2018

Native Grass Cover Influences Forb Density in CP-42 Pollinator Plantings

Alyssa Burgert
University of Northern Colorado

Laura Jackson
University of Northern Iowa

Follow this and additional works at: https://scholarworks.uni.edu/ugswork
Part of the [Biodiversity Commons](https://scholarworks.uni.edu/ugswork)

Let us know how access to this document benefits you

Recommended Citation
Burgert, Alyssa and Jackson, Laura, "Native Grass Cover Influences Forb Density in CP-42 Pollinator Plantings" (2018).
Undergraduate Student Work. 16.
https://scholarworks.uni.edu/ugswork/16

This Open Access Undergraduate Student Work is brought to you for free and open access by UNI ScholarWorks. It has been accepted for inclusion in Undergraduate Student Work by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
Native grass cover influences forb density in CP-42 pollinator plantings
Alyssa Burgert and Dr. Laura Jackson
Department of Biology, University of Northern Iowa, Cedar Falls, IA

Background
In recent years, pollinator populations have greatly declined due to a large decrease in habitat. In order to combat this decline, government programs have provided farmers with incentives to convert cropland to pollinator habitat. Farmers are required to plant at least 9 insect-pollinated species, with 3 species each blooming in early, middle and late summer. Any grasses must be native and comprise no more than 25% of the seed mix. Because of the high cost of forb seed and relatively low cost of grasses, we aimed to evaluate the effectiveness of this seed mix strategy. We predicted that higher native grass cover would not significantly impact pollinator resources, and that successful establishment of sown grasses and forbs would reduce weed invasion.

Methods
• We surveyed 27 randomly chosen CP-42 sites in eastern Iowa, all within 60 minutes from the University of Northern Iowa, and used data from 19 sites for the present study.
• ArcGIS was used to select 5 random points within each plot to use as starting points for 100m transects.
• 75 total quadrats were surveyed at each site. Each quadrat was 0.5m x 2.0m running along the 100m transect at 7m intervals.
• Forbs greater than 20cm tall were identified and recorded
• Grasses were surveyed using percent cover of a 0.5m x 1.0 m quadrat. This was done every 7m on the left side of each 100m transect.
• Grass cover was classified into cool season-seeded, cool season-unseeded, warm season-seeded, and annual.
• Percent cover of grasses and bare ground were organized into six categories: 0-5%, 6-25%, 26-50%, 51-75%, 76-95%, and 96-100%; the median of each cover class was used for analysis.

Results
• Sown and unsown grass cover were not significantly correlated with seeded forb stem density (pollinator resources) (Figure 2 a-c).
• There was a slight but nonsignificant (p=0.102) negative correlation between sown grass %cover and unsown (weed) forb stem density (Figure 2d).
• As total grass cover increased, bare ground decreased (p=0.027) (Figure 2i).
• Combined ranks of unsown vegetation showed a significant negative impact on sown plants.

Preliminary Conclusions
Higher cover of sown grasses and forbs in 3-year CRP fields was associated with lower weed density/cover and bare ground (Figure 3). Site-to-site variation was high. This study provides some evidence that the CP-42 seed mix strategy could be improved by adding more native grasses, without diminishing pollinator resources.

Acknowledgements
Field workers: Jen Pauley, Esther Edgerton, MJ Lashbrook, Alec Glidden, Corinne Myers, Olivia Willoughby, Ethan Marburger, Nathan Theel
Professors: Dr. Ai Wen, Dr. Mark Sherrard, Dr. Mark Myers.
Special thanks to the farmers for allowing us to come survey!

References