing agent could be 

added to induce the ligand swith. A small amount of sodium dithionite, or DTH, was 

added to each sample and a second spectrum was taken immediately after the 

reducing agent was added. This step was done quickly in case the oxygen in the air 

was enough to reoxidize the sample before an accurate spectrum could be taken. 

Initially a rubber septum and nitrogen line was used in an attempt to clear oxygen 

from the air space in the cuvette, but it was determined that this step was 

unnecessary as long as the second spectrum was taken immediately after the DTH 

was added. All three samples were reduced, showing a successful ligand switch. 

Next, the WT*/C80 samples were prepared with the same 15-­­fold dilution 
 
and final sample volume. The spectra were taken, and a small amount of DTH was 



33  

added (Figure 5). All three samples were reduced. This was unexpected. The 

WT*/C80 was supposed to act as a negative control at this stage in the experiment, 

because it did not have an H73 or H79 mutation. Without a mutation in these spots 

of the protein, it was expected that the protein would not be reduced, because it 

would have nothing to ligand switch with. The fact that the WT*/C80 protein was 

able to be reduced meant that it had in fact undergone a ligand switch, even though 

there shouldn’t have been any nearby amino acids for the switch to occur. This 

variant was tested further by using a micropipette to blow air into the samples. A 

third spectrum was taken for each, and all three had been re-­­oxidized. The 

reversibility of the ligand switch was tested even further by adding more DTH to the 

pH10.0 sample. A fourth spectrum showed that the protein was able to reduce for a 

second time. The line in this spectrum had shifted up slightly, possibly from the 

protein beginning to denature. 

The proteins were then tested using more acidic buffers. At acidic pH some 
 
amino acid side chains that may otherwise act as ligands would be protonated. If 

some of the proteins could not be reduced at acidic pH it would elucidate more 

about the amino acids acting as heme ligands. Three buffers were made using citric 

acid, one at pH 4.0, one at pH 5.0, and one at pH 6.0. Slightly larger samples were 

used this time: 24µl of protein to 342µl of buffer for a total sample volume of 366µl. 

First the spectra were taken for WT*/H73/C80, with reductions using DTH 

attempted at each pH. Each sample could be reduced. Reoxidation was attempted at 

pH 4.0, but the sample became cloudy, and it was likely that the protein had 

denatured. Next the spectra were taken for WT*/C80. Again, each sample could be 
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reduced. The sample at pH 6.0 was reoxidized using air, and re-­­reduced with more 

DTH, again demonstrating the reversibility of the ligand switch. The reoxidation was 

attempted at pH 4.0 as well, but the protein appeared to denature. 

After testing the variants with the C80 mutations, two variants without this 

mutation were thawed from the -­­80°C storage: WT*/A73 and WT*/H73. These 

samples were diluted 15-­­fold to the 366µl sample volume using the buffers at pH 

7.0, 9.0, and 10.0. These samples all started out reduced, and all were able to be 

oxidized with a few crystals of the oxidizing agent K3Fe(CN)6. 

Protein Expression 
 

Because WT*/A73/H79/C80 had light brown pellets, it was likely that it was 

not expressing much cytochrome c, which has a red color to it. Several methods 

were tested in order to determine if there was a better way to get more protein 

expression out of the cells. A transformation was done for this variant, along with 

WT*/H79/C80, WT*/A73/A79/C80, WT*/A73/C80, and WT*/A79/C80. 

The first test for better protein expression was done with a small sample 
 
culture containing 20mL of 2xYT media. Instead of using one colony per culture, a 

toothpick was used to scrape a dense area of colonies off the plate so more cells 

were added to the culture. The cultures were put in the shaker overnight. The next 

day, the cultures were poured into 50mL plastic tubes and centrifuged for 10 

minutes at 5,000rpm and 4°C. The pellets were removed from the centrifuge and the 

media was poured out. All of the pellets were a very pale brown, with no obvious  

red color. 
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The next attempt at better protein expression involved the addition of iron to 

the cultures, which has been known to aid in the expression of certain heme 

proteins. A ferric stock solution was prepared by adding 0.541g of ferric ammonium 

citrate and 0.541g of citric acid to 50mL of water. The liquid cultures were prepared 

for each sample by adding 10mL of 2xYT, 10µl of ampicillin, and 10µl of the ferric 

stock solution. A dense clump of cells was used to inoculate each culture. In addition 

to the iron, the cells were incubated overnight at a lower temperature, 28°C. The 

next day, the cells were centrifuged and the media was poured out, but the cell 

pellets were still a very pale brown. 

The third attempt at improving expression involved an even better media: 
 
10mL of Terrific Broth, 10µl of ampicillin, and 10µl of the ferric stock solution. The 

temperature of the shaker was set at 25°C, but the actual running temperature was 

closer to 27-­­28°C. These cultures were centrifuged, and even though there was still 

no red tint, the pellets were a slightly darker brown than before. 

Once some darker pellets had been produced, an SDS-­­PAGE gel was run in 
 
order to see if any cytochrome c was actually in the pellet. The samples used were 

WT*/H73, WT*/A73 (as controls, because both of these samples were known to 

have cytochrome c), WT*/C80, WT*/H73/C80, WT*/A79/C80, and WT*/H79/C80. 

The final two samples were not purified protein, but small clumps of the cell pellet 

from the Terrific Broth liquid cultures. The purified samples were prepared by 

adding 20µl of sample to 20µl of running buffer. These were mixed, and the samples 

turned a dark blue. Because the pellets were harder to dissolve for the gel, between 

600-­­700µl of sample buffer was added to the small pellet, with vigorous vortexing to 
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mix. There was a small amount of pellet that didn’t dissolve, but there was enough 

to run the gel. 

The full procedure for running an SDS-­­PAGE can be found in the  

methodology section. Between 10 and 20µl of sample was added to each well. There 

was enough room on the gel for several samples to have two wells, in which case 

two different volumes were used to see if the sample size had an effect on the  

results of the gel. Once the gel was stained, the bands could be analyzed to  

determine which samples had a good amount of cytochrome c. It was found that the 

unpurified cell pellets were mainly impurities, and did not have a detectable amount 

of protein compared to the other control samples. 

Determination of the Unknown Ligand 
 

Because it was crucial to have a protein that could act as a negative control 

and not undergo a ligand switch, it was essential to determine what the WT*/C80 

protein was using as a ligand when the reducing agent was added. The first step was 

to do additional PCR on the WT*/C80 and WT*/H73/C80 variants. Three additional 

primers were ordered to mutate the DNA. The first two, H33N and H39Q, were 

prepared in order to remove two additional histidines from the amino acid 

sequence. This amino acid is the main one used for ligand switching in this model, 

therefore removing the additional histidines may prevent the control protein from 

ligand switching if they are in fact the cause of the protein’s ability to switch when 

the reducing agent is added. The primer H33N will change the histidine at the 33rd 

position to an asparagine, and the H39Q primer will change the 39th histidine to a 

glutamine. The third primer, N52I is for adding a stabilizing mutation to the protein. 



37  

It will change the asparagine in the 52nd position to an isoleucine, which adds more 

durability to the overall protein structure. Once these primers were ordered, the 

concentrations were found using UV-­­Vis spectroscopy. 

The first mutation to be added was H39Q, making the new mutants 

WT*/Q39/C80 and WT*/Q39/H73/C80. This primer was added to the PCR mix, the 

cells were transformed with the PCR DNA, and liquid cultures of the cells were 

started. The plasmids were purified and their concentrations were measured using 

UV-­­Vis spectroscopy. The samples were then prepared for sequencing and sent to 

Iowa State University. The results were analyzed, and it was found that one of the 

samples for WT*/Q39/C80 was correct, while neither of the WT*/Q39/H73/C80 

samples were correct. Two more liquid cultures were prepared for this mutant. The 

plasmids were purified, the concentration was found using UV-­­Vis, and the samples 

were stored at -­­20°C until they would be sent for sequencing. 

Two new PCR were started, one to add the next mutation to WT*/Q39/C80, 
 
making it WT*/N33/Q39/C80, and one to add a stabilizing mutation to 

WT*/H79/C80, making it WT*/I52/H79/C80. Once the PCR was complete, cells 

were transformed with the PCR DNA, and two liquid cultures were made from the 

cells containing each mutant. The plasmid DNA was purified and the concentrations 

were found using UV-­­Vis. These two mutants, along with WT*/Q39/H73/C80, were 

prepared for sequencing and sent to Iowa State. The results were analyzed, and at 

least one sample had the correct mutation for each mutant. 

After the successful mutations for the previous three samples, two additional 
 
PCR’s were set up. One was to add the N33 mutation to WT*/Q39/H73/C80, and 
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one was to add the stabilizing I52 mutation to WT*/N33/Q39/C80. The new mutant 

DNA was prepared by PCR, multiplied in DH5α cells, extracted, and prepared for 

sequencing. The N33 mutation was unsuccessful, but the WT*/N33/Q39/I52/C80 

mutant worked. Two more liquid cultures were prepared for the failed mutant, and 

this time the sequencing showed that the mutation had been successful, creating 

WT*/N33/Q39/H73/C80. 

At this point several different mutants had been created. These mutants were 
 
transformed into BL21(DE3) cells and the cell colonies were used to make either 

large Fernbach flask cultures or smaller 10mL liquid cultures. Two additional SDS-­­ 

PAGE gels were run using small chunks of the pellets from the liquid cultures, in 

order to determine which samples would be the best candidates for a protein 

purification. It was decided that the red/brown WT*/I52/H79/C80 and the pale 

WT*/N33/Q39/H73/C80 would be used. 

The cells were lysed using the BugBuster method, and the cells were 
 
resuspended. Instead of doing a full protein purification at this point, the suspended 

cells were diluted and a UV-­­Vis spectrum was taken for each sample. Even though 

there was considerable noise in the spectra due to the impurities of the samples, it 

was determined that the darker pellet did have a peak indicative of the cytochrome 

c protein, while the paler pellet had almost no peak. The lysis was repeated for a 

third pellet, WT*/N33/Q39/I52/C80, which had an intermediate brown color. The 

spectrum showed a smaller peak, but one that was noticeable enough to assume 

that a protein purification would yield enough protein that the variants could be 
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tested in order to determine if the mutations were successful at stopping the 

negative control protein from ligand switching upon reduction. 

The variant WT*/N33/Q39/I52/C80 was lysed and centrifuged, obtaining an 

intital cell-­­lysate volume of 100.0mL. The protein was purified using ammonium 

sulfate precipitation, dialysis, and column chromatography. At this stage the protein 

was a pale orange/brown color. The protein was concentrated to a darker 

orange/brown color, and a UV-­­Vis spectrum was recorded to determine the protein 

yield, 6.77mg. The protein was divided into 0.5mL aliquots, frozen in liquid nitrogen, 

and stored at -­­80°C. 

In order to test the ligand switching ability of the protein, it was diluted using 
 
the MOPS pH 7.0 buffer and the citric acid buffers at pH 6.0 and pH 5.0, because the 

ligand switch was more likely to be stopped under acidic conditions. After adding 

sodium dithionite to each sample, it was found that all three samples continued to 

be reduced. A final sample was prepared at pH 4.0, but this sample was able to be 

reduced as well. The negative control protein still had the ability to ligand switch, 

meaning further manipulation of the protein structure was still necessary in order 

to obtain a properly functioning negative control. 

 

 
 

Results 
 

The overall purpose of this research was to use cytochrome c to create a 

workable model of Type II proteins in order to study the mechanisms by which they 

undergo a ligand switch. An important step towards this goal was achieved by 

mutating the amino acid attached to the heme of the protein into a cysteine, which is 
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one of the defining features of this specific type of protein. The fact that this protein 

was successfully mutated and created was a positive result in the overall progress of 

this research project. However, an unforeseen problem arose in that the negative 

control protein was able to ligand switch. The development of a negative control is 

crucial for being able to study the mechanism of the ligand switch; therefore, the 

majority of the project was devoted to looking for possible reasons as to why the 

ligand switch was still occurring in the negative controls. Various mutations have 

proven to be unsuccessful in eliminating the ligand switch ability of the negative 

control; however, each potential ligand that is eliminated brings the overall goal of a 

workable control closer. Overall, even though improvements have been made to the 

model, the answer to the question of the unknown ligand switch remains unknown 

at the conclusion of this project. 

 
 
 

Discussion 
 

Two other methods for getting rid of various ligands have promise in helping 

with the protein development. The first is acetylation, which adds a blocking acetyl 

functional group to the amino acid lysine, as well as possibly blocking the amino-­­ 

terminus of the protein. A small scale acetylation was attempted, but the protein 

was still able to ligand switch. Still, it is possible that this is a technique that could be 

better developed and attempted in the future to see if the results change. The  

second method involves more PCR mutations of the protein in an attempt to get rid 

of the amino acids capable of acting as heme ligands. Two potential sites of mutation 

are the histidine at the 26th position, which had been ignored because its presence 
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added stability to the structure of the protein, and the amino-­­terminus of the 

protein. Because the amino terminal group has a nitrogen atom similar to the 

histidine amino acid residues, there is a chance that the end of the protein is actually 

the cause of the unwanted ligand switch. Mutations that cause a cyclizing effect of 

the amino-­­terminus may prevent it from ligand switching. 

 
 
 

Conclusion 
 

The objective of this research project was to create a model protein that 

could be used to study the mechanism of the ligand switch in Type II thiolate-­­ligated 

heme proteins. Type II proteins are a diverse group and they have been implicated 

in gas exchange, metabolism, and regulation of the circadian rhythm. There are 

several that can be tied to various disease states, such as CBS, and learning how the 

ligand switch controls protein activation and function could be crucial to learning 

more about the protein as a whole. Because of the complexity of the proteins of 

interest, a smaller, simpler model was to be created using cytochrome c. A 

fundamental step was taken towards the creation of a valid model by mutating the 

amino acid attached to the heme from a methionine to a cysteine. However, a 

setback occurred when it was discovered that the negative control protein was able 

to ligand switch as well. The remainder of the research was done in order to try and 

determine what the negative control protein is using as a ligand. Although many of 

the variables that could be causing this switch have been eliminated, the nature of 

the ligand switch remains unknown at this time. Further research will be conducted 

in order to determine the nature of this ligand switch, and once the negative control 
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is identified it can be removed. Then other protein models with specific ligands can 

be created and tested under varying environmental conditions. The information that 

is gained from the simple protein model can then be applied to the ligand switch of 

the more complex Type II proteins, and this will lead to a greater understanding of 

how these thiolate-­­ligated heme proteins function. 
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Figures 
 
 
 
 

 
 
 
 

 
Figure 1: A model of heme; it is an iron bound by a porphyrin ring. The iron can  

form six bonds total in a Type II protein: four with the nitrogens in the ring, and two 

with the protein itself (above and below the plane of the image). 
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Figure 2: Ligand Switch Mechanism in a Type II Protein, CooA. This protein has a 

ligand switch that replaces the cysteine (Cys75) with a histidine (His77). This causes 

the proline (Pro2) on the other side to dissociate, and that side of the iron is open to 

bind carbon monoxide, which activates the protein and allows the bacterium to use 

carbon monoxide for metabolic purposes. 
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Table 1: Several known Type II proteins with their functions. 
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Figure 3: A three-­­dimensional model of cytochrome c. The heme is in blue, and 

several key amino acids are shown, including Cys80 (above the heme) and His73 

(amino acid with the pentagonal structure). 
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Figure 4: An example of a UV-­­Vis spectrum of WT*/H73/C80 at three different pH 

values. This shows that pH had little effect on the heme ligation. The distinct shape 

of the spectrum indicates that the heme is in an oxidized (Fe3+) state. 
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Figure 5: The spectrum of WT*/C80. This shows the clear differences between an 

oxidized (Fe3+) and reduced (Fe2+) state. This was unexpected for this variant, 

because it should not have been able to ligand switch, and therefore was unlikely to 

be reduced by the addition of sodium dithionite (DTH). 


	Generating new Type II protein models using cytochrome c
	Recommended Citation

	Microsoft Word - Honors Thesis (Title/Sig Pages).docx

