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Overview: 

As nanoscale science continues to flourish, scientists strive to understand how structure and 

order (or disorder) on the nanoscale contribute to macroscopic properties, such as magnetism.  

This study examines alloys of gadolinium and iron that have been nanostructured through the 

process of melt-spinning.  The result was a two-part system consisting of small (~70 nm) 

gadolinium grains surrounded by an amorphous gadolinium and iron matrix.  Measurements of 

the samples’ DC magnetization and AC susceptibility were performed.  By looking at the 

paramagnetic to ferromagnetic transition in the materials, the critical exponents were obtained 

and used to classify and understand how the addition of iron and the melt-spinning process 

affected the magnetic properties.  By using relatively simple magnetic atoms, we intend for this 

study to be a fundamental look at disorder on the nanoscale and a model system for future 

investigations. 
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Introduction and motivation: 

Significant advances in technology, particularly in data processing and communications, 

have been made possible by fundamental research in magnetism. This research has led to 

discoveries of magnetic behaviors such as giant magnetoresistance (GMR), which recently won a 

Nobel Prize in physics [1].  As scientists continue to investigate magnetic systems, much 

attention has been given to nanoscale structures, which are technologically promising and are 

also extremely interesting from the point of view of fundamental science. For example, the 

phenomenon of colossal magnetoresistance is thought to derive much of its rich complexity from 

nanoscale structures and their interactions [2] [3] [4].  Nanoscale systems are generally defined 

to be systems in which at least one dimension has a size of less than 100 nanometers (10
-9

 

meters).  As the size of the system is reduced to the nanoscale, the surface area to volume ratio 

increases dramatically, affecting the environment of the electrons.  As the electron is the 

generator of the electric and magnetic properties, this size reduction can have significant effects 

on the properties of materials.   

Interesting effects of imperfections and disorder –a characteristic of many nanoscale 

systems– on bulk magnetic properties, especially magnetic phase transitions, have also been 

observed recently [5].  Disordered magnetic materials display a range of interesting and useful 

magnetic and electronic properties, because the arrangement of atoms in a material and the 

interactions between them play a significant role in the emergence of these phenomena.  

Introducing disorder into a system affects this arrangement, and thereby affects the material’s 

properties.  Disorder in a magnetic system can be classified as chemical disorder, in which an 

atom or ion replaces another in a crystal lattice, or structural disorder, in which an atom or ion is 

moved from its place in a crystal lattice.  Structural disorder can vary from the entire breakdown 
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of the crystal lattice seen in an amorphous material, to something more intermediate, such as 

crystal grain surrounded by amorphous regions. 

Gadolinium (Gd) metal provides the basis for all the samples studied in this project.  It 

crystallizes in a hexagonal close packed structure, with the lattice constants a = 0.3629 nm and c 

= 0.5795 nm [6].  One of the first studies ever published on Gd is by Nigh, Legvold, and 

Spedding, where it was shown that Gd is a prototypical ferromagnet with a Curie temperature 

(Tc) of 293.2 K and an effective magnetic moment per atom of 7.98 Bohr magnetons (the 

magnetic moment of one electron) near the transition [7].  (The Curie temperature is the 

temperature at which there is a transition between the paramagnetic and ferromagnetic phases.) 

Dan’kov et al. demonstrated that Tc is 294(1) K, independent of the method of analysis [8], and 

Nigh et al. provided a careful study of the phase transition, showing the paramagnetic to 

ferromagnetic transition took the form of a sharp, second-order phase transition [7].  Because the 

ferromagnetism in Gd arises from well-localized Gd magnetic moments, it provides a good 

control for examining disordered magnetic systems.  Recently, Michels, Krill, and Birringer have 

performed measurements on nanocrystalline Gd prepared by inert-gas condensation methods [9].  

This method resulted in a polycrystal with randomly oriented nanometer-sized grains surrounded 

by a network of grain boundary regions [9].  The grain sizes in these studies varied from 8 nm to 

150 nm.  Using Mössbauer spectroscopy, Michels et al. found that the Tc decreases as the grain 

size is reduced.  They also found that the spontaneous magnetization was best described as being 

composed of a component from the crystalline grains and a component from the disordered grain 

boundaries.  The decrease in Tc explained in terms of pressure applied on the grains by the grain 

boundaries, which is consistent with behavior of bulk Gd [10].  Dun-hui et al. also showed that 
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the FM-PM transition in a melt-spun Gd sample took place near the same Tc as bulk Gd, but the 

transition was significantly broadened [11].   

One can introduce disorder into a magnetic system by inserting another element into the 

material’s lattice as well as by displacing the atoms from their regular spacing [12].  Amorphous 

materials are structurally disordered systems, because the atoms no longer reside in a lattice 

structure that repeats throughout the material.  By adding some Gd to iron (Fe), an amorphous 

alloy with chemical disorder can be produced by melt-spinning [13].  Yano et al. reported that 

the crystal structure of melt-spun Gd-Fe samples containing a percentage of Gd ranging from 18 

to 60 percent was determined by x-ray diffraction techniques to be amorphous.  A study by 

Petkov, Yano, and Kita also used x-ray diffraction to show that melt-spun (or rapid melt 

quenched, to use their terminology) Gd-Fe alloys were amorphous [14].  In addition, it was 

demonstrated that melt-spinning produced an amorphous structure distinct from that of 

sputtering (evaporative) deposition.  Varying the amount of Gd present in the sample produced 

differences in the amorphous structure as well.  These amorphous materials were still 

ferrimagnetic, i.e., the exchange interaction between Gd and Fe causes the moments to align 

antiferromagnetically, but the unequal magnitude of the moments means that some net 

magnetization still survives.  The FM-PM transition in these samples was broadened, and the Tc 

showed some dependence on the Gd concentration.  Petkov, Yano, and Kita concluded that the 

amorphous samples are dominated by short-range interactions and random anisotropy [14].  In 

these samples, Fe tended to cluster, keeping the alloy from being a homogenous mixture.  The 

work indicates that at higher Gd concentration (concentration > 60%) nanoscale grains of pure 

gadolinium embedded in an amorphous matrix composed of both Gd and Fe; however, studies of 
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nanostructured GdFe that contain a mixture of nanoscale grains and amorphous boundary regions 

are rare [14].   

By examining gadolinium-iron alloys as prototypical systems, we seek to better 

understand the effects that disorder has on the properties of magnetic systems and correlate 

disorder to effects on the extrinsic and intrinsic magnetic properties of the bulk material.  In this 

thesis, we present experimental data on the magnetic properties of the paramagnetic to 

ferromagnetic phase transition of nanostructured gadolinium (Gd) and gadolinium-iron alloys 

(GdxFe100-x).  The nanostructures we have studied consist of nanometer-sized crystallites or 

grains embedded in a disordered grain boundary (GB) region.  Because the behavior of the 

system in the region of the phase transition is governed by spatial dimensionality, spin 

dimensionality, the range of the spin-spin interaction, and the strengths of coherent and random 

anisotropy, we can study the effects of nanoscale disorder, and the competition between the GB 

and the nanoscale grains, on one or more of these factors. 

Theory: 

Understanding the origins of magnetic phenomena begins with identifying the origin of 

the magnetic moment.  The electron is endowed with an intrinsic angular momentum, analogous 

to other intrinsic quantities, such as mass and charge, which gives rise to a magnetic moment 

[15].  This magnetic moment is present on every electron, but its presence does not guarantee 

that every isolated atom will have a magnetic moment.  The magnetic moment of a bare electron 

can take one of two values, and two electrons with opposite magnetic moments can result in a 

total magnetic moment of zero.  If the magnetic moments of the electrons do not completely 

cancel, a net magnet moment can be associated with the atom or ion.  A net magnetic moment 

will be present on atoms where the inner d- or f-electron shells are incompletely filled.  When the 
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atom or ion is incorporated into a solid, the behavior is more complex.  In a solid, the localized 

magnetic moments on atoms or ions are actually time-averaged results of a dynamical process 

[15].  For our purposes, it is useful to treat these atoms as having a permanent magnetic moment. 

 Materials composed of atoms with a permanent magnetic moment exhibit 

paramagnetism, which means that the material responds to an applied magnetic field with a 

magnetization that is parallel to the field.  The magnetic moments tend to line up along the 

externally applied field, and as the individual moments begin to align, they contribute to the 

overall magnetization of a sample.  This relation between the magnetization and the external 

applied field also leads to susceptibility, another important property of a magnetic material.  

Susceptibility, χ, is defined as: 

 /M Hχ =  (1) 

 

where M is the magnetization and H is the external applied field [16].  The susceptibility is a 

measure of the difficulty in changing a material’s magnetization.  Another important 

characteristic of a material is its AC susceptibility.  AC susceptibility measures a sample’s 

response to a changing magnetic field, dH.  Therefore, “true” susceptibility, χ , is sometimes 

called DC susceptibility.  AC susceptibility does not measure a material’s magnetic moment, but 

its change in magnetic moment, dM.  Pure paramagnetic magnetization assumes that the atomic 

moments are isolated and do not interact.  However, magnetic moments do interact, most 

significantly via a quantum mechanical effect known as the exchange interaction [16].  

 The exchange interaction couples magnetic moments in a variety of ways.  Hurd 

describes the variety of couplings in detail [15].  For our purposes, we note that the exchange 

interaction can align moments in the same direction (a ferromagnetic arrangement) or in opposite 

directions (an antiferromagnetic arrangement).  Thus, a magnetic system becomes a sort of 
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competition between two factors:  the tendency of the exchange interaction to align (correlate) 

magnetic moments and the tendency of thermal fluctuations to orient the moments randomly.  In 

some materials, at a low enough temperature, the exchange interaction overcomes thermal 

fluctuations and leads to a large-scale alignment of moments. There are regions (domains) 

containing many moments in which there is magnetization without the presence of a magnetic 

field.  This correlated case is called ferromagnetism.  The transition from paramagnetism to 

ferromagnetism occurs at a temperature called the Curie temperature (Tc), also known as the 

critical temperature [16].  The paramagnetic to ferromagnetic (PM) phase transition is indicated 

by a sharp increase in magnetization as the temperature is lowered and the correlation length of 

the system increases.  Another hallmark of the PM phase transition is a peak in the ac 

susceptibility that is suppressed and shifted toward higher temperatures by an applied magnetic 

field [17]. 

 The strength and alignment tendency of the exchange interaction can depend on the 

nature of the interaction, as well as the distance between the interacting moments.  Thus, 

introducing chemical disorder, where a new atom is substituted for another in the crystal lattice, 

can affect the exchange interaction and possibly the transition.  Similarly, changing the structure 

of the material affects the distances between atoms, altering the exchange interaction, which can 

lead to a change in the properties of the phase transition.   

One way to study the physics of magnetic systems is by observing their behavior in the 

temperature region where the material goes through a paramagnetic to ferromagnetic transition.  

The transition depends on the exchange interaction and anisotropy effects, so in this critical 

region, system characteristics emerge, and the effects of spatial disorder may be apparent.  The 

phase transition region is characterized according to its transition temperature and its critical 
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exponents, which are the exponents in the power-law behavior of the spontaneous magnetization 

and susceptibility expressed as functions of the reduced temperature (see below).  Comparing the 

critical exponents to exponents obtained from other samples, as well as comparing them with 

values calculated from phase transition theory, can lead to insight into the mechanisms governing 

the phase transition. 

  Three important critical exponents for this study are beta (β), gamma (γ), and delta (δ).  

Beta is the spontaneous (zero magnetic field) magnetization exponent, which is defined by the 

following single power law relation: 

 0( ) ( ) , 0
S

M T M
βε ε= − < , (2) 

where c

c

T T

T
ε

−
=  is the reduced temperature and M0 is a critical amplitude.  Gamma is the 

isothermal magnetic susceptibility exponent defined as  

 1

0 0 0( ) ( / ) , 0T h M
γχ ε ε− = >  (3) 

where 1

0χ −  is the inverse zero-field susceptibility, and h0 is a critical amplitude. 

Delta is the critical isotherm exponent: 

 
1

, 0M DH δ ε= =  (4) 

where H is the demagnetization-adjusted applied magnetic field, and D is a critical amplitude 

[18].  Note that (2) and (3) are strictly valid in the limit ε →  0, known as the asymptotic critical 

region.  Equation (4) is valid exactly at T = Tc. Clearly, the accurate determination of TC is of 

paramount importance.  We will refer to these equations as the single power law equations (SPL) 

[12].  Note that these relations are first order approximations.  It is common to refer to the 

additional terms as correction to scaling (CTS) terms [19].  
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 Different model systems have different values for the critical exponents.  Thus, 

comparing measured values with values predicted for certain models indicates the character of a 

transition.  Two important models are the Mean Field model and the Heisenberg model.  Mean 

field theory assumes that every moment is interacting with every other; in effect, the exchange 

interaction is infinitely ranged, resulting in critical exponents of γ  = 1, β  = 0.5, and δ = 3.  The 

Heisenberg model assumes that the exchange interaction is short-ranged and that magnetic 

moments are only interacting locally.  The critical exponents for the short-range three-

dimensional (3D) Heisenberg model are γ = 1.386, β = 0.365, and δ = 4.536 [17]. 

Different methods exist for measuring Tc and the critical exponents.  S. N. Kaul has 

compiled many of the methods, including methods using both DC magnetization data and AC 

susceptibility data [19].  The two methods of interest are what Kaul names asymptotic analysis II 

(AA-II), and ac susceptibility data analysis.  AA-II uses the Arrott-Noakes plot [20] to extract 

values of 
s

M  and 
1

0χ − .  The Arrott-Noakes plot is a graph of 

1

M β  versus 

1

H

M

γ 
 
 

that depends on 

the relationship  

 

11

1 1

CT TH M

M T M

βγ  − 
= +   

   
 (5) 

 

which arises from a combination of (2) and (3) [20].  A standard Arrott plot uses mean field 

theory exponents (γ = 1, β = 0.5, δ = 3), which are characteristic of systems with infinite-range 

interactions.  Thus, the relationship simplifies to a graph of M
2
 vs H/M.  When correct exponent 

values are used in the Arrott-Noakes plot, the data has a linear relationship for sufficiently large 

fields, and the extrapolations to the axes yields the values of spontaneous magnetization MS and 
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inverse zero-field susceptibility χ0
-1

.  Note that for the isotherm at T = TC, the y-intercept should 

be zero.  With these zero field extrapolations, a process based on relations (2) and (3) that we call 

the intercept method, can be used to arrive at the best values for the critical exponents.  M. 

Sahana gives one example of using the intercept method [18].  The extrapolations are used to 

determine an initial value of  Ms, 1/χ0, and Tc.  The initial Tc is then used to determine ε.  Taking 

the natural logarithm of both sides of (1.2) and (1.3) results in  

 0ln ln ln( ), 0sM M β ε ε= + − <  (6) 

 

 ( )1

0 0 0ln ln( / ) ln( ), 0h Mχ γ ε ε− = + >  (7) 

 

which allows one to do a linear plot and determine refined values of γ and β from the slope of the 

line.  Exponents that produce linear isotherms on the Arrott-Noakes plot and are constant within 

uncertainty under this process are considered accurate. 

The Kouvel-Fisher (KF) method [21] can also be used to determine critical exponents 

from these values as demonstrated in references [18], [19], and [22].  The derivatives of 

equations (2) and (3) are 

 1( )s
o

dM
M

dT

ββ ε − 
= − 

 
 (8) 

 

 
1

10
0( / ) ( )o

d
h M

dT

γχ
γ ε

−
− 

= 
 

 (9) 

 

Thus, dividing (2) and (3) by (8) and (9) give linear relationships  

 

 

1
( )

s c
s

dM T T
M

dT β

−
− 

= 
 

 (10) 

 

 

1
1

1 0
0

( )
c

d T T

dT

χ
χ

γ

−−
−   −

= 
 

 (11) 
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The KF method uses the MS and χ0
-1

 taken from the AN plot and generates refined values 

of the critical exponents γ and β by determining the slope of a graph of 

1

s
s

dM
M

dT

−
 
 
 

vs T 

and

1
1

1 0
0

d

dT

χ
χ

−−
−  
 
 

vs T .  These updated values are used to create a new AN plot.  The process is 

repeated until the updated values are unchanged within uncertainty.  The KF method, unlike the 

intercept method described above, has the advantage of being determined independent of a Tc 

estimated from interpolation.  In fact, a value for Tc can be determined from the y-intercept and 

slope of the KF graph.  However, the process depends on a numerical differentiation, which can 

be unreliable if enough data points are not present. 

Because these procedures use the asymptotic values of magnetization and ac 

susceptibility, the extrapolation process is important.  An alternate method for arriving at the 

values for Ms and χ0
-1

 is what Kaul calls the parabolic extrapolation [19].  Kaul points out that 

the relationship in equation (5) is an approximation, with terms proportional to higher powers of 

M are neglected [19].  Under certain cases, those terms may need to be included for an accurate 

determination of the intercepts.   

The ac susceptibility analysis can also be a useful method for determining the value of γ , 

as 1

0χ −  can be taken directly from the data once a value for Tc is determined.  Examples of ac 

susceptibility analysis include work by Zhao et al., [23] Peles [17], and Fischer, Kaul, and 

Kronmueller [22].   

When a system undergoes a paramagnetic to ferromagnetic transition, the ac 

susceptibility can be written as  

 
11

'( , )
h h

h t h H G
γδ

γ β γ β
χ ε

ε ε

− −

+ +

   
= =   

   
 (12)   
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where H(X) and G(X) are universal functions of their arguments [23].  Since ac susceptibility has 

a peak in a phase transition, the maximum will occur at the same value for
h
γ βε +

.  Therefore, 

 
h

C
γ βε +

=  (13) 

where C is a constant.  Then, the reduced temperature, ε, of the maxima of the ac susceptibility 

vs temperature is proportional to 
1

( )

i
H γ β+ .  Thus, we can write the actual temperature of the 

maximum as 

 
1

( * )
m C C

T k T H Tγ β+ = + 
 

 (14) 

This relationship provides another way for one to determine a critical temperature.  Also, from 

equation (12), it follows that 

 '( , )h t γχ ε −∝  (15) 

which is useful for determining the critical exponent γ directly from ac susceptibility data. 

Finally, note that using one or more of these methods will yield a value for Tc that can be 

used to determine the exponent δ directly from experimental data and the use of equation (4) 

[18, 19, 17].  Scaling theory predicts a number of relationships between the critical exponents 

that should be true for correct experimental exponents [17].  One such relation, the Widom 

scaling relation, relates the values of β, γ, and δ as  

 1 γδ
β

= +  (16) 

The Widom scaling relation will provide an important check to the values of the critical 

exponents obtained in our analysis. 
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Experimental Details 

The samples were prepared using a melt-spinning apparatus at the University of 

Nebraska-Lincoln.  The gadolinium (99.9%) was prepared for melt-spinning by arc-melting 

under an argon gas atmosphere.  The melt-spinning was performed under a argon atmosphere on 

a copper disk rotating with a tangential speed of 40 m/s.  The samples obtained were ribbons 7-

10 mm long.  X-ray diffraction (XRD) was performed with the samples mounted with silicone 

vacuum grease on a zero-background holder.  The samples were prepared for transmission 

electron microscope (TEM) analysis by gluing the ribbon pieces on copper grids, then ion 

milling.   

 The magnetic measurements were performed on a Quantum Design Physical Property 

Measurement System, with an ACMS (AC Magnetization System) attachment.  All AC 

susceptibility measurements were performed in an AC-driving field with amplitude of 3 Oe and a 

frequency of 1 kHz.  AC susceptibility measurements were taken in the temperature range 2-350 

K.  AC susceptibility versus temperature measurements in the range 286 K-304 K were taken 

with superimposed DC bias fields ranging from 600-3000 Oe in increments of 200 Oe.  

Magnetization versus external field data for ms-Gd were taken along isotherms at intervals of 1 

K from 286 K-294 K in fields up to 6 Tesla (Figure 1).  The data were corrected for 

demagnetization; the demagnetization factor was determined using low field measurements of 

the magnetization versus external field and the density of the sample.  After data at each 

temperature was taken, the sample temperature was raised to 325 K to fully demagnetize it.  It 

was then cooled to the next temperature to be measured. 

 Magnetization versus external field data for the alloy samples were taken along isotherms 

at intervals of 0.25 K from temperatures ranging from 285.25 K to 298 K in fields up to 6 Tesla.  

Again, the data were corrected for demagnetization with the demagnetization factor determined 

as explained above.   
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Table 1: Physical information on samples 

 

Sample Mass (mg) Composition  

(% nanocrystalline) 

Grain Size 

(nm) 

Demagnetization 

Factor (Oe*g/emu) 

ms-Gd 11.92 75%  73±5  1.695 

ms-Gd97Fe3 0.98 68% 73±5 1.899  

ms-Gd94.6Fe5.4 1.30 60% 73±5   2.100 

ms-Gd80Fe20 0.88 35% 73±5 1.927 

 

Results: 

I. Ms-Gd 

A. Structural Properties 

The structure of melt-spun Gd was determined with a combination of X-ray diffraction, 

transmission electron microscopy (TEM), and extended x-ray absorption fine structure (EXAFS).  

X-ray diffraction confirmed that the sample was composed of nanocrystalline grains, and 

Williamson-Hall analysis on the x-ray diffraction data indicated that the grain size was 73 ± 5 

nm.  TEM images confirmed that the sample consisted of crystalline grains surrounded by 

amorphous grain boundary regions. The TEM images indicated that the grain size was 

approximately 150 nm; however, this was attributed to the small region in which the image was 

taken. Finally, the EXAFS data shows that the majority of the sample (75%) is composed of the 

nanocrystalline grains of hcp-Gd.  The remainder is amorphous Gd confined to the boundary 

regions [24]. 

 B. DC Magnetization 

In this section, we present data on the temperature variation of DC magnetization in an 

applied magnetic field data, which are used to determine TC and the critical exponents γ, β, and δ 

by Arrott-Noakes analysis.  The unmodified isotherms for magnetization versus applied field are 

in Figure 1.   
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Figure 1: Magnetization vs external field for temperatures 286-294 K. 

 

The standard Arrott plot in Figure 2 is clearly non-linear at all fields, indicating that mean 

field theory does not apply.  In order to use the Arrott plot to determine the asymptotic values of 

magnetization and susceptibility, we must determine reasonable guesses for the critical 

exponents, then construct an AN plot. 

Figure 2:  Standard Arrott Plot 
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In order to determine correct values for γ and β, (5) was rearranged so that a nonlinear 

curve fitting routine could be performed on the data with gamma and beta as two of the 

parameters.  To perform the nonlinear fit, the initial values of the critical exponents that were 

used were those for the classical 3D Heisenberg model with short-range interactions (β = 0.365 , 

γ = 1.386, δ = 4.78) [19].  This process yielded preliminary values of γ and β, which were used to 

generate an Arrott-Noakes plot (Figure 3).  

 

Figure 3: Arrott-Noakes Plot 

 

The intercepts were extrapolated and used to determine TC, MS(T), and χ0
-1

(T), which were then 

used to generate a log-log plot (Figure 4).   
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Figure 4:  Double logarithmic plots for the spontaneous magnetization and inverse susceptibility to determine 

critical exponents gamma and beta. 

 

The slopes of these plots gave updated values of γ and β (see (2) and (3)).  These resulting values 

of gamma and beta were then used to reconstruct the Arrott-Noakes and log-log plots, which 

updated the values of gamma and beta within uncertainty limits.  The process resulted in a β = 

0.389 ± 0.017, γ = 1.300 ± 0.014, and TC = 289.70 ± 0.1 K.  

With an accurate value for TC, the critical exponent δ can be calculated directly from the 

DC magnetization data on the critical isotherm with a log-log plot of magnetization versus 

applied field (see (4)).  Since our data were taken at 1 degree intervals, the value of delta was 

interpolated from the inverse of the slope of the 290 K and 289 K isotherms (Figure 5).   
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Figure 5:  Determining Delta on the critical isotherm 

 

From the interpolation, δ = 4.32 ± 0.02.  Now, critical exponents must obey the Widom scaling 

relation [25] 

 γδ
β

= +1 . (17) 

Inserting the experimental values for β and γ yields δ = 4.34 ± 0.03; thus, the Widom scaling 

relation is satisfied. 

C. AC susceptibility 

 The data in Figure 6 shows how the ac susceptibility varies over the entire temperature 

range of the instrument.  One can see that the susceptibility falls dramatically near 300 K (see 

inset in Figure 6).  This is one indication that a ferromagnetic-paramagnetic transition is taking 

place.   
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Figure 6:  AC susceptibility as a function of temperature (20 K ≤≤≤≤T ≤≤≤≤ 350 K) 

 

When a system undergoes a paramagnetic to ferromagnetic transition, the AC 

susceptibility as a function of temperature with a DC magnetic field superimposed has a peak 

near the transition temperature.  This peak shifts with a change in the applied field, which is a 

signature of critical fluctuations that occur during a phase transition.  The data in Figure 7 

confirms that a phase transition is indeed taking place in the nanostructured Gd sample.  
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Figure 7:  AC susceptibility vs Temperature with DC bias fields for temperatures near the transition 

temperature.  Bias fields range from 600 Oe to 3000 Oe in intervals of 200 Oe.  The red line on the graph 

passes through the Tm points and indicates how the peak is shifting to higher temperatures. 

 

The maximum susceptibility was located on each data set, and the temperature at which that 

maximum occurs was recorded as Tm.  At each Tm, εm = (Tm – TC)/ TC was calculated.  Now, as 

demonstrated earlier, εm ∝ H i

1/(γ +β ) , from which we obtain: 

 γ β+
 

= +  
 

1

( * )
m C C

T k T H T . (18) 

The data in Figure 8 show that TC using this relation is 290.2 ± 0.7 K, agreeing within 

uncertainty limits with the TC from the DC magnetization data.  The values for γ and β were 

taken from the best values obtained from the Arrott-Noakes analysis. 
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Figure 8:  Tm versus H
(1/(γ+β)γ+β)γ+β)γ+β). . . . The intercept on the vertical axis gives a measure of TC.    

 

The AC susceptibility data can also be used to determine gamma.  From the relation (3) it 

follows that follows that 

 γχ ε −∝'( , )
m

h t  (19) 

  Plots of ln (χ’) vs. the ln (εm) can thus provide a measurement of γ.   
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Figure 9:  Log-Log plot of internal susceptibility vs reduced temperature, εm.  γγγγ is equal to the negative of the 

slope.   

 

 

The data in Figure 9 is linear for applied fields greater than 1000 Oe, and its slope results in γ = 

1.308 ± 0.012.  
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II. Gd94.6Fe5.4 

A. Structural Properties 

The x-ray diffraction data shows the sample to be composed of nanocrystalline grains with 

diameters of approximately 70 nm.  Also, the x-ray diffraction lacks peaks for Fe, indicating it is 

located in the noncrystalline regions of the sample.  Energy-dispersive x-ray spectroscopy also 

indicates that the Fe concentration in the grain goes to zero, showing that the sample is 

composed of grains of pure Gd, with amorphous Gd and Fe present in the grain boundaries.  

TEM images confirm the sample’s nanocrystalline grain structure.  EXAFS data reveals that the 

volume of the sample occupied by the grains decreased in comparison to the pure Gd sample 

[24].   

B. DC Magnetization 

In order to facilitate a more robust analysis of the DC magnetization data, we took data at 

a smaller temperature intervals and higher applied field than the ms-Gd sample.  Because we had 

more isotherms available for the Gd54.6 Fe5.4 data, we were able to use numerical derivatives in 

the iterative KF process to determine the critical exponents of this sample.  The code used to run 

the process is included as Appendix I.  The process was run using a range of initial exponents, γ 

= 1.15-1.45 and β = 0.36-0.42.  All initial values converged to the same critical exponent values 

within uncertainty.   

 Because the extrapolations to estimate Ms and χ0
-1

 are only valid for sufficiently high 

values of H, some lower field data points were excluded from the linear extrapolations.  We used 

the eight highest field values because the KF process converged in the fewest number of 

iterations.   
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 The result of the KF process was a Tc = 291.710±0.07, γ = 1.2438(1), and β = 0.385(1).  

The AN plot for these exponents is below in figure 10. 

  

Figure 10:  AN plot for Gd94.6Fe5.4 sample 

 

We can use the single power laws to check these values for the exponents.  We use the 

extrapolations from the final AN plot to get Ms and χ0
-1

, and then use the non-linear curve fitting 

routine to fit the data to the SPL in (2) and (3).  Allowing Tc, the exponent, and the critical 

amplitude to vary freely, we can check the KF method.  The fitting is displayed in figure 11.   
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Figure 11:  Results for SPL fitting for Gd94.6Fe5.4 The squares are the data, and the line is the fitting results.  

The top graph determines β and Β and the bottom determines γ and Γ. 
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Single power law fits yield γ = 1.22 ± 0.05, β = 0.376 ± 0.004, and Tc = 291.76 ± 0.1 and 291.73 

± 0.05 for γ and β respectively, so the SPL fits agree with the KF method within uncertainty.  

The SPL fitting also found the critical amplitude M0 to be 278 ± 4 and the critical amplitude 

(h0/M0) = Γ
0
 to be 8140 ± 1000.   

With Tc known, we can make a measure of delta from the magnetization data.  From the 

single power law in equation (4), we can estimate delta from the slope of a log-log plot of 

magnetization versus internal field.  Since we did not have data for an isotherm exactly at Tc, we 

found an effective delta for the two isotherms closest to Tc and linear interpolated to find delta.  

The result was a value of 4.2006 ±0.04 for delta.  The Widom scaling relation is satisfied for this 

value, as γ
β

+1  is 4.22. 

   We can gain more insight in to the transition by observing how the exponents vary near 

the phase transition.  The graphs in figures 12 and 13 use the single power laws in a rearranged 

form similar to the intercept method.  But instead of just looking that the overall slope to 

determine a single value for the exponent, we take a numerical derivative to study the slope, 

which is the value of the exponent, at each data point, allowing us to observe trends as the 

sample approaches the transition.  In this case, the exponents stay reasonably constant 

throughout the transition.  The larger graphs contain the raw data, and the insets are derivatives.  

To take the numerical derivatives, the raw data was interpolated using a cubic spline, and then 

differentiated.  The data points in the inset then are the values of the smoothed derivative at the 

temperature points of the raw data.   
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Figure 12:  The slope of the log-log plot of reduced temperature vs spontaneous magnetization gives the value 

of the critical exponent β.  The inset shows the derivative of the graph (βeff) vs reduced temperature, revealing 

how the exponent varies as the reduced temperature is changed. 
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Figure 13:  The slope of the log-log plot of reduced temperature vs the inverse of the zero field susceptibility 

gives the value of the critical exponent γ.  The inset shows the derivative of the graph (γeff) vs reduced 

temperature, revealing how the exponent varies as the reduced temperature is changed. 

  

A final technique we created for studying the critical exponents of the sample was what we call 

the exponent map method.  In this technique, we used a computer program to perform one KF 

iteration for a wide variety of initial γ and β values and compared the updated exponents with the 

initial values.  The program can be found in Appendix II.  The value of the difference was 

plotted as a height over an x-y axis, with the x-axis representing the initial values of γ and the y-

axis representing the initial value of β.  Since the KF method is considered complete when the 

initial and updated exponents are constant, any where on this surface with a height of zero should 

be a likely value for an exponent.  For Gd94.6Fe5.4, the exponent map corroborates the results 
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from the KF method.  The exponent maps can be seen in figures 14 and 15 where the color 

represents the difference. 

Figure 14:  Exponent Map method for the β value 

 

Figure 15:  Exponent Map Method for γ value 

 



 31 

III. Gd97Fe3 and Gd80Fe20 

A. Structural Properties 

 The structural analysis of samples containing 3% Fe and 20% Fe showed that the grain 

size of the samples were similar to that of the pure Gd and Gd94.6Fe5.4, approximately 70 nm.  

The volume of the grain boundaries increased with an increase in Fe content across all samples 

tested.  Energy-dispersive x-ray spectroscopy indicates that the Fe remains in the grain boundary 

region [24].     

B. DC Magnetization 

The magnetization versus applied field data for both samples are shown in figures 15 and 

16.  In proceeding with the KF method described earlier, we were unsuccessful in determining 

critical exponents from the data for these two samples.  As the KF method would progress, the 

calculated Tc would continue to rise beyond what AC susceptibility measurements indicated was 

the transition temperature.  For the Gd97Fe3 sample, there was one set of exponents on which the 

KF method would converge; however, the isotherms in the AN plot still had a significant 

curvature, as seen in figure 17.  At this time, we are not able to resolve this problem and arrive at 

values for the critical exponents that describe the system.     
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Figure 15: Magnetization vs external field data for Gd97Fe3.  Data was taken at such small intervals that the 

the data points overlap.  

 

Figure 16: Magnetization vs external field data for Gd80Fe20. 
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Figure 17: AN plot for the critical exponents that resulted from the KF method for Gd97Fe3.  Not that the 

isotherms are not linear. 
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Discussion: 

The critical-exponent values for melt-spun gadolinium, melt-spun Gd100-xFex, bulk 

crystalline gadolinium, and other amorphous gadolinium based ferromagnets, as well as some 

theoretical values for the exponents, are included in Table 2 for comparison. 

Table 2:  Comparisons of parameters of pure ms-Gd sample with experimental and theoretical values report 

in literature. 

 

Material Ref. β γ δ TC (K) 

      

Ms-Gd This 
work 

0.389 ± 0.017, 1.300 ± 0.014, 4.32 ± 0.02 289.70 ± 0.1 

Ms-Gd94.6Fe5.4 This 
work 

0.385 ± 0.001 1.243 ± 0.001 4.20 ± 0.02 291.71 ± 0.1 

      

Crystalline Gd (Isotopic Dipolar Regime) [12] 0.40±0.02 1.39±0.03  292.78±0.01 

Crystalline Gd (Uniaxial Regime) [12] 0.5002±0.0006 1.00±0.03 3.005(5) 292.78±0.01 

Amorphous Gd-TM Ferromagnets [19] 0.34 – 0.44 1.16 – 1.29 3.6 – 3.96 -- 

      
3D Heisenberg Model (Theory) [19] 0.365(25) 1.386(4) 4.80(4) -- 

Mean Field Theory  [25] 0.5 1 3 -- 

 

 The critical temperature of ms-Gd is approximately 4 K lower than that of bulk Gd, and 

approximately 1.5 K lower than polycrystalline samples [19].  This leads us to conclude that the 

nanocrystallinity of the sample is resulting in a depression of the transition temperature.  M. 

Tokita et al. have shown that applying pressure to bulk gadolinium depresses the transition 

temperature [10].  Michels, Krill, and Birringer apply this to their nanocrystalline sample of Gd, 

positing that each grain is having pressure applied by the amorphous grain boundary regions [9].  

For grain sizes from 10 nm to 100nm, they determined an empirical relationship between the 

grain size and the reduction in Tc:  
b

c
T D−∆ ∝ , with 1b ≈ − .  Using this relation, a shift in Tc of 

about 4 K would be expected for the average grain size in ms-Gd, which corroborates the Tc 

found experimentally.  We conclude that the grain boundary regions are applying a pressure to 
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the crystalline grains present in the sample, leading to the lowering of the transition temperature 

of the nanocrystals, and thus lowering the bulk material’s critical temperature. 

 The transition temperature for the ms-Gd94.6Fe5.4 sample is still depressed relative to the 

bulk, although not as much as in the pure ms-Gd sample.  Because structural analysis reveals that 

the nanocrystalline grains are essentially still pure Gd , the addition of the Fe does not change the 

characteristics of the grains themselves.  One explanation for the observed reduction of Tc is that 

the Fe collecting in the grain boundaries is changing the structure of the boundaries and having 

an effect on the pressure exerted.  However, we cannot make a conclusion with only one mixed 

sample. 

 Because ms-Gd is essentially composed of a large number of nanocrystals that would 

essentially behave as small bulk samples, we expect that the critical exponents of the phase 

transition would not be significantly affected.  The experimentally determined value of β = 

0.389±0.017 compares well with the value determined by Srinath and Kaul (SK) [12].  The value 

for γ (1.39±0.03) obtained by SK seems to disagree with the value we have found for ms-Gd.  

However, SK has also shown that the value for γ is not constant throughout the entire range of 

reduced temperature ε.  The gadolinium system goes through a crossover from the isotropic 

universality class (γ = 1.386) to uniaxial dipolar universality class (γ = 1) as the transition 

temperature is approached.  These crossovers are reflected in the changing value of γ as Tc is 

approached.  In SK’s determination of γ, a reduced temperature range of 

3 32.0 10 6.8 10ε− −× ≤ ≤ × was used [12].  Our reduced temperature range encompasses both SK’s 

range and the low end of the reduced temperature range not included by SK where γ rapidly falls 

to a mean field value of 1.  Thus, it is not surprising that we measured a smaller value of γ.   
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   Ms-Gd94.6Fe5.4 also has a value of β that compares well with the value for 

monocrystalline Gd.  However, the value of γ has moved away from the asymptotic critical value 

of monocrystalline Gd even more.  The reduced temperature range for this sample is 

4 28.7 10 1.46 10ε− −× ≤ ≤ × .  Thus, it is possible that the lowering of the critical exponent comes 

from including data from the region where γ decreases to 1 as it changes universality class.  

However, the data in figure 13 indicate that the exponent is approximately constant throughout 

the range of reduced temperature.  The fact that the effective value of the critical exponent 

remains constant in the reduced temperature range indicates that the value of the exponent is an 

asymptotic value.  This argument is further supported by the inability of the correction-to-scaling 

expansion to improve the fits in figure 11.  If the data was outside of the asymptotic region, the 

difference could be compensated for using the CTS expansion, but since the fit does not improve 

with the extra terms, there is no difference for the CTS to take into account.  The value of the 

exponent is in between the isotropic dipolar value and the mean-field value, possibly because the 

sharp transition between the two universality classes present in ms-Gd has become smeared out 

due to the disorder in the grain boundaries.   

Another possibility is that the iron is actually changing the asymptotic critical exponent 

by effectively reducing that material’s spatial dimensionality. A material’s dimensionality 

governs how many nearest neighbors it can interact with.  Because the interactions with nearest 

neighbors are vital to a PM-FM phase transition, different dimensionality classes result in very 

different theoretical critical exponents.  For example, the critical exponent γ in the 3-D Ising 

Model is predicted to be 1.238, but in the 2-D Ising model, it is predicted to be 1.75.  Beauvillain 

et al. hypothesized for a sample of LiTbF4 that showed mean field-like γ values, but changed to a 

γ value of 1.215 after being diluted with Yttrium, that the Yttrium could be effectively changing 
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the dimensionality [27].  Gd also changes from uniaxial dipolar universality class (γ = 1) to a 

higher asymptotic γ value as iron is introduced into the system.  Thus, it may be that iron is 

effectively reducing the dimensionality in the sample.  In order to draw more conclusions about 

the effects of iron on the PM-FM transition, more samples containing different amounts of iron 

must be analyzed.  

Unfortunately, we were unsuccessful in applying standard KF analysis to the Gd97Fe3 and 

Gd80Fe20 samples in the time available.  When the KF analysis is applied, the transition 

temperature measured is higher than expected in comparison with other samples and ac 

susceptibility data.  This leads us to hypothesize that Fe, which is ferromagnetic at temperatures 

in the vicinity of the Gd Tc, is initiating a non-zero magnetization above the Gd PM-FM 

transition.  Since the KF method assumes a sharp transition, this non-zero magnetization may be 

causing the KF method to fail.  One possible method of examining the transition is to determine 

the contribution of the Fe to the magnetization and subtract it from the measurement, allowing us 

to perform KF analysis on the Gd magnetization only.  As research moves forward, this method, 

in addition to other approaches, will be employed to determine the critical exponents of these 

composite systems.   
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Conclusion: 

Melt-spun Gd and GdFe alloy ribbons are comprised of many nanocrystalline grains of 

pure Gd that are embedded in an amorphous grain boundary phase.  This two-phase structure 

affects the paramagnetic to ferromagnetic transition primarily through a mechanism where extra 

pressure is applied to the Gd grains and the Tc is lowered.   

Through the use of the “intercept method,” the critical exponents for the ms-Gd system 

were determined to be similar to that of monocrystalline Gd when the crossover effects were 

taken into account.  This indicates that the phase transition behavior of nanocrystalline Gd is 

comparable to monocrystalline Gd.  Though our analysis of ms-Gd was somewhat limited by not 

having enough isotherms as needed to reliably perform KF or SPL analysis, we were still able to 

obtain robust measurements of the critical exponents, Tc, and the critical amplitudes by using the 

ac susceptibility data and scaling analysis. 

For the ms-Gd94.6Fe5.4 sample, we increased the amount of data taken so that we could 

expand our analysis of DC magnetization.  Adding iron to the system appears to increase the 

volume fraction of the grain boundary regions while not affecting the grain size.  This change in 

the grain boundaries could affect the pressure on the grains and account for the change in the 

transition temperature.  The asymptotic value of the critical exponent gamma is significantly 

different from the ms-Gd sample, possibly indicating that iron in the grain boundaries is 

effectively changing the dimensionality of the Gd grains.   

The data from the ms-Gd97Fe3 and ms-Gd80Fe20 samples could not be analyzed using 

conventional KF analysis.  Iron in the sample appears to lead to a nonzero magnetization above 

the transition temperature, complicating the transition made by the Gd grains.  Ascertaining the 
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affects of adding Fe to the ms-Gd system will continue by examining the component of the 

magnetization due to iron and studying more samples of varying compositions.  

 In addition to quantifying the effects of nanoscale disorder introduced by melt-spinning, 

this study has tested and compared various methods of analyzing nanostructured samples, 

including scaling analysis, KF method, and SPL fitting.  Furthermore, routines have been 

developed so that similar measurements in the future can be quickly investigated in a way 

consistent with previous analysis methods.    
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Appendix I: 

%ECPGdFe54_newdata_iterativemethod 
%Get Inputs 
clear diff_tc Results 
close all 

  
Tuse = 28; 
Fieldponts = 22; 

  
 t2=0; 
 for betaloop = 1:7 

      
     for gammaloop = 1:5 
 t2=t2+1; 

  
t=0; 
Betain = 0.36 + (betaloop-1)*0.01;  
Gammain = 1.15 +(gammaloop-1)*0.05; 
Beta_new = Betain; 
Gamma_new = Gammain; 
Beta_out_KF = 0; 
Gamma_out_KF = 0; 
Results(t2,1) = Betain; 
Results(t2,2) = Gammain; 

  

  
while ((abs(Betain-Beta_out_KF)>0.0001)||(abs(Gammain-Gamma_out_KF)>0.0001)) 
    t = t+1; 
    if t>400 
        break; 
    end 
    Betain = Beta_new; 
    Gammain = Gamma_new; 

     
clear RawData2 BetaData BetaDataLength GammaData GammaDataLength der der2 d 

extra p Betalnt_m Gammalnt_m Tc_intercept lnt_m spon_mag Gamma_out_Intercept 

Beta_out_Intercept; 
for j=1:Tuse 
    RawData2(1:22,(j*2)-1) = RawData1(1:22,(j*2)-1).^(1/Gammain); 
    RawData2(1:22,(j*2)) = RawData1(1:22,j*2).^(1/Betain); 
    p = polyfit(RawData2(15:22,(j*2)-1),RawData2(15:22,(j*2)), 1); 
    Data(j,2) = p(2); 
    Data(j,3) = p(1); 
end 

  
%Intecept Method 
%calculate tc from the y-int vs Temp y-intercept 
p = polyfit(Data(1:Tuse,1), Data(1:Tuse,2), 1); 
Tc_intercept = -p(2)/p(1); 

  
%Get the correct data for the different exponents 
for j=1:Tuse 
    if Data(j,2)>0 
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    BetaData(j,1) = Data(j,1); 
    BetaData(j,2) = Data(j,2); 
    BetaData(j,3) = Data(j,3); 
    end 
end 
d=size(BetaData); 
BetaDataLength = d(1); 

  
extra = 0; 
for j=1:Tuse 
    if Data(j,2)<0 
    GammaData(j-extra,1) = Data(j,1); 
    GammaData(j-extra,2) = Data(j,2); 
    GammaData(j-extra,3) = Data(j,3); 
    GammaData(j-extra,4) = -Data(j,2)/Data(j,3); 
    else 
    extra = extra+1; 
    end 
end 
d=size(GammaData); 
GammaDataLength = d(1); 

  
%t_m reduced temperature 
Betalnt_m = log(abs((Tc_intercept-

BetaData(1:BetaDataLength,1))/Tc_intercept)); 
Gammalnt_m = log(abs((Tc_intercept-

GammaData(1:GammaDataLength,1))/Tc_intercept)); 

  
%get spontaneous magnetization 
spon_mag = BetaData(1:BetaDataLength,2).^Betain; 
lnspon_mag = log(spon_mag); 

  
%get log(1/X) 
chi_inverse = GammaData(1:GammaDataLength,4).^Gammain; 
lnchi_inverse = abs(log(chi_inverse)); 

  
p=polyfit(Gammalnt_m, lnchi_inverse, 1); 
Gamma_out_Intercept = p(1); 
p=polyfit(Betalnt_m, lnspon_mag, 1); 
Beta_out_Intercept = p(1); 

  

  

  
%Kouvel-fisher 

  
%Derivative of spon_magnetization 

  
der(1,1) = (spon_mag(2)-spon_mag(1))/(Data(2,1)-Data(1,1)); 
for j=2:(BetaDataLength-1) 
    der(j,1) = (spon_mag(j+1)-spon_mag(j-1))/((Data(j+1,1)-Data(j-1,1))); 
end 
der(BetaDataLength,1) = (spon_mag(BetaDataLength)-spon_mag(BetaDataLength-

1))/(Data(BetaDataLength,1)-Data(BetaDataLength-1,1)); 

  
%Divide the derivative by the spontaneous magnetization, then do a linear fit 
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M_s_derM_s = spon_mag./der; 
p = polyfit(Data(2:BetaDataLength-1,1),M_s_derM_s(2:BetaDataLength-1),1); 
Beta_out_KF = 1/p(1); 
Beta_new = Beta_out_KF; 
Tc_beta_KF = abs(p(2)/p(1)); 

  

  
%Derivative of 1/X 

  
der2(1,1) = (chi_inverse(2)-chi_inverse(1))/(Data(2+extra,1)-

Data(1+extra,1)); 
for j=2:(GammaDataLength-1) 
    der2(j,1) = (chi_inverse(j+1)-chi_inverse(j-1))/((Data(j+1+extra,1)-

Data(j-1+extra,1))); 
end 
der2(GammaDataLength,1) = (chi_inverse(GammaDataLength)-

chi_inverse(GammaDataLength-1))/(Data(GammaDataLength+extra,1)-

Data(GammaDataLength-1+extra,1)); 

  
%Divide the derivative by the spontaneous magnetization, then do a linear fit 
c_i_derc_i = chi_inverse./der2; 
p = polyfit(GammaData(2:GammaDataLength-1,1),c_i_derc_i(2:GammaDataLength-

1),1); 
Gamma_out_KF = 1/p(1); 
Gamma_new = Gamma_out_KF; 
Tc_Gamma_KF = abs(p(2)/p(1)); 

  

  

  
Results(t2,3) = Beta_out_KF; 
Results(t2,4) = Gamma_out_KF; 
Results(t2,5) = Tc_Gamma_KF; 
Results(t2,6) = t; 

  

  
end 

  
    end 
end 

  
hold on 
for j=1:Tuse 
plot(RawData2(1:Fieldponts,(j*2)-1),RawData2(1:Fieldponts,(j*2)),'o'); 
end 
str1 = num2str(Gamma_new); 
str2 = num2str(Beta_new); 
title('Arrott-Noakes Plot') 
text(10,300,str1,'Units','pixels'); 
text(10,250,str2,'Units','pixels'); 
text(10,200,num2str(Tc_Gamma_KF),'Units','pixels'); 
xlabel('H/M^1^/^y') 
ylabel('M^1^/^B') 
hold off 
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Appendix II: 

%Get Inputs 
clear diff_tc 

  
for b = 1:40 
    Betain = 0.35 + b*0.002; 
     diff_tc(b+1,1) = Betain; 
     gamma_inter(b+1, 1) = Betain; 
     beta_inter(b+1, 1) = Betain; 
     gamma_kf(b+1, 1) = Betain; 
     beta_kf(b+1, 1) = Betain; 
   for g = 1:45 
       Gammain = 1.20 + g*0.005; 
    diff_tc(1,g+1) = Gammain; 
     gamma_inter(1,g+1) =Gammain; 
     beta_inter(1,g+1) = Gammain; 
     gamma_kf(1,g+1) = Gammain; 
     beta_kf(1,g+1) = Gammain; 

     
clear RawData2 BetaData BetaDataLength GammaData GammaDataLength der der2 d 

extra p Betalnt_m Gammalnt_m Tc_intercept lnt_m spon_mag Gamma_out_Intercept 

Beta_out_Intercept; 
for j=1:27 
    RawData2(1:11,(j*2)-1) = RawData1(1:11,(j*2)-1).^(1/Gammain); 
    RawData2(1:11,(j*2)) = RawData1(1:11,j*2).^(1/Betain); 
    p = polyfit(RawData2(1:11,(j*2)-1),RawData2(1:11,(j*2)), 1); 
    Data(j,2) = p(2); 
    Data(j,3) = p(1); 
end 

  
%Intecept Method 
%calculate tc from the y-int vs Temp y-intercept 
p = polyfit(Data(1:27,1), Data(1:27,2), 1); 
Tc_intercept = -p(2)/p(1); 

  
%Get the correct data for the different exponents 
for j=1:27 
    if Data(j,2)>0 
    BetaData(j,1) = Data(j,1); 
    BetaData(j,2) = Data(j,2); 
    BetaData(j,3) = Data(j,3); 
    end 
end 
d=size(BetaData); 
BetaDataLength = d(1); 

  
extra = 0; 
for j=1:27 
    if Data(j,2)<0 
    GammaData(j-extra,1) = Data(j,1); 
    GammaData(j-extra,2) = Data(j,2); 
    GammaData(j-extra,3) = Data(j,3); 
    GammaData(j-extra,4) = -Data(j,2)/Data(j,3); 
    else 
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    extra = extra+1; 
    end 
end 
d=size(GammaData); 
GammaDataLength = d(1); 

  
%t_m reduced temperature 
Betalnt_m = log(abs((Tc_intercept-

BetaData(1:BetaDataLength,1))/Tc_intercept)); 
Gammalnt_m = log(abs((Tc_intercept-

GammaData(1:GammaDataLength,1))/Tc_intercept)); 

  
%get spontaneous magnetization 
spon_mag = BetaData(1:BetaDataLength,2).^Betain; 
lnspon_mag = log(spon_mag); 

  
%get log(1/X) 
chi_inverse = GammaData(1:GammaDataLength,4).^Gammain; 
lnchi_inverse = abs(log(chi_inverse)); 

  
p=polyfit(Gammalnt_m, lnchi_inverse, 1); 
Gamma_out_Intercept = p(1); 
p=polyfit(Betalnt_m, lnspon_mag, 1); 
Beta_out_Intercept = p(1); 

  

  

  
%Kouvel-fisher 

  
%Derivative of spon_magnetization 

  
der(1,1) = (spon_mag(2)-spon_mag(1))/(Data(2,1)-Data(1,1)); 
for j=2:(BetaDataLength-1) 
    der(j,1) = (spon_mag(j+1)-spon_mag(j-1))/((Data(j+1,1)-Data(j-1,1))); 
end 
der(BetaDataLength,1) = (spon_mag(BetaDataLength)-spon_mag(BetaDataLength-

1))/(Data(BetaDataLength,1)-Data(BetaDataLength-1,1)); 

  
%Divide the derivative by the spontaneous magnetization, then do a linear fit 
M_s_derM_s = spon_mag./der; 
p = polyfit(Data(1:BetaDataLength,1),M_s_derM_s(1:BetaDataLength),1); 
Beta_out_KF = 1/p(1); 
Tc_beta_KF = abs(p(2)/p(1)); 

  

  
%Derivative of 1/X 

  
der2(1,1) = (chi_inverse(2)-chi_inverse(1))/(Data(2+extra,1)-

Data(1+extra,1)); 
for j=2:(GammaDataLength-1) 
    der2(j,1) = (chi_inverse(j+1)-chi_inverse(j-1))/((Data(j+1+extra,1)-

Data(j-1+extra,1))); 
end 
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der2(GammaDataLength,1) = (chi_inverse(GammaDataLength)-

chi_inverse(GammaDataLength-1))/(Data(GammaDataLength+extra,1)-

Data(GammaDataLength-1+extra,1)); 

  
%Divide the derivative by the spontaneous magnetization, then do a linear fit 
c_i_derc_i = chi_inverse./der2; 
p = polyfit(GammaData(1:GammaDataLength,1),c_i_derc_i(1:GammaDataLength),1); 
Gamma_out_KF = 1/p(1); 
Tc_Gamma_KF = abs(p(2)/p(1)); 

  
diff_tc(b+1,g+1) = Tc_beta_KF-Tc_Gamma_KF; 
gamma_inter(b+1,g+1) = Gamma_out_Intercept; 
diff_gamma_inter(b+1,g+1) = (Gamma_out_Intercept-Gammain); 
beta_inter(b+1,g+1) = Beta_out_Intercept; 
diff_beta_inter(b+1,g+1) = (Beta_out_Intercept-Betain); 
gamma_kf(b+1,g+1) = Gamma_out_KF; 
diff_gamma_kf(b+1,g+1) = (Gamma_out_KF-Gammain); 
beta_kf(b+1,g+1) = Beta_out_KF; 
diff_beta_kf(b+1,g+1) = (Beta_out_KF-Betain); 

  
   end 

    
end 
dlmwrite('GdFe54_diff_gamma_inter', diff_gamma_inter) 
dlmwrite('GdFe54_diff_beta_inter', diff_beta_inter) 
dlmwrite('GdFe54_diff_gamma_kf', diff_gamma_kf) 
dlmwrite('GdFe54_diff_beta_kf', diff_beta_kf) 
dlmwrite('GdFe54_diff_tc', diff_tc) 
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