April 2015

Audio Jack Data Communication on Smartphones

Ziyuan Li

University of Northern Iowa

Copyright © 2015 Ziyuan Li

Follow this and additional works at: https://scholarworks.uni.edu/agss

Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you

https://scholarworks.uni.edu/agss/2015/all/22

This Open Access Poster Presentation is brought to you for free and open access by the Graduate College at UNI ScholarWorks. It has been accepted for inclusion in Annual Graduate Student Symposium by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
Smartphones have several interfaces for data communication, USB, Wi-Fi and Bluetooth. They are relatively fast and efficient. However, most small sensor peripherals does not directly support those interfaces, a few of those which support those are pretty expensive. By creating this platform, devices like cubic-inch sensor peripherals may be supported by Android smartphones. Client devices harvest power and use bandwidth from the smartphone’s audio jack interface. This platform enables a lot of small and cheap phone-centric sensor accessories which support plug-and-play operation. We are testing this platform on an Android 4.1 phone. Based on frequency shift keying (FSK) modulation scheme, we have proposed a joint power harvesting and communication technology that can simultaneously harvest power and transfer data with the same audio jack interface.

Keywords: Smartphone, Energy harvesting, Audio communications

INTRODUCTION

- Smartphone is the most commonly used personal electronic device, it’s also a very powerful computing platform. Among many interfaces on the smartphone, only the audio port is universal. In this poster, I introduce an application that can transfer data and power simultaneously to a microcontroller.

OBJECTIVE

- To make the smartphone a data communication device, the most affordable and commonly used interface is the audio port. We may connect low-power sensors directly to the audio port.
- In this case, the smartphone needs to do computing, communicating, and graphical user interacting.
- For the computing, nowadays mainstream smartphones are powerful enough to do those tasks.
- For the communicating, we are now using a microcontroller to simulate the task which those low-power low-cost sensor do.
- Smartphones also have many built-in sensors like ambient light sensor, motion sensor, etc. We may use those including methods in the SDK to create user-friendly apps.

RESULTS

Power harvesting results

In order to simultaneously harvest power and transfer data through audio jack interface, we have used the FSK scheme to modulate the data from the smartphone to the MSP430 microcontroller. More specifically, because not all smartphone can output a sinusoidal wave with a frequency higher than 20 kHz, we use 16 kHz to represent bit “1” and 20 kHz to represent bit “0”.

Furthermore, to reduce the demodulation complexity in the microcontroller, the duration of the FSK symbol is set at about 2ms, which is equivalent to a data rate of 500 bit/s. This data rate is good enough for the data transfer from the smartphone to the Microcontroller. We also tested 1ms FSK symbol, which is equivalent to a data rate of 1K bit/s, the demodulation was successful as well.

CONCLUSIONS

- Based on FSK modulation scheme, we have achieved a joint power harvesting and communication technology that can simultaneously harvest power and transfer data with the same audio jack interface.
- By setting the AC signals outputted by the right and left audio channels to have 180 degree phase difference, the newly proposed technology employs the stereo channel configuration to harvest power between the right and left audio channels at a certain data transfer rate.
- User is able to transfer any data they want from the smartphone, or sending power supporting signal only.

REFERENCES