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Recent discovery of a new class of materials, spin-gapless semiconductors (SGS), has
attracted considerable attention in the last few years, primarily due to potential applica-
tions in the emerging field of spin-based electronics (spintronics). Here, we investigate
structural, electronic, and magnetic properties of one potential SGS compound, MnCr-
VAl, using various experimental and theoretical techniques. Our calculations show
that this material exhibits ≈ 0.5 eV band gap for the majority-spin states, while for
the minority-spin it is nearly gapless. The calculated magnetic moment for the com-
pletely ordered structure is 2.9 µB/f.u., which is different from our experimentally
measured value of almost zero. This discrepancy is explained by the structural disor-
der. In particular, A2 type disorder, where Mn or Cr atoms exchange their positions
with Al atoms, results in induced antiferromagnetic exchange coupling, which, at a
certain level of disorder, effectively reduces the total magnetic moment to zero. This
is consistent with our x-ray diffraction measurements which indicate the presence of
A2 disorder in all of our samples. In addition, we also show that B2 disorder does
not result in antiferromagnetic exchange coupling and therefore does not significantly
reduce the total magnetic moment. © 2016 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4972797]

I. INTRODUCTION

Magnetic materials which are capable of producing electron current of only one spin orientation
are attractive for spin transport-based devices.1–5 Recently, a new class of materials with a semicon-
ducting or insulating gap in one spin channel and zero gap in the other at the Fermi level, spin-gapless
semiconductors, has attracted much attention because of their remarkable properties such as voltage-
tunable spin polarization, the ability to switch between spin-polarized n-type and p-type conduction,
high spin polarization at the Fermi level and potential high carrier mobility.6–13 Theoretical studies
have shown that several quaternary Heusler compounds including CoFeCrAl, MnCrTiSi and MnCr-
VAl exhibit SGS properties in their completely ordered structures.8 However, in experiment, most of
the synthesized compounds show either partial B2-type or A2-type structural disorders, which are
detrimental to the spin-gapless semiconducting properties. Our interest is to synthesize MnCrVAl
compound and investigate its structural and magnetic properties, and compare the experimentally
observed properties with the results of first principles calculations.
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FIG. 1. (a) MnCrVAl unit cell in the completely ordered Y-structure; (b) XRD patterns of as quenched and annealed (550oC,
4 hrs) MnCrVAl powder samples.

The MnCrVAl belongs to the family of full Heusler compounds which crystallizes in a Y-structure
(prototype LiMgPdSn) where V and Al occupy the Wyckoff’s 4a and 4b positions, respectively, while
Mn and Cr atoms alternately occupy the 4b and 4d sites, which are all located in the middle of the
bcc unit cells (see Figure 1(a)). In the completely ordered Y-structure, this material is theoretically
predicted to be SGS with net magnetic moment of 3.0 µB/f.u.8 but there are no experimental reports
to verify the theoretical predictions. Here, we report that the rapidly quenched MnCrVAl crystallizes
in the A2-type disordered structure with almost zero net magnetic moment and explain with the help
of first principles calculations that the cause of moment reduction is the structural disorder induced
antiferromagnetic exchange coupling between displaced and non-displaced Mn and Cr atoms.

II. METHODS

A. Experimental methods

MnCrVAl compound in the form of ribbons was prepared by arc melting and rapid quenching
in a melt spinner. First, MnCrVAl ingots were prepared by arc melting high-purity elements in
an argon atmosphere. The ribbon samples were prepared by rapid quenching a molten mixture of
MnCrVAl obtained from an induction-melting of the ingots onto the surface of a copper wheel
rotating at a speed of 25 m/s. In order to find the effect of heat treatment, the ribbons were annealed
at different temperatures up to 650 ◦C in high vacuum furnace. The experimental data presented
here are from the sample annealed at 550 ◦C for 4 hrs, which are relatively cleaner than those of
the samples annealed at other temperatures. The crystal structure of the sample was investigated
using powder x-ray diffraction (XRD) in Rigaku Miniflex diffractometer with copper Kα radiation.
Magnetic properties were investigated with a Quantum Design VersaLab magnetometer and Physical
Properties Measurement system (PPMS). The elemental compositions of the ribbons were determined
using the energy-dispersive X-ray spectroscopy (EDX) in FEI Nova NanoSEM450.

B. Computational methods

The density functional calculations of bulk Heusler compound, MnCrVAl were performed using
the projector augmented-wave method (PAW),14 implemented in the Vienna ab initio simulation pack-
age (VASP)15 within the generalized-gradient approximation (GGA).16 The integration method,17

with a 0.05 eV width of smearing was used, along with the plane-wave cut-off energy of 500 eV
and convergence criteria of 10-2 meV for atomic relaxation, and 10-3 meV for the total energy and
electronic structure calculations. A k-point mesh of 12 × 12 × 12 was used for the Brillouin-zone
integration. We used a 16-atom cubic unit cell in our calculations with the atomic arrangement shown
on the Figure 1(a). Here, V and Al occupy the Wyckoff’s 4a and 4b positions, respectively, while Mn
and Cr atoms occupy the 4b and 4d sites, which are all located in the middle of the bcc unit cell. For
all ground state calculations, unit cell geometry was fully optimized to obtain equilibrium structures
and periodic boundary conditions were imposed. The effect of disorder was simulated by switching
atomic positions of corresponding atoms, as explained in more details below. Some of the results
were obtained using the MedeA® software environment.18
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III. RESULTS AND DISCUSSION

A. Experimental results

Figure 1(b) shows the powder x-ray diffraction (XRD) patterns of MnCrVAl powder prepared
from the ribbon samples. The XRD patterns of both the as-quenched and annealed samples contain
only the fundamental peaks expected for the cubic structure of MnCrVAl. The absence of superlattice
peaks (111) and (002) suggests that there is a strong A2-type atomic disorder present in the sample.
Annealing the sample did not show any increase in its structural order. The diffractograms were
refined with a model based on A2-type structure (Im-3m, with all the atoms sharing 2a site according
to the stoichiometry) and the lattice parameter obtained is a = 2.963 Å. Diffraction data shows that
the lattice parameter variation is negligibly small after the annealing process.

The isothermal magnetization curve M(H) measured at room temperature is shown in Fig. 2. For
this measurement, a piece of ribbon sample was mounted in the VSM sample holder such that the
magnetic field aligns parallel to the length of the ribbon during the measurement. As shown in the
figure, the magnetization varies almost linearly with the applied magnetic field, similar to the one
observed in paramagnetic or antiferromagnetic materials.19–21 Further, the samples show very small
high-field (30 kOe) magnetization, 0.3 emu/g (around 0.01 µB/f.u.) despite the theoretically predicted
high saturation magnetization of about 3 µB/f.u. This large difference in saturation magnetization is
attributed to the antiferromagnetic coupling between Mn and Cr atoms (in the Al sites) caused by
structural disorder as discussed below.

Fig. 3 shows the thermomagnetic curve M(T) of the 550 ◦C-annealed MnCrVAl ribbon measured
at 5 kOe between 50 K and 900 K. As shown in the figure, the magnetization first increases mono-
tonically with increasing temperature above 50 K and passes through a magnetic anomaly at 560 K,
although the magnetization shows a weak dependence on temperature. This anomaly may represent
a magnetic transition from an antiferromagnetic to a paramagnetic phase.21–23 Similar magnetic tran-
sition has been observed in another disordered compound Mn3Ga.24 Khmelevskyi et al. predicted
from first principles calculations that this anomaly is the consequence of a strong antiferromagnetic
nearest-neighbor coupling in the disordered Mn3Ga.25 Although our MnCrVAl ribbons have a disor-
dered structure, this anomaly at 560 K is not consistent with the regular spin glass transition because
magnetizations between the zero-field-cooled (ZFC) and field-cooled (FC) measurements are totally
reversible.

B. Computational results

In order to investigate the ground state properties of MnCrVAl and elucidate the experimentally
observed results, we have performed density functional calculations of the completely ordered (Y-
type structure) and partially disordered (both B2 and A2 type) bulk MnCrVAl compound. We first
calculated the equilibrium lattice constant by minimizing energy per unit cell. As shown in Fig. 4,

FIG. 2. The room-temperature magnetization M, as a function of magnetic field H of the 550 ◦C-annealed MnCrVAl ribbon.
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FIG. 3. The magnetization M, as a function of temperature T of the 550oC-annealed MnCrVAl ribbon measured at 5 kOe.

the equilibrium lattice constant a for the completely ordered (Y-structured) unit cell of MnCrVAl is
5.903 Å close to the value obtained from XRD analysis.

Figure 5 shows the site-projected densities of states (DOS) of cubic MnCrVAl in the ground
state. The majority-spin DOS is essentially zero at the Fermi level (the very small contribution from
Mn and Cr is probably the computational artefact, such as the width of smearing) with band gap
of ≈ 0.5 eV. Further, the minority-spin DOS demonstrates almost gapless semiconducting behavior
consistent with the previous report.8 The minority-spin valence band maximum is almost entirely
formed by the Mn states, while the minimum of the unoccupied minority-states has comparable
contribution from Mn, Cr, and V.

The total calculated magnetic moment for 16 atom MnCrVAl cell is mtotal =11.60 µB (2.9 µB/f.u.),
where the atom resolved moments are 1.79 µB, 2.08 µB, -0.96 µB and -0.01 µB per four atoms of Mn,
Cr, V and Al, respectively. This value of total magnetization does not agree with our experimentally
measured value, which motivated us to further investigate the disordered structures as suggested by
XRD results. In order to find the effect of disorder on the magnetic properties of MnCrVAl, we
performed series of calculations for various disorder combinations, by exchanging atomic positions
of Mn-Al, Cr-Al, and V-Al pairs (the first two combinations are usually referred to as A2 disorder,
while V-Al exchange is B2 disorder). In all considered cases the crystal structure was fully optimized,
by minimizing energy. Our calculations show that the B2-type disorder does not produce significant
change in the total magnetic moment. In this case, the total magnetic moment per 16-atom cell lies
between 11 µB and 11.5 µB based on the positions being changed. On the other hand, the A2-type
disorder was found to produce significant reduction of the total magnetic moment of MnCrVAl. We
found that the mangetic moment per 16-atom cell decreases by a factor of two (mtotal = 5.92 µB) when
one Mn or one Cr atom exchange positions with Al. At the same time, exchanging the positions of

FIG. 4. Energy versus lattice constant of bulk cubic MnCrVAl.
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FIG. 5. Atom-resolved densities of states of the bulk cubic MnCrVAl. Atomic contributions are color coded as indicated on
the figure.

two Mn (or two Cr) atoms with two Al atoms results in almost zero total magnetic moment consistent
with our experimental data.

Our calculations suggest that the disorder-induced magnetization reduction in MnCrVAl is mainly
due to the antiferromagnetic exchange coupling between displaced (i.e., the atoms occupying Al sites)
and non-displaced Mn and Cr atoms. For example, after exchanging positions of one Mn atom with
Al, the calculated magnetic moment of the displaced Mn atom becomes -2.34 µB, while the magnetic
moments per non-displaced Cr atom decreases from 2.08 µB to 1.68 µB. If two Mn (or Cr) atoms
exchange positions with two Al atoms, the magnetic moments of the displaced atoms are opposite to
the magnetic moments of regular-site Mn and Cr atoms, resulting in the zero net magnetic moment.
The disorder induced modification of magnetic structure is probably due to the change in the crystal
field of the displaced atoms.

IV. CONCLUSIONS

Results of combined experimental and theoretical study of structural, electronic, and magnetic
properties of potential spin-gapless semiconductor, MnCrVAl are presented. It is shown that this
material exhibits nearly spin-gapless semiconducting behavior in fully ordered crystal structure.
Further, our XRD measurements indicate that A2-type structural disorder (exchange of Mn/Cr and
Al atomic positions) is present in all of our samples. First principles calculations indicate that this
disorder results in induced antiferromagnetic exchange coupling between displaced and regular-site
Mn and Cr atoms, which effectively reduces the total magnetic moment of this material to zero.
The disorder induced antiferromagnetic coupling is probably due to the modified crystal field. These
interesting results add to the growing literature on the effect of disorder on the properties of potential
spin-gapless semiconductors.
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