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RESEARCH ARTICLE Open Access

Comparison of measures of marker
informativeness for ancestry and admixture
mapping
Lili Ding1, Howard Wiener2, Tilahun Abebe3, Mekbib Altaye1, Rodney CP Go2, Carolyn Kercsmar1, Greg Grabowski1,
Lisa J Martin1, Gurjit K Khurana Hershey1, Ranajit Chakorborty4 and Tesfaye M Baye1*

Abstract

Background: Admixture mapping is a powerful gene mapping approach for an admixed population formed from
ancestral populations with different allele frequencies. The power of this method relies on the ability of ancestry
informative markers (AIMs) to infer ancestry along the chromosomes of admixed individuals. In this study, more
than one million SNPs from HapMap databases and simulated data have been interrogated in admixed
populations using various measures of ancestry informativeness: Fisher Information Content (FIC), Shannon
Information Content (SIC), F statistics (FST), Informativeness for Assignment Measure (In), and the Absolute Allele
Frequency Differences (delta, δ). The objectives are to compare these measures of informativeness to select SNP
markers for ancestry inference, and to determine the accuracy of AIM panels selected by each measure in
estimating the contributions of the ancestors to the admixed population.

Results: FST and In had the highest Spearman correlation and the best agreement as measured by Kappa statistics
based on deciles. Although the different measures of marker informativeness performed comparably well, analyses
based on the top 1 to 10% ranked informative markers of simulated data showed that In was better in estimating
ancestry for an admixed population.

Conclusions: Although millions of SNPs have been identified, only a small subset needs to be genotyped in order
to accurately predict ancestry with a minimal error rate in a cost-effective manner. In this article, we compared
various methods for selecting ancestry informative SNPs using simulations as well as SNP genotype data from
samples of admixed populations and showed that the In measure estimates ancestry proportion (in an admixed
population) with lower bias and mean square error.

Background
Admixture is a common form of gene flow between
populations. It refers to the process in which two or
more genetically and phenotypically diverse populations
with different allele frequencies mate and form a new,
mixed or ‘hybrid’ population [1,2]. A classic example of
an admixed population in humans is the African-Ameri-
can population. As a result of the genetic admixture, the
African-American population contains stretches of DNA
as large as 20-30 cM that resemble mosaics of chromo-
somal segments, or ancestry blocks [3]. These segments

are derived from intermixing between European and
African ancestry and have not had sufficient time to
break up through recombination [4,5]. As a result, in
contrast to the million markers suggested to be neces-
sary for genome-wide association studies (GWAS) [6],
modeling studies showed that between 2000 and 5000
well-distributed ancestry informative markers (AIMs)
distinguishing parental origins are sufficient for whole-
genome scanning under the admixture mapping strategy
[7-9]. An ideal AIM should have one allele that is fixed
(i.e., allele frequency of 1.0) in one ancestral population,
and not present in the other [10]. However, in the con-
text of human genetics, most alleles are shared among
populations [11-13]. Hence, it is important to identify
and choose most ancestry informative markers across
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populations [14]; the power of admixture mapping relies
heavily on the ability of informative markers to infer
ancestry along the chromosomes of admixed individuals.
Several measures of marker informativeness for ances-

try have been developed to select the most ancestry
informative markers (reviewed in Rosenberg et al., 2003
[10]) from an ever-increasing wealth of genomic data-
bases [15-18]. These measures include: Absolute Allele
Frequency Differences (delta, δ), Shannon Information
Content (SIC), Fisher Information Content (FIC), F sta-
tistics (FST), and the Informativeness for Assignment
Measure (In). The cutoff value for δ is highly subjective
and has steadily decreased over time from ≥ 0.5 [19] to
0.4 [20] to 0.3 [21,22]. Cutoffs that have been used for
other measures are FST ≥ 0.4 [21], FIC ≥ 2.0 [10], SIC ≥
0.3 [23], and In ≥ 0.3 [10]. Informative measures such as
δ can be used for only two ancestral populations at a
time [10,23]. On the other hand, FST, FIC, SIC, and In
can be applied to select informative markers for
admixed populations formed from two or more ances-
tral populations. For FIC and SIC indices, ancestral pro-
portions in the admixed population need to be specified.
In spite of numerous studies with these measures of

marker informativeness for ancestry, several questions are
not systematically addressed, including how often are the
same sets of SNPs selected by the different methods? To
what degree do they overlap and share common sets of
SNPs? How do AIM panels selected by these different
methods perform in estimating ancestry population contri-
butions under different proportion of ancestral population
in an admixed population? With so many measures to
choose from, it is very important to understand their com-
mon features as well as where they differ in terms of SNP
selection. Answering these questions with a systematic
study would help users in choosing appropriate measures
in a cost-effective manner. In absence of a comprehensive
comparative study on the performance of the different
marker informativeness measures in marker selection,
researchers selected markers using only the measure of
their personal choice. For example, the three major U.S.
admixture mapping research groups led by David Reich,
Michael Seldin and Mark Shriver in their recent indepen-
dent admixture mapping panels for Latino populations
used SIC, FST and δ [9,24,25], respectively. It is not clear
which measure-based panel is the most informative for
admixture mapping. In particular as more and more mar-
kers become available and as we study less differentiated
populations, it is inevitable that prioritizing the most infor-
mative markers for ancestry inference or admixture map-
ping is critical. With the availability of common sets of
SNPs from HapMap populations, we are given the oppor-
tunity to compare these methods directly. The objective of
the present study is to compute and compare the com-
monly used measures of informativeness to select AIM

panels for admixture mapping and structured association
testing for admixed populations. To compare these meth-
ods, simulated as well as real data were used. In the simu-
lated data, the ancestral populations and their
contributions for each individual are known, allowing
comparison of accuracy of the different measures of mar-
ker informativeness for ancestry using true and estimated
individual ancestry values.

Results
SNP allele frequencies and comparisons of informative
marker selection measures
There are 1,362,723 and 1,450,896 autosomal SNPs in
HapMap phase III release #3 dataset for CEU and YRI
population, respectively. Table 1 shows, by chromosome
and across the genome, the number of SNPs genotyped
in each population and shared by both populations.
After removing SNPs that did not meet our criteria
(common in both YRI and CEU population and SNPs
with missing frequency less than 10% of the samples),
we found 1,264,741 SNPs shared by the CEU and the
YRI datasets. Furthermore, to avoid the possibility of
choosing two redundant SNPs that are in strong LD
(linkage disequilibrium), for each measure, we calculated
the informativeness on all shared SNPs, then filtered
them for the most informative ones such that the physi-
cal distance between consecutive selected SNPs must be
at least 100 kb. With this final filtering constraint and
without using any cutoffs for any measures, all five mea-
sures gave AIM panels of size ~19.8 k. Figure 1 shows
the distribution of the five measures of marker informa-
tiveness. A predominantly right-skewed distribution was
produced for each selection method. Summary statistics
of the five measures of marker informativeness are
shown in Additional file 1, Table S1. The means of δ,
FST, FIC, SIC, and In were 0.19, 0.07, 0.35, 0.03, and
0.06, respectively. The majority of the markers contained
a small amount of ancestry information, suggesting a
very high similarity in allele frequencies among common
variants (frequency > 5%) in CEU and YRI population.
For CHB and JPT population, the distribution of the

five measures of marker informativeness is show in Addi-
tional file 2, Figure S1 and summary statistics are shown
in Additional file 3, Table S2. Almost all the means of the
five measures were about 10-fold less than those from the
CEU and YRI population, indicating that CHB and JPT
are much less differentiated than CEU and YRI and the
ancestry estimation for an admixed population from
CHB and JPT presents a much more difficult problem.

Correlation, concordance, and overlapping analysis
Spearman correlation
To assess the level of similarity of the estimates of
genetic information contained in each SNP marker
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across the different selection methods, Spearman corre-
lation coefficient was calculated for the estimates of
informativeness from different selection methods for
CEU and YRI population. Figure 2 shows 3D

scatterplots of CEU and YRI allele frequencies and the
five measures of informativeness. Extremely similar sym-
metric patterns were observed between FST and In,
whereas FIC and SIC exhibited somewhat asymmetric

Table 1 Chromosome length and number of SNP markers across the genome in CEU and YRI population of the
HapMap Phase III dataset

Number of SNPs SNPs genotyped in both populationa

Chr # length in each population SNPs genotyped and fulfilling the filtering criteriab

(Mb) CEU YRI in both populationsa Delta FST FIC SIC In

1 246.6 111887 120349 103330 1663 1657 1653 1651 1654

2 242.7 113613 122377 106053 1742 1751 1742 1740 1749

3 199.3 94608 101070 88060 1464 1447 1448 1450 1450

4 191.2 85403 92052 79856 1390 1394 1387 1398 1392

5 180.6 87071 92350 81083 1310 1298 1314 1302 1304

6 170.7 91415 95108 84536 1241 1235 1239 1231 1236

7 158.7 75234 79231 69766 1139 1144 1152 1157 1148

8 146.2 74443 79368 69177 1053 1055 1053 1048 1054

9 140.2 63507 66437 58713 842 841 834 844 845

10 135.3 72846 76787 67388 979 988 980 980 988

11 134.3 69175 73942 64140 986 987 988 990 981

12 132.3 67486 70909 62018 988 981 973 972 977

13 96.2 51879 55392 48496 719 726 701 713 723

14 88.2 44570 47354 41434 646 646 650 648 650

15 82.0 40705 43837 37774 590 596 596 590 595

16 88.7 42738 46366 39616 568 559 554 555 557

17 78.6 36534 39075 33576 572 569 580 574 570

18 76.1 40153 43467 37669 562 568 564 561 572

19 63.6 25251 26798 23264 405 404 404 407 405

20 62.4 35252 37476 32870 447 447 446 448 443

21 37.1 19336 20556 18105 252 250 254 249 249

22 35.1 19617 20595 17817 249 253 253 252 249

Total 1362723 1450896 1264741 19807 19796 19765 19760 19791
a Two inclusion criteria are in effective: 1) The SNP is shared by both YRI and CEU populations and 2) SNPs with missing frequency less than 10% of the samples.
b Every SNP is at least 100 kb from its nearest neighbor.

Figure 1 Distribution of the five measures of marker informativeness for CEU and YRI population from HapMap phase III data. The
majority of the SNP markers display low to moderate estimates of genetic informativeness with few markers displaying high levels of population
differentiation.
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patterns. Pairwise scatterplots of the five measures of
informativeness showed that the measures had high
levels of correlation (Figure 3), with Spearman correla-
tion coefficients ranging from 0.95 between δ and FIC
to 0.99 between FST and In. FST and In had an almost
perfect monotonically increasing relationship.
Concordance by deciles
Figure 4 shows mosaic plots of the five measures
grouped by their deciles. The concordance at the two
ends of the informative scales was higher than that in
the middle of the scale. For example, most SNPs with
values in the first group of informative scales for FST
also fell into the first group of δ, with a few falling into
the 2nd group of δ. However, even though some of the
SNPs in the 2nd group of FIC fell into the first group of
δ, some in that same group fell into as high as the 6th

group of δ. The high concordance at the edges of the
mosaic plots may be due to an edge effect. Again FST
and In showed very high concordance, which indicates
the ability of the two measures to identify AIM SNPs in
a similar manner. This high similarity in picking infor-
mative markers can also be seen by the high correlation
coefficients between these two measures (Figure 3).
Delta had relatively poor concordance with the other
four measures of informativeness. Kappa statistics

(Additional file 4, Table S3) of the five measures of
informativeness grouped by deciles further confirmed
the above observations. FST and In had the best agree-
ment (kappa = 0.93). FST and SIC, and SIC and In also
showed good agreement, with the Kappa statistics of
0.85 and 0.86, respectively. Delta, with Kappa statistics
between 0.42 and 0.47, had relatively poor agreement
with the other four measures.
Additional file 5, Figure S2 shows the scatter plot of

allele frequencies of CEU and YRI, with different colors
indicating which decile group a SNP fell into. It is inter-
esting to see how the ten groups partitioned the SNPs
into symmetric patterns from the top-left and bottom-
right corner representing the most informative SNPs to
the center of the plot where the least informative SNPs
resided. It is evident that δ showed a partition pattern
different from other four measures due to the fact that
δ depends only on the difference between allele frequen-
cies of the two populations. FST and In exhibited very
similar partition patterns, which is consistent with what
we observed using the Spearman correlation coefficient,
Mosaic plots, and Kappa statistics. It can also be recog-
nized through the scatter plot that FIC favors the selec-
tion of markers that are closer to fixation in one of the
populations.

Figure 2 3D scatter plot of CEU and YRI allele frequencies and the five measures of informativeness. The two horizontal axes are
frequencies of alleles shared by the two populations and the vertical axis is the calculated values of marker informativeness for ancestry by the
five different measures. Similar symmetric patterns were observed between FST and In, and FIC and SIC exhibited somewhat asymmetric patterns.
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Overlapping
Figure 5 shows overlap of top n (n = 1, 5, 10, 20, 50,
and 100) AIMs selected by different measures of infor-
mativeness. For n = 1 (Figure 5a), the five measures
selected the same SNP as the top AIM. For n = 10 (Fig-
ure 5c), there were totally 15 SNPs selected by one or
more of the five measures. Five of them were selected
by all the five measures, 4 were selected by FIC and
SIC, and 4 were selected by δ, FST, and In. It can be
seen across different n that, a relatively larger number
of AIMs were selected by all five measures simulta-
neously, FIC and SIC were more likely to pick the same
set of SNPs, and δ, FST, and In were more likely to pick
the same set of SNPs. As the number of top AIMs
increased, FIC was more likely to choose SNPs that
were not chosen by any other measure.

Discrimination analysis and estimation of ancestral
contribution
Discrimination analysis
Figure 6 shows classification accuracy vs. the number
of top AIMs used by different measures of informative-
ness. For CEU vs. YRI population (Figure 6a), top
AIMs chosen by FIC and SIC performed the best,
while those selected by δ performed the worst. For
CHB vs. JPT population (Figure 6b), δ performed the
worst, while the other four measures performed com-
parably. Additional file 6, Figure S3 shows the number
of top AIMs needed by each measure to achieve 90%
or 95% classification accuracy. More AIMs were
needed to 100% correctly differentiate individuals from
CHB or JPT population than individuals from CEU or
YRI population.

Figure 3 Scatter plots of the five measures of marker informativeness with nonparametric quantile density. In each panel, r is the
Spearman correlation coefficient, which ranged from 0.9512 between δ and FIC to 0.9994 between FST and In. FST and In had an almost perfect
monotonically increasing relationship.
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Estimation of ancestral contribution in admixed populations
with top AIMs
Additional file 7, Figure S4 shows an inferred population
structure (STRUCTURE [26] and distruct [27]) for CEU,
YRI, and ASW population with the top 200 AIMs
selected by FIC. AIM panels by other measures gave the
same population structure. Furthermore, Additional file
8, Figure S5 shows the estimates of ancestry contribu-
tions for the three populations as the number of AIMs
increases. The top informative SNPs (100 to 200)
obtained using each measure yielded similar estimates of
ancestry contribution. With 200 AIMs, the estimate of
ancestry in ASW was 78% YRI across all measures.
However, for individuals from CEU and YRI population,
where the estimated ancestry contribution from CEU

and YRI, respectively, is expected to be or close to 1,
AIMs selected by In performed slightly better than those
selected by other measures of informativeness.
For the simulated admixed population from CEU and

YRI, a random sample of 100 individuals was extracted.
The true average ancestry contribution was 70:30. Addi-
tional file 9, Figure S6 (a) shows absolute errors in the
estimation of the ancestry contribution for the simulated
population with 20, 50, and 100 top AIMs selected by
different measures of informativeness. The lowest errors
were achieved at either 20 or 50 AIMs by the methods.
The bias in the estimation of the mean ancestry contri-
bution was 0.01 by In with 20 AIMs, 0.02 by SIC and
FIC with 20 AIMs, and 0.01 by FST and Delta with 50
AIMs. Using the top 20 AIMs, RMSE’s were 0.095,

Figure 4 Mosaic plot of the five measures of marker informativeness grouped by their deciles. Each mosaic plot was first divided
horizontally into ten bars with equal width representing the ten groups of a measure of informativeness. The first group (left most bar)
contained the SNPs with highest information and the last group (right most bar) contained the SNPs with lowest information. Each bar was then
split vertically into different colored segments whose heights were proportional to the probabilities associated with the second measure of
informativeness, conditional on the first measure. Higher concordance was observed at the two ends of the informative scale.
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Figure 5 Overlap of top n AIMs selected by different measures of informativeness. For (a) n = 1, (b) n = 5, (c) n = 10, (d) n = 20, (e) n =
50, and (f) n = 100, a 5-digit binary vector was assigned to each SNP, where each digit represents a measure, and they are, from the first to the
last, Delta, FST, FIC, SIC, and In, respectively. A 1 in a digit indicates that the SNP was selected by the corresponding measure as one of the top n
AIMs.

Figure 6 Classification accuracy for ancestral population vs. number of top AIMs used by the five measures of informativeness. (a) CEU
vs. YRI and (b) CHB vs. JPT population.
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0.095, 0.100, 0.093, and 0.089 for δ, FST, FIC, SIC, and
In, respectively. Figure 7 shows the histogram of the
individual true ancestry contributions and the scatter
plot of individual estimated contributions vs. true con-
tributions with top 20 AIMs selected by different
methods.
For the simulated admixed population from CHB and
JPT, a random sample of 100 individuals was extracted.
The true average ancestry contribution was 72:28 for
the simulated admixed population. Absolute errors in
the estimation of the ancestry contribution for the simu-
lated population with up to top 100 AIMs selected by
different measures of informativeness are given in Addi-
tional file 9, Figure S6 (b). The bias in the estimation of
mean ancestry contribution was generally higher than
that for the simulated admixed population from CEU
and YRI as shown in Additional file 9, Figure S6 (a).
Specifically, the lowest bias of each method was 0.09 by
δ with 100 AIMs, 0.005 by FST with 50 AIMs, 0.15 by
FIC with 20 AIMs, 0.07 by SIC with 50 AIMs, and 0.01
by In with 50 AIMs. Using top 50 AIMs, RMSE’s were
0.218, 0.182, 0.306, 0.186, and 0.170 for δ, FST, FIC, SIC,
and In, respectively. Figure 8 shows the histogram of the
individual true ancestry contributions and the scatter
plot of individual estimated contributions vs. true con-
tributions with 50 top AIMs selected by different meth-
ods. The individual estimates became more accurate as

more AIMs were used (Figure 9). Overall, relative large
true ancestry contributions were more likely to be
underestimated by all measures. However, across the
two simulation scenarios, In gave the lowest bias and
RMSE using only relatively small AIM panels.
Estimation of ancestral contribution in admixed populations
with random subsets of top AIM panels
Figure 10 shows the ancestry estimation for the ASW
population based on 100 sets of 20 randomly selected
AIMs from the top 1%, 2%, 5%, and 10% AIMs of each
measure of informativeness. Additional file 10, Table S4
shows summary statistics of errors in the estimation of
population average ancestry contribution, where the
‘true’ or gold standard value, 78%, was estimated by a
collection of 3299 AIMs for the CEU and YRI popula-
tion, all of which were selected as top 10% AIMs by at
least one of the five measures. As the analysis included
more markers of less ancestry informativeness, the esti-
mate of the YRI contribution tended to steer away from
78%, and the mean and the standard deviation of the
errors across 100 simulations had an increasing trend
for all the measures (Additional file 10, Table S4). AIMs
chosen by In gave the smallest mean error whereas
those chosen by FIC had the highest mean error. AIMs
chosen by FIC and SIC were more likely to overestimate
ancestry contribution, and those by Delta, FST, and In
were more likely to underestimate ancestry contribution.

Figure 7 Individual true ancestry contributions and estimated contributions using top 20 AIMs of the simulated admixed population
from CEU and YRI. Top-left panel: histogram of individual true ancestry contributions. Top-middle panel to bottom-right panel: scatter plot of
individual true ancestry contributions vs. individual estimated contributions using top 20 AIMs selected by Delta, FST, FIC, SIC, and In, respectively.
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Results of simulation studies are shown in Figure 11(a)
and Additional file 11, Table S5 for the admixed popula-
tion from CEU and YRI, where random subsets of 20
AIMs were used, and Figure 11(b) and Additional file
12, Table S6 for the admixed population from CHB and
JPT, where random subsets of 50 AIMs were used.
From the results we make the following observations.
First, even with less AIMs, the estimates for the
admixed population from CEU and YRI were more
accurate than those for the admixed population from
CHB and JPT, which is expected since CEU and YRI are
more divergent genetically than CHB and JPT. Secondly,
for all the five measures, as the AIM panels included
more markers that were less ancestry informative, the
mean and standard deviation of estimation errors
increased. Finally, AIM panels chosen by In gave the
smallest mean error, whereas those chosen by FIC gave
the largest mean error. The superiority of In was evident
in the simulation study using CHB and JPT (Additional
file 12, Table S6). However, different from what we
observed in the ASW population, FIC and SIC underes-
timated ancestry contribution. A possible interpretation
for the observed discrepancy between the ASW data
and the simulated data is that FIC and SIC are more

sensitive to the underlying distribution of the ancestry
contribution of individuals in the admixed population.
The other possibility could be that the assumption we
made about the genetic structure of ASW population is
wrong. Although we tried to mimic the formulation of
an African-American population in our simulation
(assuming only two ancestral populations involved and
have been correctly specified), the simulated data was
more than likely to be different from the true African-
American population. Simulated and empirical data dif-
fer in that the simulations used fully-differentiated
populations, which is not the case for the empirical
data. The 3D scatter plot of CEU and YRI allele fre-
quencies and the five measures of informativeness in
Figure 2 also showed the asymmetry of FIC and SIC,
which may contribute to their sensitivity to the underly-
ing distribution of individual ancestry contribution.
Overall, the AIM panels chosen by In performed the
best, giving the lowest bias and RMSE, whereas those by
FIC performed the worst across the real dataset and the
simulated datasets. For the real dataset (ASW), the com-
bined method by using the average ranking of the five
measures outperformed all the five measures (Additional
file 10, Table S4). However, for the simulated datasets,

Figure 8 Individual true ancestry contributions and estimated contributions using top 50 AIMs of the simulated admixed population
from CHB and JPT. Top-left panel: histogram of individual true ancestry contributions. Top-middle panel to bottom-right panel: scatter plot of
individual true ancestry contributions vs. individual estimated contributions using top 50 AIMs selected by Delta, FST, FIC, SIC, and In, respectively.
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the average ranking and minimal ranking methods were
outperformed by In and FST, but their performance were
either better or very similar to the most commonly used
method Delta, FIC and SIC (Additional file 11, Table S5
and Additional file 12, Table S6).

Discussion
Admixture mapping is a powerful gene mapping
approach [5,28]. However, the power of this method
relies on the ability of ancestry informative markers
(AIMs) to infer ancestry along the chromosomes of

Figure 9 Individual true ancestry contributions and estimated contributions using top 1000 AIMs of the simulated admixed
population from CHB and JPT. Top-left panel: histogram of individual true ancestry contributions. Top-middle panel to bottom-right panel:
scatter plot of individual true ancestry contributions vs. individual estimated contributions using top 1000 AIMs selected by Delta, FST, FIC, SIC,
and In, respectively.

Figure 10 Box-and-Whisker plot of estimates of mean ancestry contribution for ASW population with 100 random subsets of 20 SNPs
from panels consisting of top 1%, 2%, 5%, and 10% of the AIMs. From left to right different colors indicate results for Delta, FST, FIC, SIC,
and In. The last two sets of the plot (yellow and gray) are the results where markers were ranked by the average rank (AVE) or minimum rank
(MIN) of all five measures. The dashed line indicates 78%, which was estimated by a collection of 3299 AIMs for CEU and YRI population from
HapMap phase III data. All of the 3299 markers were selected as top 10% AIMs by at least one of the five measures. For each method (color),
the four Box-and-Whisker plots from left to right represent analysis results based on AIM panels consisting of top 1%, 2%, 5%, and 10% of the
AIMs. See Additional File 10, Table S4 for summary statistics of estimation errors.
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previously separated but recently admixed individuals. In
a recent paper from ASHG, Royal et al. (2010) [29] out-
lined the challenges, opportunities and implications of
genetic ancestry inference. Over 40 companies provide
genetic ancestry testing to the public. However, these
companies differ in their approaches, the types of ances-
try markers used and tests they offer. The promise of
utilizing genetic ancestry information to advance medi-
cal genomics depends on our ability to correctly and
precisely infer/measure ancestry using informative
markers.
Several methods have been proposed to measure

ancestry informativeness of markers and to choose a
panel of markers to be genotyped while maintaining the
power of detecting ancestral chromosome segments in
each genomic location. The choice of which of these
measures to use should depend on the efficiency of each
measure in selecting most ancestry informative markers.
However, there is no consensus as to which criteria to
use to select markers for ancestry inference or admix-
ture mapping, and the performance of these methods
has not been carefully evaluated and compared. The
rule of thumb is to select markers with large allele fre-
quency differences between ancestry populations. How-
ever, the number of markers required for population
assignment will depend on the populations under con-
sideration, their respective level of genetic differentiation
and the desired stringency of assignment [30]. For

instance, in humans, the level of genetic variation
between populations is only 5%-10% whereas genetic
variation within dogs is about 27% [31]. As a result, the
number and types of markers required for individual
assignment and discrimination amongst populations is
different between populations/species under considera-
tion [30]. Previous studies selected markers based on
different datasets and marker types using only one of
the methods at a time, and there has not yet been a for-
mal comparison of the performance of these methods.
Therefore there is a need to compare all methods using
the same data sets and evaluate their efficiencies and
accuracies in estimating ancestral proportions for
admixed populations.
In this study, we applied five different analytic tools to

evaluate the concordance of selected informative SNPs
using the same dataset. Our investigation using 500 top
ranked markers for each measure and accounting for
the physical distance between consecutive AIMs to be at
least 100 kb, showed the following overlap between the
different measures: δ vs FST (n = 479), δ vs FIC (n =
220), δ vs SIC (n = 319), δ vs In (n = 424), FST vs FIC (n
= 230), FST vs SIC (n = 329), FST vs In (n = 445), FIC vs
SIC (n = 395), FIC vs In (n = 258), and SIC vs In (n =
354) (Additional file 13, Table S7). On average, the
overlap of each measure with the other four was 361,
371, 276, 349, and 370 for δ, FST, FIC, SIC, and In,
respectively. FIC had the least overlap with other

Figure 11 Box-and-Whisker plot of estimates of mean ancestry contribution for the simulated admixed populations with 100 random
subsets of 20 or 50 SNPs from panels consisting of top 1%, 2%, 5%, and 10% of the AIMs. (a) Results for the simulated admixed
population from CEU and YRI using random subsets of 20 AIMs. The dashed line indicates the true mean ancestry contribution (70%). (b) Results
for the simulated admixed population from CHB and JPT using random subsets of 50 AIMs. The dashed line indicates the true mean ancestry
contribution (72%). From left to right different colors indicate results for Delta, FST, FIC, SIC, and In. The last two sets of the plot (yellow and gray)
are the results where markers were ranked by the average rank (AVE) or minimum rank (MIN) of all five measures. For each method (color), the
four Box-and-Whisker plots from left to right represent analysis results based on AIM panels consisting of top 1%, 2%, 5%, and 10% of the AIMs.
See Additional File 11, Table S5 and Additional File 12, Table S6 for summary statistics of estimation errors.
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measures. However, based on current cutoff values used
for each measure, the δ measure included a number of
loci that were not selected by the remaining four meth-
ods. FST, FIC, and In gave relatively smaller and similar
AIM panels, whereas SIC gave a very small panel of
AIMs (Additional file 14, Figure S7). Analyses based on
deciles showed that sets of SNPs at the highest or lowest
SNP information content selected for admixture map-
ping were highly similar across the different measures of
informativeness. Towards the middle of the informative-
ness scales, the agreement among the sets of SNPs
selected by different methods to discriminate between
populations decreased (Figure 3, 4, and 5). Furthermore,
FIC and SIC were more likely to pick the same set of
SNPs, δ, FST, and In were more likely to pick the same
set of SNPs, and FIC was more likely to choose SNPs
that were not chosen by the other measure.
Analytically, the FIC and SIC measures require pre-

defined ancestral proportions in an admixed population,
whereas FST, δ, and In do not. We ran sensitivity analy-
sis to study the impact of ancestral proportion in choos-
ing informative markers using arbitrary values using
CEU and YRI population. Compared with FIC, SIC was
less sensitive to the proportion of ancestry contribution
in the selection of AIMs (Additional file 15, Table S8
and Additional file 16, Table S9). Proportion of ancestry
had virtually no effect on the selection of top 1% AIMs
for SIC. For two proportions of ancestry contribution
within a distance of 0.1, FIC selected 56%-71% common
sets of AIMs and SIC selected 75%-100% common sets
of AIMs. Therefore, it is important, when using FIC, to
have a good a priori estimate of proportion of ancestry
contribution.
There are some limitations for some of these mea-

sures, for example, FIC favors selection of markers that
are closer to fixation in one parental population and
may not be appropriate to assess the level of informative
markers when ancestral populations are more than two
[32]. Compared with other methods such as FST, δ is
easy to calculate and independent of mutation and
model assumptions, however, δ has a major limitation of
being only useful for admixed populations from two
parental populations and it doesn’t account for multial-
lelic situations at a locus. FST may not be appropriate to
assess the level of genetic information in SNP markers
when the number of populations is > 2, as the method
could result in the selection of SNP markers which are
specific for a single most genetically distinct population.
The selected SNP markers that were specific for only
the most distinct population are expected to have low
heterozygosity. Genetic markers with high expected het-
erozygosity are informative and therefore useful in indi-
vidual assignment analysis [33]. Although most
researchers traditionally focus on global axes of variation

in a dataset, substantial information about population
ancestry exists locally- across chromosomes. Adjustment
of global ancestry between study subjects may lead to
false positives when chromosomal (local) population
ancestry is an important confounding factor [34]. In a
recent chromosome-based study by Baye (2011) [35],
fine-scale substructure was detectable beyond the broad
population level classifications that previously have been
explored using genome-wide average estimates. The
study of population ancestry in terms of local ancestry
has broader practical relevance because genetic diversity
is directly related to recombination rate (meiosis), which
differs among regions of the genome, and genes are not
randomly distributed along chromosomes. The current
analytical approach using genome-wide average esti-
mates will control for confounding due to global ances-
try but will not control for confounding due to the local
ancestry effect because the global ancestry information
is obtained from all markers across the genome and
may not accurately reflect local ancestry variation. It is
becoming increasingly important to recognize local
ancestry variation, especially when populations have
been recently admixed [35]. Future studies should focus
on the applications of these measures to important
genomic regions.
Many factors impact the accuracy of the estimation of

ancestry contributions, which include but are not lim-
ited to sample size, the panel of AIMs used, the number
of AIMs used, and the underlying distribution of ances-
try contribution of the individuals in the sample. The
use of a phased HapMap dataset allowed us to simulate
individuals that share common founding populations.
Moreover, the ancestry proportion for each individual is
known, allowing for the comparison of true and esti-
mated individual admixture values, thus enabling the
comparison of different methods by estimation accuracy.
Our findings indicate that, the different measures of
marker informativeness [δ, FST, FIC, SIC, and In] per-
formed well and as few as the top 20 ranked informative
markers were adequate for accurate classification of
ancestral populations. This is in agreement with the
commonly made claim in the literature on marker selec-
tion for population assignment that ‘classification accu-
racy can be substantially improved if only a subset of
loci is used in the assignment test’ [36]. For instance,
Lao et al., (2006) [37] found that 10 SNP markers from
a 10 K SNP array contained enough genetic information
to differentiate individuals from Africa, Europe, Asia
and America and no further gain in power of assign-
ment was achieved by including more SNP markers.
Indeed, it is generally considered that uninformative
markers (i.e., monomorphic loci) may add variability
and noise to the results and compromise the power of
population genetic studies [38].
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Although the marker selection methods explored in
this study agreed to a large extent in identifying the
most informative SNPs, there were differences in their
performance in ancestry estimation. The simulation
study revealed that In was the best in selecting the set of
AIMs giving the smallest bias and mean square error in
ancestry estimation. Analysis based on random subsets
of top 1% to 10% ranked AIMs indicated that, compared
to other methods, AIM panels selected by In behaved
consistently and reasonably well for both the ASW
population and simulated admixed populations. These
results illustrate that effective exploration of all these
methods can help to not only identify the most informa-
tive markers but also produce an optimal minimum set
of markers that can accurately and efficiently differenti-
ate among populations.
We suggest that the different measures may provide

unique insights into a marker’s informativeness under
different scenarios, including varying ancestral propor-
tion and when more than two ancestral populations are
present. To identify all potentially informative SNPs,
results from all measures could be considered. For
example, the union of the top 500 SNPs for all five mea-
sures could be considered as the best AIMs panel.
Researchers need to be aware of the differences between
the various methods for evaluating ancestry informative-
ness of SNP markers. Furthermore, as we attempted in
our simulation studies using either average rank or
minimal rank of all five measures, combined informa-
tion from more than one method may provide a reliable
means, although may not be the best, in selecting mar-
kers for ancestry inference. Further research on this
topic may shed light on how to best integrate different
measures to obtain a set of AIMs most effective for the
populations under consideration. We believe that the
information that a set of markers provides for assigning
or discriminating individuals to their source populations
or different relationships must be critically evaluated
before investing millions of dollars on an admixture or
ancestry related project. We anticipate identification of
more complex patterns of ancestry will require explora-
tions of these and newer methods yet to be defined, to
identify an optimal set of markers to use, however this
should become increasingly feasible as genotyping costs
decrease and available data grow on different popula-
tions. This in turn will allow the development of higher
resolution of genogeographic and ethnic maps and help
investigators designing genetic association studies in
stratified homogeneous groups.

Conclusions
Although millions of SNP markers with varying levels of
information content for ancestry inference have been
identified, only small subsets of highly informative

markers need to be genotyped in order to accurately
predict ancestry with a minimal error rate in a cost-
effective manner. In this article, we compared various
methods for selecting informative SNPs and showed
that the In measure estimated ancestry proportion (in an
admixed population) with lower bias and mean square
error. In summary, we showed the utility of several mea-
sures of informativeness using simulations and real SNP
genotype data from samples of admixed populations.
The use of several available methods to prioritize infor-
mative markers for ancestry inference can reduce geno-
typing costs and avoid false positive genotype-phenotype
associations while retaining most of the power found in
much larger sets of published AIM panels.

Methods
Five measures of ancestry informativeness
Notation
Consider populations i = 1, 2,..., K with K ≥ 2 and a
locus with N ≥ 2 alleles. Let pij denote the frequency of
allele j, j = 1, 2, ..., N, in population i. Let pj denote the
average frequency of allele j over the K populations, i.e.,

pj =
∑K

i=1
pij/K. Consider an admixed population with

two parental populations, the frequency of allele j at a
locus in the admixed population pAj is a linear combina-
tion of allele frequencies in the ancestral populations,
and can be written as pAj = m1p1j + m2p2j, where mi is
the proportion of contribution of the ith ancestral popu-
lation, and m1 + m2 = 1.
Absolute allele frequency difference (delta, δ)
Delta is the most commonly used measure of SNP mar-
ker informativeness for ancestry between two parental
populations. Delta is defined as the absolute difference
in the frequencies of a particular allele observed in two
ancestral populations. For a biallelic locus, suppose allele
one is the reference allele, then,

δ =
∣∣p11 − p21

∣∣ .
A marker with δ = 1 provides perfect information

regarding ancestry whereas a marker with δ = 0 carries
no information. It has been shown that δ by itself only
provides limited information regarding a marker’s infor-
mativeness for ancestry [10]. The sum of the allele fre-
quencies in the two parental populations, or equivalently
the value of the smaller of the two frequencies, can pro-
vide additional information independent of δ.
F statistics (FST)
FST is the proportion of the total genetic variance (the T
subscript) [39] contained in a subpopulation (the S sub-
script). When only two parental populations and mar-
kers with only two alleles are considered, the
informativeness for ancestry includes the differences and
the sum of the reference allele frequencies in the two
parental populations. In other words,
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FST =
(p1j − p2j)

2

(p1j + p2j)(2− (p1j + p2j))
.

Here, j = 1 or 2 is the reference allele. Values of FST
can range from 0 to 1. A high FST value implies a con-
siderable degree of differentiation between popula-
tions. FST is a pair-wise population measure of
differentiation or relatedness (genetic distance mea-
sure between the two populations) based on genetic
polymorphism data such as SNPs and was recently
utilized as a criterion for selecting markers for ances-
try estimation [40].
Fisher Information Content (FIC)
Pffaff [41] showed how FIC can be used to determine
the informativeness of a specific marker. The determi-
nant of the Fisher information matrix provides a mea-
sure of the amount of information contained in the
data. The genetic contributions of the ancestral popula-
tions can be estimated by the maximum likelihood
method from a sample of genotypes from the admixed
population [42,43]. For a biallelic locus of an admixed
population from two parental populations,

FIC =
2∑
j=1

δj
2

p̂Aj
.

Here, p̂Aj = p2j + m̂1δj is the expected frequency of the
jth allele in the admixed population or individual, δj =
p1j - p2j is the allele frequency difference, m̂1 is the max-
imum likelihood estimate of the contribution from
ancestral population one. FIC measure allows selection
of markers that are particularly informative in an
admixed population in which the contribution of one
parental population is substantially greater than that of
the other parental population. It favors selection of mar-
kers that are closer to fixation in the parental population
with the greater contribution.
Shannon Information Content (SIC)
Rosenberg et al. (2003) [10] used the concept of entropy
to develop a measure of marker informativeness.
Entropy is a measure of the uncertainty associated with
a random variable and quantifies the expected informa-
tion content contained in the data. If the sampled popu-
lation is an admixture of two parental populations (with
ancestral proportion m1 and m2), the SIC for a biallelic
locus can be written as:

SIC = m1

2∑
j=1

p1j log p1j

+m2

2∑
j=1

p2j log p2j −
2∑
j=1

pAj log pAj.

Informativeness for assignment (In) measure
In is a mutual information-based statistics that takes into
account self-reported ancestry information from the
sampled individuals [10]. The informativeness for
assignment of a SNP is defined as:

In =
N∑
j=1

(−pjlog2pj +
K∑
i=1

pijlog2pij
K

).

This formula is a generalization to more than two
populations. From a likelihood perspective, it gives the
expected logarithm of the likelihood ratio that an allele
is assigned to one of the populations compared with a
hypothetical ‘average’ population whose allele frequen-
cies equal the mean allele frequency across the K popu-
lations. Its value is smaller when all alleles have similar
frequencies in all populations.

Data
HapMap phase III dataset
We downloaded the complete HapMap phase III geno-
type data (http://www.hapmap.org, release #3, May
2010) available for Yoruban population in Ibadan,
Nigeria [YRI], Caucasian population from the United
States with northern and western European ancestry
[CEU], and the African American population from
Southwest USA [ASW]. HapMap is a public resource
created by the International HapMap Project to catalo-
gue genetic variants (SNPs) that are common in human
populations. The HapMap phase III release #3 contains
genotypes from 147 unrelated individuals (parents) from
YRI population, 113 unrelated parents from CEU popu-
lation, and 87 individuals from ASW population. For
the purpose of the present study, YRI and CEU popula-
tions are assumed to be the ancestors of ASW popula-
tion. Two criteria were used to filter the SNPs included
in the final analysis: 1) the SNP should be shared by
both YRI and CEU populations, i.e., SNPs for which
allele frequencies were available in both YRI and CEU
populations, and 2) SNPs with missing frequency for
over 10% of the samples were excluded. Furthermore, to
avoid the possibility of choosing two redundant SNPs
that are in strong LD (linkage disequilibrium), for each
measure, we calculated the informativeness on all shared
SNPs, then filtered them for the most informative ones
such that the physical distance between consecutive
selected SNPs must be at least 100 kb.
Simulated dataset
To compare marker informativeness measures in the
estimation of ancestry population contribution, we
simulated two artificially admixed datasets from the
phased HapMap III dataset (with known allele frequen-
cies). The first one is an admixed population from two
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parental populations with relatively high divergence: 113
unrelated individuals in CEU population and 113 unre-
lated individuals in YRI population. The second one is
an admixed population from less differentiated ancestral
populations: 84 unrelated individuals of Han Chinese in
Beijing, China [CHB] and 86 unrelated individuals of
Japanese in Tokyo, Japan [JPT]. The simulations were
run using simuPOP [32,33] for 10 generations. During
the simulation, we tracked the true ancestry contribu-
tions for each individual and calculated average ancestry
contributions for each of the two admixed populations.

Statistical analysis
Python (http://www.python.org) scripts were written to
retrieve and pre-process SNP and frequency data. Five
measures of marker ancestry informativeness were cal-
culated for shared SNPs between CEU and YRI popula-
tion and for shared SNPs between CHB and JPT
population, with YRI or JPT contribution fixed as 80%
for the calculation of FIC and SIC. Sensitivity analysis of
different YRI contributions on the selection of AIMs
was performed for FIC and SIC. For each data set, the
number of alleles per locus (SNP) was coded to a string
of numbers to obtain a full design matrix of alleles
where the cells give the number of copies of each major
allele for each individual (zero, one, or two). R (R Foun-
dation for Statistical Computing, 2010), SAS software
(SAS 9.1.3, SAS Institute Inc.), and JMP Genomics
(JMP® Genomics, v.5, SAS Institute Inc.) programs were
used to analyze the various measures of informativeness
for ancestry.

Correlation, concordance, and overlapping analysis
To assess the level of similarity of the estimates of
genetic information contained in each SNP marker
across the five measures of marker informativeness, we
used three statistical procedures: Spearman correlation
coefficient, Cohen’s Kappa statistics, and overlapping
frequency analysis of top n ranked AIMs by different
measures. Although the three approaches share some
common information, each provides unique and com-
plementary views of the behavior of the five measures.
Spearman correlation coefficient is a global measure of
statistical dependence and provides a general sense
regarding pair-wise monotonic relationship of the five
measures of marker informativeness. The Cohen’s
Kappa coefficient based on deciles quantifies agreement
between two measures and the corresponding mosaic
plot exhibits overlapping structures, i.e., the distribution
of markers according to one measure of informativeness
relative to another. Finally, the overlapping frequency
analysis demonstrates how often the same set of SNPs is
selected by two or more different measures or which
measures tend to select the same set of SNPs.

Spearman correlation coefficient [44] is a measure of
correlation based on the ranks of the data values. It is a
nonparametric alternative to Pearson’s correlation coeffi-
cient and do not require the knowledge of the distribu-
tion of the data. The formula for Spearman correlation

coefficient is

∑
i ((Xi − X)(Yi − Y))√∑

i (Xi − X)
2 ∑

i (Yi − Y)
2, where, Xi and

Yi are the ranks of observed data values, X is the mean
of Xi’s, and Y is the mean of Yi’s. In case of ties, the
averaged ranks are used. Spearman correlation coeffi-
cient takes values between -1 and +1. A +1 or -1 indi-
cates that the two measures are in a perfectly
monotonically increasing or decreasing relationship,
respectively, and a 0 means no relationship.
To show the distribution of markers according to one

measure of informativeness relative to another, we
further analyzed the data by grouping and rating SNP
markers using deciles, producing mosaic plots and cal-
culating Cohen’s Kappa coefficients. Deciles are the nine
values of a variable dividing its distribution into ten
groups with equal frequencies. For each measure, based
on its deciles we created a new categorical variable with
values 1, 2..., and 10, indicating to which group a SNP
belongs. We then used the new categorical variables to
build mosaic plots and to examine the relationship
between measures of marker informativeness. The
mosaic plots show, for example, how the top 10% SNPs
from one measure of informativeness distribute relative
to another measure of informativeness. To assess the
concordance of decile-based ratings of the informative-
ness of AIMs between measures, we computed the
Cohen’s kappa coefficient, a commonly used index to
quantify agreement between two measurements [45]. It
takes into account the concordance by chance and is
calculated as � = [Pr(a) - Pr(e)]/[1- Pr(e)], where Pr(a)
is the observed agreement percentage, and Pr(e) is the
chance agreement percentage. The larger the kappa
coefficient, the better the concordance is between two
measurements. Kappa takes values between 0 and 1. � =
1 indicates a perfect agreement while � = 0 indicates no
agreement other than what would be expected by
chance.
To answer the question of how often the same set of

SNPs is selected by the different methods or which
methods tend to select the same set of SNPs, we studied
the overlap pattern of the top n AIMs selected by differ-
ent measures of informativeness. Each SNP was assigned
a 5-digit binary vector, where each digit represents a
measure. From the first to the last these correspond to
δ, FST, FIC, SIC, and In, respectively. A 1 in the digit
indicates that the SNP is selected by the corresponding
measure as one of the top n AIMs. For example, a bin-
ary vector 11001 represents the SNP is selected by δ,
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FST, and In as one of the top n AIMs, but not by FIC
and SIC. For a specific n, the frequency of the different
combinations of the 5-digit numbers (such as 11001 and
00110) shows how often the different methods select
the same set of SNPs. The higher the frequencies, the
higher the chance that the same set of SNPs are selected
by the methods corresponding to the 1’s in the 5-digit
vector.

Discriminant analysis
To compare the discrimination power of the five mea-
sures of informativeness and assess how many markers
are needed for accurate ancestral CEU vs. YRI popula-
tion and CHB vs. JPT population membership assign-
ment, discriminant analysis was performed using the top
1, 2, ..., and up to 150 ranked AIMs. Discriminant analy-
sis [46] is a method of projecting high-dimensional data
onto a lower-dimensional space in a way that data
points from different classes are well-separated. The

projection is given by y =
∑p

i=1
wixi, where x = (x1, x2,

..., xp) is a p dimensional data point (individuals with
SNP information), and y is the projection of x onto w =
(w1, w2, ..., wp), or a linear combination of xi with
weights wi. The weights are chosen such that the projec-
tions of the data points (individuals) in the same class
(CEU or YRI population) are close to each other while
those of the data points from different classes are far
from each other. Linear discriminant can be derived
using a measure of generalized squared distance. An
optimal linear classifier then can be found by minimiz-
ing classification error (probability of misclassification).
The classifier can take into account of prior probabilities
of the classes, which, in our analysis, were specified as
proportional to the sample sizes in each class. A data
point is classified into the class for which the posterior
probability of the observation belonging to this class is
the largest among all classes. Cross-validation is used to
obtain prediction accuracy. The analysis was carried out
using PROC DISCRIM in SAS (SAS 9.1.3, SAS Institute
Inc.). We also examined the number of AIMs needed to
achieve 90% or 95% classification accuracy.

Estimation of ancestry contribution in admixed ASW
population
We estimated ancestry contribution for the admixed
ASW population using up to 200 top ranked AIMs by
different measures. We also estimated ancestry contribu-
tion using 100 sets of randomly selected 20 SNPs from
the top 1%, 2%, 5%, and 10% ranked AIM panels. The
analysis was performed using the software PSMIX [47].
This analysis allowed us to compare the consistency in
the estimation of ancestry contribution when the num-
ber of informative markers in the pool increases or

decreases. The rationale for conducting this analysis is
that AIM panels generated by different measures are
more similar when only the top AIMs are considered,
which makes it difficult to compare their performances
using only the top AIMs. By using random subsets of
AIMs from the top AIM panels of various sizes, we
expect to select less informative markers and the esti-
mate of the ancestry contribution is expected to become
less accurate (or more biased) with more variability.
More importantly, we will be able to determine if there
is clear separation in the performance of different mea-
sures based on the information content taken from simi-
lar (1% to 10%) pools of markers as determined by each
method.
We constructed two new methods of ranking marker

informativeness for ancestry by combining the informa-
tion from all the five measures. For each marker, we
assigned a ranking or score based on either the average
ranking (AVE) or the minimum ranking (MIN) of the
five measures. We didn’t use the raw values from the
five measures because they have different scales; thus,
any score computed by weighted average of the raw
values needs to be preceded by standardization of the
raw values, which is beyond the scope of this paper.

Estimation of ancestry contribution in simulated admixed
population
To validate the ancestral estimates of the five measures,
the same set of analyses in the previous section were
conducted for the two simulated admixed populations.
In the simulated admixed populations, the ancestry pro-
portion for each individual is known, so is the mean
ancestry proportion across individuals in the same
population. Estimation accuracy by different measures
was compared at two different levels. At the population
level, the estimate of the mean ancestry contribution
across individuals was compared with the true value and
bias was calculated for the five measures. At the indivi-
dual level, individual true and estimated admixture
values were compared, and root mean square error
(RMSE) was used as a summary measure of precision in
the estimation of individual ancestry proportion. RMSE

is defined as

[
1
M

M∑
i=1

(qi − q̂i)
2

]1/2

, where M is the num-

ber of individuals in the sample, and qi and q̂i represent
the true and estimated individual ancestries, respectively.
We also plotted individual estimated contributions vs.
true contributions.

Web resources
HapMap: http://www.hapmap.org
PYTHON: http://www.python.org
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Additional material

Additional file 1: Table S1: Summary statistics of five measures of
marker informativeness for CEU and YRI population in the HapMap
phase III data. A table of mean, standard deviation, minimum, median,
maximum, and lower and upper quartile of the five measures of marker
informativeness for CEU and YRI population.

Additional file 2: Figure S1: Distribution of the five measures of
marker informativeness for CHB and JPT population from HapMap
phase III data. Histograms of the five measures of marker
informativeness. Almost all the SNP markers displayed low estimates of
genetic informativeness.

Additional file 3: Table S2: Summary statistics of five measures of
marker informativeness for CHB and JPT population in the HapMap
phase III data. A table of mean, standard deviation, minimum, median,
maximum, and lower and upper quartile of the five measures of marker
informativeness for CHB and JPT population.

Additional file 4: Table S3: Kappa statistics of the five measures of
informativeness as defined by deciles. A table of pair-wise Kappa
statistics of the five measures of informativeness.

Additional file 5: Figure S2: Scatter plot of allele frequencies of CEU
and YRI population partitioned by the ten groups defined by
deciles of each measure of informativeness. The top-left and bottom-
right corner represent the most informative SNPs whereas the least
informative SNPs reside at the center of the plot.

Additional file 6: Figure S3: Number of AIMs needed to achieve
specific accuracies for founder populations. The two founder
populations are (a) CEU and YRI and (b) CHB and JPT.

Additional file 7: Figure S4: Inferred population structure for CEU, YRI
and ASW population with two clusters and 200 AIMs selected by FIC. A
plot of the inferred population structure of CEU, YRI and ASW population.
The analysis was done in STRUCTURE and distruct with 2 clusters.

Additional file 8: Figure S5: Estimate of ancestry contribution vs.
number of top AIMs for CEU, YRI and ASW population from HapMap
phase III data. Top panel: estimate of CEU contribution for CEU population.
Middle panel: estimate of YRI contribution for YRI population. Bottom panel:
estimate of YRI contribution for ASW population.

Additional file 9: Figure S6: Absolute error in the estimation of
mean ancestry contribution for the simulated admixed populations.
A plot of absolute error in the admixed population simulated from (a)
CEU and YRI and (b) CHB and JPT.

Additional file 10: Table S4: Summary statistics of estimation errors
of mean ancestry contribution for ASW population. The estimates
were based on 100 random subsets of 20 SNPs from panels consisting of
top 1%, 2%, 5%, and 10% of the AIMs for CEU and YRI population. The
gold-standard or ‘true’ ancestry contribution was taken as 78%, estimated
by a collection of 3299 AIMs for the CEU and YRI population, all of which
were selected as top 10% AIMs by at least one of the five measures.

Additional file 11: Table S5: Summary statistics of estimation errors
of mean ancestry contribution for the simulated admixed
population from CEU and YRI. The estimates were based on 100
random subsets of 20 SNPs from panels consisting of top 1%, 2%, 5%,
and 10% of the AIMs for CEU and YRI population. The true ancestry
contribution was 70%.

Additional file 12: Table S6: Summary statistics of estimation errors
of mean ancestry contribution for the simulated admixed
population from CHB and JPT. The estimates were based on 100
random subsets of 50 SNPs from panels consisting of top 1%, 2%, 5%,
and 10% of the AIMs for CEU and YRI population. The true ancestry
contribution was 72%.

Additional file 13: Table S7: Overlap of SNP markers between
measures. Diagonal (bolded): Number of SNPs genotyped in both
populations and satisfying the filtering criteriaa. Upper-triangle: Overlap for
the SNP markers. Lower-triangle: Overlap for the top 500 ranked SNP
markers.

Additional file 14: Figure S7: Scatter plot of allele frequency
difference between CEU and YRI population using current cutoff
values for each measure. Markers in red exceeded the cutoff for the
measure of informativeness. Similar patterns were observed between FST
and In. Delta yielded the largest AIMs panel and included a large number
of loci not included by any of the remaining four methods. SIC gave the
smallest AIMs panel.

Additional file 15: Table S8: FIC - Sensitivity analysis of proportion
of ancestry contribution on the selection of AIMs. For a pair of
proportions of ancestry contribution (m and m’), we examined overlap
patterns between the two top n% AIM panels selected using m and m’
in the computation of FIC. Overlap patterns were presented by 11: AIMs
selected by both panels; 10: AIMs selected by panel one (m) but not
panel two (m’); and 01: AIMs selected by panel two (m’) but not panel
one (m). Frequency and percentage of each overlap pattern were
reported for top 1%, 5%, 10%, and 20% AIMs. Proportion of ancestry
contribution considered included 0.1, 0.2, 0.3, 0.4, and 0.5.

Additional file 16: Table S9: SIC - Sensitivity analysis of proportion
of ancestry contribution on the selection of AIMs. For a pair of
proportions of ancestry contribution (m and m’), we examined overlap
patterns between the two top n% AIM panels selected using m and m’
in the computation of SIC. Overlap patterns were presented by 11: AIMs
selected by both panels; 10: AIMs selected by panel one (m) but not
panel two (m’); and 01: AIMs selected by panel two (m’) but not panel
one (m). Frequency and percentage of each overlap pattern were
reported for top 1%, 5%, 10%, and 20% AIMs. Proportion of ancestry
contribution considered included 0.1, 0.2, 0.3, 0.4, and 0.5.
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