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ABSTRACT 

Neurulation, the formation of the neural tube, is an important process in the development 

of vertebrates.  Because this organ ultimately becomes the central nervous system of the 

organism, the proper development of a fully-functioning neural tube is paramount to its survival.  

Neural tube defects, like spina bifida and anencephaly, are among the most common congenital 

malformations present in live human births.  The prevalence of these defects is a definite concern 

to medicine and human health.   

Neural tube formation takes places via two different mechanisms: primary and secondary 

neurulation.  Secondary neurulation, the focus of this study, takes place in the tail bud of the 

chick embryo.  Specifically, basement membrane formation was studied in chick embryos at 

Hamburger and Hamilton stages 14 and 18 (approximately 50 and 68 hours of incubation, 

respectively).  Mesenchymal cells present in the tail bud polarize to form the neural tube 

epithelium, and a basement membrane is deposited sometime during this process.  To study 

basement membrane formation, the large glycoproteins fibronectin and laminin (which are 

present in and near basement membranes) were localized using antibodies B3/D6 (anti-

fibronectin) and 31/31-2 (anti-laminin). 

Results showed that laminin does not change its pattern of deposition through secondary 

neurulation, and is most concentrated at the perimeter of the mesenchyme and neural tube.  This 

suggests that laminin may be involved in setting the boundary of the mesenchyme and neural 

tube.  Its directional deposition may also allow the mesenchymal cells to polarize and adhere to 

the basement membrane formed by laminin to form the secondary neural tube.  Although 

fibronectin was found surrounding the secondary neural tube, it was more concentrated in the 

neural crest cell region.  Also, a large amount of fibronectin was involved in random cavitations 

in the mesenchyme, not associated with the neural tube, suggesting that it may attract cells and 

allow them to connect via cell junctions.  Another finding was that segregation and coalescence 

of cavities may not always occur during secondary neurulation, as was suggested by previous 

research on the topic.  
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INTRODUCTION 

Neurulation, the formation of the dorsal hollow nerve cord or neural tube, is a complex 

and important part of vertebrate development.  Once fully developed, the neural tube ultimately 

becomes the brain and spinal cord of the organism: its central nervous system.  Due to its 

extremely important role, the appropriate development of a functioning central nervous system is 

vital to the survival of the organism.  Consequently, if neurulation does not proceed normally, 

devastating effects can result. 

Neural tube defects, such as spina bifida and anencephaly, are among the most common 

congenital malformations in humans, affecting 0.5–2.0 per 1000 live births (Saitsu & Shiota, 

2008).  Many more neural tube defects occur in embryos that never reach birth and 

spontaneously abort, ultimately resulting in miscarriages.  The prevalence of these 

malformations is a definite concern to both modern medicine and human health.  Investigating 

how the brain and spinal cord develop can shed light on why and how these deformities occur, 

and can hopefully lead to the development of preventive measures and/or treatments in the 

future. 

Because of moral and ethical restrictions, research on human embryos in situ, or in the 

womb, is not a possibility.  In view of these limitations, biologists must find alternative ways to 

study human processes in other vertebrates, such as chicks or mice.  Although not all vertebrates 

form their neural tube in exactly the same way, the developmental mechanisms involved in these 

processes have been discovered to be very similar, the result of common evolutionary 

mechanisms in vertebrates. 
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Evolutionary developmental 

biology is a fascinating field that puts 

forth evidence for the apparent 

homology, or similarity, in the 

cellular and molecular mechanisms 

involved in organogenesis and body 

plan development.  Figure 1 is a 

photograph by Michael Richardson, 

depicting the development of five 

different vertebrates.  The top row 

shows earlier stages of development, 

while the middle and bottom rows 

show chronologically later stages.  The 

top row of embryos is what is known as the “phylotypic stage” of development: the stage at 

which vertebrate embryos most resemble one another.  There are differences in the embryos at 

this stage, however there is a unity in organization that cannot be ignored.  The phylotypic stage 

is the one where many major vertebrate features, including the neural tube, are formed.  Due to 

the parallels among developmental processes in these organisms, studying neurulation in other 

vertebrates can give biologists a better understanding of how the human neural tube is formed. 

Neural tube development in chicks, and in humans, takes place through two different 

processes: primary and secondary neurulation.  Primary neurulation occurs in the more anterior 

(toward the head) regions, while secondary neurulation occurs in the more posterior (toward the 

tail) regions. The location where secondary neurulation takes place may also be referred to as the 

Figure 1.  The Phylotypic Stage of Development 

(Richardson, 1997).  Photograph depicting the development 

of vertebrate embryos.  From left to right: chicken, possum, 

cat, bat, and human. 
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“tail bud” throughout this thesis.  Although both primary and secondary neurulation result in a 

continuous neural tube, the mechanisms by which this tube is formed are very different in these 

two processes.  The differences between them will be discussed in more detail in the review of 

literature section of this thesis.  Primary neurulation has been extensively studied by biologists, 

however, secondary neurulation is less understood.  Much more investigation needs to be done 

on this important developmental process in order to fully understand neurulation in its entirety. 

Generally, mammals with long tails, such as mice, form their secondary neural tube in a 

certain way, while chicks form their secondary neural tube in a different, more complex way.  

These processes are discussed in more detail in the review of literature section of this thesis.  As 

stated above, human embryos also undergo secondary neurulation.  Due to the fact that humans 

do not possess tails, they are thought to undergo the same secondary neurulation process as 

chicks do, rather than mice.  However, biologists debate this detail.  Because secondary 

neurulation may be similar in chicks and humans, chicks are advantageous in attempting to study 

the best representation of what may go on during human secondary neurulation. 

During neurulation in the tail bud of the chick, cells undergo a mesenchymal-epithelial 

transformation through cavitation and coalescence of cavities.  The tail bud starts out as a 

medullary cord, a large mass of loosely connected cells, without apparent organization.  Small 

cavities appear in the mesenchymal tissue, and these small cavities combine to form the 

continuous lumen of the secondary neural tube.  Throughout the process, these cells go from an 

unorganized mesenchyme to a polarized and organized epithelium.  Mesenchymal-epithelial 

interactions and transitions, and the role of the extracellular matrix during these processes are 

interesting areas of developmental biology that need to be explored further. 
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The neural tube is epithelial tissue, which is classified as tissue that lines the cavities and 

surfaces of organs, glands, and blood vessels.  Every epithelium, including the neural tube, has a 

basement membrane associated with it.  The epithelial cells are polarized into basal and apical 

faces.  In the case of the neural tube, the basal face is the outer face, while the apical face is the 

lumenal face.  The basal face is the one that is associated with the basement membrane.  This 

membrane is essential to the epithelium in that it acts as a mechanical barrier and a scaffold to 

which the epithelial cells adhere.  This structure is also important during embryonic development 

because it aids cells in movement, organization, and differentiation into separate tissues.  Due to 

its developmental importance, the basement membrane formation of the neural tube is the focus 

of this thesis.  Laminin and fibronectin, glycoprotein molecules present in and near basement 

membranes, respectively, are fundamental molecules of this extracellular structure, and vital to 

its role in development. 

Purpose 

The purpose of this research project was to study the formation of basement membrane of 

the neural tube epithelium during secondary neurulation in the chick embryo.  Chick embryos 

were harvested at various stages in development and taken through the immunolocalization 

procedure.  Immunolocalization is the process of using antibodies to stain for certain molecules.  

The molecules isolated in this study were fibronectin and laminin, important markers both 

associated with basement membrane formation.  The antibodies used were B3/D6 and 31/31-2 

for fibronectin and laminin, respectively, and diaminobenzidine was used to visualize the 

molecules with a red stain.  Immunolocalization was done in order to study the deposition of 

these molecules and explore their role in basement membrane formation during secondary 

neurulation. 
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Hypothesis 

This thesis will explore neurulation, specifically secondary neurulation, in the chick 

embryo and attempt to answer the following questions: 

1. What roles do fibronectin and laminin play in the formation of the secondary 

neural tube? 

2. By what stage in development does the secondary neural tube basement 

membrane begin to form, and when is its formation complete? 

3. How is the deposition of laminin and fibronectin different between the 

mesenchymal arrangement of cells and the completed neural tube? 
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REVIEW OF LITERATURE 

Early Development of Chick Embryos 

The development of any embryo begins with fertilization: the union of sperm and egg.  

Fertilization of the very large, yolk-filled chicken egg occurs in the oviduct of the hen, before the 

albumen (egg white), shell membranes, and shell are secreted to cover it.  Cleavage is the next 

step in embryo development.  The embryo undergoes rapid and incomplete meroblastic cell 

division, but there is not an increase in its overall volume.  A hollow disk of cells known as a 

blastodisk is formed, with a fluid-filled cavity known as the blastocoel in the center.  Once the 

hen has laid her egg, the blastodisk contains about 20,000 cells, and the embryo continues to 

develop (summarized by Gilbert, 2006). 

Gastrulation follows cleavage and is one of the most important events in development: it 

determines the basic developmental pattern of the chick embryo.  A significant amount of cell 

movement and rearrangement happens during this stage, leading to the formation of three 

primary germ layers from which all the tissue in the embryo is derived: the ectoderm, mesoderm, 

and endoderm.  In addition to the three germ layers, the gut tube and notochord are formed by 

the end of gastrulation.  Even before gastrulation is complete, the dorsal hollow nerve cord, or 

neural tube, begins to form via the processes of primary and secondary neurulation, which are 

described below in greater detail (summarized by Gilbert, 2006). 

Primary Neurulation 

Primary neurulation, illustrated in Figure 2 (next page), is induced by the already-

developed notochord (Spemann & Mangold, 1924), and forms the anterior portion of the neural 

tube, from the cranial region to the hind limbs.  It begins with the formation of the neural plate: 
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the notochord secretes growth factors that signal the ectodermal 

cells above it to thicken and elongate (Figure 2A).  This 

elongation of cells continues posteriorly, lengthening the neural 

plate down the midline of the embryo (Colas & Schoenwolf, 

2001). 

As the neural plate lengthens, it narrows itself so that 

bending will form a tube, rather than a sphere.  Medial hinge 

point cells (MHP’s) form at the midline of the neural plate, and 

anchor themselves to the notochord beneath them to form a 

furrow (Figure 2B).  After the medial furrow is formed at the 

midline, dorsolateral hinge point cells (DLHP’s) form lateral to the 

midline.  Like the MHP’s, these cells anchor themselves to the surface ectoderm that is not part 

of neural tube formation, forming two more furrows on either side of the midline (Figure 2C).  

All three of these furrows (one medial, two lateral) will direct the cells forming the neural tube 

and allow them to rotate into the tube formation.  To continue the bending and shaping of the 

neural plate, the surface ectoderm (to which the DLHP’s are anchored), pushes the DLHP’s 

medially to assist with bending (Colas & Schoenwolf, 2001). 

The bending of the neural plate will eventually lead to a point where the right and left 

neural folds will meet at the midline and join to form the neural tube (Figure 2D).  When the 

edges of these neural folds meet, cells called neural crest cells begin to disengage from the neural 

epithelium.  These cells are very important because they migrate to form the peripheral nervous 

system, head cartilage, pigment cells in the skin, and many other cell types.  Because they are so 

Figure 2.  Primary 

Neurulation in the Chick 

Embryo (Gilbert, 2007) 
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significant, some developmental biologists call these neural crest cells the “fourth germ layer” 

(Hall, 2000).  

Secondary Neurulation 

The portion of the neural tube posterior to the hind limbs is 

formed by secondary neurulation, which is seen as somewhat of a 

continuation of gastrulation.  One way that secondary neurulation is 

different from primary neurulation is that it is simultaneous to 

notochord development, rather than induced by it (Schoenwolf and 

DeLongo, 1980).  As in primary neurulation, cellular inductions 

have been found to play a role in secondary neurulation (Osorio et 

al., 2009). 

Secondary neural tube development begins with 

mesenchymal differentiation and the aggregation of the caudal cell 

mass into a solid medullary cord (Figure 3A & 3B).  The cells 

comprising the cord divide and form two different populations:  

central and peripheral.  The peripheral populations undergo a mesenchymal to epithelial 

transformation, forming the neuroepithelium, while the central population remains mesenchymal.  

Cavities start to appear between the two populations of cells, which enlarge as the central cells 

merge with the peripheral cells by intercalation (Figure 3C and 3D).  This process forms a single 

lumen that will become continuous with the primary neural tube.  (Colas & Schoenwolf, 2001; 

Yang, 2003). 

 

Figure 3.  Secondary 

Neurulation in the Chick 

Embryo (Catala, 1995) 
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Some research has indicated that secondary neurulation seems to be partially dependent 

upon primary neurulation and the proper closure of the primary neural tube.  Cavitation and 

coalescence may not occur properly if primary neurulation has not completed normally, and 

abnormal secondary neurulation can lead to malformations of the sacral spinal cord (Hall et al., 

1988).  Also, cavitation seems to occur somewhat randomly, and the cavities formed by this 

process vary greatly in size, shape, number, and location.  This variation not only occurs in 

different embryos at the same stage of development, but at different stages of development in the 

same embryo (Schoenwolf & DeLongo, 1980). 

The mesenchymal cells present in the medullary cord of the chick embryo are pluripotent 

and can give rise to many different kinds of tissues including: somites, the tail gut, and the 

secondary neural tube (McGrew et al., 2008).  During the process of secondary neurulation, the 

peripheral mesenchymal cells must polarize and organize to form the pseudostratified epithelium 

of the secondary neural tube, which is identical to that of the primary neural tube and neural plate 

of earlier stages (Schoenwolf & DeLongo, 1980). 

A basement membrane and other extracellular materials are laid down to begin the 

polarization of these peripheral cells of the medullary cord.  The basal ends of the peripheral 

cells become interconnected by intercellular junctions and filopodia-like processes to form an 

external limiting membrane.  The apical ends of these cells also interconnect via the same 

process to form an internal limiting membrane to complete the polarization process, forming a 

continuous neural tube (Schoenwolf & DeLongo, 1980). 
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Basement Membranes 

A basement membrane is a “thin sheet of specialized extracellular material, typically 

about 50 nm thick, that underlies epithelial cells, thereby separating them from connective 

tissues” (summarized by Becker, 2006 pg. 489).  It is the fusion of two lamina: the basal lamina 

and the reticular lamina, collectively known as the basement membrane.  Laminin, one of the 

two molecules that were isolated with immunolocalization in this study, is one major component 

of basement membranes, including the one of the neuroepithelium.  Other proteins common to 

all basement membranes include collagen IV, heparin sulfate proteoglycans, and 

entactin/nidogen.  In addition to epithelial tissues, basement membranes are found surrounding 

nerves, fat cells, and muscle (smooth, striated, and cardiac) (Martin & Timpl, 1987). 

Basement membranes have a variety of functions.  They prevent passage of proteins into 

capillaries and glomeruli, and they maintain normal tissue formation by providing scaffolding 

during cell regeneration and growth.  They also act as mechanical barriers and prevent malignant 

cells from penetrating deeper tissues.    Initially, these were the only known roles of basement 

membranes: as a selective barrier and scaffold for cell adherence.  Over time, it has been 

discovered basement membrane components also play roles in cell growth, differentiation, 

migration, and tissue development and repair. Basement membranes are especially important 

during embryonic development because they allow cells to segregate and differentiate into 

specific tissues.  In fact, it is the first extracellular matrix to appear during embryogenesis.  Non-

basement membrane associated extracellular matrix (containing fibronectin, the other molecule 

isolated in this study) is also instrumental in movement, organization, and differentiation of 

embryonic cells (Martin & Timpl, 1987; Erickson & Couchman, 2000). 
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Fibronectin 

Fibronectin is a large extracellular matrix glycoprotein 

that mediates adhesion of cells to other extracellular matrix 

components.  It is composed of two nearly identical polypeptide 

subunits linked by two disulfide bonds near the carboxyl ends of 

the subunits.  As seen in Figure 4, each subunit has several 

domains that recognize and bind to one or more macromolecules 

present on cell surfaces or in the extracellular matrix.  The RGD 

(arginine-glycine-aspartate) sequence is recognized by various 

cell surface integrins and is a common motif among extracellular 

adhesive proteins.  Because it binds to cell surface molecules as 

well as extracellular matrix components, fibronectin functions as a 

bridging molecule that connects the cells to the extracellular matrix 

(Proctor, 1987; summarized by Becker, 2006). 

Fibronectin can be found in a soluble form in blood and body fluids, or in an insoluble 

form in connective tissues and near basement membranes.  Many cell culture studies have shown 

that large amounts of fibronectin are synthesized in several cell types, including fibroblasts, 

vascular endothelial cells, corneal endothelial cells, and epithelial cells of the intestine, kidney, 

and liver.  It is thought to have a role in the organizing of the extracellular matrix and may also 

act as an adhesive protein for the orderly growth, migration, and positioning of cells.  Other roles 

include maintenance of cell shape, wound healing, embryogenesis, nerve regeneration, 

phagocytosis, and adhesion of pathogens (viruses, bacteria, fungi) to animal cells and the 

Figure 4.  Fibronectin 

Structure (Becker, 2006)  
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extracellular matrix.  In this study, the antibody B3/D6 was used to isolate fibronectin (Mosher 

& Furcht, 1981; summarized by Becker, 2006). 

Laminin 

Laminin, the most abundant glycoprotein present in 

basement membranes, is an important structural and regulatory 

molecule of the extracellular matrix.  The molecule is a 

fundamental part of the structure and scaffolding in nearly every 

tissue in an organism, and is essential to the maintenance and 

survival of these tissues.  It is composed of three polypeptides: 

denoted α, β, and γ.  As seen in Figure 5, the polypeptide chains 

form the shape of a cross, 3 short arms and 1 long arm, all held 

together by disulfide bonds.  In general, the 3 short arms are 

involved in non-cellular extracellular matrix binding, while the long arm is involved in receptor-

mediated interactions, such as those with integrins (Miner & Yurchenco, 2004). 

As with fibronectin, laminin contains several binding sites for collagen, heparin, heparan 

sulfate, entactin, and cell-surface laminin receptors.  Laminin functions, as does fibronectin, as a 

bridging molecule, attaching cells to the basement membrane.  The cross-arms on the right and 

left of the molecule also contain laminin binding sites.  This allows the molecule to polymerize 

and form large sheets in order to span the basement membrane and bind to cell surface 

molecules.  In this study, the antibody 31/31-2 was used to isolate laminin (Martin & Timpl, 

1987; summarized by Becker, 2006). 

Figure 5.  Laminin Structure 

(Becker, 2006) 



  Mataya   13 

 

 

 

The receptors that make it possible for fibronectin and laminin to bind to the surfaces of 

animal cells belong to a large family of transmembrane proteins called integrins.  These proteins 

are important because they are the primary way in which the cells can bind to extracellular 

matrix proteins like fibronectin, laminin, and collagen.  Their name describes their function: they 

integrate the cytoskeleton with the extracellular matrix (summarized by Becker, 2006). 

Findings in the Mouse 

Because the human, mouse, and chick are all vertebrates, neural tube formation in these 

species is similar, and studying this process in the mouse gives clues to how fibronectin and 

laminin are involved in secondary neurulation in the chick.  In most mammalian species, 

secondary neurulation is a much simpler process than in chicks.  In rodents, the secondary neural 

tube is formed by an extension of the primary neural tube into the medullary cord.  In chicks, as 

reviewed above, the secondary neural tube is formed via cavitation and coalescence of these 

cavities into a single lumen.  It is still not known whether human tail bud development follows 

the rodent or the chick model, and both possibilities continue to be investigated (Yang, 2003). 

In 1987, K.S. O’Shea studied the deposition of these and other basement membrane 

components (heparan sulfate proteoglyglan and type IV collagen) during secondary neurulation 

in the mouse embryo.  O’Shea’s study used immunolocalization to isolate fibronectin and 

laminin, as in the present study.  One difference is that O’Shea (1987) used rabbit antibodies to 

isolate the molecules in the mouse, while we have used mouse monoclonal antibodies to isolate 

the molecules in the chick embryo. 

In a 10½-day-old embryo, O’Shea (1987) found scattered fibronectin staining in the 

unaggregated mesenchyme at the distal end of the mouse tail bud, but did not find significant  
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laminin staining in this region.  In fact, O’Shea found that the pattern of laminin deposition was 

quite different from that of fibronectin during the entire process of secondary neurulation.  In an 

11-day-old embryo, the study found that laminin was deposited along the neuroepithelium 

basement membrane above the notochord, along its lateral border, but was absent in the 

dorsolateral region of the neuroepithelium.  Fibronectin, on the other hand, completely 

surrounded the neural tube and was enriched in the dorsolateral region (O’Shea, 1987). 

Significance of Research 

Although the present study focuses on neurulation in chick embryos, this process is 

common in all vertebrates.  All vertebrates appear to show a similar developmental mechanism 

for primary neurulation (summarized by Gilbert, 2006), however secondary neurulation has not 

been studied as thoroughly (Schoenwolf & DeLongo, 1980).  As mentioned above, it is still 

uncertain whether human posterior neural tube development is similar to secondary neurulation 

in chicks, but it is very likely that the same molecules are involved in both processes. 

Neurulation is a complex and important part of vertebrate development and problems 

during this process can lead to severe neural tube defects.  These defects initiate at points in 

primary or secondary neurulation where the neural tube fails to form properly.  According to 

Saitsu and Shiota (2008), neural tube defects are among the most common human congenital 

malformations, affecting 0.5–2.0 per 1000 live births.  Many more occur in embryos that never 

reach birth, and spontaneously abort.  Study of neural tube formation is very important to 

medicine, given the prevalence of these spinal cord malformations. 
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When anterior portions of the neural tube 

fail to close, a fatal condition known as 

anencephaly can result.  This condition will 

prevent the development of the forebrain and 

skull, leading to death.  Failure to close posterior 

portions of the neural tube results in spina bifida, a 

condition in which the spinal cord can protrude outside the body.  The severity of this condition 

depends on how much spinal cord is exposed, and can usually be corrected by surgery.  Figure 6 

depicts these spinal cord malformations compared to the condition of a normal fetus 

(summarized by Gilbert, 2006). 

  

Figure 6.  Neural Tube Defects (American 

Association of Neurological Surgeons 2004)  
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MATERIALS AND METHODS 

Collection of Embryos 

In 1951, Viktor Hamburger and 

Harold Hamilton set a series of 46 

chronological stages for chick embryo 

development: from egg-laying to 

hatching.  Each stage has key anatomical 

features unique to that period in 

development.  Figure 7 shows the 

Hamburger and Hamilton standard 

appearance of the embryos at stages 14 and 18, the stages used in this study.  Fertilized chicken 

eggs were purchased from Sunray Chicks Hatchery in Hazleton, Iowa, and incubated at 38°C to 

the proper Hamburger and Hamilton stage.  Incubation times per stage were determined 

empirically, and were approximately as follows: 50 hours for stage 14 and 68 hours for stage 18.   

The egg and dissecting tools were rinsed in 70% ethanol before harvesting to ensure 

sterility and deter bacteria.  The egg’s shell was punctured with forceps, and the top of the shell 

was removed to expose the embryo, yolk sac and albumin.  Kimwipes were used to absorb 

excess thin albumin, and a Whatman 3 mm filter paper ring was placed over the embryo.  

Scissors were used to free the embryo from the yolk.  The embryo (secured in the paper ring) 

was then removed from the egg and placed in a 60mm dish with Chick Ringer’s saline.  The 

embryos were placed under a dissecting microscope to remove membrane and yolk and to 

ascertain the proper Hamburger and Hamilton stage by identifying key anatomical features on 

the embryo and comparing them to standard photographs (see Figure 7).   

Figure 7.  Photos of embryos at Hamburger and 

Hamilton stages 14 & 18.  (Hamburger & 

Hamilton, 1951) 
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The embryo was then removed from the paper ring and placed in another 60mm dish with 

4% paraformaldehyde fixative on ice.  This was done to stabilize the embryos’ tissues. After 

remaining in the fixative for approximately 20 minutes, the embryos were then transferred to a 

60mm dish of 70% ethanol for storage.  They were stored in this solution indefinitely. 

Dehydration and Embedding 

The embryos were dehydrated in an ethanol series and then embedded in paraffin wax so 

they could be sectioned in order to afford detailed tissue study of the tail bud and secondary 

neurulation.  To start the dehydration procedure, the embryos (still in a 60mm dish) were 

submerged in a series of ethanol washes with increasing concentration (50%, 70%, 95%, and two 

washes of 100% ethanol) for 5 minutes each.  After these steps, they were transferred to a glass 

container for the rest of the dehydration/embedding procedure.   

The embryos were then submerged in a 1:1 ethanol:Protocol solution for 5 minutes, 

followed by a 15-minute incubation in the embedding oven at 55-58°C in 100% Protocol 

solution. The embryos were then incubated overnight in a 1:1 Protocol:paraffin wax solution, 

followed by an overnight incubation in 100% paraffin wax, both in the embedding oven.  In 

order for smooth transfer of the paraffin wax, care was taken make sure the Pasteur pipettes used 

for transferring the wax in and out of the glass containers were incubated as well.  This ensured 

that the pipettes were at the same temperature as the wax, and the wax would not harden inside 

the pipette. 

Sectioning 

Once completely embedded in the wax, the embryos were taken out of the embedding 

oven to allow the wax to harden.  Using a razor blade, a metal spatula, and a Bunsen burner, the 
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paraffin-embedded embryo was trimmed and mounted (with the tail up) onto a wooden block for 

sectioning.  A trapezoid-shaped block face was created to ensure smooth and straight sectioning.  

Sectioning was done with a Reichert-Jung 820 microtome set at 6-7 microns for each section.  

Before sectioning was started, the razor blade was inspected under the microscope for nicks to 

ensure that the ribbons would not be damaged when sectioning commenced.   

The slides on which the sections were placed were covered with an adhesive known as 

Histogrip (Invitrogen Inc., San Francisco, CA).   Histogrip allowed the sections to remain on the 

slide after the wax has been removed.  The Histogrip-covered slides were placed on a slide 

warmer at 42-43°C, and the temperature of the warmer was carefully monitored so that it did not 

exceed 45°C.  Distilled water was boiled to remove air bubbles and allowed to cool.  The water 

was then applied to the slides with a Pasteur pipette.  The ribbons of sections were placed on the 

slide and arranged in an orderly fashion.  Once the slide was covered with sections, the water 

was drawn off with a Pasteur pipette and the slide was allowed to dry while still on the warmer.  

This assured proper adhesion of the sections to the slides. 

Rehydration 

After the sections were dried on the slide, the paraffin wax was removed and the sections 

rehydrated, in order to leave the sections intact on the slide.  The slides were sequentially 

submerged in a series of Coplin jars containing of Protocol, 1:1 ethanol:Protocol, decreasing 

concentrations of ethanol, and distilled water.  Finally, the slides were incubated at 37°C in a 1N 

HCl solution to promote antigen retrieval.  They were then rinsed in phosphate-buffered saline 

(PBS). 
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Immunostaining 

In order to identify the fibronectin and laminin present in tail bud tissue during secondary 

neurulation, immunolocalization with monoclonal antibodies B3/D6 (anti-fibronectins) and 

31/31-2 (anti-laminins) (both procured from the Developmental Studies Hybridoma Bank, Iowa 

City, IA) was used.  Throughout this procedure, an Invitrogen Kit containing the necessary 

reagents to complete immunostaining was used (procured from Invitrogen Inc., San Francisco, 

CA). First, the slides were submerged in peroxidase quenching solution before the 

immunostaining procedure.  This was done to prevent ambiguous background staining due to 

endogenous peroxidase activity.  Once that step was complete, the slides were submerged in 

diluted primary antibody (either B3/D6 or 31/31-2).  Dilution of primary antibody with blocking 

solution (from Invitrogen Kit) was determined experimentally, but a dilution of 1:10 (primary 

antibody:blocking solution) yielded the best results. 

Primary antibody binding was followed by submersion in biotinylated secondary 

antibody, then Streptavidin peroxidase conjugate (both from Invitrogen Kit), with phosphate 

buffered saline (PBS) washes between steps.  Following the enzyme conjugate, 

diaminobenzidine (a color-generating agent) and hydrogen peroxide were added to the slides 

until a red color developed.  After staining, the slides were immersed in a hematoxylin solution 

(from Invitrogen Kit) to provide a blue counterstain to the red staining of the primary antibody.  

The hematoxylin was removed with tap water and the slides were submerged in PBS, followed 

by distilled water. 

Mounting and Analysis 

GVA mounting solution (from Invitrogen Kit) was used to mount a coverslip on each 

slide.  Two drops were placed on the sections and the coverslip was applied.  A pencil eraser was 
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used to push the glass down and spread the GVA solution to prevent air bubbles in the slide.  

Care was taken not to push on the glass too hard, due to the risk of crushing the sections.  The 

slides were stored flat for two hours to allow the mounting solution to dry.  When the slides were 

completed, they were examined with a Leica DMIRE microscope.  Digital images were obtained 

using IP LAB software.  
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RESULTS 

Interpretation of Chick Embryo Sections 

In all photographs of chick embryo sections presented in this thesis, two colors of 

staining will be seen.  The red staining will represent the protein that was immunolocalized: 

fibronectin or laminin, depending on the photograph.  The blue/gray background staining was 

given by hematoxylin in order to augment and better visualize the red staining, and in order to 

provide tissues context.  Major structures in the figures will be labeled, including the notochord 

(NC), tail bud mesenchyme (TBM), neuroepithelium (NE), and other anatomical features. 

Laminin Staining in Tail Bud of Stage 14 Embryo 

Serial cross sections were obtained proceeding from posterior to anterior.  Three of these 

are shown in Figure 8 (page 26) that are representative and depict the progressions seen.  Figure 

8A shows the tail bud of a stage 14 embryo, stained with anti-laminin (antibody 31/31-2).  The 

tail bud mesenchyme contains light laminin staining in the mesenchymal interior, while there is 

concentrated laminin staining toward the perimeter of the mesenchyme.  This staining is located 

more in the ventral region of the mesenchymal perimeter.  There is much less staining in the 

dorsal region where neural crest cells will later emerge.  The red staining pattern in this figure 

seems to be surrounding the cells rather than inside them.  This suggests that the laminin present 

in this section is part of the extracellular matrix outside the epithelial cells rather than being 

located within the cytosol. 

Figure 8B is a second section from the same stage 14 embryo, but anterior to the previous 

section.  This photograph continues the staining pattern seen in 8A, showing much more 

concentrated laminin staining toward the perimeter of the mesenchyme rather than in its interior.  
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Rather than being concentrated around the ventral perimeter (as seen in the previous section), 

laminin is now present all around the mesenchymal perimeter.  This perimeter staining is not 

continuous in this figure, suggesting that laminin is not yet present in an uninterrupted basement 

membrane formation around the neural tube epithelium.  Also, segregation and polarization of 

cells are starting to occur in this section, and a neural tube lumen appears to be present in 

rudimentary form. 

Figure 8C shows the final section from this stage 14 embryo, anterior to the previous two 

sections.  The neural tube lumen is larger and more pronounced, as is the polarization of the cells 

into epithelial tissue around the lumen.  The perimeter staining is more concentrated and 

continuous than that seen in the previous sections.  This suggests that laminin is present in an 

uninterrupted basement membrane around the basal face of the neural tube epithelium.  It is still 

absent, however, from the more dorsal regions where there is still no clear demarcation of a 

border.  Cell shape suggests continuing mesenchymal character.   

Because of the large amount of this tissue dorsal to the lumina in photographs 8B and 8C, 

we hypothesize that these sections may be a part of what is called the “overlap zone.”  The 

overlap zone is a segment of the neural tube where the two neural tubes formed via primary and 

secondary neurulation overlap during development (Schoenwolf & DeLongo, 1980).  As stated 

in the literature review, primary and secondary neurulation result in one continuous lumen.  In 

the overlap zone, the primary lumen is formed dorsal to the secondary lumen and they both 

coalesce to form the continuous lumen later in development.  We hypothesize that if sectioning 

was continued anteriorly in this embryo, a primary neural tube lumen would appear in the dorsal 

mass of cells, and then coalescence of the two lumina would be seen later in the development of 

this embryo. 
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Fibronectin Staining in Stage 14 Embryo 

Although not shown in a figure, a different slide of the same stage 14 embryo was stained 

with B3/D6 (anti-fibronectin) and was examined in order to compare the pattern of fibronectin 

and laminin during secondary neurulation.  Polarization and formation of epithelial tissue are 

observed, along with the segregation of cells to create multiple cavities, which would eventually 

coalesce and form the secondary neural tube later in development.  Unlike laminin, which was 

present on the perimeter of the mesenchyme in the figures, fibronectin appears among cells 

interior to the perimeter.  This inward location is more significant than what was seen in the 

laminin sections.  Also, the fibronectin staining is concentrated more in the dorsal region of the 

neural tube.  This concentration of staining may accompany the initiation of neural crest cells 

which emerge from an epithelial to mesenchymal transformation on the dorsal side.  Due to 

limitations of our technique, only one section was visualized with anti-fibronectin staining.  Thus 

the results are not conclusive with only one section to provide data. 

Fibronectin Staining in Stage 18 Embryo 

Figure 9 (page 26) shows a section through a stage 18 embryo, in a more anterior region 

of the trunk neural tube, where primary neurulation takes place.  We know that this section is a 

product of primary neurulation, because a notochord is present.  As stated in the literature 

review, primary neurulation is induced by the notochord, whereas secondary neurulation is not.  

In this photograph, fibronectin is found abundantly around the notochord, the dorsal aortae, and 

along the dorsolateral aspect of the dermamyotome.  Around the neural tube, however, the 

staining is not as smooth or intense.  Fibronectin is present at less intense levels throughout the 

mesenchyme and has a more fibrillar form in this area of the section.  Interestingly, fibronectin 

staining is concentrated at the most dorsal aspect of the neural tube, where neural crest cells are 
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beginning to go through epithelial/mesenchymal transitions.  All of these locations for 

fibronectin are well known during primary neurulation, and our observations are in accord. 

Sequence of Secondary Neurulation in Stage 18 Embryo (Stained with Fibronectin) 

All of Figure 10 (page 27) shows a sequence of five sections taken from a series of 

twenty from the same stage 18 embryo.  The sequence starts from the tail bud and moves 

anteriorly.  Figure 10A shows mesenchymal tissue at the posterior tip of the tail bud, not yet 

differentiated into neural epithelium.  Note that this image is magnified 20X, rather than 10X.  In 

the photo, interior, localized areas of fibronectin staining can be seen.  The interior areas of 

staining appear to be somewhat random in pattern, and there is very little staining on the 

perimeter of the mesenchyme.  The most intense fibronectin staining in this section appears to be 

intracellular, rather than extracellular suggesting that fibronectin is present in the cells but not yet 

secreted into the extracellular matrix.  These cells may be in the process of secreting fibronectin.  

However, the relative amount of fibronectin staining compared to the other sections in this series 

is very little. 

Figure 10C shows a section anterior to the previous one, and features a small neural 

epithelium surrounded by mesenchyme.  There is also a small cavitation present in the middle of 

the neural epithelium.  We noted that only one cavity was seen during the development of this 

secondary neural tube.  We did not observe multiple lumina in this embryo.  The staining pattern 

in the mesenchyme is present in the same random pattern seen in the previous section, and is not 

seen in abundant amounts in this region.  The most fibronectin staining seen in this section is 

associated with the small neural epithelium, not the mesenchyme.  It is associated with the 

peripheral areas of the epithelium, and hardly any staining is seen in the interior among the 

epithelial cells.  The staining is also not tightly arranged around the neural tube epithelium. 
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In Figure 10D, a more anterior section is shown.  The neural tube epithelium is seen to be 

more pronounced, and the lumen of the neural tube is larger.  Light, diffuse fibronectin staining 

is seen around the neural tube, and the arrangement of fibronectin in this region is fibrillar.  The 

concentrated fibronectin staining present in the mesenchyme is in a jagged, linear pattern ventral 

and bilateral to the neural tube.  Small, irregular lumina are visible in the mesenchyme, but their 

pattern seems random and not necessarily indicative of segregation and formation of neural tube 

epithelial tissue. 

Figure 10E shows another section that is more anterior.  Here an even larger and more 

vertically elongated secondary neural tube is seen.  Again, cavitations are seen in the 

mesenchyme, but they still do not appear to be a part of developing neuroepithelium.  The most 

concentrated fibronectin staining is in this region where the lumina are forming in the 

mesenchymal tissue.  As seen in the previous section, the lumina and staining around them 

appear to be random.  There is light staining around the neural tube, and it is more concentrated 

in the dorsal, neural crest cell region. 

In Figure 10F, showing the final section in this sequence, the neural tube is the largest 

and most elongated seen.  The cloaca is now visible directly ventral to the neural tube.  Staining 

is again seen in the dorsal region of the neural tube, where neural crest cells are located.  

Between the neural tube and the mesenchyme, light, fibrillar fibronectin staining is seen, as was 

in previous sections.  The lumina are still observed in this section with intense staining around 

them, but their formation still does not appear to be a part of any developing neural epithelium.  

Small, dense collections of mesenchymal cells are seen on either side of the neuroepithelium, 

with intense fibronectin staining. 
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Figure 8.  Laminin Staining in Secondary Neurulation (Stage 14).  (A) Light, interior mesenchymal staining; more 

concentrated staining on ventral perimeter of tail bud mesenchyme (TBM).  (B) Concentrated, not continuous, 

laminin staining around entire mesenchyme; small neuroepithelium forming (NE).  (C) More pronounced 

neuroepithelium; continuous laminin staining around neural tube; overlap zone (OZ) dorsal to neural tube lumen. 

Figure 9.  Fibronectin Staining in Secondary Neurulation in (Stage 18).  Well-formed neuroepithelium (NE) with 

increased staining in dorsal neural crest cell region.  Intense staining around notochord (NC), dorsal aortae (DA), 

and dorsolateral aspect of dermamyotome (DM).   



 

 

 

 

Figure 10.  Secondary Neurulation Sequence from Posterior to Anterior (Stage 18).  

(TBM) magnified at 20X.  (B) Small, neuroepithelium (NE) with intense fibronectin staining.  

neuroepithelium with intense fibronectin staining in the mesenchyme.  

intense fibronectin staining surrounding jagged lumina (JL) in the mesenchyme

neuroepithelium with fibronectin staining in the dorsal neural crest cell region.  

neuroepithelium (NE), and possible notochord aggregation (NC).

 

 

.  Secondary Neurulation Sequence from Posterior to Anterior (Stage 18).  (A) Tail bud mesenchyme

Small, neuroepithelium (NE) with intense fibronectin staining.  (C)

neuroepithelium with intense fibronectin staining in the mesenchyme.  (D) More developed neuroepithelium, with 

intense fibronectin staining surrounding jagged lumina (JL) in the mesenchyme.  (E) Vertically elongated 

staining in the dorsal neural crest cell region.  (F) No antibody control, rounder 

neuroepithelium (NE), and possible notochord aggregation (NC). 
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DISCUSSION 

Role of Laminin in Secondary Neurulation in Chicks 

As discussed in the review of literature, laminin is an extracellular glycoprotein that is 

important in structure and scaffolding in nearly all tissues.  These molecules can polymerize and 

form basement membranes that are found at the basal surfaces of all epithelial tissues.  In 

addition to many other functions, this basement membrane provides a scaffold to which the 

epithelial cells adhere and are able to organize. 

In comparing our results with O’Shea’s study (1987) on mouse embryos, there are some 

similarities between the mouse and the chick deposition of laminin during secondary neurulation.  

In the pattern of laminin staining in the mouse embryo, O’Shea found that laminin was deposited 

along the neuroepithelium basement membrane above the notochord.  The study also found very 

little staining in the dorsal, future neural crest cell region.  These findings are consistent with 

ours: we found more staining in the ventral and lateral regions of the neural tube and 

mesenchyme, and not much in the dorsal neural crest cell region.  This suggests that although 

laminin is involved in neural tube organization, it is not involved in neural crest cell migration or 

differentiation. 

Osorio et al. (2009) studied various extracellular matrix components, including laminin, 

during mesenchymal/epithelial transitions in chick embryos at stages 18-20.  The laminin 

staining they found was spotty and discontinuous; therefore they concluded that the basement 

membrane was not fully formed at this point in development.  This is similar to what we found.  

They found laminin staining throughout the perimeter of the mesenchyme, including the neural 

crest cell region.  Our results did not show staining in this region, but because our embryo was at  
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stage 14 rather than stage 18, this may account for the difference.  Also, because we obtained 

only a few sections with staining, the pattern observed may be an artifact of that particular slide 

or embryo. 

Throughout the sections with laminin staining, a general pattern was apparent:  laminin 

was present at lower intensities in the interior of the tail bud and at concentrated levels on the 

perimeter.  This pattern did not change in the sections we analyzed.  Thus, we conclude that 

laminin is most concentrated at the perimeter of the neural tube in order to inform other cells 

where the “edge” is and which way is outward.  The low levels of staining present in the 

mesenchymal interior show that all cells contain laminin in their extracellular matrices but not as 

much as the cells that line the outside of the neural tube.  Laminin marks the perimeter of the 

neural tube, and the cells there apparently secrete it directionally: to the basal face of the 

epithelium.   

This directional secretion may also play a role in polarization of mesenchymal cells into 

the epithelium.  Laminin is secreted to the basal face of the epithelial tissue, where it polymerizes 

with other matrix molecules to form a basement membrane.  As previously discussed in the 

review of literature, basement membranes provide a scaffold to which cells adhere.  In the case 

of the neuroepithelium, cells secrete laminin toward the perimeter of mesenchyme.  This allows 

the mesenchymal cells to adhere to the newly formed basement membrane, polarize, and form 

the secondary neural tube.  The formation of multiple lumina would necessitate a more complex 

mechanism, however it seems conceivable that the basic elements are operating. 
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Role of Fibronectin in Secondary Neurulation in Chicks 

As discussed in the review of literature, fibronectin is an extracellular glycoprotein 

secreted from cells and involved in organizing of the extracellular matrix, and the growth, 

migration, and positioning of cells.  During neurulation, fibronectin is specifically involved in 

neural crest cell migration and the formation of the basement membrane.  During the sequence of 

secondary neurulation studied, fibronectin was present in relatively abundant amounts in the 

neural crest cell region, around the neural tube, and throughout the mesenchyme. 

In comparing our results with O’Shea’s study (1987) on mouse embryos, there are many 

similarities between the mouse and the chick deposition of fibronectin during secondary 

neurulation.  At the posterior tip of the tail bud, scattered fibronectin staining was found, and this 

staining was located more lateral to the midline of the mesenchyme.  In further anterior regions, 

a continuous boundary of fibronectin staining was found surrounding the neuroepithelium.  This 

continuous staining was especially dense at the dorsolateral border of the neuroepithelium: the 

neural crest cell region.  Our findings were concordant with these: we found increased staining in 

the neural crest cell region but we also found apparently copious amounts of fibronectin in the 

mesenchymal regions on either side of the neural tube. 

Osorio (2009) studied the deposition of various extracellular matrix components, 

including fibronectin, during secondary neurulation in chick embryos at stages 18-20.  The 

pattern of staining found in these sections was very much like the one found in this study: a 

continuous ring around the neural tube with concentration at the neural crest cell region.  This 

pattern suggests that fibronectin is related to basement membrane formation but more directly 

involved in neural crest cell migration and differentiation. 



  Mataya   31 

 

 

 

What was not clear from either of the studies by Osorio (2009) or O’Shea (1987) is the 

intense amounts of fibronectin staining in the mesenchyme in the more anterior secondary 

neurulation sections that we observed in this study.  The bright red staining surrounded jagged 

lumina that were not ultimately involved in the formation of neural tube cavitations.  These 

cavities seem random, and it is not known if they always form during secondary neurulation.  

Because only one sequence of sections was obtained for analysis, it is not clear if these 

cavitations and this pattern of staining always occur during secondary neurulation in chicks. 

The intense fibronectin staining also had cells aggregated around it.  Based on this 

pattern, we can propose that fibronectin may be secreted by a few of these cells, and this 

secretion attracts other cells to attach to it.  Once enough of these cells gather on a fragment of 

fibronectin molecules, the cell would be close enough to connect via cadherins such as              

N-cadherin and cadherin-11.  Both are potentially involved in secondary neurulation (personal 

communication, D. Wiens). 

Cavitation and Coalescence May Not Always Occur during Secondary Neurulation 

Previous research on secondary neurulation (Colas & Schoenwolf, 2001; Schoenwolf & 

DeLongo, 1980; Yang, 2003), has suggested that the secondary neural tube forms via  

segregation of epithelial cells, formation of two or more cavities, and the coalescence of these 

cavities into one continuous lumen.  The amount and location of these cavities has been found to 

be random: ranging from just two cavities to four or five, coalescing to form the main lumen.  

Although this pattern of formation was seen in a couple of sections in this study, it was not seen 

in others. 
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In this research project, a sequence of secondary neurulation in a stage 14 embryo (Figure 

8) was examined.  Continuous sections were taken from the tail bud mesenchyme to more 

anterior regions of the secondary neural tube, where it was more completely formed.  We note 

that the images in Figure 8 are not continuous sections: not all sections gathered are displayed in 

this thesis, but were indeed analyzed.  In examining these continuous sections, the formation of 

only one cavity was observed rather than multiple ones.  Even as the secondary neural tube got 

larger and more well-formed, still only one cavity was seen.   

We propose therefore, that while formation of multiple cavities with coalescence occurs 

during the majority of chick embryos undergoing secondary neurulation, it may not always 

occur.  Because the amount and location of cavities is random, and sometimes as few as two 

cavities have been observed, we feel that it is plausible that the secondary neural tube may form 

from only one cavitation.  Because we observed this in only one embryo, more research must be 

done to see if this formation of the neural tube is commonplace. 

Conclusions 

In conclusion, the results of this study showed that laminin does not change its pattern of 

deposition through secondary neurulation, and is most concentrated at the perimeter of the 

mesenchymal and neural tube.  This suggests that laminin may be involved in setting the 

boundary of the mesenchyme and neural tube.  Its directional deposition may also allow the 

mesenchymal cells to polarize and adhere to the basement membrane formed by laminin to form 

the secondary neural tube.  Although fibronectin was found surrounding the secondary neural 

tube, it was more concentrated in the neural crest cell region.  Also, a large amount of fibronectin 

was involved in random cavitations in the mesenchyme, not associated with the neural tube, 

suggesting that it may attract cells and allow them to connect via cell junctions.  Another finding 
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was that segregation and coalescence of cavities may not always occur during secondary 

neurulation, as was suggested by previous research on the topic. 

Limitations and Future Directions of the Study 

Schoenwolf and DeLongo (1980) showed that secondary neurulation begins around stage 

14.  Yang et al. (2003) later determined that the finalizations of secondary neurulation 

(coalescence and the formation of a continuous lumen) are completed by stage 35.  However, in 

this study, only two stages of embryos were obtained for analysis (stages 14 and 18).  In order to 

fully examine fibronectin and laminin deposition during this process, more embryos at stages in 

which secondary neurulation take place (stages 14–35) must be sectioned, stained, and analyzed. 

 As with any research, there are obstacles in collecting data, and analyzing and 

interpreting that data.  Due to difficulty with our methods (described in more detail in Appendix 

A), we did not obtain as much data as we would have liked over the course of the project.  As 

discussed in the results/discussion sections: some of our findings may be artifacts of that 

particular section or embryo and may not be applicable to the general process of secondary 

neurulation.  The only way to ascertain whether our data is accurate is to carry out further 

experiments on additional embryos.  Only then can these questions truly be answered. 
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APPENDIX A – Methodological Difficulties 

Throughout our research process, as in any type of scientific research, my advisor, 

Darrell Wiens, and I encountered many difficulties.  The minor problems, like opening eggs 

without usable embryos in them, or not getting the right H&H stages in harvesting, or having 

solutions/antibodies go bad, set us back a bit but were otherwise manageable.  There were other 

puzzlements throughout the process, however, that were not as easy to navigate around. 

During the final months of this study, our protocol was first harvesting the embryos, then 

sectioning and mounting onto slides, and ending with immunolocalization and staining of the 

sections present on the slides (see Materials and Methods section).  When we first started the 

research in January of 2010, though, our protocol was different.  We started the procedure with 

harvesting, then immunolocalization and staining of the whole embryo, then sectioning and 

mounting onto slides after immunolocalization was complete.  This treatment of the embryos, 

however, resulted in a bizarre shrinking effect.  During the dehydration step, when we would put 

the embryos in 100% Protocol in the incubating oven at 55-58°C, the embryos would shrink to 

almost a third of their original size.  This shriveling would result in undistinguishable sections, 

and in most cases, the tissue would fall completely out of the paraffin wax when sectioning, 

rendering no data. 

This continually occurring result was very perplexing, one that Dr. Wiens had never seen 

during all his years of research with chick embryos.  We tried to determine the cause of the 

shrinking by doing mini-experiments with spare embryos to see which part of the protocol was 

causing the effect, but to no avail.  We changed the solutions we were using with fresh ones, but 

this did not work either.  We also checked the temperature of the incubating oven, and found it to 

be exactly the temperature indicated by the immunostaining guidelines given in the Invitrogen 
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Kit.  Something in the immunostaining procedure was causing the embryos to shrink, but we 

could not determine which exact step it was.  Due to this dead-end at which we found ourselves, 

we decided to change our protocol to the one discussed in the Materials and Methods section.  

We secured the sections on the slides first, and then carried out the immunolocalization and 

staining procedure. 

This new treatment of the embryos did yield some results, however it had its own 

shortcomings.  The sections were able to be visualized on the slides without the previous 

shrinking effect, but staining was not always effective.  On a single slide, there would be sections 

with a good amount of staining, and others with none at all.  Dr. Wiens and I still cannot 

determine the cause of this strange staining pattern.  Due to this hit-and-miss sort of approach, it 

was difficult to obtain sequential data to be analyzed.  But, in closing, I’ll quote Victor 

Hamburger: “Our real teacher has been and still is the embryo, who is, incidentally, the only 

teacher who is always right" (Holtfreter, 1968). 
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APPENDIX B – Reagent Preparation 

Chick Ringer’s Saline (1L) 

9.0g NaCl 

0.42g KCl 

0.214g CaCl2 

Bring to total volume of 1L with distilled H2O 

 

4% Paraformaldehyde Fixative (100mL) 

4.0g Paraformaldehyde 

Add distilled H2O until volume is 66.0mL (in beaker for mixing) 

Heat in hot water bath or on hot plate 

Titrate with NaOH until solution is clear and allow the solution to cool 

Add 25mL of 4x PBS 

Bring to total volume of 100mL with distilled H2O 

 

1x PBS (200 mL) 

1.6g NaCl 

0.04g KCl 

0.288g Na2HPO4 

0.048g KH2PO4 

Adjust pH to 7.4 and bring to total volume of 200mL with distilled H2O. 

 

4x PBS (500mL) 

16g NaCl 

0.4g KCl 

2.88g Na2HPO4 

0.48g KH2PO4 

Adjust pH to 7.4 and bring to total volume of 500mL with distilled H2O. 

 

Other Reagents – obtained from Invitrogen Kit 
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