Carbonization Studies on Mammut americanum Tusk

Nina Jocic

University of Northern Iowa

Copyright ©2017 Joshua Prybil

Follow this and additional works at: https://scholarworks.uni.edu/mastodon_posters

Part of the Chemistry Commons

Let us know how access to this document benefits you

Recommended Citation

https://scholarworks.uni.edu/mastodon_posters/5

This Poster is brought to you for free and open access by the Mastodon Tusk Analysis Project at UNI ScholarWorks. It has been accepted for inclusion in Mastodon Tusk Project Posters by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
In 1934, a large mastodon tusk was discovered in a gravel pit near Hampton, Iowa, shown in Figure 1. It has been held by the University of Northern Iowa since that time. The tusk, pictured in Figure 1, has undergone many documented and undocumented restoration attempts, but it has also been damaged, as shown in Figure 2.

What is known or was suspected about the tusk initially:

• Very little information uncovered about the tusk’s original preservation in the ground.
• Little information is known about the tusk’s current state.
• Reported to be highly carbonized (fragile).
• The position in the gravel pit was slightly inclined.¹
• No other bones or remains of the mastodon were found nearby the tusk.¹
• Observations suggest the tusk may have been carried by water currents away from where the mastodon died.

Why Carbonization?

As a tusk fossils in its ground, its organic contents are exchanged for carbonate, namely calcium carbonate. The process is known as carbonization or mineralization.

• During the mastodon’s life, the main chemical composition of its tusk included collagen and hydroxyapatite, \(\text{Ca}_10(\text{PO}_4)_{6}(\text{OH})_2 \).²
• Hydroxyapatite (HAp) is mainly found on the outer layers of bones and teeth. It is the component that makes a tusk rigid and strong.³
• Collagen is mineralized. This process can occur as mineral-containing water moves through the porous structure of the tusk and leaves mineral deposits, or it can occur in the presence of bacteria that replace organic contents with calcium carbonate.⁴
• Examining the extent of carbonization of the tusk can provide conservators with an idea of the delicacy of the tusk.
• Carbonization studies can also provide a better clue about the conditions of the ground preservation of the tusk.

Data obtained from the EA is presented in Table 1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Carbon (% by weight)</th>
<th>Hydrogen (% by weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.971</td>
<td>0.574</td>
</tr>
<tr>
<td>2</td>
<td>0.851</td>
<td>0.523</td>
</tr>
<tr>
<td>3</td>
<td>0.668</td>
<td>0.571</td>
</tr>
<tr>
<td>4</td>
<td>1.288</td>
<td>0.661</td>
</tr>
<tr>
<td>Average</td>
<td>0.945</td>
<td>0.582</td>
</tr>
</tbody>
</table>

• The tusk is not homogenous, as shown by the fluctuation in the percent carbon between the 4 samples.
• On average, the tusk contains about 1% carbon.
• The hydrogen content is from water picked up by the powder and not from the HAp, as the combustion temperature was not high enough to incinerate the compound.

• All 36 Raman spectra collected showed strong HAp peaks and undetectable CaCO₃ peaks.

Results

Data obtained from the EA is presented in Table 1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Carbon (% by weight)</th>
<th>Hydrogen (% by weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.971</td>
<td>0.574</td>
</tr>
<tr>
<td>2</td>
<td>0.851</td>
<td>0.523</td>
</tr>
<tr>
<td>3</td>
<td>0.668</td>
<td>0.571</td>
</tr>
<tr>
<td>4</td>
<td>1.288</td>
<td>0.661</td>
</tr>
<tr>
<td>Average</td>
<td>0.945</td>
<td>0.582</td>
</tr>
</tbody>
</table>

• The tusk is not homogenous, as shown by the fluctuation in the percent carbon between the 4 samples.
• On average, the tusk contains about 1% carbon.
• The hydrogen content is from water picked up by the powder and not from the HAp, as the combustion temperature was not high enough to incinerate the compound.

• All 36 Raman spectra collected showed strong HAp peaks and undetectable CaCO₃ peaks.

Conclusions

• The tusk is not highly carbonized. This means the tusk fragments are not as delicate as previously suspected.
• The artificial outer shellac and plaster layers of the tusk are the main sources of carbon. Once these layers are removed, pristine tusk, composed mainly of the strong and rigid hydroxyapatite, will be exposed.
• Josh Prybil was able to extract nucleoclasses from the tusk, accounting for some of the tusk carbon content.
• Not enough data was collected to make any conclusions about the carbonization in terms of the tusk’s ground preservation, but this is a topic of interest for future work.

Literature Cited

Acknowledgements

Thank you to the Roy J. Carver Charitable Trust for providing the funding for the conservation of the tusk and the Raman spectrometer. Thank you to the UNI Museum and Nathan Ardnt for providing tusk fragments for analysis. Thank you to Dr. Colin Weeks and Dr. Joshua Sebree for assisting in the data collection process. Thank you to Nick Bonde and Katie Platzie for sharing their SEM/EDX pictures, and thank you to Josh Prybil for sharing the results of his nucleotide sublimation experiments.