Fluorescence Mapping of Materials on Mammut Americanum

Shaylah Peyton McCool
University of Northern Iowa, mccools@uni.edu

Copyright ©2019 Shaylah Peyton McCool and Joshua Sebree
Follow this and additional works at: https://scholarworks.uni.edu/chemanaly_fa2019

Part of the Chemistry Commons

Let us know how access to this document benefits you

Recommended Citation
https://scholarworks.uni.edu/chemanaly_fa2019/3

This Open Access Poster is brought to you for free and open access by the Chemical Analysis Class Projects at UNI ScholarWorks. It has been accepted for inclusion in Fall 2019 - Chemical Analysis Class Projects by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
Fluorescence Mapping of Materials on *Mammut Americanum*

Shaylah McCool†, Dr. Joshua Sebree‡

†University of Northern Iowa Department of Chemistry and Biochemistry

Introduction

- *Mammut Americanum*, more commonly known as the American Mastodon, is an extinct species found throughout North and Central America. Dated from either the Altonian or Yarmouth age (120,000 to 200,000 B.C.E.), a 12-foot, 600-pound tusk of a mastodon was discovered in Hampton, Iowa in the 1930’s.
- In 1933, it was brought to the University of Northern Iowa for comprehensive research and preservation. The tusk was covered in unknown materials such as varnish, spackle, lacquer, and shellac in an attempt to preserve it before putting it on display in the UNI Museum in the 1960’s.
- Currently, the tusk is in two pieces, the smaller of which was the subject of this research.
- Fluorescence mapping of the materials on the Mastodon tusk is a necessary study as the lacquers hold the key to determining the future preservation methods required by the tusk.

Methodology

- The tusk was given an orientation and a grid was placed over the tusk and labeled alphanumerically. Each grid square had a unique designation for mapping. Three sections of the tusk were identified for analysis by fluorescence: the shellac, the plaster, and the dental or tusk material.
- A blacklight was used to excite the fluorophores at which point the detector collected the re-emitted light signals which were converted to spectra.
- Fluorescence is a luminescent process in which a photon is absorbed at one wavelength then re-emitted at a longer wavelength. An electron, upon absorption of a photon, is excited to a higher electronic state while maintaining its spin orientation. This process, known as excitation, occurs in 10^-12-10^-15 seconds. Emission, the second event in fluorescence, is the re-emittance of a photon of longer wavelength in 10^-8 seconds as the electron relaxes back to the ground state.
- Fluorescence spectroscopy is more selective than both UV-Vis and IR spectroscopy. Since every molecule does not fluoresce, this selectivity allows for a more specific and detailed analysis of the materials. This technique is also non-invasive which is beneficial considering the rarity and age of the Mastodon tusk.

Instrumental Design

- The instrument consists of five main parts: a light source (365 nm blacklight), an external sample (tusk), a monochromator, a detector (fiber optic fluorescence spectrometer with tripod mount), and a computer.
- The spectrometer used for this research had an UV filter to eliminate background. The range of the spectrometer is 250 to 1150 nm with a spectral resolution of <1 nm.
- A blacklight of 365nm was used which provided improved contrast compared to the blacklights used in prior research.

Results

- Figure 3 shows the fluorescence intensity across the tusk at 675 nm. This shows that the plaster fluoresced most intensely while the shellac and the dental material fluoresced with relatively the same intensities.
- Figure 4 shows the virtual grid created for the tusk which was used to identify points where data was collected.
- Figures 5 and 6 show the fluorescent nature of the tusk under the 365 nm blacklight. It distinctly shows the shellac, plaster, and dental materials.

Conclusion

- Fluorescence spectroscopy showed that three of the four materials present on the tusk are fluorescent – the shellac, the plaster, and the dental or tusk material. The lacquer present on the tusk does not contain fluorophores and therefore does not fluoresce.
- The spectra show that the plaster and tusk have similar fluorescence although they are not covered in the same material. Future work will need to be done to determine why the shapes are similar.
- The fluorescent map of the tusk created as a result of this research can provide a starting point for building more in-depth maps of the rest of the tusk.
- The spectra taken along different grid points on the tusk can also inform conservationists as to a satisfactory method to better preserve each portion of the tusk based on the material present. If the map and spectra are utilized properly in future research, the tusk could be displayed in the UNI Museum for future generations of students, faculty, and guests to enjoy.

Acknowledgments

Thank you to:
- University of Northern Iowa Museum
- Roy J. Carver Charitable Trust
- Dr. Joshua Sebree

Work Cited

1. UNI Museum ‘Unveiling the Tusk’ exhibit showcases Iowa mastodon tusk; 2019
2. Laubenthal, C.; Sebree, J. Fluorescent Surface Mapping of Mastodon Tusk. 2017
4. UNI Museum ‘Unveiling the Tusk’ exhibit showcases Iowa mastodon tusk; 2019